
Chapter 1 What Is The All-Everything Operating System 1

Dear Reader: Thank you for downloading this free book from Brian W.
Kellys finished book catalog. I finished the book titled CThe All-
Everything Operating System
https://letsgopublish.com/technology/alleverythingos.pdf in 20096.
Forward by Dr. Frank Soltis, IBM’s Father of the AS/400; The story of
IBM I An IBM classic book that was refreshed in 2009.

Most of my books had previously been published on Amazon.

Click below if you would like to donate to help the free book

cause:

https://www.letsgopublish.com/books/donate.pdf

Enjoy!

https://letsgopublish.com/technology/alleverythingos.pdf
https://www.letsgopublish.com/books/donate.pdf

The
All-Everything

Operating System

IBM i for Business Means Business!!!

B R I A N W. K E L L Y

Copyright © 2009, Brian W. Kelly Editor Melissa
Sabol
The All-Everything Operating System

All rights reserved: No part of this book may be reproduced or transmitted
in any form, or by any means, electronic or mechanical, including
photocopying, recording, scanning, faxing, or by any information storage and
retrieval system, without permission from the publisher, LETS GO PUBLISH,
in writing.

Disclaimer: Though judicious care was taken throughout the writing and the
publication of this work that the information contained herein is accurate, there
is no expressed or implied warranty that all information in this book is 100%
correct. Therefore, neither LETS GO PUBLISH, nor the author accepts
liability for any use of this work.

Trademarks: A number of products and names referenced in this book are
trade names and trademarks of their respective companies. For example,
iSeries and AS/400 are trademarks of the IBM Corporation and Windows is a
trademark of Microsoft Corporation.

Referenced Material : The information in this book has been obtained
through personal and third party observations and copious reading over
many years. Where unique information has been provided or extracted from
other sources, those sources are acknowledged within the text of the book
itself. Thus, there are no formal footnotes nor is there a bibliography
section.

Published by: LETS GO PUBLISH!
 Joseph McDonald, Publisher
 P.O. Box 834
 Scranton, PA 18503
 jmac160@verizon.net
 www.letsgopublish.com

Library of Congress Copyright Information Pending

Book Cover Design by Michele Thomas

ISBN Information: The International Standard Book Number (ISBN) is a
unique machine-readable identification number, which marks any book
unmistakably. The ISBN is the clear standard in the book industry. 159
countries and territories are officially ISBN members. The Official ISBN For
this book is:

978-0-9802132-8-7

The price for this work is :
$35.00 USD

10 9 8 7 6 5 4 3 2
1

Release Date: April, 2005

Dedication

To Joseph and Peg McDonald

Great Friends of IBMi

And

At the Top of My Best Friend's List!

Acknowledgments

I would like to thank many, many people for helping me in this effort.

I would first like to thank my immediate family, starting with my lovely and
dear wife, Patricia. Pat is as lovely as a bright and sunny day. She is still a
kid and she makes me feel younger just watching her in action. My Pat is
number one.
It does seem like yesterday that we met and, I am tickled that life happens
for real and not just in fairy tales as my lady has added a magical sense to
my life and our family's lives.
What a life! Thank you. Thank you Pat for being there in the morning,
during the day, and the evening. Thank you for quietly taking care of
everybody else's problems and making them your own. Thank you for the
care you extend to all, including our dog Bennie and our cat, the huge tabby
tomcat, Buddy. Nobody can get by a day without you.
You are my beauty and my lady. I love when you announce yourself after
coming in from school or from shopping, "Hello You Lucky People!" I can't
wait to see you. I hear you buzzing around the house as I write and it always
puts a smile on my face.
Your daddy, Smokey, became a best friend to me and I loved how he always
called you his little girl "Packy." The "Smoke" and the "Skip" are now with
the Angels but the memories are forever. I do smile thinking of you and I
love you dearly and I love how you make our family a family. Thank you
Packy for all you do to keep me and our whole family well and mostly,
thank you for being so nice and for just being you.

I would also like to thank my twenty-four year-old daughter, Katie, who has
been Daddy's little girl now for all of her 24 years. You are one of the
brightest people in the whole world but more than that, you are among the
kindest and the sweetest. You are my Irish Rose. You have been able to put
life's struggles in perspective and you face things and work them out
positively like no one else ever could. I am very proud of you and even more
proud as I see you work with the clients in your profession. They are not as
fortunate in life as most and I revel that I would never know that from
speaking with you. How wonderful it is watching you offer pure kindness
and caring for the people who really need you. You are just wonderful and
that is that.
People that Mom and I meet for the first time can't wait to tell us what a
sweetheart you are. I do already know. Though you are grown up and quite
capable, thank you for always being Daddy’s Little Girl. I love you very
much.

Thanks also go out to my twenty-seven-year-old son, Michael, who
graduated from Law School and who passed the BAR exam first time.
Congratulations Attorney Michael. You know I know how hard it has been
with the tragedies you experienced to pick yourself up and move forward to
your achieved success. I was first proud of you that you came back and that

you faced life head-on, but now I am proud because you did not
compromise. You succeeded in spite of what many would have seen as
insurmountable difficulty. I am continually proud of the person that you are
and the person that you continue to become. You are on your way to being a
fine lawyer. You have learned that nothing in life worth having is easy and
you have knocked down barrier after barrier to be the person that you have
become. Congratulations Son! You are a good man. You are also a good
son. I'm proud of that big heart and my wonderful good son.

Thanks to my tall and handsome twenty-nine year-old son, Brian, who
knocked 'em dead in Law School and graduated Magna Cum Laude and then
killed the BAR exam. You were an essential ingredient in helping me pull
many of my books together. In my books and in my other writings, when I
have been flat on knowing how to say something, you always have the right
way to say exactly what I would have said if I were blessed with your
wonderful talents. I know that your first love is music and that Law is on the
side unless the family needs you. Thanks for that too! You have my blessing
in all your endeavors.
Your music projects have all been met with great acclaim and your several
hundred music videos are a phenomenon. You are a master musician with
the organ and the piano. Your snappy arrangements of music that others
have written and your creativity in your own pieces is beyond belief. You
have many an option in life and being a living Mozart can certainly be one
of them.
Your Internet music work has been successful and the reviews you get are
always excellent and outstanding. Congratulations on this lifetime feat. You
have no idea how hard it is for regular people like your Mom and I to be able
to come close to creating the beautiful music you make with seemingly
effortless motion. I suspect that it is not effortless, but you are about the best
I have ever seen. I am very proud of you, son. You are a wonderful son and I
love you deeply. Again, thank you as you help me like nobody else can.

Mom and I are very proud of all of our children and we thank each of you
for your work in academia, in life, for the family, and your efforts on our
behalf.

To sum up my acknowledgments, as I do in every book that I have written, I
am compelled to offer that I am truly convinced that "the only thing you can
do alone in life is fail." Thanks to my family, good friends, and a wonderful
helping team, I was not and continue to be --- not alone.

Table of Contents at a Glance

Chapter 1 What Is The All-Everything Operating System? 1

Chapter 2 The Value of Great Operating Systems 13

Chapter 3 Does an Operating System Add Business Value? 27

Chapter 4 Where Did IBM i Come From? 45

Chapter 6 IBM i -- The Unsung Operating System! 85

Chapter 7 Brief History of Computers from IBM Rochester 95

Chapter 8 IBM Power System with IBM i 141

Chapter 9 Autonomic Computing from the Start 153

Chapter 10 Advanced Computer Science Concepts in the

All-Everything Operating System ... 165

Advanced Computer Science Concepts:

Chapter 11 Integrated System Functions 171

Chapter 12 High Level Machine Interface 187

Chapter 13 Single-Level Store ... 207

Chapter 14 Object-Based Architecture ... 223

Chapter 15 Integrated Security ... 231

Chapter 16 Integrated Relational Database 243

Chapter 17 Integrated Business Language Compilers 257

Chapter 18 Consistent, Intuitive Control Language 275

Chapter 19 Integrated Transaction Processing 301

Chapter 20 All-Everything OS: Extra Ingredients 317

Chapter 21 The All-Everything OS in Perspective 341

Table of Contents xv

Table of Contents

Chapter 1 ... 1

What Is The All-Everything Operating System? 1

 The All Everything Machine! .. 1

 Separate the All-Everything OS from the All-Everything Machine 3

 System i Shops Have Nothing to Fear ... 5

 He Thought Chicago Was a Treat! .. 6

 Hardware ... 7

 Software... 7

 Unmatched Elegance ... 8

 Computer Science Research Project .. 9

 Research vs. Reality .. 11

 Unmatched World Leadership ... 12

 Viva La Eggplant ... 12

Chapter 2 ... 13

The Value of Great Operating Systems 13

 Who Cares? ... 14

 Who Needs the All-Everything OS? ... 14

 Generic Value of Computers ... 15

 Better Management Makes a Great System Even Better 16

 Prove the Relationship ... 17

 The Feature du Jour Approach to Computer Selection 18

 Give Me Exactly What I Know! .. 19

 The Casino Industry Demands Technology Excellence 21

 IBM i Runs 96% of Las Vegas .. 22

 They Run their Business on IBM i .. 23

 Keep Your Wallet Open .. 24

 Agility is Important to Casinos .. 25

 IBM i Apps for Casinos Provide Value ... 26

 Betting the House .. 26

Chapter 3 ... 27

Does an Operating System Add Business Value? 27

 Realizing the Benefits of Computing .. 27

 The Other Side of the Mountain ... 29

 ERP Provides Business Value .. 31

 ERP and IBM i -- Unbeatable ... 31

 The Benefits of ERP and IBM i .. 32

 Operational .. 35

 Financial .. 35

 Added Value Adds to Profits .. 35

 Change is Constant ... 36

 IBM i or Server Farm–You Make the Call ... 37

 Factors that Add Business Value with an All-Everything OS 38

 Technology Value ... 40

 iSeries Technical Factors .. 40

 Moving On .. 42

Chapter 4 ... 45

Where Did IBM i Come From? ... 45

 No Secrets Please .. 45

 IBM i: Easy to Use & Hard to Forget! .. 46

 IBM i for Small and Large Businsses Alike ... 47

Chapter 4 Appendix: ... 49

Twenty Questions ... 49

 There Could Be a Lot More .. 49

 Business Value Questions: .. 50

 Technical Questions: ... 54

 And the Answer Is .. 56

Chapter 5 ... 57

Voices of Users, Analysts, and Industry Experts 57

 Users Know Best! ... 57

 Jim Sloan, Jim Sloan, Inc. ... 58

 Skip Marchesani, Custom Systems Corp .. 59

 Al Barsa Jr., Barsa Consulting Group ... 61

 Bob Warford, Labette Community College .. 63

 Electrical Failure ... 63

 Six Days Down in Twenty-Five Years ... 64

 Doug Hart, Whitenack Consulting .. 65

 Ken Anderson, Quadrant Software ... 66

 Dave Books, Former IBM Systems Engineer ... 69

 Bob Cancilla, Formerly of Ignite/400 ... 70

 Sr. Marketing Manager at IBM Software Group 71

Table of Contents xvii

 Paul Harkins, Harkins Audit Software, Inc ... 73

 Bob Morici, Former IBM Systems Engineer (SE), iSeries Brand

Representative ... 75

 The Casino System .. 75

 Biographies: ... 78

Chapter 6 ... 85

IBM i -- The Unsung Operating System! 85

 IBM Was the Only Game in Town .. 85

 Application Software Challenge .. 87

 Some Customers Got Free Program Code ... 88

 Lots of System/32 Installations ... 89

 IBM’s Best Advertising Campaign Ever ... 89

 S how Me The Ad! .. 90

 You Gotta Be Kidding! ... 91

 Do You Know about the All-Everything Operating System? 93

 Windows Reliability = Low Expectations ... 93

Chapter 7 ... 95

Brief History of Computers from IBM Rochester 95

 The Rochester Mission .. 95

 A Quick Look at Punch Card Gear .. 96

 The Punch Card Equipment Tour Begins .. 96

 The Punch Card Equipment Tour Ends ... 101

 Rochester Moves on with Its Mission ... 101

 Lots of Time to Think .. 102

 One-Third Size, 20% More Data ... 102

 The 96-Column Card Processing Gear .. 104

 96-Column Card Processing Versatility .. 105

 Powerful Business Language for New S/3 .. 106

 Disk Drives for the System/3 .. 107

 New Disks Form Basis of New System/3 ... 108

 More Storage, Please ... 109

 The BattleStar Galactica .. 110

 Tape Drives and Faster Printers... 111

 System/3 Models ... 113

 Made for Humans, Not Machines.. 115

 Terminals for System/3 ... 117

 The IBM System/32 Is Introduced .. 118

 The First Version All-Everything Operating System 124

 Unexpected Delays ... 124

 Make It Work, Please! .. 125

 1980: First Year System/38s Were Spotted .. 127

 System/34 Was Available ... 128

 Mainframe: Who Are those Guys in Rochester? 128

 The First Big Consolidation Project .. 129

 You Can't Handle the Truth .. 130

 Finally, the AS/400 ... 131

 The Best System Ever - The Best Operating System Ever 135

 System/36 Shops Had Reservations .. 136

 AS/400 Evolution.. 137

 A Gift for the System/36 Community ... 137

 1995 -- IBM Announces 64-bit RISC Processors 138

 Continual Improvements in Power ... 138

 Is It Really That Nice? Yes! ... 139

 Enhancements & AS/400 Marketability ... 140

Chapter 8 ... 141

IBM Power System with IBM i .. 141

 The Best Operating System Ever .. 141

 AS/400 Becomes eServer iSeries .. 142

 Only IBM Could Create an All-Everything OS 143

 IBM Has the System Bases Covered .. 145

 First Base – PC Servers ... 145

 Second Base – The Unix / Linux Box ... 146

 Third Base -- Mainframe .. 146

 Home Run – IBM i (for Business) .. 147

 Even More Environments ... 148

 Mainframe Future on Power 7? .. 149

 Windows on Power 7 Anyone? ... 149

Chapter 9 ... 153

Autonomic Computing from the Start 153

 Automatic Transmissions 'R' Us ... 153

 Ease of Use for Technical Staff .. 154

 IBM i Power Systems Keep on Ticking .. 155

Table of Contents xix

 Runs Many Applications At Once ... 156

 Old Reliable ... 157

 Ease of Migration .. 158

 Logical Partitioning Can be Logical .. 159

 How Popular Is the All-Everything Machine? 159

 Users and Consultants Who Check It Out, Like IBM i 160

 IBM i Waiting to Be Successful .. 163

 A Reliable Team on Duty .. 163

Chapter 10 ... 165

Advanced Computer Science Concepts in the

All-Everything Operating System ... 165

 IBM i Has What It Takes! ... 165

 To Know the IBM i box is to Love the IBM i box 166

 All Everything OS: Six Advanced Principles .. 167

Chapter 11 ... 171

Advanced Computer Science Concepts:

Integrated System Functions ... 171

 Integration Beats Add-On Any Day .. 171

 Traditional A la Carte Approach ... 172

 Unix, Linux, Windows: Legacy at its Best .. 173

 New Ideas Require New Thinking .. 173

 No Systems Programming ... 174

 The Best of the Future ... 176

 Did FS Hurt IBM? ... 178

 Pass the Jigger ... 179

 What A La Carte Can Mean (On a Good Day) 180

 Building Airbus 380 Analogous to Bulding your System in your Data

Center .. 181

 Piece Parts Assembly - By Design .. 182

 Piece Parts Assembly Is Done by Your People 183

 Piece Part Design Does Not Work Well .. 184

 A La Carte Software Is a Negative Annuity .. 185
 A PC is a PC is a PC .. 186

Chapter 12 ... 187

Advanced Computer Science Concepts:

High Level Machine Interface ... 187

 Pleasing Users Is Never Having to Say You Are Sorry 187

 The Technology Independent Machine Interface (TIMI) 188

 Comparing Traditional Architectures to High Level Machines 190

 High Level Interface Analogy: ... 191

 Suppose the Chainsaw is Invented .. 192

 How Does This Relate to Business Computers? 193

 IBM Won the 64-Bit Technology Race .. 197

 Change Made Painless .. 198

 No OS Rewrite Necessary .. 202

 Immediate 64-bit RISC Processing ... 202

 TIMI Saves Users and IBM Lots of Time .. 204

 Why Should Programmers Like TIMI? .. 204

Chapter 13 ... 207

Advanced Computer Science Concepts:

Single-Level Store ... 207

 More than Virtual Storage .. 207

 What is Single Level Storage? .. 207

 Single Storage Pool ... 208

 Scattering of Data ... 208

 Single Address Space .. 209

 Can IBM Actually Have the Best Technology? 210

 All The Disk Drives Ever Built... 211

 Another Look At Single Level Store .. 212

 Two Level Storage Solves Data Sharing Problem 213

 Two Minus One is One ... 214

 Auto Managed Disk Pool .. 215

 Large Systems Shops Have Their Special Issues 217

 Detailed Disk Management - OS Function or Not? 217

 Single Level Store with High Level Interface - Another Look 219

 The Car Analogy ... 219

 Chapter Summary ... 220

Chapter 14 ... 223

Advanced Computer Science Concepts:

Object-Based Architecture .. 223

Table of Contents xxi

 Object Based or Object Oriented? ... 223

 IBM i Provides Many Object Types .. 225

 Metadata and Function Forms an Object ... 227

 Enforcable Object Rules .. 227

 IBM i OS Rewritten Using Object Oriented Tools 229

Chapter 15 ... 231

Advanced Computer Science Concepts:

Integrated Security ... 231

 What is Security? ... 231

 Uncle Sam and Capabilities ... 232

 Five Security levels from Which to Select .. 233

 Computer Science Loved "Capabilities" ... 234

 Security / Advanced Computing Research Projects 235

 Do "Capabilities" Still Have Value? .. 236

 Jonathan Shapiro v. Linus Torvalds .. 237

 Additional Information on Capabilities ... 238

 IBM i / System/38 Developers Acknowledged 240

Chapter 16 ... 243

Advanced Computer Science Concepts:

Integrated Relational Database ... 243

 Integration Is a Common Theme ... 243

 IBM Power System with IBM i Breaks DB Rules 244

 Object Based Notions Made it Easier .. 245

 IBM Chose the Practical in 1978 Rather than the Theoretical 246

 Integrated Database Makes Programmers Productive 248

 Metadata Saves Developer Keystrokes ... 249

 Database Supports File Structures for Other Environments 250

 Set Theory Operations Not Always Most Productive 250

 No Name Database .. 251

 Future System Today ... 252

 MySQL Support .. 253

 The Best of the Best .. 254
 Summary: Develop Applications Five to Ten Times Faster 254

 IBM i Makes the Power System a Special Mainframe 254

Chapter 17 ... 257

Advanced Computer Science Concepts:

Integrated Business Language Compilers 257

 It Does Not Have To Be Extra Hard to Program 257

 A la Carte Software ... 258

 Windows Is Really Not Multi-User .. 259

 The Role of Programming Languages .. 261

 Business Languages for Business Jobs ... 261

 RPG and COBOL Are Lots Different ... 267

 What is an Integrated Business Language Compiler? 267

 Database Device.. 268

 Workstation Device .. 270

 IBMi Data Areas ... 272

Chapter 18 ... 275

Advanced Computer Science Concepts:

Consistent, Intuitive Control Language 275

 Advanced Systems Architecture ... 275

 Operating System Control ... 276

 CL Can Be Used in Programs ... 276

 Development Software is Hardware Agnostic 276

 CL Objects / Building Blocks ... 277

 How Are Objects Created? ... 278

 Library Talk .. 279

 IBM i Libraries Are Special Objects ... 279

 Where Are Libraries? .. 280

 Libraries are Pointer Objects... 280

 Creating Objects in Libraries .. 281

 Control Language.. 282

 System Values vs. System Generation .. 283

 Traditional CL Command Functions .. 289

 Define Control Language .. 291

 Intuitive Command Composition .. 292

 Command Parameters ... 294

 All Keyword Command Parameter Structure 295

 Positional then Keyword Command Parameter Structure: 295

 Quick Look at S/36 OCL - Comparative Purposes 296

 S/36 OCL -- Loading a Program Using Three Files 296

 IBM i CL -- Loading a Program Using Three Files 296

Table of Contents xxiii

 System/3 Copy Program .. 296

 System/3 $COPY Utility -- Popular and Powerful for Its Time 297

 AS/400 CPYF-- Copies with One Command and Lots of Options 297

 Other IBM i CL Commands .. 298

 CL Summary ... 299

Chapter 19 ... 301

Advanced Computer Science Concepts:

Integrated Transaction Processing .. 301

 Programmer Productivity Is Still Important .. 301

 Preserving IT Shop Programming Investments 302

 Programming Became More Productive ... 303

 Early Programmers Did not Like Early RPG .. 305

 Bill Gates Hates RPG .. 306

 A Bill Gates Story ... 306

 Transaction Processing Software ... 308

 The Beginning of Integrated Transaction Processing 309

 Workstation as a Natural Compiler Device ... 310

 Workstation as a Natural System Device .. 310

 WORKSTN Display File Genius .. 311

 RPG Coding for Interactive Work ... 313

 eCommerce Transaction Processing .. 314

Chapter 20 ... 317

All-Everything Operating System: Extra Ingredients......... 317

 Integration is # 1 .. 317

 IBM i Historical Review ... 317

 System p Historical Review .. 318

 The IBM Power System -- IBM i, Unix, Linux 319

 Learning IBM i and Other Operating Systems 320

 Who Could Ask for Anything More? .. 321

 Competing Products Is an IBM Way of Life ... 322

 Small Mainframe, Big Mainframe ... 322

 In IBM the Best Must Win for Itself ... 323

 Making the Best OS Ever .. 323

 Business, Not a Computer Science Contest ... 324

 The Old Stuff in Review .. 325

 Advanced Technology Has Its Advantages ... 325

 What about PC Files on IBM i? .. 326

 How about some Java! .. 327

 Did you say Database? .. 327

 Best Business Function in any OS .. 327

 Pass the Menu Please .. 328

 Free Web Facilities ... 328

 PHP and MySQL for Me .. 329

 Another Look at the Machine Interface .. 330

 Pointers to Excellence ... 330

 The Library Has All the Information .. 331

 IBM i Does Windows ... 331

 IBM i Blade Servers are Outstanding ... 332

 Client Server and More ... 333

 Another Look at Common CL Commands ... 335

 Common CL Commands: ... 336

 Programming Languages Welcome .. 336

 Other Goodies that Many Care About .. 337

 Many Users Admire the IBM i Operating System 338

Chapter 21 ... 341

The All-Everything Operating System in Perspective 341

 The Platform to Run Your Business ... 341

 Reviewing the Lineage ... 342

Index... 345

Eggplant That Ate Chicago.. 351

Other Books from Lets Go Publish 352

Preface xxv

Preface:

It is my pleasure to write about IBM's finest operating system. It is even
more of a pleasure to have the person responsible for the architecture of the
System/38, AS/400, System i, as well as the now champion IBM i operating
system, the all-everything operating system, included in this book. Check
out the Foreword and check out Dr. Soltis's books when you have the
opportunity.

Though I have met Dr. Frank Soltis and have spoken to him one on one and
he knows me and I know him, I continue to be in awe of him because of
what he created. And, quite frankly, because of the way he carries himself,
you'd never know he is who he is. I am impressed with the IBM i operating
system and the person, Dr. Frank G. Soltis, identified with most of the
special parts of the machine. And, ladies and gentlemen, most of the overall
machine from the 1978 System/38 to the current IBM Power System with
IBM i is software. Thus, most of the machine is the all-everything operating
system.

For the many years that Dr. Soltis worked for the IBM Corporation, IBM
knew how special a scientist, an engineer, and a person he really is. For
IBM it had to be like Clark Kent showed up for work everyday but they
really knew who he was. As IBMi's Chief Scientist, Dr. Soltis used
creativity, knowledge, a major sense of confidence and sheer genius along
with some wonderful friends, Dick Bains, who is now with the Lord, Roy
Hoffman, others, and a great sense of self, to create the best, yet least sung
operating system in the galaxy.

Yes, the galaxy includes IBM, Microsoft, HP, SUN, Linux, Unix, and all
phenomenally functional yet otherwise simplistic architectures. And, no, to
this day, nobody has built anything finer than that which a young Frank
Soltis and his friends, mostly in their twenties and thirties, were able to
create into the best operating system in the universe. As the limits of single
processors are clearly in sight, it makes the IBM i operating system even
more needed to move the world into the future. As you will learn in this
book, most operating system vendors are trying to patch and extend their
inefficient creations of the past into the future and so far it is not working.
Without about twenty-five more years work, it isn't going to work. You
already know their names.

Without even reading the first chapter of the book, you have already
discovered that the all-everything operating system is an IBM product. Even

before Bill Gates was a teenager, IBM had released the very first
sophisticated business operating system. Just like Gates' first operating
system, this guy was called DOS for Disk Operating System and it was used
to power IBM's first chip-based computer, the IBM System/360. Along with
DOS/360, IBM also announced OS/360, a phenomenally more capable
operating system that would run on its larger models. Eventually DOS grew
up to become z/VSE and OS became z/OS

In 1972 Big Blue introduced virtual memory into the operating system
environment with a version of the operating system known as OS/VS1. The
"VS" was to designate the idea of virtual storage. IBM was not the first to
use virtual storage, but it was the company to perfect it for large scale
business computing. With all of this success, IBM had become the premiere
operating system builder in the world. In many ways, once IBM had passed
Univac in the early 1950's it was clear sailing for the company's commercial
data processing systems from then on. There are few who would argue about
IBM's quality or IBM's service in the computer field and it says something
for the all-everything operating system that it sits on the very top of IBM's
achievement list.

I will save most of the goodies about the subject of this book until the book
proper, but you know already that the operating system of which I write has
struck me as so elegant and so powerful that I was compelled to label it the
all-everything operating system. It just happens to be available only from
IBM. If your curiosity abounds out of control to know why anybody would
select an IBM operating system as an example of an all-everything operating
system, I urge you to feel free to digress from this Preface and go directly to
Chapter 1 and you will learn enough to know why this unique operating
system helps businesses to be successful.

I surely hope that you like this book. I have been in the computer industry as
an IBM insider for 23 years and following my career with IBM, I have been
mostly independent, providing consulting services for clients in many
industries. I confess to be an addict of the type of no-sweat computing that
IBM brought forth in 1969 with its System/3 small business operating
system called System Control Program or SCP. I have remained an addict
while IBM introduced its "Future System" project in 1978, with the
System/38 CPF operating system, the great grandfather of the all-everything
operating system,
IBM i.

The "Future System" was laden with such advanced computer science
operating system concepts that the IBM Power System running the IBM i

Preface xxvii

operating system today is still futuristic in its capabilities. It even tricked
IBM. It was so complex in its internals that in order to achieve ease of use
externally, the company could not make it all work on schedule. This forced
IBM's Chairman at the time, Frank Cary, to postpone its initial delivery date
so that the Lab could have the time to make the system work. Knowing how
much IBM hates to miss deadlines, you can appreciate all the special
ingredients that had to be right for the Company to release this baby.

IBM wanted the system to be known for it facility, not for how many reboots
an average technician could perform in an average work day. In other
words, unlike other operating system vendors, IBM decided to make the
hardware and the operating system, from the chip to the user interface, work
together before it made the new operating system available for all of us to
use. When the "Future System" was made available, thanks to a yeoman
IBM effort, it worked like clockwork.

Few would expect that any operating system originally built in the late
1970s would have advanced integrated design characteristics better than all
of today's competing platforms as well as the most advanced operating
system research projects. Yet the 21st century all-everything operating
system, based on the 1978 "Future System” tops the charts in terms of innate
advanced computer science capabilities. If IBM made more hoopla about its
major achievements in technology in the fashion of Microsoft, we'd surely
all know about the all-everything operating system by now. But IBM is
substantially more humble than Microsoft and the company reserves its
messages about its business operating systems for the business marketing
channel, not the consumer channel.

I wrote this book so that everybody, from consumers to business people, can
know about the all-everything operating system. Far from "legacy" as it is
referred to by the unknowing, the all-everything operating system is exactly
that. It is all-everything. Moreover, it is not a one size fits all take-it-or-
leave-it proposition. It runs on hardware of all sizes and on each size, it is
integrated with the chip functions. There are sizes from very, very small to
humongous behemoth. It is so granular that it can do computing jobs for
very small businesses and very large businesses and those in-between.
Regardless of its size, its ease-of use personality and advanced software
capabilities are unmatched.

The story of the all-everything operating system is worth telling and it is
worth hearing. If you are a business person thinking about getting your first
computer to run your business, or you have a PC server or multiple servers,
or even if you have a full IT department, this story is worth your time. For

the technical at heart, there is enough information about this special
operating system that by reading this book you will have a much better
appreciation for how well it gets its work done, and I would expect that you
will be duly impressed. In a nutshell, this book is your best bet to
understanding what the all-everything operating system is all about and how
it can improve the bottom line for your business.

This book is very easy to read. Each chapter is written as a self contained
essay that gives historical background and / or technology information about
the all-everything operating system. By looking at the table of contents, you
can pick the essay that you want to read first and then go right to it and it
should make sense. Of course, you might want to read in sequence with
Chapter 1 first to get a feeling of the machine, its relevance, and its value to
business. Either way, I predict that you will enjoy this book. Thanks for
taking it home with you.

Brian W. Kelly
Wilkes-Barre PA

Preface xxix

xxx Dr. Frank Soltis, Biographical Information plus more

About the Author

Brian W. Kelly is Assistant Professor in the Business Information Technology
(BIT) program at Marywood University, where he also serves as the IBM i and
midrange systems technical advisor to the IT faculty. Kelly has developed and
taught many college and professional courses in the IT and business areas. He is
also a contributing technical editor to IT Jungle's "The Four Hundred" and "Four
Hundred Guru" Newsletters.

A former IBM Senior Systems Engineer, he has an active consultancy in the
information technology field, (www.kellyconsulting.com). He is the author of
dozens of books and numerous articles about current IT topics. Kelly is a frequent
speaker at COMMON, IBM conferences, and other technical conferences and user
group meetings across the United States.

The All-Everything Operating System originated with the System/38 back in 1978.
It is only coincidence that this is Mr. Kelly's 38th published book.

http://www.kellyconsulting.com/

Foreword: Dr. Frank G. Soltis xxxi

Foreword

Presented by

Dr. Frank G. Soltis, IBM i Chief Scientist

When I first began to design computers for IBM, the idea of software
compatibility was not very important. If software had to be rewritten in order
to run on a new generation of computers, that was okay. Business users in

the 1970s made it clear to IBM
and other computer vendors
that compatibility was
important. Their major
investments were in software
applications, and these
applications had to run on the
next generation of hardware.
Not only did existing
applications have to run, they
had to run faster.

The requirement to reuse
applications for scientific
computing, especially for
supercomputers, did not exist
until very recently. Rewriting
applications for a new
generation of scientific
computers was the norm. Even
in the Unix world, software
compatibility was not too

important until business users began to use Unix. Now, whenever IBM
announces a new Power System model, there is always a statement that the
new model is “binary compatible” with the previous models. This statement
is aimed at Unix users to assure them that older applications can still run
without having to be rewritten or recompiled.

As hardware technologies continued to evolve, hardware vendors have been
able to increase performance, increase throughput, increase capacities and
add new functionality to our computer systems. In order to fully use the new
hardware, application programs generally need to be rewritten. However, as

xxxii Dr. Frank Soltis, Biographical Information plus more

long as older applications still see some performance improvements when
running on new hardware, there is little incentive to rewrite the old
applications.

A great example of this reluctance to rewrite old applications is the move
from 32-bit computing to 64-bit computing. Computers with 64-bit hardware
have been available since the early 1990s. Today, computers from
mainframes to PCs have 64-bit hardware. Although it took nearly 15 years to
accomplish the rewrite, 64-bit operating systems are now available for every
major hardware platform. Applications are another story.

Very few 64-bit application programs exist today. Unix, Windows and even
mainframe computers overwhelmingly run 32-bit applications on 64-bit
hardware. There is, of course, one glaring exception. All IBM i applications
run as 64-bit applications, but that’s another story. For the rest of the
industry, the move from 32 to 64-bit software will take at least 25 years, and
possibly longer.

What if moving to new hardware did not improve the performance of
existing applications? Worse yet, what if performance was degraded unless
the applications were rewritten for the new hardware? This could be a
disaster for both computer vendors and users.

Surprisingly, this is exactly what could happen in the computer industry over
the next couple of years. There is still much debate about exactly what will
happen, but many in our industry are convinced that a major rewrite of all
applications is the only way forward. Let me explain.

The Core of the Problem

Ever since the first microprocessors emerged in the early 1970s, the way to
increase performance was to make chips that had smaller and smaller
features and that ran at higher and higher clock speeds. Higher clock speeds
mean that all programs, old or new, see some performance improvements.

This approach to microprocessor design ended a few years ago when the size
of the transistors on a chip became so small that much of the electricity
pumped into those transistors leaked out, producing a large amount of heat.
By this time there were also so many transistors packed tightly on these
chips that the total heat generated could not be simply carried away. Some
chip makers believed that without very sophisticated cooling mechanisms,
clock speeds above five gigahertz would melt the silicon from which the
chips were made.

Foreword: Dr. Frank G. Soltis xxxiii

The result was chip makers stopped increasing clock speeds. This is not to
say that advances in silicon technology and chip design ended. Indeed,
Moore’s Law, which says the number of transistors on a chip doubles every
two years, is still very much alive. What has changed is the way chip makers
are using those additional transistors predicted by Moore’s Law. Those
additional transistors are now being used to increase the number of
processors, or “cores,” in the chip. Chip maker Intel, for example, predicts
that in the not too distant future we will see chips with hundreds of cores
inside.

Eight is Enough

While multicore chips may have solved some problems for the chip makers,
they are creating enormous problems for almost everyone else in the
computer industry. System manufacturers, operating system designers,
compiler writers, application writers and users are all affected by the
decision to implement multicore chips. Single-threaded applications - those
applications designed to run sequentially on a single processor - do not
benefit from running on multicore chips. These applications must either be
rewritten for multicore chips, or at the very least, recompiled with a
compiler that is designed specifically for parallel processing.

By most estimates, greater than 90 percent of all applications today are
single threaded. Rewriting or recompiling these sequential applications to
run in parallel will not be easy. Most software experts agree that somewhere
between four and eight is probably the maximum number of cores that can
be used by existing applications. Going beyond eight will require fairly
radical redesign for applications. And yet, chip makers are bound and
determined to go well beyond eight cores as the only way to increase
performance.

New development tools to deal with what some authors have called “the
multicore menace” are rapidly being developed. A myriad of new languages
and tools designed specifically for parallel programming are appearing
almost daily. Microsoft, for example, has already released several new
parallel-programming tools and a new programming language, called F#.
Intel, HP and several other vendors have also released new programming
tools and languages for multicore chips.

Many new parallel-programming languages that were originally created for
programming massively-parallel supercomputers are also being proposed for
general-purpose use. Two of those languages, Erlang and Clojure are

xxxiv Dr. Frank Soltis, Biographical Information plus more

dialects of Java that enable applications to be distributed across thousands of
cores.

To further complicate matters, many computer professionals believe that
multicore chips, as they currently exist in conventional general-purpose
processors, will not survive much longer. They point out that the problem
with a large number of cores on a single chip is the inability to feed data to
all of the processors. The number of connections to the chip is not
increasing, meaning that the bandwidth to off-chip memories is limited.
Hardware vendors, for example IBM and Intel, are proposing to stack
memory chips above their processor chips to increase the number of
connections to the chip and thus increase the memory bandwidth. This too is
not a long term solution.

The biggest news for computer hardware may be the many specialized
processors that are designed specifically for parallel processing. One
example is the Cell chip from IBM, which contains a Power processor and
eight special-purpose processors designed for parallel processing. Created
originally for gaming platforms, where intense graphics and real-time
responsiveness are extremely important, these chips are now being used for
a variety of applications, including supercomputer applications. It will not be
long before multicore chips include a variety of different processors for
specialized functions.

Intel has recently announced that it too is exploring system-on-chip designs -
complex microchips that perform specialized tasks on top of general-purpose
computations. Programming these “hybrid architecture” chips will not be
easy and will require new programming tools.

About the only thing that is clear about the future of multicore chip
development and the software technologies that will be used to create
applications for massively parallel chips is that there is no clear future.
While it is imperative that the computer industry moves quickly to identify
effective tools and techniques that can be used by software developers to
create future parallel applications, there is no indication that this will happen
soon.

High Productivity Computing System
(HPCS)

One of the most exciting projects in parallel processing was started a few
years ago by the Defense Advanced Research Projects Agency (DARPA). It

Foreword: Dr. Frank G. Soltis xxxv

is called the High Productivity Computing System (HPCS), and its goal is to
provide a totally new generation of high productivity computing systems
that can be used for a wide variety of applications. The reason for the need
to create a new generation of computers is because of the way parallel
applications are written today.

Using layers of abstraction to hide complexity and to greatly enhance
programming productivity has long been a staple of commercial
programming. Commercial applications written in assembly language
disappeared many years ago. Yet, in the world of programming highly-
parallel applications, programmers are still living in the stone age and using
what amounts to parallel assembly language. The new languages and tools
being developed for multicore chips are trying to raise the level of parallel
programming, but they still have a very long way to go.

Because parallel programming languages and tools are very primitive,
programmer productivity is very low. Also, whenever a new generation of
hardware emerges, entire applications have to be totally rewritten. There is
no ability to reuse existing applications on the new hardware. HPCS is
intended to solve the productivity and the reuse problems. To solve these
problems, DARPA funded research efforts in three companies: Cray, Sun
and IBM.

IBM’s Programmable Easy-to-use Reliable Computing System (PERCS)
project, funded by DARPA, is an attempt to create a highly adaptable
computing system that configures its hardware and software components to
match the application demands. Working with Los Alamos National
Laboratory and 12 major universities, IBM’s goal is to create systems that
automatically analyze the workload and dynamically respond to changes in
application demands by reconfiguring its components to match application
needs.

The PERCS project uses a combined hardware-software design
methodology to integrate advances in chip technology, architecture,
operating systems, compilers, programming languages and programming
tools to deliver scalable systems that will provide an order-of-magnitude
improvement in development productivity for parallel applications by 2010.

To accomplish this, PERCS includes a new open-source, object-oriented
language called X10, innovative middleware, and new programming
environments that will be supported by hardware features to automate many
phases of the program development process. Some of these components are
already available. Other features will be delivered in 2010 with IBM’s
Power 7 processors.

xxxvi Dr. Frank Soltis, Biographical Information plus more

While the goal of HPCS is to meet the need for commercially successful
petascale computing systems for high-end users in government, science and
industry in 2010, IBM has a broader goal in mind. The technologies created
for PERCS will be implemented in future versions of Power Systems
intended for commercial applications.

End of Multicore Computing?

It should now be obvious that the computer industry will likely see major
disruptions in the next few years. Reprogramming applications for multicore
chips will not be easy. Up to about eight cores, operating system
enhancements and compiler improvements are probably good enough to
provide sufficient performance improvements for most of today’s
applications. Beyond eight cores it is not obvious that conventional
applications will see any benefits and may even see reduced performance.

As more and more cores on a chip compete for the same data, there comes a
point where adding another core will actually slow down the application.
Even with all of the efforts being expended in rewriting existing applications
for multicore chips, there is the strong possibility that multicore computing
in its present form will not survive for more than a few years.

Because of the limitations with multicore computing, many computer
scientists, especially those in academia, are not only predicting the end of
multicore computing, they are predicting the end of conventional computer
architectures like Intel’s X86. They argue that the X86 architecture was
never designed for parallel processing and that a multicore implementation
is just a short-term fix.

Many of these same computer scientists are now calling for the creation of a
new stable and enduring computer system architecture that will support
massively parallel processing. Perhaps the new system design will look
something like the one being created for IBM’s PERCS project. Perhaps it
will be something else. There is no shortage of proposals for what the future
system design should be. There is, however, agreement that it will be very
different from today’s design.

One of the primary goals of almost all of these future system design
proposals, whether it is IBM’s PERCS or any of the others, is to enable the
reuse of existing applications. In other words, the goal of any new design is
to be capable of incorporating future hardware and software technologies
with minimal impact on existing applications.

Foreword: Dr. Frank G. Soltis xxxvii

Futuristic Design

Does this sound familiar? The goal for a future system design is technology
independence. This should not come as a big surprise. The software
development investments that have already been made in applications for
everything from supercomputing to business computing are far too valuable
to simply throw away. The next generation of computer systems must find a
way to protect those investments.

As Mark Twain once commented, "History does not repeat itself, but it does
rhyme." There is a certain amount of satisfaction knowing that concepts such
as technology independence that emerged in the 1970s are once again being
revisited. Viewed as a radical futuristic concept when it was first introduced
in the IBM System/38 back in 1978, technology independence with its
ability to incorporate new hardware and software technologies without
impacting existing applications has clearly stood the test of time.

That original design of the System/38 did not stand still. More functionality
continued to be included, and in 1988 the ability to run applications from the
System/36 was added. That merging of two systems resulted in the
System/38 being reintroduced to the computing world as the AS/400. The
new AS/400 became an instant success with businesses of all sizes.

In 1995 IBM introduced the first 64-bit Power processors into the AS/400.
Thanks to its technology independent design, not a single line of application
code had to be modified or even recompiled for the new hardware. No other
system has ever been able to move applications to a totally new processor
architecture without requiring massive application changes. The AS/400,
which was subsequently renamed to iSeries, System i and finally IBM i,
stands alone in this regard.

IBM i today has that very same technology independence that has protected
the application investments of hundreds of thousands of businesses all over
the world for more than 30 years. Moving to new generations of hardware
and software over the years has never required rewriting or even recompiling
applications. Even the move to the first commercially available multicore
chips in 2001 did not require application changes. Those same applications
that moved seamlessly from one computer generation to the next will
continue to move forward in the future. No other computer system can
match this record.

Maybe the world is finally ready for some of this “radical” thinking. The
HPCS project from DARPA is certainly trying to find ways to avoid having
to rewrite applications every time the hardware changes. Microsoft and Intel

xxxviii Dr. Frank Soltis, Biographical Information plus more

are putting out new tools as fast as they can to protect their investments in
X86 hardware and software, even if the whole concept of multicore chips
might be flawed.

And, let’s not forget about productivity. IBM i and its predecessor systems
were designed from the very beginning to make writing applications far
more productive than conventional computer systems. Integrating many of
the components needed by the application, such as a database, into the
operating system is one way to improve productivity. Single-level storage,
where all storage is treated as memory, is another. Built-in security and virus
resistance also can make life a lot easier for application programmers.

If as many believe, the computing world is at a turning point because of the
limitations of multicore hardware, then maybe, just maybe, a futuristic
design such as the IBM i is the answer. While it is highly unlikely that the
IBM i design will be the only answer, it is comforting to know that IBM i
will be there to meet the needs of business computing well into the future.

I wish you well in your future endeavors and I am pleased
that you have an interest in IBM i.

The Best,
Dr. Frank G. Soltis

Dr. Frank G. Soltis Biographical
Information +more.

If you ever happen to have the opportunity to hear Dr. Frank G. Soltis

speak, it will be a memorable moment indeed. Several years back, my

neighbor, who has a hard time powering on his ten + year old IBM

ValuePoint PC with its 10 GB of disk storage, accompanied me to hear

Dr. Frank speak at the Delaware Valley Computer Users Group

(DVCUG) in historic Philadelphia. A Real Estate expert and College

Professor by trade, my neighbor was thoroughly impressed with Dr.

Soltis as a speaker and for his ability to put difficult notions into simple

terms.

The architectures that he designed for IBM i do exactly that. They take

very complex capabilities, assure its the system and not the user that

Chapter 1 What Is The All-Everything Operating System 39

manages them, and then they present themselves to users in the easiest

way possible. Without stealing anybody's thunder, "it's so easy, a

caveman can do it!"

When Dr. Frank G. Soltis speaks, the world listens. He is regarded

throughout the world as one of the most significant computer scientists

of the twentieth and twenty-first centuries. He is recognized as the

"Father of IBM i" as it was his work from his Ph.D. dissertation

research that served as the basis for his creating the most revolutionary

computer architecture of all time. His work led to a totally new breed

of computer system, beginning with the 1978 IBM System/38 and

culminating with today's IBM Power System with IBM i. He is a folk

hero to the expanding IBM i community, and rightfully so.

During the last decade he led the effort to define the architecture of the

64-bit PowerPC processors used in the IBM iSeries and pSeries

servers. As the IBM Chief Scientist for IBM i until his retirement

December 31, 2008, he was responsible for defining the future

directions for IBM systems.

As part of the future, he directed IBM's best and brightest engineers in

the creation of the IBM Power 6 driven IBM Power System and the

design for Power 7, Power 8, and later chip offerings. Though IBM i is

his first love, Dr. Frank helped IBM make IBM's new Power 6 - driven

hardware system, the best hardware in all of IBM for Unix (IBM's

AIX), Linux, and of course, IBM i. For all of these operating systems,

and for all of those chips, Dr. Frank Soltis found room on the chip for

those items in the OS that were needed to make that particular OS more

special on IBM Power. Since IBM i is already special, that's like

having a special chip to make special OS functions even more special.

This book describes in detail many of the innovative and advanced

computer science principles developed by Dr. Soltis and made

operational in the IBM i line of computers. Advanced notions such as

single level storage and the technology independent machine interface,

both were brought forth under Dr. Soltis's direction.

His work continues to have a major influence on IBM's advanced

computing efforts. Dr. Soltis travels the world speaking on IT trends

and technology advancements. In addition to his research, he is a

40 The All-Everything Operating System

Professor in the Department of Electrical and Computer Engineering at

the University of Minnesota where he teaches graduate courses on

high-performance computer design. Dr. Frank G. Soltis is an award-

winning author with several books, technical papers and other

publications to his credit. He holds more than 25 patents and published

invention disclosures related to computer systems. In his spare time he

enjoys working on and racing Porsches with his sons.

To find two of his best selling books, Inside the AS/400. and Fortress

Rochester, The Inside Story of the IBM iSeries, just type the title into

your favorite search engine. Both are available at

www.mcpressonline.com.

Thank you, Dr. Soltis for investing your valuable time in this project.

http://www.mcpressonline.com/

Chapter 1 What Is The All-Everything Operating System 41

Chapter 1

What Is The All-Everything
Operating System?

The All Everything Machine!

A few years back, I wrote a book that even IBM liked. The book
was called The All-Everything Machine, a catchy name that well
explains the popular AS/400 heritage line, which has been
described often as IBM's best computers ever. I was willing to
"loan" IBM the "all-everything" name for awhile but Big Blue had
other naming missions in mind. With all of the product renaming
going on at the time, my thoughts were that the AS/400 heritage line
should have a spiffy name that separated it from all other machines.
All-Everything Machine as a name surely would have done that!

By the way, that book was one of my most successful ever.
Among the many who bought it, IBM purchased 500 copies for their
operation in Milan, Italy. I offered to accompany the books on their
trip to Milan but I did not get to go. I'll let you all know on my Web
site if I get to follow this book to some exotic IBM site worldwide. I
am very travel-ready.

IBM no longer has an all-everything machine per se. There was a
big hardware change in early 2008. The bottom line on the change
is that IBM succeeded in changing the machine so that the AS/400
operating system (i5/OS at the time) was no longer needed to run
the new hardware. The AS/400 name itself had been replaced by
iSeries in 2000, followed by i5 in 2004 and finally, the System i in
2008. During this time, IBM's customers had been able to run Unix
and Linux as a guest operating system on i5/OS but i5/OS was

42 The All-Everything Operating System

always needed. Since 2008, this is no longer true. Any of the
operating systems can run on the new hardware without IBM i
having to be the lead dog.

IBM had previously succeeded in putting all of the System i pieces
needed on the Power 6 chip. This includes the advanced i5/OS
RISC instruction set along with the native System/36 instructions.
Additionally, IBM added the 32-bit Unix/Linux and 64-bit Unix/Linux
instruction sets. From Power 4 to Power 6, the chip hardware was
able to run Unix, and Linux but it needed i5/OS because the I/O
adapters behaved differently from pre Unix models. i5/OS had
provided a nice virtual environment in which Unix and Linux could
run.

On the same line in Rochester, Minnesota, IBM manufactured both
the pSeries units, which were Unix and / or Linux only, as well as
the iSeries units. Just a few things separated the p units from the i
units. One major difference was the input / output processors. The
i units always had very intelligent controllers (microcomputers) that
were used to offload the main processor(s) for peripheral
operations. These input / output processors were called IOPs for
short. When the main processor wanted to write to disk, for
example, it sent the buffer load to the IOP along with instructions
and then went on to the next task on the system. On the i units,
when the IOP was finished with its work with the database, it would
gently tap the main processor on the shoulder and let it know that it
was done.

Unix and Linux did not need assistive input / output processors.
They worked with a form of direct I/O. So, in Unix, the processor
would stay engaged while the input / output operation was
occurring. Instead of the IOPs, the final hardware change was to
add smart input / output adapters to the system. Now, all aspects of
the same hardware can support Unix, Linux or i5/OS. The newer
and faster IOAs work well with any operating system used on the
Power platform.

Chapter 1 What Is The All-Everything Operating System 43

Separate the All-Everything OS from the
All-Everything Machine

In essence, IBM took its all-everything machine and separated the
hardware from the all-everything operating system. Additionally, it
took its p series machines and separated the os from the hardware.
The result is a new and improved system that can run any of the
operating systems equally well. There no longer is a need for a
System p set of hardware and a System i set of hardware. One set
of hardware runs all the operating systems. This is a great
technological achievement. After creating this new hardware box,
IBM had to give it a name that was reflective of its capabilities. It
was neither a System p nor a System i, yet it was both.

The merged System i and System p box was introduced as the IBM
Power System. It is a cut above the old p and i models as it uses
IBM's newest and fastest Power 6 chip technology. It was
announced to be a new generation of systems unifying the former
System i and System p product lines. As part of the new
packaging, IBM's integrated operating system formerly known as
i5/OS was renamed as IBM i. Some in IBM call it just, "i." Along
with the name change came the logo and the logo tells a lot about
the mission of IBM i. The Logo says, "IBM i for Business."

Figure 1-1, Dr. Frank Soltis Introduces IBM i and the Power System

The hardware platform is absolutely outstanding and it represents
everything that the AS/400 heritage boxes ever thought of
becoming. It is the hardware for the all-everything operating system
(IBM i) as well as the Unix and Linux operating systems. When it
runs IBM i, it is actually a better version of the all-everything

44 The All-Everything Operating System

machine than the one I introduced to IBM in Milan in 2005. But,
since hardware and OS are no longer one, as they had been from
System/38 to the System i, the one uniquely identifiable aspect of
the former all-everything machine is its operating system, the all-
everything operating system, IBM i (i for Business).

Figure 1-2 IBM i for Business Logo--All-Everything Operating
System

This major new platform provides a compelling new choice for
companies of all sizes. The new IBM Power Systems have unified
IBM's highly successful integrated platform, IBM System i™, with its
fast growing UNIX® operating system platform, the IBM System
p™, which also ran the open source Linux OS. So, from an IBM
hardware perspective, the company created a great name for a
product. Who can argue with "The IBM Power System" as a
powerful name? I know of nobody complaining about the quality of
the platform name. It is catchy and to say it again for effect, it is
quite "powerful."

From an IBM perspective, creating one hardware system to run
three major operating systems that once were tied to specific
hardware is a win-win proposition. Everybody has won. IBM's
advanced hardware has been improved and it does its job even
better and faster. All three operating systems run equally well on
IBM's most advanced processor chip, the IBM Power 6. There are
no constraints left and there is no reason why the new Power Box
cannot run any of the three operating systems anytime.

The IBM marketing team likes to point out that it is now even easier
to take advantage of a single, energy efficient and easy-to-deploy
platform for all of your UNIX, Linux and IBM i applications. By the
way, there are over 15,000 available across all three operating
platforms and you can still run all three operating systems together
sharing one processor. And if you like, IBM i can be in control of all

Chapter 1 What Is The All-Everything Operating System 45

three. So, nothing was lost in the transition. Flexibility was gained
and a better name was brought forth for the Power 6 based
hardware.

If this book were about hardware, there would be an awful lot to talk
about. Along with the new IBM Power Systems hardware in the
traditional shaped IBM black boxes, Big Blue also brought forth a
very impressive combo blade server. It is one of several new blade
servers that IBM announced but, it is actually a technological
phenomenon unto itself.

The new IBM BladeCenter® JS12 comes with industrial strength
virtualization provided by a new firmware facility called PowerVM™.
Six different blades with each blade having up to four processors
can share the virtualized I/O subsystem via the new virtual
technologies. A number of Intel and AMD X64 blades were
announced concurrently enabling this combo box to run Windows,
Unix, Linux, and IBM i on multiple processors on multiple blades
sharing the same storage area network. Being a tech guy for so
many years, I am hard to impress. If I were not writing about the all-
everything operating system in this book, I would be telling you
even more about this first foray into blades for Power 6 and IBM i.
This is the first of many to come so, be ready to be impressed.

IBM designed the new systems and the combo blade servers to
help its small and mid-sized clients focus on running their
businesses instead of their computers. Since many IT shops use
Windows, Unix, and Linux, having one box that runs all three
equally well helps make it easier for the business. So, there is no
longer a need to fight heterogeneous computing. IBM's hardware
offerings are now built to make them all run in harmony and peace.
Blade Center has achieved much of this in its first outing. Watch for
more.

System i Shops Have Nothing to Fear

To many who had watched the IBM System/38 become the AS/400
and then continued to watch as it became the System i platform, the
elimination of an integrated platform name for the hardware and the
software may make it seem that the all-everything machine has

46 The All-Everything Operating System

gone away. This is not true. The all-everything machine is no
longer a single named entity. It is now a combination of the best
hardware IBM makes (IBM Power Systems) and the best operating
system IBM makes (IBM i.) It is as good as ever and with Power 6?
it is even better.

IBM's investment continues in the platform. Even before the
hardware merge of April, 2008, by the time March 2008 had rolled
around, IBM had already made available its major new version of
the all-everything operating system with many new and powerful
enhancements. It was released as IBM i 6.1, and according to
industry experts, with the investment shown in this release, IBM
again demonstrated that it will continue to deliver and enhance the
integrated operating system that AS/400™ , iSeries and System i
clients have valued for well over two decades.

As you will learn in this book, there are many, many reasons why,
now, though separated from a hardware platform per se by name,
this newly named advanced operating system called IBM i has
become even better, warranting its description in this book as the
all-time best, the all-everything operating system. Just as I called
the all-everything machine a treat back in 2005 with my book of the
same name, the all-everything operating system is even a bigger
treat. Eggplant anyone?

He Thought Chicago Was a Treat!

In the 1966 song by Norman Greenbaum titled: “The Eggplant that
Ate Chicago,” an Eggplant comes in from Outer Space and lands in
Chicago. That’s Chicago, as in Illinois, as in the home of the 44th
president of the United States. Fortuitously for him, as the song
goes, upon landing, the amorphous Eggplant thought Chicago was
a sweet treat, “it was just like sugar.” This song comes to mind
again as I think about the best way to introduce the all-everything
operating system.

If an alien race came to earth and evaluated our state in computer
evolution and picked a winner, it would be the IBM i operating
system, a.k.a., the all-everything operating system. The IBM Power
System hardware from which the OS gains some of its integration

Chapter 1 What Is The All-Everything Operating System 47

strength would win, the all-everything operating system would win
and if somebody could convince the aliens to pay for what they
take, IBM would win as they would make a lot of dough. If our
friend, "the Eggplant" were part of the alien expedition, it’s a sure
thing that he would find that the IBM i Operating System is really
sweet.

Note; For you Eggplant lovers, I have included the words to this
1966 hit at the back of the chapter.

Hardware

Though the OS is no longer packaged with the hardware, the
hardware is fully enabling and continues to facilitate the integration
with the IBM i operating system. If any combination of hardware
and operating system ever came close to pure business value it
would be the all-everything operating system on the IBM Power
System. Since 1978, IBM has been packaging instructions on the
chip and in firmware as it created the most advanced complete
system in the universe.

With regard to hardware scalability, reliability, availability, security,
ease of use, flexibility, self management, self diagnosis, and much,
much more, the Power System with IBM i has been and will
continue to be a winner in every category. It is the only server /
operating system combo today that supports applications and data
using 128 bit addressing with security integrated into the machine.
But, who's counting?

Software

Carrying the facilities even further, the power of this box has always
come from the operating system. With regard to software
scalability, reliability, availability, security, ease of use, self
management, self optimization, and self diagnosis, again, IBM i
would be the winner in all categories. Throw in an integrated
relational database, integrated transaction processing, built-in

48 The All-Everything Operating System

productivity tools, development tools, middleware, and even more
and, to borrow a phrase, it's all shock and awe. Mostly awe.

The IBM i OS has it all. In fact, it is the only operating system that
fully supports applications with 128 bit addressing running on 64-bit
hardware. As a point of note, its predecessors, i5/OS, OS/400, and
CPF (System/38), had been doing that for almost thirty years. The
earliest versions of CPF and OS/400 used 48-bit hardware running
at an abstracted 128-bit software level.

Yes, the capabilities of an all-everything operating system do exist
on planet Earth and through its great grandparents, CPF, OS/400,
and i5/OS, they have been here since 1978.

The all-everything operating system removes real software limits as
to the number of jobs, threads, transactions or data that can be
active in the system. Even an Eggplant could tell that there isn't
another operating system on the face of the earth that comes close.

Unmatched Elegance

The Secret is now out. The all-everything operating system is an
IBM OS called IBM i and it is designed for business. Of course, I do
not expect anybody to take my word for that, so I have fourteen
more chapters in which to tell you about the past, the present and
the future of this remarkably advanced, powerful, and durable
operating system.

For a commercial operating system to be the one and only all-
everything operating system, it would have to have an internal
elegance unmatched by any other hardware/software combination,
and better than that, it would have to be miles and years ahead of
anything else that has ever been built. If distance were a real factor
in computing, the IBM i operating system would register at many
times the distance from the sun and back. It would be way ahead of
its competition if for no other reason that its address / pointer space
is so humungous.

While other platforms continue to struggle with addressability and
forced software rewrites for upgrades, IBM i software, like the

Chapter 1 What Is The All-Everything Operating System 49

Energizer Bunny, just keeps running and running and running,
even as the underlying architecture and the hardware change. Time
is a real factor and as you will see, the IBM i is more than thirty
years ahead of the competition. Nobody can touch it. But that is not
all, as hard as it may seem to believe, the competition still is not
catching up because, quite frankly, it would cost them too much.

There is a saying in IBM i user circles that only IBM could have
afforded to build a system with internal integration of chip functions
and software that is so rich in advanced computer science. In many
ways, this explains why no other OS vendor, including the mighty
Microsoft, has ever, nor can ever, take on the task of building such
an advanced operating system from scratch. They simply cannot
afford it.

In Chapter 10, you will learn in detail about the advanced
architectural underpinnings of IBM i. It's a good read for the
neophyte and the expert alike. In Chapter 10, you will see how the
six fundamental advanced computer science concepts upon which
IBM i is based make the platform the all-everything operating
system. No other vendor, at any time, has ever come close to
building an all-everything operating system and the reason is
simple. They cannot afford the unique combination of chip-enabled
functions and the advanced software architecture that is at the heart
of this operating system.

Computer Science Research Project

Some might argue that the closest thing to IBM i is an experimental
“machine” developed at University of Pennsylvania, which later
moved to the laboratory of John Hopkins University. It is called
EROS, which stands for Extremely Reliable Operating System. You
can learn more about the capabilities of EROS at the following URL:

http://www.eros-os.org/

Note: In all fairness and for full disclosure, EROS is no
longer an active project and has been succeeded by

50 The All-Everything Operating System

Coyotos and CapROS, neither of which have reached any
measurable commercial success. Their concepts are based
on those in EROS and thus this discussion about EROS
continues to have merit.

Unlike the IBM System i, AS/400, System/38, as well as the IBM
Power System with IBM i, EROS, for all its goodness, is not
integrated with a machine or a chipset. It is just pure software.
EROS and its successors are more or less experimental operating
systems used for pure research into several of the most advanced
computer concepts that have ever been brought forth by the
computer science community. These include object orientation,
single level store, and security capabilities.

EROS and its successors run on standard fare x86 / x64 boxes
from 486 up. Because EROS is just an experimental OS, it does
not have its own hardware base and thus it is not and cannot be a
fully integrated machine. Intel has not added capabilities and
instructions to its chipsets to better support EROS. Additionally,
EROS can not have a fully developed technology independent
machine interface, integrated transaction processing, or an
integrated relational database.

Compared to the IBM i operating system, available since 1978 in
one form or another, EROS is a partial implementation. EROS and
its successors, however, is the closest thing out there. All of these
advanced computer science notions are explained in Chapter 10.

Though special indeed and the basis for EROS sponsor Jonathan
Shapiro's doctoral thesis, the project was nowhere close to making
it to commercial prime time. Your neighbors won't be getting one in
the near future or the distant future. The same goes for EROS'
successors. However, and I repeat, it is the only operating system
other than IBM i, even in experimental stages, that attempts to use
the most advanced computer science concepts as its basis.
Windows and Unix and Linux and Solaris don't even bother. They'd
have to be rewritten to participate in this advanced computer
science game and this will never happen. For as often as Microsoft
rewrites operating systems, you would think they would work to get
it right once and for all.

Chapter 1 What Is The All-Everything Operating System 51

Having the most advanced experimental OS projects in the world,
studied at the most prestigious computer science academic
institutions in the world, as the closest thing to the all-everything
operating system can give IBM a great sense of accomplishment.
IBM has taken the advanced concepts and used them as the basis
upon which to build IBM i as a commercial quality product. That
means that IBM i has implemented, commercially, the facilities
about which OS projects such as EROS continue to dream. The
designers and builders of IBM i in Rochester, Minnesota should
take a great sense of pride in this accomplishment. IBM i is no
ordinary operating system.

Research vs. Reality

Yes, you heard me right, the closest thing to an IBM i is a project in
a research lab that just needs a few more billion in research dollars
to become a real commercial operating system. However, nobody,
including Bill Gates, is lining up with those billions. Meanwhile, this
humble OS called IBM i, built in an IBM Lab located in Rochester
Minnesota, originally intended for use in small to medium sized
business, has all six of the most advanced computer science
attributes ever conceived. And the boxes that this OS runs on go
from mom and pop size to systems larger and more powerful than
mainframes.

While the theorists were theorizing, IBM actually built a machine
and an OS, thirty years ago, that does all of the things that were in
their theories plus lots more. The IBM Power System hardware that
is used with IBM i is the tenth generation of this technology and it is
without doubt the finest computer science machine and OS combo
that has ever been built. The most advanced computer science
research projects in the world are not as far along as the IBM
System/38 that was announced by IBM way back in 1978.

52 The All-Everything Operating System

Unmatched World Leadership

The integration of chipset functions on the IBM Power Systems and
the IBM i OS lead IBM and the rest of the world in advanced
computing.

Viva La Eggplant

By the way, Norman Greenbaum, the Eggplant song's writer also
had another outer spaced theme hit, "Sprit in the Sky," which was
very popular. In Figure 1-3, we show the Amazon.com picture of
Greenbaum that you get when you click on the "Eggplant that Ate
Chicago" in his Spirit in the Sky album. And, now, the sweet all-
everything operating system is at its lifetime sweet spot, just waiting
for the Eggplant invasion. Before I present the words to the song, I
thought you would like to see the picture of Greenbaum checking
out nature. Here is a YouTube link, so that you can listen to this
long forgotten, yet wonderful oldie:

Figure 1-3 Norman Greenbaum Waiting for the Eggplant

http://www.youtube.com/watch?v=b-Lc0Lra9cI
Words to song are on page 353

http://www.youtube.com/watch?v=b-Lc0Lra9cI

Chapter 2 The Value of Great Operating Systems 53

Chapter 2

The Value of Great Operating
Systems

Who Cares?

To many business people, it really does not matter that there is an
operating system under the covers of their business computer.
They know next to nothing about it and care nothing unless it does
not work. So, if the operating system were the all-everything
operating system, it still would not matter -- even if it were the best
at everything that it does.

On the other hand, if the user of the system had some computer
savvy such as the infamous “computer people” or they were a
knowledge worker in an organization in which information was key,
they would notice if the all everything operating system were in
charge. The fact is that most business people just are not
interested. They do not care about the special features of the OS.
They don’t even want to know that there are even more benefits
when the OS is combined with the IBM Power System hardware.
They do not have the time and to repeat, they simply do not want to
know what makes the all-everything OS so special. Their business
is business, not Information Technology (IT).

However, to the extent that having a particular operating system
feature adds real business value, and not having it subtracts from
business value, there would be interest. The fact is that there are
plenty of reasons for business managers and entrepreneurs to want

54 The All-Everything Operating System

to know more about their business operating system. This chapter
demonstrates the value that an all-everything OS can deliver to a
business. .

Who Needs the All-Everything OS?

In the rest of the book, while examining the notion of the value of an
operating system to a business, and how to realize its value, I hope
to whet your appetite for the all-everything operating system by
outlining a number of business benefits for a company using the
IBM i OS. Following the business value factors, for the technical at
heart, there is plenty of opportunity to examine an exhaustive list of
technical capabilities and benefits that are associated only with the
all-everything operating system.

We discussed in Chapter 1 that in early 2008, IBM introduced a new
all-everything operating system called IBM i. This all-everything
operating system runs on IBM's newest Power Systems machines.
These were introduced at the same time that the former IBM
System i and System p boxes were sent to pasture and the new
iteration of the operating system was christened as IBM i.

So, there is no longer one term to describe an all-everything
machine in IBM. That being said, it is OK to use the OS name, IBM
I, in its place, just as we might use the term Windows machine.
Though this work horse using the best hardware and best OS no
longer has just one name, it is lots more capable and more powerful
than the whole team of what is now known as the Stella Artois
Clydesdales.

Generic Value of Computers

Note: I would like to acknowledge the fine works of Paul A.
Strassman, former VP of the Information Products Group at Xerox
Corporation. Paul A. Strassman has written a number of IT
Management books and has expressed concerns regarding attempts
to quantify IT value. He is a refreshing author and his many books,
including Information Payoff, McMillan, 1985, have helped
convince me and many others that we have been right all along.

Chapter 2 The Value of Great Operating Systems? 55

There is no question that in the 21st century, operations in most
large corporations would rapidly grind to a halt if their computers
ceased to function. The sustenance of all advanced information-
oriented societies now rests on the proper functioning of small and
large processors that control everything from electric power,
telecommunications, financial services, and energy-supply
enterprises. We are quite vulnerable to a deliberate attack on the
very software that operates our information infrastructure in the form
of information warfare or hackers with a mission.

But, do not fret. As bad as it is for IBM that nobody even knows
about the impregnable AS/400 heritage machines and now the IBM
i operating system, nobody knows enough about what the all-
everything OS is all about to even consider an attack.

Large and small systems and desktop PCs are only tools. Though
business blessings do come forth from these tools, the blessings
are not unqualified. You may have witnessed in your own career
seemingly identical machines with identical software performing
admirably in one company, yet when deployed in another
organization they actually make things worse. A quick investigation
into the matter and more than likely you would find inferior
management and personnel without proper training. It all starts with
management in just about anything.

Better Management Makes a Great System
Even Better

If a company puts out a bum product, management must take the
rap. Likewise if a company cannot use IT effectively, management
again must take the rap. Certainly computers enhance sound
business practices, but they also intensify inefficiencies whenever
the user community is disorganized and unresponsive to customers'
needs.

Ironically, the best computer technologies will always add
unnecessary costs to a poorly managed firm. The problem is not
the inherent capabilities of the technologies, which may be in a

56 The All-Everything Operating System

word, overwhelming. The problem, historically, is management’s
inability to use the tools effectively. For instance, there have been
various studies by think tanks that contend that as much as seventy
percent of IT projects have not delivered their expected benefits.
Since this is true, why would we not see more firings in these
industries? Perhaps failure is expected.

A major cause of the failings of companies is well documented.
Many organizations have been unsuccessful in integrating the
results of their efforts into day to day work processes. In reviewing
these findings, a number of top corporate executives share the
same opinion.

CEOs and COOs and even CIOs complain that there is no
correlation between IT expenditures and corporate profits. Yet,
sometimes in some companies there appears to be and actually
there might be a correlation. How can this be? Though “all men
are created equal,” the human condition permits and delivers broad
variances in our performance in given areas. If the machines are
the same and the software is the same, then the problem is with the
human beings. The problem is with the bodies and minds, the feet
and hands and arms and legs, starting with management and
working down. The key point here again is that it starts with
management.

Douglas McGregor’s Theory X and Theory Y models of
management style suggest that there are some managers who trust
and give general direction and there are others who have none to
little trust and they give micro-directions. Business productivity has
roots in well organized, well motivated, and knowledgeable people
who understand what to do with all of the information that shows up
on their computer screens. This would be a Theory Y type
management scenario. Such excellence does not prevail so
frequently in Theory X businesses and that may explain why in a
number of companies, there is no correlation between IT
expenditures and profit. In those companies, it is unrealistic to
expect that computerization could ever change that.

Chapter 2 The Value of Great Operating Systems? 57

Prove the Relationship

In Theory Y organizations, business executives, as well as
computer experts, typically recognize that the fortunes of the
enterprise originate with the people who administer, coordinate, and
manage employees, suppliers, and customers. Let’s say that on
the average, the cost of computerization equals less than one-
fiftieth of revenues (<2%). Therefore, it does not make sense for top
management to demand that the IT Manager prove how computer
budgets relate directly to profits. The best that the implementation of
a fully functional computer system can provide is to make the
knowledge workers be more effective and more efficient – whether
there is a correlation to the bottom line or not. And, of course in
most cases there is but, it is difficult to track.

The experts suggest that this relationship between corporate
profitability and computer spending has been like this for quite some
time. It is not a recent phenomenon. From this, it is easy to
conclude that it is unlikely that any direct relationship between
computerization and profitability will magically appear in the future.
Computers are only tools for change, hopefully for the better.
However, observation shows that identically trained people in
different organizations can come to opposite conclusions from an
examination of data obtained by identical means. What matters
then is not the provision of information on a computer screen. Good
software can do that. What matters are the knowledgeable actions
workers take with the information they are given.

There is no question that all computer systems, if deployed
properly, have a great potential to provide information. However,
because of the human condition, managers may very well misuse
that potential. Thus, one might conclude that the effective and
profitable use of information technology does not begin with a better
understanding of hardware or software; it comes from knowledge
workers having a better understanding of their respective
organizations, their goals, and their strategies.

As a concluding thought on the business value of IT, it is still
propitious to align IT with the business. It does not matter what
technology is in play. Once aligned, the measurements are not so
simple. You can forget about productivity, improved customer

58 The All-Everything Operating System

satisfaction and quality as IT measurements. The way to measure
IT's alignment with business goals is to gauge IT's impact on the
one metric that matters most to CEOs and shareholders: net cash
flow. The bottom line is that alignment comes down to accounting
and "the bottom line." It’s that simple.

The Feature du Jour Approach to Computer
Selection

What does all this have to do with an all-everything operating
system? We're working up to that. Let's first look at a few typical
scenarios and issues that may be at work in companies that do not
have the luxury of using an all-everything operating system.

A risk in the deployment of IT is the notion of the system or feature
du jour. There are such systems out there, and you probably know
of them. They change their features and their look and feel every
couple years and then by pulling support or by psychologically
swaying the masses that their old wares are inadequate, they get to
sell the same thing, new and improved, again and again and most
often for more money. Rarely do businesses fight back. However,
perhaps even this paradigm may be changing as the recent
introduction of Windows Vista and it's gratuitous differences for the
sake of difference has caused many companies to push back, stop,
and rethink their plans.

Most businesses are not in the computer business and their
executives do not want to be in the computer business. So the
executives rely on a team of inside employees and outside
consultants. Most of these have been certified to protect the
business opportunities of the computer company however, and not
the opportunities of the business firm.

Unfortunately, this certified team is not certified to find the best
solution for the company and most of the time, they are not even so
inclined. They know one thing and the one thing they know is what
they ultimately recommend and it is what the company ultimately
buys. They believe they are right without even looking elsewhere.
The all-everything operating system is rarely considered, as the
certified experts in most businesses are certified in making

Chapter 2 The Value of Great Operating Systems? 59

Microsoft products work, not in what may ultimately be the best
course of action for the business..

Give Me Exactly What I Know!

What often happens in these ad hoc scenarios is that companies
end up with a proliferation (mish-mash) of incompatible systems
that rapidly grow obsolete as the business or organization changes.
Strassmann calls these the 'build and junk' solutions. In these
situations, there is often no room for new thought because the
pattern of computing, successful or not, dependable or not, has
been in place for some time and the voices supporting that
equipment, the change brokers in the organization, actually do not
want to change themselves.

Thus a truly innovative and affordable solution – software and
hardware -- would be left on the table because it would not be
compatible with the current mindset of the firm’s IT advisors. In
many ways, that is why the all-everything operating system is not so
well known in many small to medium sized businesses. It does not
matter how good it is. Nobody wants to hear about it - even the very
IT advisors on whom the organization depends.

In addition to the mindset that espouses the short term “build and
junk” solutions that continually patch one deficiency and create
another, there is a similar mindset with software function that has
been delivering its payday for years without issues. Because
anything that has been running on a computer for more than five
years can be disparaged as “legacy” by the young Turks who often
provide the prevailing thought in small to medium sized businesses,
companies often find themselves pushed to eliminate the old and
move on with the new, just because it is “new.” What's wrong with
"build and keep?"

More often than not, new means Microsoft and anything else is old.
Microsoft, of course does not like to tell you that its own OS roots
are well over 25 years old. Despite the pressure to replace, there
is hard evidence that older applications and platforms still work fine
and it is not hard to find them providing value every day in most

60 The All-Everything Operating System

organizations. However, if you will pardon me, it is not politically
correct.

Coincidentally, software built for the great grandfather of the IBM i
OS, over thirty years ago, still runs on today’s all-everything
operating system. And, believe it or not, it is difficult to convince
some people that this is an advantage, not a disadvantage, no
matter who is doing the talking.

Before we get a little deeper into the notion of Business Value, let's
talk about an industry that needs the most productive and the most
reliable computers in order for its business to function. This
industry has to keep track of every penny and nothing, and let me
repeat, nothing, can go wrong. Already, if you know something
about Windows servers, you are saying to yourself that such units
need not apply in this industry and for the most part, they don't.

The Casino Industry Demands Technology
Excellence

If you own a casino in Las Vegas, you are more than likely a
millionaire but that's not what this book is about so we won't go
there. To protect your millions and the millions more that you hope
to collect, you have little concern about hurricanes or even blizzards
in the Las Vegas desert community; but, you certainly are
concerned every day and every night that operations continue to
function. So, from your computer systems, you demand continuous
availability, a must in the round-the-clock casino industry.

So, how do Casinos prevent a shutdown? The answer is simple.
As part of their overall system strategy, they use the all-everything
operating system running on IBM Power System hardware and they
have been doing so for about 20 years. It all started in Atlantic City
and in Chapter 15, I have included an interview with a friend of mine
and former fellow IBM Systems Engineer, Bob Morici. Bob
designed and implemented the first high availability systems
running back then using the all-everything operating system for
Bally’s in Atlantic City. News spread like a contagion and the
AS/400 became the go-to machine for casinos across the world.

Chapter 2 The Value of Great Operating Systems? 61

Does uptime matter to a business? Ask Steve Wynn of the Casino
with the same name. One of the few defections to Windows, Wynn,
reportedly a friend of billionaire Bill Gates, chose Windows for his
casino solution. This was widely reported by the press and if
successful, it was feared that other IBM i installations might also
follow. Many saw this as an inevitable erosion from IBM technology
to Microsoft.

Nobody is talking about this openly but the rumor is that a few years
ago, not too long after the Wynn was up and running without any
IBM i units to protect it from disaster, the whole shebang went down
deader than a doornail. As noted previously, the casino gaming
industry requires stable, secure, and scalable solutions and
infrastructure to support their mission-critical, 24/7 operations, and
before Wynn, the go-to system had always been the IBM Power
system running IBM i.

After Wynn selected Microsoft and Intel, business was not quite as
certain for IBM's marketing teams. But after the rumor was spread,
that the Wynn was down hard and for forty hours their people could
not even book a guest into their hotel and their registers could not
open for money, the word was that operations were in chaos. I've
hear nothing about this since and have had no verification but I had
heard it from an IBM guy as I recall at a seminar. If this is true, I
can see why IBM would use use this event as its reference event for
those who might stray from the high availability, all-everything
operating system environment. Having my own experience with
Windows, it certainly is believable.

IBM i Runs 96% of Las Vegas

The fact is that the IBM i operating system and IBM Power System
hardware runs 96% of Las Vegas. In addition to reliability in the OS
and the hardware, a duplicate system mirrors transactions in real-
time and tapes go out 24-by-7, in armored trucks, to a facility
unknown even to the IT directors. I would not even know how to
find the name of this facility but, I know it exists. You can bet the
backup company also uses AS/400 heritage technology

Though seemingly impregnable, nobody actually thinks that that the
solid performance of the IBM i operating system and the casino

62 The All-Everything Operating System

software environment means that the hardware systems, operating
systems, and application systems are invulnerable. But, it would
take something like a 9/11 attack to create a major issue and even
then the off premise backup tapes would save the day. IT managers
challenged for an answer to this potential danger suggest that they
would get another Power System from IBM almost immediately and
they would get it running in a fallout shelter if real disaster ever
happens.

The Venetian is an example of IBM i reliability with multiple AS/400
heritage systems that run the hotel, casino, slots, inventory,
purchasing, reservations, financial, accounting, payroll, as well as
time and attendance applications. There is no way that a manual
processes can duplicate the automated ones that perform specially
designed functions such as tracking guests' room accommodations,
gaming-table winnings, loyalty-points accumulations, comp-cards,
and personal preferences such as the type of meals or
entertainment individual guests enjoy. The system really "can't" go
down but if it does, even without a natural disaster, there is a
disaster.

AS/400 heritage systems with IBM i have a history of better than
99.5% availability for one system. With mirrored disk drives this is
substantially increased closer to 99.9% This may be OK for some,
but if a system were down for a half day, or forty hours as was
rumored to be the case of the Wynn a few years back, it really could
be devastating. The losses from manual processes and procedures
would add up very quickly. Consequently, casinos most often run
two IBM Power Systems with IBM i, rather than one. This pushes
availability through the roof or as the math majors would say, it
asymptotically approaches 100% availability.

The integrated database on the system and its advanced binary
radix tree and other indexing schemes even keep the indexes
available for instant retrieval. Unlike other systems, they do not
have to be constantly shut down for rebuilding. So, a casino player
can be sure that his or her loyalty cards or as casinos call them,
comp cards, are updated instantly and the database is always up-
to-date on both machines simultaneously. You know that if you are
a playing customer and you don't get your points on your account
immediately, you start losing faith and it impacts how happy you

Chapter 2 The Value of Great Operating Systems? 63

may be in continuing to play at a particular casino. So, to keep the
smiles, updates are instantaneous and simultaneous.

They Run their Business on IBM i

I have my own experience in the Casino Industry as I had the
pleasure of providing advanced education to the IT Directors of the
Circus Circus properties in Las Vegas and Lake Tahoe several
years back. Circus Circus has recently been taken over by
MGM/Mirage but, they still use the IBM i platform to keep their
casinos running. Having five IT Directors in the same room is a
challenge for anybody and teaching these top dogs in their field
anything they do not already know is another challenge. Yet, none
of these directors were challenged when they offered the ultimate
compliment for the all-everything operating system driving their
business systems. They quickly noted, "We run our business on it."
That says it all.

They also took note that system packaging is self-contained, highly
reliable, and it reduces their most critical cost – people. It is easy to
manage because it is so tightly integrated. This reduces the people
cost and the people cost is the highest cost in running just about
any service business so, casino IT managers choose the IBM i
platform not just because it does not go down. A pencil doesn’t go
down either but I would not run my business on a pencil. Casino IT
Managers like the IBM i platform because it has unique properties
that enable them to devise better solutions to run the business,
implement those solutions, and be assured of continual high
performance and of course, availability.

Keep Your Wallet Open

The fact is that it is the tight, sometimes hard-wired, integration
between hardware, operating system, database, and applications
that permits the most demanding IT clients to avoid management
costs that can be ten times the cost of the system. Numerous Las
Vegas IT Directors note that it is their humble opinion that if they
were forced to use Unix or even the Windows platform, the IT cost

64 The All-Everything Operating System

would be ten times higher because of all the people involvement --
involvement that is not needed in an IBM i shop.

IBM i IT Directors in casinos and in other industries will tell you that
each IBM Power System running IBM i typically carries an up-front
price of a few hundred thousands dollars. The up-front cost of Intel
hardware is less but when the Windows licenses are added up, the
cost gets closer but, is still typically less than the more reliable IBM i
hardware and system software.

On other platforms; however, as well known by savvy and
experienced IBM i IT Directors, the management, development, and
maintenance costs often end up costing millions of dollars each
year. Again, seven times the cost of an IBM i shop for those who
are counting.

IBM i has become the de-facto high-availability operating system
and server system for the Las Vegas and the Atlantic City casino
industry because it is designed to run packaged applications with
minimal programming and maintenance. Even the larger Casinos
often managed by Native Americans choose the IBM i way. The
Mohegan Sun at Pocono Casino near my home town of Wilkes-
Barre, PA, for example, is proud to use IBM i and IBM Power
Systems technology, and their IT staffs are relatively small when
compared to other major companies.

Agility is Important to Casinos

Making the AS/400 heritage machines the best choice for the long
haul is its flexibility in responding to new requests for data from its
integrated database. One of the factors pressing on this industry,
as it has for many others, is the constant and vigilant attention that
casinos must pay to regulatory compliance. Unlike the financial
auditors in the collapsed US financial system who seem to have
been on vacation the last several years, the auditors from the
Nevada, New Jersey, and other state gaming commissions don't
mess around, and they are always trying to get new information.
Because of this, their regulations change quite frequently.

Chapter 2 The Value of Great Operating Systems? 65

Non-compliance is not an option so this task keeps IT staffs on their
toes. Thus, the scalability and flexibility of the IBM i platform is a
high priority item. Add the strength of IBM as a partner to the
casino industry and you have an unbeatable team. The IBM i
systems perform as expected, 24 by 7 by 52, so that the casinos
can serve not only the regulatory bodies that license them but also,
the players and the guests who provide the revenue, all in a way
that helps differentiate them as leaders in their market. IBM i's
powerful development tools also enable casino IT shops to keep
providing more service with the continual mission of outpacing the
competition. For the casino industry, that is pure business value.

IBM i Apps for Casinos Provide Value

Software vendors such as Inter-American Data for hotel
applications, Stratton Warren Software for inventory management,
Infinium Software for financials, and Agilsys for lodging
management, have for years been writing low-maintenance
products that run on the IBM i systems. IBM i fits perfectly into the
casinos' game plans. By selecting IBM i, casino operators have
shown that they would rather spend money on promoting their
gaming properties than on staffing for IT. They might even tell you
that you can bet the house on that.

Betting the House

Whether the mission is a system that is good enough for casinos or
a system good enough for any business from Hospitals to Banks to
any business needing a good ERP or CRM platform, IBM i more
than gets the job done. Forget about the feature du jour style of
computing when with IBM i you get a platform and a means of
creating and using applications until the applications no longer
make sense for your business. That's when to change, not when
Microsoft needs to sell its next OS version.

Regardless of what industry your company may play in, knowing
that the casino industry by more than 19 to 1 pick the IBM i style of
computing because it delivers the bacon and it does not go down,
you might want to ask yourself what kind of business value that

66 The All-Everything Operating System

provides. Platforms that are not available when you need them do
not serve the needs of the business. Not only does IBM i provide
value to casinos and other industries which choose its style of
computing, it does so with one of the highest availability ratings of
any system in the universe. There’s another thing on which you can
bet the house and you can bet you will win great value for your bet.

In the next chapter, we discuss some specifics about the kind of
value that you can expect from the best business operating system
in the business, IBM i (for Business).

Chapter 3 Does an Operating System Add Business Value? 67

Chapter 3

Does an Operating System Add
Business Value?

Realizing the Benefits of Computing

The chanting by industry analysts for years, "not to worry because
computers deliver competitive gains, speed up business
transactions, increase customer satisfaction, deliver superior
quality, and lead to improved profitability," has become generally
accepted wisdom. But sometimes, if the applications are not hosted
on the right systems or servers, regardless of the quantity or quality
of the chanting, the benefits are never realized. Gaining the
benefits from your system or server is not a given. When you do
not gain from your computing experience, quite often, it is because
the operating system has major limitations and does not offer you
the benefits, the scale, and the reliability to meet your needs.

The question as to whether IT provides business value as noted in
the prior chapter has spawned much activity in management circles
over time, and even more just recently. The question is not how
much return on investment for projects, and especially information
technology projects, is provided by IT, but whether there is any ROI
at all for IT efforts. Many of the managers and academicians and
analysts who have offered their thoughts on the subject seem to
have concluded that as necessary as it is, IT implementations often
do not add to business value in any meaningful way. It's almost like
how the opposite sexes sometimes describe themselves. You can’t
live with computer systems but, you also can't live without them.

Strassmann affirms this thinking. The theory goes that as IT
analysts and technicians streamline a given area of the firm using

68 The All-Everything Operating System

technology, a significant portion of the ROI, if the project is
successful, comes about because the productivity cogs of the
former system have been eliminated, and these could theoretically
have been eliminated without the use of major technology.

I do not share this doom and gloom view of the inherent value of IT.
However, there are many very poor implementations in businesses
for many different reasons. In my own backyard, I have observed
companies and organizations in which managers could not accept
that a desktop PC was not intended to be the IT panacea server for
the organization. At about $1500 per box, it would be nice if that
was all that needed to be successful. Rarely to never could such a
small investment bring home huge technology benefits. And it
doesn't happen with the next $1500 purchase either. In fact, the
truth is that it never happens, regardless of the number of ‘servers’
the company buys.

I tell my clients and my students and you will hear it in this book,
“The system makes a difference.” And I also tell them “Not all
computer systems and operating systems are created equal.”
You’d think that they would already know that but, the fact is, some
just don’t. Today, very few people in my industry even use the
word “system” to refer to the computers and operating systems that
are used to run the business from the back rooms of the
organization. Instead, they call them servers. Even IBM, for a
number of years used the word server in their terms, but in the last
several years, Big Blue has gone back to basics and a system is
again a system.

A system is much more than just a server and IBM has always
made systems. A system, in its most simple definition, is a group of
interrelated parts working together as a whole. An IBM Power
System running IBM i is a full system with an all-everything OS and
it is also a very capable server for multiple purposes. Any other
"server," especially a Windows server is merely a component within
a system. However, such a server, or even a desktop client
masquerading as a server, is often sold as a do-it-all server. My
experience is that all is well in this environment until you want to do
something else – then you need a second server. Then, a third…
Soon, just like that, you’ve bought the farm.

Chapter 3 Does an Operating System Add Business Value? 69

The Other Side of the Mountain

So, we might conclude from our reading so far in this book that
there is business value to be gained from good IT investments.
However, without a hefty fee, even Lloyds of London will not assure
that any value will be realized. Nor can they!

So far, for example, we have learned that the management of the
organization and their expressed desire to succeed in IT projects
has a major bearing on IT success or failure. We have also learned
about Strassmann’s notion of 'build and junk' solutions.
Additionally, we learned that there are times when the IT
professionals in an organization have more important things on their
agenda than the welfare of the firm. Unfortunately, they may not
even know it. A simple self-test for these IT folks would be if every
decision they make favors their personal certifications.

Please know that I am not trying to cast aspersions on the character
of IT personnel. However, I am a believer in the philosophy
espoused by the great U.S. General George Patton who once said,
“when everyone is thinking the same thing, somebody is not
thinking!” I submit that many of the Windows certified experts,
systems programmers in my personal vernacular, remind me of the
little boy who never saw the other side of the mountain. Because
he liked the side of the mountain he was on, he concluded
(imagined) that the other side of the mountain was ugly and barren
and not worthy of even visiting. Yet, he had never seen that side of
the mountain.

I run my personal business on two desktop PCs. One is backup for
the other. I would love to have a business large enough to be able
to afford an IBM Power System with IBM i and some businesses
automating integrated software. I know the platform and I know
how much better life could be for me at tax time and at other times
when I would like a snapshot. But, I live on the leeward side of the
IT mountain- thankful for every macro Excel provides. I, too, use
the Microsoft style of computing for the simple things necessary to
run my very small one-person consulting business. And, of course,
I have helped my clients install Windows servers both inside the
IBM i complex and externally. Though I know where I want to live, I
do feel I know both sides of the mountain.

70 The All-Everything Operating System

Many of my peers stay on the Microsoft side of the mountain or the
Unix side of the mountain. They know nothing about the IBM i side
and they never care to find out. Instead, they have concluded, just
as the boy on the “good side” of the mountain, that there is no
reason to even know what is on the other side. Because they have
already thought it through and because neither IBM nor the
Windows dominated press gives them any reason to look any
further than Redmond, Washington for their business solutions, they
choose not to look at IBM i. It does not matter if IBM i is the best
possible solution to so many ills that their company may be facing.
They will never know that the all-everything operating system may
be the perfect solution.

Thus, in most Windows shops, the continual demand for funding is
for more Windows servers, faster servers, and more people to
support the servers. Obviously, for them, just like the boy on the
good side of the mountain, there is no other way.

However stacked the deck may be in favor of Microsoft and Intel in
most IT shops today, I would not be telling the full truth if I ignored
the fact that this results from there being no compelling reason to
look at an IBM i platform as a real business solution for small
businesses. Most businesses who should be driving their IT shop
with an IBM i based system have never heard of the AS/400 or IBM
i. The “uninformed” Microsoft certified IT staff sees no value in
messing up the mix by looking at non Microsoft servers even if there
may be the possibility for management to better realize the rewards
of their investments.

Quite frankly, I can’t blame the Windows certified professionals out
here. They really don’t know that there is better water to carry than
Windows if that is their only game. Again, that’s why I wrote this
book. I expect and to a lesser degree hope that the Microsoft side
will want to know about the all-everything operating system so that
they can advise their management that there is more out there than
that to which they are accustomed… and it may even be lots better.

The system actually does make a difference.

Chapter 3 Does an Operating System Add Business Value? 71

ERP Provides Business Value

The business value factors and the technical factors that we are
about to discuss and which are highlighted in this book differentiate
an IBM i based system from all other systems. It is no wonder that
the all everything operating system is the dominant platform used
for Enterprise Resource Planning (ERP). It is the best environment
and ERP is the defining business application for most companies. It
is the all-everything application and it is not too coincidental that the
most implementations and the most successful ERP
implementations run on the IBM Power System family of computers
with IBM i as the main operating system.

Note: What is ERP?-- Enterprise Resource Planning is software that
provides a business management system as a solution that integrates
all facets of the business, including planning, manufacturing, sales,
and marketing. As the ERP methodology has become more
popular, software applications have emerged to help business
managers implement ERP in business activities such as inventory
control, order tracking, customer service, finance and human
resources. IBM i based systems are the industry leaders in
providing ERP solutions to small to medium sized businesses. Yet
very large companies, such as Costco and Nintendo of America
have also found the IBM i platform perfectly suited for their
business needs.

ERP and IBM i -- Unbeatable

ERP is now being hailed as a foundation for the integration of
organization-wide information systems. ERP systems link together
the operations of entire organizations, such as accounting, finance,
human resources, manufacturing, distribution, and more. Moreover,
they also connect the organization to its customers and suppliers
through the different stages of the product or the process life cycle
with Supply Chain Management (SCM) and Customer Relationship
Management (CRM).

ERP systems come with many modules. However, the most
significant modules, where the majority of business value is
achieved are as follows:

72 The All-Everything Operating System

1. Inventory Management and Control
2. Order Entry
3. Billing / Pricing / Accounts Receivable
4. Purchasing / Accounts Payable / General Ledger
5. Production Management
6. Human Resources / Payroll

Besides all the benefits of the individual modules, and despite how
a given company does business, the overall benefit attributed to an
ERP package is the connectivity of information. In other words, the
modules, when deployed are integrated such that the output of one
module - order entry for example, feeds many others, such as
billing, inventory control, accounts receivable, and sales
applications. There are no rough edges. Each module knows how
to “talk” to each other module, and the modules understand each
other. That’s integration and there is a whole lot of business value
to that notion alone. Considering that the "i" in IBM i means
integration, it is easy to see why IBM i is the preferred platform for
ERP.

The Benefits of ERP and IBM i

In addressing the notion of the business value of a computer
system, it makes sense to see what software that machine is
running. Since most companies that automate do so to help their
business run more smoothly, the typical business applications such
as order entry, billing, account receivable, etc. are most often first to
be implemented.

This is how it is regardless of whether the applications are part of a
big ERP system or not. Therefore, we can say that the business
value of any computer system is the value provided by its
applications, such as ERP. So, rather than begin a discussion
about system oriented features that provide business value, we can
simply use the benefits of ERP systems as our guide to business
value. After all, it is the combination of the ERP system and the
IBM i operating system that bring those business benefits home.

Chapter 3 Does an Operating System Add Business Value? 73

Four generic objectives that companies have, when they implement
ERP, are as follows:

1. To improve responsibilities in relation to customers
2. To strengthen supply chain partnerships
3. To enhance organizational flexibility
4. To improve decision-making capabilities

From these objectives, companies have more specific motivations.
Though these motivations do not equate to hard dollars, the most
common generic reasons for which businesses implement ERP are
as follows:

1. Need for common platform, (such as an IBM i based
system) with the intent to replace innumerable smaller
systems (such as Windows servers).

2. Process improvement expected from the implementation
3. Data visibility that could be used to improve operating

decisions
4. Operational cost reductions
5. Increased customer responsiveness in operations
6. Improved strategic decision making

Moving down the chain of rationale, for implementation, there are
five major and specific reasons why companies undertake ERP
projects.

1. Integrate financial information
2. Integrate customer order information
3. Standardize and speed up manufacturing processes
4. Reduce inventory
5. Standardize HR information

Knowledge of the generic benefits to be gained by companies that
have already implemented ERP systems is often the main reason

74 The All-Everything Operating System

that drives other companies to an ERP implementation. These
benefits include the following:

1. Improved Work Process
2. Better customer satisfaction
3. Better customer service
4. Fewer complaints
5. Better quality (less rework)
6. Increased access to data for business decision making
7. Increased control of work processes by staff
8. More timely information
9. Greater accuracy of information with detailed content.
10. Improved cost control
11. Improved customer response time
12. Efficient cash collection
13. Quicker response to market conditions
14. Improved competitive advantage
15. Improved supply-demand link
16. Integration with eBusiness

When a company completes an ERP implementation with an IBM i
based system, after the startup issues are resolved, the benefits
quickly begin to accrue. Benefits are in many different areas since
ERP is so far-reaching as an integrated application set. There are
way too many applications and their associated benefits to list in
this book. However, the major benefits that add to the business
value in the operations and financial areas are as follows:

Chapter 3 Does an Operating System Add Business Value? 75

Operational

1. Reduction in inventories
2. More inventory Turns
3. Lower carrying costs
4. Reduction in total logistics cost
5. Fewer stockouts
6. More efficient picking
7. Reduction in manufacturing cost
8. Reduction in outside warehousing
9. Reduction in procurement cost
10. Increased production capacity
11. Improved order cycle time / accuracy / cost.

Financial

1. Increased shareholder value
2. Reduced assets deployed
3. Increase return on equity
4. Improved cash flow

Added Value Adds to Profits

Now, we are talking. Business managers understand those things
that add value by increasing profits, whether they manifest
themselves as opportunities to gain more business or they manifest
themselves in lower cost through operational and financial
efficiencies. When these benefits are quantified, they become a real
value that is added to the firm. But, with an IBM i, all-everything
operating system running on the IBM Power System, that’s just the
beginning

The ERP application benefits can be accrued on any computer
system but because of the large system function and ease of use
characteristics of IBM i, any software project is more likely to be
successful and it is more likely to cost less and be live sooner than
on any other platform. It’s also a fact. Surveys show that IBM i
ERP implementations are completed significantly sooner than those
on other systems.

76 The All-Everything Operating System

Whether the application is ERP or CRM (Customer Relationship
Management) or SCM (Supply Chain Management) or eBusiness,
or simply Human Resources or Payroll, the IBM i OS adds
additional value to the business. This value does not come from the
application software. It comes from running the software using the
IBM i operating system rather than Unix, Linux, or Windows. It
comes from the business being able to quickly react to the
unexpected. In other words, IBM i plus ERP equals business
agility.

Besides the list I am about to show, one of the most well-known
aspects of the IBM i operating system is that its development tools
help programmers and implementers get new work up and running
more quickly and they help the team maintain existing work in a
highly productive fashion.

This helps businesses customize new strategies to beat the
competition, have those plans implemented in software sooner and
with a higher probablility of success, on a system that stays up to
continually provide business value, and after all that still costs less
to acheive. IBM i even works on weekends and at night when the
IT guys in Windows shops are applying the latest fix packs.

Change is Constant

My experience is that even with a fine-tuned packaged ERP
solution, one of the biggest software libraries on a well-used
business system is the “change library.” There will always be
changes in a dynamic business and there will be lots of changes
over time. With IBM i, it is a documented fact that you can develop
applications or change applications five to ten times faster than on
any other system. On other platforms, IT shops are cautioned to not
make changes that can help make the software run better for the
organization. So, on other platforms what you see is what you get,
even if you know you need something else.

IBM i enables your staff to react to your competitive environment
and augment the benefits of any package that you choose to run. If
applications can be completed quicker, then their benefits are

Chapter 3 Does an Operating System Add Business Value? 77

obviously accrued faster, and the firm benefits from the better
method sooner, not later. Moreover, because it is finished sooner, it
costs less to build. So, benefits more quickly roll in and costs are
reduced when the all-everything operating system is in play.

IBM i or Server Farm–You Make the Call

Another of the biggest values that IBM i adds to the business is that
it can run the whole business on just one machine, thereby saving
both hardware and implementation dollars as well as the support
personnel that are required for a server farm. The next biggest
value that IBM i supplies is that it just does not go down. We
highlighted this in Chapter 2 in the section about casinos. Because
the machine does not go down, and the operational environment is
less complex than a farm of finicky Windows servers, your critical
business applications are always available. Downtime can be an
extremely costly factor to a business depending on technology to
survive.

Downtime is one of the main costs that should be taken into
consideration during a system and software evaluation. An average
ERP implementation for example, on a non-IBM i server would
experience 2.8 hours of unscheduled downtime per week and
according to a recent survey of 250 Fortune 1000 companies,
industry analysts have reported that the average per minute cost of
downtime for an enterprise application is as high as $13,000.
Considering that a Power System with IBM i has a yearly average
downtime of just over five hours, there’s a lot of money to risk by not
using an IBM i System.

Dennis Grimes, former CIO of Klein Wholesale Distributors, which,
at the time was the fifth largest candy and tobacco wholesaler in the
US, explains it this way:

“There is a tremendous time savings because the system
does not go down and force us to scramble to get our orders
out and our work done. There is virtually no system down
time, no restarts, and no calls at night or weekends.
Applications just run and run and run. Forget it’s there! No

78 The All-Everything Operating System

time spent on getting things to run right. The machine is self
optimizing.

We have Windows servers also and the IBM i unit has them
beat by far on economies of scale: It can run many things
without choking. I only need to manage one system. It is
even easy for me to add capacity on demand.

We have our box on the Internet. Nothing is impregnable
but this baby is tough to crack. I know of no other system
that can’t be hacked. Security is just part of the whole
package. You just get it. The IBM i operating system
doesn't have the open doors like other systems.”

Being able to develop and maintain applications in short time
frames and run multiple workloads on multiple operating systems on
the same machine with just one processor (or 64 if you need them)
along with always being available for action, are major business
values for an IBM i system. But, there are a ton more.

The following is a comprehensive but not exhaustive list of the
added value that a company gets from running its ERP, CRM, HR,
or any other application on an IBM i system:

Factors that Add Business Value with an
All-Everything OS

1. IBM i is designed for small to medium businesses, not as
a toy for the desktop.

2. Working with IBM as a trusted partner
3. Unsurpassed competitive edge
4. Best tangible ROI
5. Quickest investment recovery (less than a year)
6. Elimination of multiple, underutilized servers
7. Highest level of integration
8. Outstanding performance
9. Best Security – no hackers, no viruses

Chapter 3 Does an Operating System Add Business Value? 79

10. Runs core business applications and eBusiness on same
machine

11. Deploy new applications quickly
12. Fastest ERP implementation
13. Highest customer satisfaction
14. Intuitive management tools
15. Fastest speed to market
16. Greatest business agility
17. Reduced complexity
18. Enables change quickly
19. Highest IT staff productivity
20. Reduction of technical and administrative costs.
21. Free, integrated DB2 relational database
22. Free, integrated transaction processor
23. Free packaged Web servlet server for eBusiness
24. Free PHP and MySQL package shipped with OS
25. Simplified IT infrastructure
26. Best usability characteristics (ease of use)
27. Highest user productivity and effectiveness
28. Easiest, least costly implementation
29. Lowest cost of ownership
30. Non-disruptive business growth (virtually unlimited)
31. Seamless, streamlined upgrades
32. Long lasting software solutions
33. No need to buy new packaged software when IBM i is

enhanced
34. Lower implementation time and costs
35. Most dependable, flexible, affordable
36. Zero downtime (99 44/100% uptime)
37. Fewest unplanned outages
38. Simplified maintenance.
39. Best service team in the world (IBM)
40. Etc…

That is an awful long list of value items. Each has an impact on the
business. By running your business with the all-everything OS, you
get to enjoy these benefits as a by-product. With any other OS
solution, these benefits do not apply.

80 The All-Everything Operating System

Technology Value

To the technical team, the above list would appear to be fluffy kinds
of things with little substance. Yet, there is a story behind each and
every one of the business value factors that are shown in the above
list. It is tough, however, to digest that whole list, and it is tougher
to believe that there are actually many more items that can be
added to the list. Yet, there are.

The above business value factors are achievable, however,
because of what IBM builds into IBM i.

Now, let's look at the technical features of the IBM Power System
with IBM i compared to the Unix, Linux, and Windows platforms.
There may be a commercial machine out there that has
implemented one or several of the below features of the system, but
no other system has more than a few. The technical factors that
bring the business value factors to the forefront are listed below.
Please note that this is not a complete list of features and functions
but it is a pretty large list nonetheless.

iSeries Technical Factors

1. Implements IBM’s FS (Future System) technology
2. Most advanced computer science technology in the

Industry
3. Tenth generation of 64-bit RISC computing
4. Advanced autonomic computing
5. 30 year old software runs without recompilation
6. Manages up to thousands of disk drives as one image
7. No need for C,D,E,F drives
8. DB file placement auto-optimized for performance
9. Allocates file space as needed on multiple drives
10. No need to move or split files on different drives
11. Provides internal SAN for multiple OS environments
12. High Level Machine (hardware abstraction)
13. Technology Independent Machine Interface (TIMI)
14. No recompiles-- migrations from S/38, AS/400, iSeries, i5
15. Object based
16. Single level storage

Chapter 3 Does an Operating System Add Business Value? 81

17. Capability based addressing
18. Integrated DB2 Universal Database
19. Pre-integrated database, middleware, and operating

system
20. Automated database reorganization
21. Integrated transaction processing
22. Tuxedo and CICS not needed
23. Runs many applications at one time without crashing
24. No server farm required
25. eBusiness and ERP on same server
26. Outstanding performance
27. Integrated performance collection
28. Integrated Apache HTTP in OS package
29. Standard WebSphere in OS package
30. Integrated dynamic workload management (self tuning)
31. Workload integrity
32. Integrated resource management
33. Integrated backup
34. Continuous operations with "hot site" failover
35. Runs up to four different operating systems concurrently
36. IBM i, Unix, Linux can share one processor
37. Integrated resource virtualization
38. Integrated security facilities
39. Virtual high-band integrated network
40. Share single physical storage pool
41. Multiple subsystems
42. Resource balancing (automatic and manual)
43. Continuous 24 X 7 operations – no disk defrags needed
44. Share resources and maximize CPU utilization
45. IBM Virtualization Engine
46. Increases server utilization rates
47. Logical partitioning (Up to 10 partitions per processor)
48. Heterogeneous workloads
49. Advanced server consolidation
50. No assembler language needed
51. Programming independence from machine

implementation and configuration details
52. High levels of integrity and authorization capability with

minimal overhead

82 The All-Everything Operating System

53. Efficient support in the machine for commonly used
operations in control programming, compilers, and
utilities

54. Self-generating, self-adapting object code based on
technology independence

55. Efficient support in the machine for key system functional
objectives, such as data base and dynamic
multiprogramming

56. Underlying technology change does not translate into the
need to recompile applications or disruption to the
business.

57. Five to ten times programming productivity advantage
58. Compilers are database and transaction processing aware

(not an after thought)
59. Enhanced IT productivity
60. And more!

From my IBM experience, I am convinced that I would be able to
deliver a 1/2 day or longer presentation about the IBM i OS on
Power with just these topics. However, I would admit that more
than likely it would just scratch the surface of the topics in the above
technology list. That's how powerful the platform is.

If you spent the time to burrow through this list, and you are a
technical person, you are probably impressed with the IBM i on
Power technology. There really is lots more to tell you though, and
throughout the book, you will be exposed to more of the technical
magic surrounding the IBM i OS platform. Because I have written
this book so that a business person or a technician can read it;
however, the level of detail in this book does not approach what you
would find in a technical manual or a technical book.

Moving On

So, hang on, the plot has been revealed but, the best is yet to
come. Stay tuned for a number of chapters that bring forth even
more exciting goodies about the all-everything operating system.

Chapter 3 Does an Operating System Add Business Value? 83

If I am a bit too superlative in my remarks for your taste, permit me
to apologize in advance. I believe in what I say but, I do not expect
the reader to share all of my opinions or my enthusiasm. So, I hope
you hang in there with me. Whether you are a business person, an
IBM i person, a Windows person, a Unix / Linux person, or a
mainframe person, there is lots in this book for you. No, you’re not
going to learn which bit to turn on in the PSW to make the system
purr like a kitten, but you are going to learn about the computer
science attributes that make the IBM i platform more of a system
than you have ever been exposed to in the computer industry. And,
if you can get through that, you’ll learn how a system using those
advanced attributes makes life better for the IT staff as well as for
the whole business organization. Everywhere you look in this book,
you will learn about the value that an IBM i system adds to the
organization.

Chapter 4 Where Did IBM i Come From? 85

Chapter 4

Where Did IBM i Come From?

No Secrets Please

There is no better kept secret in the computer industry than the new
IBM Power System with IBM i. It comes from IBM, the all-time
leader in advanced computer and supercomputer technology.
Adding secrets to secrets, another secret about IBM i of which most
modern computerists are unaware is that IBM has created this
platform from the chip to the OS as the finest, most architecturally
elegant, most usable, most productive, and most affordable
computer system of all time.

This phenomenon in the computing industry gets a software and
hardware rebirth every few years just like clockwork. Its most
recent re-birth was in early 2008, though the all-everything
operating system and the rest of the full package have advanced
underpinnings that go back well over thirty years. That’s an awful
long time for any company to keep any secret. With the IBM Power
System as IBM's premiere hardware offering today, IBM is expected
to reveal all of its secrets as eventually even its mainframe systems
will be running on this same internal hardware. When IBM chooses
to make its big splash, Big Blue will begin to focus on claiming the
proceeds from the many years of advanced development that
recently culminated in its new IBM Power Systems running IBM i.
There is lots more to come.

That’s what this book is all about.

Not only has IBM kept the secret but with the all-everything
operating system, it has continued to keep the lead. That is
noteworthy, but not quite as noteworthy as the fact that the
machine’s architecture was conceived and delivered over thirty

86 The All-Everything Operating System

years ago and is still the best technology that anybody has ever
built.

In the 1970's leading up tothe announcement of the IBM System/38,
Dr. Frank Soltis, recognized globally, as the Father of the AS/400
and IBM i was the key player in bringing IBM i to life. Soltis, who
served IBM as its Cheif IBM i Scientist until his retirement in late
2008, assured that Rochester Minnesota, not Endicott or
Poughkeepsie NY, where the mainframes lived, would bring the
world's best technology to life in a package that was affordable by
most reasonable sized businesses. By the way, Dr. Soltis is so
tuned intothe notion of an all-everything operating system that he
agreed to write the forwaord tothis book.

Using its 30-year old "nobody else can afford to build one"
architecture, IBM continues its technology lead by far compared
with all the other platforms of today, including the mainframe. One
would have to conclude that IBM is about 30 or so years ahead of
its competition and that’s before you factor in that during the thirty
years since the all-everything operating system's conception, IBM
has not stood still. Each and every year, more and more capability
and facility has been built into the all-everything operating system.
Now, I am not suggesting that the IBM Power Systems with IBM i is
60 years ahead of the competition but, that is where the math
logically takes you.

IBM i: Easy to Use & Hard to Forget!

If I had never worked with other computers, mainframes, 1130’s,
System/360 model 20s, Unix, Linux, PCs, etc…, I probably would
not have appreciated what a solid system the AS/400 heritage line
has been right from the beginning. The Rochester Minnesota - built
"small business computer line" from which the IBM Power System
with IBM i was spawned has always been unusually easy to work
with. In every other computer platform, especially the earliest
models, there were cryptic codes to decipher and continual puzzles
to solve just to get the machine turned on. Programming for these
behemoths was and for the most part still is even worse.

Chapter 4 Where Did IBM i Come From? 87

Of them all, at least before I worked with Unix, I felt that the
mainframe was the most cryptic of the cryptic. Technicians carried
special green cards with codes and hexadecimal translations galore
in order to program properly on a mainframe. At the time I learned
it, I was convinced that the mainframe had been slapped together
by bit- head engineers, who expected just other bit-head engineers
to work with it. Real people need not apply. Even today, I have
great respect for the technical acumen of the professionals who
know the mainframe and who make it hum for very large
organizations. They know what they are doing. Then again, they
must.

When IBM introduced the first ancestor of today’s Power System
with IBM i as the System/3 in 1969, it was remarkable. It was as if
IBM had sent all the geeks home that day. There were no strange
codes that were indecipherable. No IBM green “HEX” card was
needed. Programming the System/3 was almost as easy as
speaking in English. Maybe not that easy; but, it was easy. IBM
had succeeded in using high tech engineers to build a system for
regular people. The operating system (SCP as it was initially
called) was not very advanced, but it was very simple to use. I don’t
know how they did it, but they did. IBM has kept the principle of
small system ease of use in the product all the while continuing to
add large system function. IBM i is the beneficiary of all those years
of building OS function.

System/3 was just a start, but it was a good start. From that
moment on, the IBM Rochester style of computing became
contagious. Rochester wares were the most popular computers in
small businesses for decades. Each and every Rochester
computer was built on the principle of great function with no pain.
Each model was substantially better than the preceding machine
and IBM business customers just gobbled them up; consequently,
their businesses grew unimpeded by technology and reboots.

IBM i for Small and Large Businsses Alike

Today, the IBM Power System with IBM i is positioned to be sold to
small businesses to medium sized businesses to the largest
businesses in the world. As a family of systems, with various sized

88 The All-Everything Operating System

models and various costs, it handles workloads from the size of just
bigger than mom and pop organizations to 95% of the Fortune 500.
IBM has recently labeled its Power System with IBM i as a
“mainframe for the masses” because it gets as big as a mainframe
but it can be used effectively by a small business.

This book walks you through the story of the all-everything OS from
the very beginning until today. In addition to telling a powerful,
compelling story, it describes in layman’s terms the technology and
computer architecture innovations that are part of every Power
System with IBM i. When you finish this book, you will understand
why IBM is proud to have built the finest operating system in the
world, and you may just find a place for a particular size one of
these rascals in your own business.

For the most part, this book reads as a series of essays. Each of
the chapters is built as a short story unto itself, with the sum of the
chapters telling the story of the all-everything operating system. For
the most part, you can pick up any chapter and read it without
having to read a prior chapter. However, you may want to read
these early chapters first to get a perspective on what the IBM i
operating system is all about and its relevance in IBM history.

This book presents the IBM all-everything operating system, its
underlying superiority, its rapid customer acceptance, the IBM
development history, and the IBM all-everything operating system's
probable future starting with the new IBM Power System hardware
line.

This is not meant to be a technical book at a low detailed level. It is
written for those who have some or little technical background, who
may know lots or nothing about an operating system. However,
there are a few chapters in which I do get just a little bit technical,
hoping that I can show the reader in reasonably simple terms how
the IBM Power System with IBM i, when in control of your business
operations, offers superior, one of a kind capabilities. It is a special
system with a long and successful tradition.

When you finish reading this book, regardless of your technical
competency, you will have a good idea of a number of unique
computer science architectural attributes from which any computer
system, from any vendor, can benefit. You will also understand

Chapter 4 Where Did IBM i Come From? 89

how those attributes can help any company, such as yours,
preserve its software investment and permit the upgrading of
hardware and software without forcing a rewrite or a re-build, or a
re-purchase. You will learn that no other computer company, of
software or hardware heritage, ever created a machine with all of
these advanced architectural attributes. Not only this, but no
computer company has yet to be able to adopt even one of these
powerful notions into their computer systems and operating systems
of today.

This book is written then to teach you what is unique about the IBM
I operating system and why it is the all-everything operating system.
It demonstrates why the parts that are unique, are also good, not
bad; and why you should demand these facilities in any platform in
which you choose to run your business. Remember, the system
actually does make a big difference in the overall value of IT to your
business, and there is no system that has ever been made that
delivers value better than the IBM Power System running the IBM i
operating system. In this book, you will learn why!

90 The All-Everything Operating System

Chapter 4 Appendix:
Twenty Questions

There Could Be a Lot More

When I was first trying to create a compelling Chapter 1 to help the
reader gain interest in this book right from the beginning, I started to
ask myself a number of questions. These are the questions I would
ask somebody who was suffering from any of a number of IT
maladies prevalent in non IBM i IT shops. The maladies include “no
perceived business value disease,” “system down disease,”
“where’s my information disease,” and of course the killer,
“Microsoft myopia staff disease.”

These questions are not subtle, and for the most part, they are
answerable by a simple yes or simple no. In each case; however, a
situation is portrayed that (a) you either do not have an IBM i IT
environment or (b) you can have only with an IBM i IT environment.
The list of questions is not exhaustive; but, there are enough to
keep you busy in a very productive exercise, if you have the time.

So, without further ado, here are the twenty questions plus a few
more:

Business Value Questions:

1. Are you suffering from more customer complaints because your
customer, product, inventory, and shipping information are not
available to your customers when they want it and the way they
want it?

2. Are you losing customers because your systems are not
available or are not accommodating when your customers need
information or responses?

Chapter 4 Where Did IBM i Come From? 91

3. Would you like to be able to reduce the breadth of knowledge
that you need or would need to keep your IT infrastructure up and
running?

4. Would you like never to hear (again for some) those words, “the
server can’t do any more. We need another server, and another…”?

5. Would you prefer to get your IT work done without a major
hardware and human resources investment in a server farm?

6. Would you like to be able to contain and manage the cost and the
increasing complexity of your IT deployments rather than be forced
to add the next server, and the next, and the next?

7. Would you like to be able to reduce your required IT people skill
level and cost and not require so many high priced IT staffers just to
have your server(s) operational and ready for work?

8. Would you feel better about your IT investment if you did not
need a plethora of skills just to keep your server(s) up and running?

9. Would you like your IT staff or existing person in the organization
(depending on your business size) to be able to perform IT related
jobs with more flexibly and with less essential knowledge
pigeonholed in individual staffers?

10. Would you like to be able to reduce (perhaps to one) the
number of boxes and operating systems, and database packages
and achieve the requisite savings in IT personnel costs?

11. Would you like your business database to be there when you
need it for every transaction and every query?

12. Would you like to be able to have a comprehensive,
information-laden database without the requirement for a high-
priced database administrator?

13. If you already have a computer server that has not quite
measured up, would you like to get it right this time, rather than
hearing a bunch of sales pitches each ending with, “Of course it will
do that” when, in fact, it cannot?

92 The All-Everything Operating System

14. Would you like to get out of an environment where you need a
new server and a backup server for every new application or new
function that you need to run your business?

15. Would you like to not have to pay for the associated increase in
server support people, to take care of your growing number of
servers?

16. Wouldn’t it be nice if there were one server that, without
breaking the bank, was able to absorb all of the work from all of the
other servers and grow with you from just a few to several hundred
to several hundred thousand users – without having to scrap the
machine, add servers, or start over?

17. Would you like to have an all-in-one all-everything machine
solution designed to address the business, technical, and financial
pressures faced by all small to medium sized businesses, rather
than an IT environment that creates more pressure than it relieves?

18. Would you like to have a server with security and management
capabilities that is a direct descendant of mainframe offerings with a
long history in the marketplace?

19. Would you like a server that was designed and built with the
facility and the agility to provide your firm a means to secure
revenue opportunities that might otherwise be unavailable or
technically problematic in a world with small Windows, lots of
hackers, and limited support people ?

20. Would you like a server that is not subject to intruders, hackers,
spyware or the infamous virus du jour?

21. Would you like to have a server platform in which your software
does not have to re-written or re-purchased every five years
because the new server or the new operating system line can’t run
it, or can’t run it at full speed?

21. Would you like to hear “yes” when you ask your IT staff if your
server has the ability to handle high workloads and data processing
chores that offer your company (and other small and mid-sized
firms) the technology needed to seamlessly work with robust
enterprise computing environments at a fraction of the cost, even

Chapter 4 Where Did IBM i Come From? 93

though your business is not gigantic and your pocketbook has
limits.

22. Would you like to have an IT environment that lets you live
comfortably, like the big guys live, without having to pay big guy
prices?

23. Would you like to have a server built by a company that knows
that smaller and mid-sized companies have concerns and needs
that are unlike their larger cousins, because they live with
constrictions and limitations on the small servers that are not
usually found running larger enterprises?

24. Would you like a server that can provide you large enterprise
function with small system ease of use and small system cost?

25. Is it upsetting to you that the business-critical nature of
technology for the SMB market mirrors the IT reliance of larger
enterprises, yet so far your IT tools have fallen far short of doing the
job and providing business value?

26. Does it bother you that SMB companies such as yours must
deal with similar issues of IT complexity, yet are challenged to find a
way of achieving success with the economies of scale issues in the
small multi-server IT environments?

27. Have you been forced to say no to important IT projects that can
grow your business because at a hypothetical $70,000 annual cost
for a single IT staff member? Has it become clear that IT growth,
despite its potential long-term competitive advantage, is simply
beyond the reach of your company as well as many other small and
mid-sized firms?

28. Would you like to have a server about which IBM, the leader in
server technology says: “IBM Power System with IBM i is a premier
business system designed to help you to improve productivity while
reducing costs and complexity?”

29. Would you like a server that can achieve significant cost savings
for your organization either by never needing a server farm or by
consolidating the industry-standard Intel servers running Microsoft
Windows and / or Linux onto one server?

94 The All-Everything Operating System

30. Would it not be great if the data center architecture enabled a
consolidation server, such as an all-everything OS running on an
IBM Power System, that in one processor could run additional
operating systems in series, i.e., first as a Unix server, then as a
Linux server, etc…? Even a Windows Server? How about all at the
same time?

31. Do you find it a challenge for integrating business functions in
the typical server environment that requires the execution of
applications running different operating systems in parallel on many
different servers?

32. Can you see how it would save lots of additional systems and
thus lots of money to run all integrated business functions on one
integrated operating system, such as the all-everything machine
(IBM i), that permits many operating systems to run along with it in
just one machine?

33. Would you like to have a system that can run Linux, Windows,
Unix, and OS/400 under one set of covers with support for
NetServer using virtual Ethernet and Microsoft Peer Networking, as
well as Samba, enabling cross talk between operating systems
under the same set of hardware covers?

34. Would you like your organization to benefit from unprecedented
levels of reliability, scalability, and a high level of system
integration?

35. Would you like additional savings to come from reducing system
administration head count and avoiding the operational costs
associated with server downtime?

Technical Questions:

36. Would you be able to achieve additional productivity with a
system that provides its own virtualized storage area network,
supports multiple file systems and multiple operating systems over
the same disk storage?

Chapter 4 Where Did IBM i Come From? 95

37. Would you like a system that is programmable in both computer
science languages, C, C++, Java, as well as business languages
such as COBOL and RPG IV?

38. Would you like to work in a transaction processing environment
that enables interactive and Web programs to be developed in 1/5
to 1/10 of the time of conventional systems?

39. Do you want to say no to disk fragmentation and reorgs?

40. Do you want to say no to ever running out of space on one disk
while the system has many empty disks?

41. Do you want to say no to rewriting applications and splitting disk
files because you, not the system, must manage disk space
utilization?

42. Do you want to be able to migrate your software applications,
when necessary, to the next generation of computing without having
to scrap them, rewrite them or even recompile them?

43. Do you want to say no to placing files on specific disks and
specific locations for performance reasons?

44. Do you want to spend time typing data definitions into your
programs when IBM i programming languages can bring in the data
descriptions from the database automatically?

45. Do you want a system that provides everything that you can run
on a PC without having to worry about having to do the CTRL-ALT-
DELETE dance to solve crashes or deal with virus attacks?

46. Would you like a machine with a documented average up-time
of 99.98%?

47. Would you like to have a machine that can easily convert from
the older technology, such as 48-bit CISC hardware, to newer
technology, such as 64-bit RISC, without having to re-compile your
programs?

48. Would you like to be able to perform Concurrent Maintenance
on your system without having to bring it down?

96 The All-Everything Operating System

49. Would you like to be able to backup your system while it is
active? In other words, would you like to be able to preserve data
and programs without having to perform a shut down of your server
to do your backup?

50. Would you like to bring data down naturally from the system to
MS Excel and other applications from one or more DB2 Universal
databases using ODBC, SQL or OS/400s built in query and SQL?

51. Would you like to have up to 60 Windows NT4.0/2000/2003
servers, controlled and administered by one server rather than a
farm of independently supported Wintel boxes?

52. Would you like to be able to carve out up to ten partitions (each
treating the partition as one whole machine) on a one processor
server?

53. Without purchasing expensive virtualization software, would you
like to run with virtualization always on, providing the highest
possible utilization of your computer resources?

54. Would you like to be able to tune and auto tune the operating
system in ways that are impossible with Windows and Unix boxes?

55. Would you like programmers to be able to develop new
applications or change existing applications 5X to 10 X faster on
your server?

56. If you did not think of a business information need at the time
you bought your major software package, would you expect that
your IT staff will be able to get you this information from your current
system? Do you think they should be able to get you information
that is needed, but the item was just not on the software checkmark
list when you bought the package?

And the Answer Is

Of course, the answer is that most business managers want a
computer that provides productivity and efficiency and results

Chapter 4 Where Did IBM i Come From? 97

without pain. Quite frankly, technical people aren’t really interested
in hurting themselves to get a computer job done either. Getting
major business value from your production IT server should be easy
and it is easy with the all-everything operating system, IBM i

Chapter 5 Voices of Users, Analysts, and Industry Experts 99

Chapter 5

Voices of Users, Analysts, and
Industry Experts

Users Know Best!

There is nobody who knows the value of IBM i better than
somebody who uses it day in and day out. So, rather than continue
with twenty questions or get into the technical details of the
machine, I thought it would be a good idea to round up some of the
good thoughts of AS/400 heritage users, analysts, and worldwide
industry experts. This assemblage of spokespersons for IBM i does
so of their own free will because they have a story to tell that they
believe it is worth hearing. I might add that it should be worth your
time to hear what they have to say.

I asked each to provide me with one to two pages. As you will see,
some comments are shorter than a page and a few are a bit longer
than two pages.

Most of the analysts, consultants, industry experts, and even
IBMers have a background in working with IBM i and AS/400
heritage customers and thus their point of view represents
observations of IBM i family customers in action over the years. So
as not to leave the reader with just the voices of the pundits,
however, I went half way across the country to get a perspective
from a bone fide user who happens to have experience with two
different IBM i machines in his own home town.

The writings of the individuals in this fine group are provided
immediately below. The format of the rest of this chapter then will
be to highlight the name of the person, followed by their story in

100 The All-Everything Operating System

their words. At the end of the stories, there is a short biography of
each of the writers. I hope you enjoy their musings and I hope that
it gives you a real perspective on where the IBM Power System with
IBM i, the great grandson of the famous AS/400, came from, and
what a fine machine it continues to be. And, as you will see, to get
to the root of the family tree, our esteemed "panel" will take you
back to 1978 when IBM was first introduced, but under a different
name.

Jim Sloan, Jim Sloan, Inc.

JS: "I knew the System/38 when it was just a piece of paper. It was
amazing in its conception but, it seemed terribly slow in developing.
Major IBM development managers fended off the IBM Company just
to be able to produce the product. That was a terrific political
success though from first hand knowledge, I know it was very
difficult to pull off.

I must say that with all that we put in the machine, it was incredible
that it worked as well as it did. The fact that something so large
with so many different players (hardware, software, support etc…)
can come together is a tribute to good management and lots of
effort.

The biggest problem that the system had from the get-go was that it
was underpowered hardware-wise. Making up for the lack of
hardware power on the early System/38 was a major
accomplishment. Of course, with the AS/400 and the i5 and now,
the IBM Power System, all the power issues have been fixed.

I am in the development area and so I don't have customer
testimonials or customer war stories to share but, this was and is a
terrific system. Ironically, after spending so much to make the
system work, IBM tried to kill it. And I don't mean just once or twice.
In the end, each time, customers saved the product. They would
come back to IBM and just not let the company discontinue a
system that was so vital to their business.”

BK: "How do you see the product now and into the future?"

Chapter 5 Voices of Users, Analysts, and Industry Experts 101

JS: “It is one heck of a good product. It is a terrific product with
terrific acceptance but for some reason IBM just does not market it
aggressively. I do not know why they don't market it. They just
don't. I would hope that changes and IBM highlights the system
once again.”

BK: “Though I don’t share this opinion, there are some folks in the
industry who say that Windows has taken over and even if IBM
chose to go after small businesses, as it once did with System/32,
System/34, and System/36, it is probably too late for the IBM i
product line to make an impact.”

JS: “It is never too late if IBM chose to market the machine as it
should. It would be successful indeed.

The box has been good to me in many ways and I sure have had a
good time working with it. I have been working on this for over thirty
years and it has been wonderful to me. Considering that I worked
with it from when it was just a piece of paper, that's a long time.”

Skip Marchesani, Custom Systems Corp

“Sure, I can tell you the most outstanding attribute of the iSeries and
AS/400 and now the IBM Power System with IBM i. It has rock
solid reliability and availability, unsurpassed in the industry, and
there are systems out there that have run non-stop 24 by 7, 366
days a year, for years at a time. More and more shops are noticing
that when their other servers are misbehaving and failing, the
iSeries or AS/400 or IBM Power System with IBM i continues doing
its thing every day, day in and day out.”

“ Years ago when the AS/400 first came out, a large national
insurance company installed about 10,000 of the smallest models in
their remote sales offices all across the US. About every three
years, a systems technician would visit each remote office to check
on and do maintenance on the AS/400. On one particular visit to
one of the remote offices the systems technician asked to see the
‘office computer.’ The office manager showed him a PC sitting on a
desk. The tech explained that the PC was just a workstation and he
needed to see the system (AS/400) they were connected to. The

102 The All-Everything Operating System

office manager just shrugged and pointed to the other two PCs on
desktops in the office.

Finally, the system technician traced the twinax cable connection
(wires from PC to AS/400) to a point where it went thru a wall in the
back of the office. He asked what was behind the wall and got
more shrugs. The entire office staff had turned over in the last year.
He went next door and asked to see the wall next to this remote
office but there was nothing to see. He went back into the remote
office and knocked a hole in the wall with a hammer, and saw the
AS/400 humming away in what the building superintendent said had
formerly been a closet.”

[They had walled it in and it was still running the business.]

”I once had a conversation with a database manager for a large
government facility on the West Coast. This person, who was in
charge of all kinds of servers - Ingress, SQL Server, Sybase,
Oracle, etc… had a total of five people on his staff counting himself.
I asked him how much time the AS/400 database took to maintain.
He said no more than 1/10 of one person. I asked him how much
attention the other machines required. He started to ramble - or so I
thought. He likened the AS/400 to a daycare child who comes in
each day and you tell him what to do and he goes and does it and
you don’t see him again until the end of the day when he gets
picked up. He likened the other kluge of databases to the
hyperactive kids who get dropped off without their medicine. They
are in your face, literally from the moment they arrive until they are
dragged out at the end of the day.”

”One time I was teaching a DB2/400 class and a student asked why
Oracle DBAs make so much money. Before I could answer,
another student volunteered that Oracle is such an inferior product
that it takes a full time, highly skilled, highly paid DBA to keep it
running.”

”Oracle is good example of an inferior product with outstanding
marketing. It’s absolutely amazing that companies like Microsoft
and Oracle can develop products that have very serious
shortcomings, but their marketing is so outstanding that in spite of
themselves they create a very loyal following. DB2/400 (aka DB2
for IBM i) is a functionally rich, standards compliant, object-based

Chapter 5 Voices of Users, Analysts, and Industry Experts 103

relational data base product. And, it just doesn't break! But, IBM's
marketing is such that the industry is not aware of it.”

 Al Barsa Jr., Barsa Consulting Group

Several years ago, long before his untimely death on April 4, 2008,
Al Barsa provided me with this story to share about the Unique
AS/400 model set. I used it in my previous book, The All Everything
Machine and I include it in this book because it is still relevant and
Al would be proud to have it here.

Al Barsa was a friend of mine and many in the AS/400 heritage
community. This picture is from a Web site established in his
honor: http://www.mr400.com/Al.html. Al Barsa loved the AS/400
and IBM i technology with a passion and his many award-winning
presentations were done with enthusiasm and a sense of right.

Figure 6-1 Al Barsa, Mr. 400

http://www.mr400.com/Al.html

104 The All-Everything Operating System

Note: Though this is the text of the audio taken from IBM Legends
of iSeries # 0213, Al Barsa lived through this ordeal and was the
"IBM Rep" in the story. The first paragraph here is the story as
transcribed from the IBM videotape. This is followed by Al’s
personal comments about the incident.

“Like I was saying, this IBM Rep shows up at this NY labor union to
do a checkup on their IBM server. The thing is nobody knows where
the server is! I mean nobody has ever backed it up. No one even
knows if it is in the same building, so they start tracking this cable.
They go up one corridor, down another corridor, and they go round
a lot of corners. I mean it's wrapped around… It goes up one floor.
It even goes through this ventilation duct. Finally, the cable leads to
a storage closet two floors away. The door is locked. Secretary
says nobody has been in there in over six years. Somebody figures
out that the super two buildings down might have a key. They get
inside. It's like a blast furnace. It's so hot… the tech guy gets a
nose bleed. Evidently, a power outage two years ago knocked out
the AC. But the server [AS/400] in that closet rebooted [by itself],
and got back to organizing and running that union [with no manual
intervention and without anybody knowing]. Are you following this?
Six years, no attention, no maintenance, and a 140 degrees virtual
oven…”

Al Barsa offered a few casual comments about the video:

“Look at this video. It's a fairly true story about me! In late 1999, I
was doing last minute Y2K stuff at some of my accounts in NYC.
While I was engaged in this process, one of my clients took me up
on the offer and wanted to make sure their system had been
prepared for the millennium.

So, I showed up in my Brooks Brothers suit, no hat. The missing
system in the story is absolutely true, and the super was from that
building, not one or two buildings over, and he had a key ring that
must have been 18" in diameter!

He found the key to the closet in no more than 30 seconds (much to
my dismay).

The system was a B30 [old AS/400 model] that had gone through a
blackout two years earlier, and rebooted because the system value

Chapter 5 Voices of Users, Analysts, and Industry Experts 105

QPWRRSTIPL had been changed to '1', but the air conditioning
never recovered.

The story about me getting a nose-bleed is absolutely true.”

Bob Warford, Labette Community College

Electrical Failure

“One night, the city of Parsons, KS, lost all its electrical power and
when the batteries on our UPS got low, the IBM AS/400 shut down
as it was supposed to.

When we came in to work the next morning, we found the IBM
AS/400 was not running. This caused a lot of excitement. We
could see that the lights on the control panel were on, but we could
not figure out why the IBM AS/400 wasn't responding to the system
console or workstations.

After a lot of looking and research, we finally gave up on trying to
find the problem ourselves and called IBM Tech. support. The first
question they asked us was "Did you press the white start button?”

Talk about feeling dumb. No, we hadn't pushed the white start
button and yes, the IBM AS/400 came right up when we did.

To be fair to my staff and me though, because we are not dumb, we
had never shut down the IBM AS/400 without instructing it to do an
automatic restart and IPL so no one on my staff had ever seen the
IBM AS/400 down. Not since the day it was installed.

To be truthful, no one on my staff had ever even started the IBM
AS/400. The technician who installed it turned it on during
installation and there was never a need to turn it off and there was
never a time when it had had a problem that would take it down.

I think it is pretty impressive that a computer could run two years
and never be down."

106 The All-Everything Operating System

Six Days Down in Twenty-Five Years

“We (Labette Community College) bought our IBM System/34 in
1980 only because the IBM sales representative signed his name to
provide several reports that our president at the time wanted.
Although we were only buying a small IBM System/34 and a $500
student management system that didn't have the required reports in
it, IBM fulfilled the sales representative's commitment and
developed the reports for us. We had an IBM SE on campus most
of the first year.

I believe the sales representative decided to work for someone else
shortly after the sale was completed. I never heard what happened
to his supervisor who also signed off on the reports.

When the college finally got a grant in 1986 that provided the funds
to replace the IBM System/34, we migrated to an IBM System/36
because the IBM System/34 had only had one day in six years that
it had been down. In addition, all our data and software migrated to
the IBM System/36 without having to make any changes. It took
one night to do the total migration.

In 1998, when the college got another grant, the decision was made
to switch to an IBM AS/400 for the same reasons we had switched
to the IBM System/36. In the twelve years we used the IBM
System/36, we had only had three days we could not run and all of
them had been in the last year and were problems relating to the
diskette magazine drive. Actually we were able to run, we just
couldn't backup.

All of our existing software also ported without any major problems.
The only problems dealt with the IBM AS/400's library lists and
duplicate program and menu names in the production libraries. The
IBM AS/400 migration started at 4:30 P.M. on Friday and for all
practical purposes was completed by 1:30 P.M. on Sunday. This
included unpacking the computer and configuring all the
workstations and printers.

The reliability and compatibility of the IBM System/34, IBM
System/36, and IBM AS/400 has just been phenomenal.

Chapter 5 Voices of Users, Analysts, and Industry Experts 107

To be honest, we did have a problem with the IBM AS/400 this fall.
Something went wrong in the power supply and when the system
did its scheduled shutdown and restart; it could not come back up.
The technician who repaired it said he had never seen that problem
before. That resulted in the AS/400 being down for two days while
we waited for parts.

I would say that six days down in twenty-five years is pretty good.
Although we did have other service calls in that time, there was
none that prevented us from completing our work.

As far as software compatibility goes, what other computer system
can say what I can about the IBM system? I still have a few of the
original programs from the original student registration system that
was purchased in 1980 running untouched. Although the IBM
migration utilities recompiled the load members and we are still
running some things under 36 emulation, we have not had a need
to change the source code.

As you can tell, I like IBM AS/400s.

Someone really needs to help IBM do a better sales job on the IBM
AS/400 [IBM i marketing] because the IBM AS/400 is really a
wonderful machine.”

Doug Hart, Whitenack Consulting

“The System/38 was developed from the IBM “Future Systems”
project. This heritage continues today with advanced OS features
that continue to place this system at the front line of business
systems.

For me being “old school”, I still find the strength of the AS/400 line
being the backbone of a companies computing platform. The
integrated database, security and communications facilities give the
system a consistent standard in which all the operating components
work flawlessly. A business’ primary applications (Accounting, HR,
etc…) today must be available full time. The AS/400 with its
99.999% up-time rating gets the job done.

108 The All-Everything Operating System

Today the i5 line using the Power 5 processors [and now the Power
Systems line with the Power 6 processors] has outstanding
performance. The systems are truly scalable from quite small to the
most powerful of platforms. With advanced functionality such as
Logical Partitioning (LPAR), the sophistication and state of the art
capabilities of the line continue to lead the industry.

IBM’s group in Rochester Minnesota that develops the system
understands both their customer’s needs and the future directions
for computing. As I follow the evolution of the line I’m continually
impressed with capabilities of the product.”

Ken Anderson, Quadrant Software

“The IBM Power System with IBM i: The greatest business
machine money can buy.

I first met Brian while attending the NY IBM users group. My
company had been invited to present to the group on the benefits of
Electronic Document Distribution in an iseries/i5 Enterprise. The
interesting thing was that I showed up 2 hours early, before anyone
had a chance to get there. I cordially asked the front desk where
the user group meeting would be held. After she led me to the
room, the only thing there was a copy of a new book Brian had
written about IBM’s relationship with the iSeries (before the i5 was
announced). (I’d recommend the book to any IBM i shop I might
add). I read about 50 pages and realized that we were on the same
page. I think most IBM i shops I meet think I’m too young to know
anything about IBM i, but once they hear me speak, they are
amazed that the black box has made friends with some (not
enough) in my generation as well. So, when Brian approached me
to add a comment to this book, I jumped at the chance.

I don’t want to tell any war stories. It’s not that I don’t enjoy hearing
about the i5 box that was sheet rocked into a wall and continued to
run for 5 years, or Dr. Frank [Soltis] describing what a great
customer Microsoft was on the platform and how they replaced a
couple black boxes with lots of NT servers. I do. I love them.

Chapter 5 Voices of Users, Analysts, and Industry Experts 109

Rather, I want to describe how one mid twenties guy was converted
and what I think needs to happen to convert EVERYONE else.

Because you see, it’s not the decades experienced IT Director or
CIO that is going to ensure that this box continues to run SMBs all
over the world. It’s not the diehard programmer who came up on
the 34, 36, and recollects using punch cards and tubes back in the
day. Those people already love IBM i. It’s converting the people,
like me, who learned right out of the gate you press start to turn off
your PC.

First off, I have to admit I was VERY skeptical the first time I saw
the mean green screen. I remember thinking it looked like the
computer James Bond used to look up spy information. You
remember, back when it was still amazing that “M” had installed that
phone in a car. I thought as most right out of college people
entering the working world do. After all we are conditioned to
believe that Windows is the only OS out there. Every program you
are taught or use is NT based. “People still use these?” I thought.

But over the years, I have had the opportunity to meet hundreds of
IBM i customers and talk to literally thousands of them over the
phone. In every possible industry from manufacturing, healthcare,
distribution, insurance, food, city government and even police
stations, customers were using the platform for every conceivable
computing purpose. And they were using it with half the staff and
twice the reliability of anything else out there.

I guess I will tell one story. And this is just one of many I have that
all begin and end the same. I have a friend/ customer named Rick.
Rick came aboard as IT Director at a division of an IBM i shop
where each division has the autonomy to choose what they want to
run for applications etc… The business had significantly changed
since the decision was made to bring in the 400 initially, and Rick
was brought in as part of a new ERP project.

Rick hated the 400 right at the beginning because of all the reasons
most folks in his position do. It seems expensive to buy apps,
maintenance fees seem high, it seems old, etc… It really boils
down to simply learning something new. But, Rick has something
that I think is a prerequisite for anyone that does well in IT, an open
mind. If one is intent on getting rid of IBM i system for something

110 The All-Everything Operating System

else, they will and have. It’s much more difficult if you approach it
with an open mind. So he decided to allow IBM i-based apps, in
with all the others.

He did painstaking tests on all of them. I remember him measuring
how fast the order entry folks could enter an order in each
candidate’s application (a nightmare for sales people like me, I
might add). And each time I spoke with him, he was a little less
harsh on the black box. Until, finally, a year later, they had made a
decision. He chose an application I know only lives on in the IBM i
family, and I flat out asked him how he arrived at that, since it was
no secret that he had no great affinity for the IBM i family.

Rick said, Ken, “I tried every possible justification, every ROI
calculation, but they all came up the same. The total cost of
ownership with this thing is simply lower than anything else I could
get my hands on. I can run everything on the same machine. I can
do multi-company, different languages, I can even partition. It runs
email too.” Rick wasn’t ready to admit he’d been converted, but I
knew, that was his way of saying he’d been wrong at the beginning.

And it’s hundreds of these types of stories that got me where I am
today. And if I hadn’t seen it with my own eyes or heard with my
own ears, I would have put up the wall and gone on thinking there is
only one choice out there. And so would Rick.

But because of my job, I have the opportunity to see so many
different kinds of businesses and how they operate. It is much
more difficult for someone straight out of college to do the same
thing. So how do we convince them? IBM can’t do it. I think they
need to learn it themselves. By exposing WHY you love the
platform and really show them what this thing can do, it will happen
on its own. Rick had to learn it on his own and so did I. The die-
hards that simply crammed it down my throat could have never
convinced me of anything other than, “they like it because it’s all
they know”. It was only after real life examples and real ROI that I
came to realize, if you are running a business vs. downloading .mp3
files, and surfing web pages, the Power System with IBM i is simply
the best business machine money can buy.

So I challenge any IT executive out there, to show the accounting
folks how you arrived at that native IBM i payroll solution. Or the

Chapter 5 Voices of Users, Analysts, and Industry Experts 111

downtime figures of someone who chose the other. Or to bring the
Jr. Programmer into the ERP selection process and show them how
many less IBM i systems you need to run 5 companies vs. how
many you need with the “other” choices out there. I’m not in my
mid-twenties anymore, but, I like to think I’m carrying the torch a
little further than those before me can. And if I can, I hope I’ll be
converting a few in the generation to take my place, along the way.

One last thing- While sitting at home the other night watching the
latest primetime show, LOST, I almost fell out of my chair. It cut to
commercial and one of IBM’s latest campaigns came on. Although I
love the new ad campaign, it always annoys me that the IBM i is
never part of the puzzle. It’s hard enough for IBM i shops to get the
budget to buy the new Power System with IBM i they want or my
products from Quadrant (hopefully you all will), without IBM
highlighting every other server, but no IBM i on TV.

There’s Linux and global services; but, never anything on the do-
everything machine. Then, it happened. The best consolidation
platform in the world was the message. It wasn’t like the Sox
winning the World Series or anything (I’m obviously from Boston).
We have a long way to go for that again. But, it was a little like the
late inning rally when Boston was down to the last out and losing to
the Yankees in the ninth inning of the 2004 ALCS- a little glimmer of
hope. Maybe they are finally getting it, I thought. Getting what
thousands of SMB’s all over the world already know. The Power
System with IBM i is simply the greatest business machine money
can buy.”

Dave Books, Former IBM Systems
Engineer

“One of IBM's best kept secrets is the incredible reliability of the
AS/400. I did some work with the Rollins Company here in Atlanta.
They are the parent company of Orkin Pest Control, among others.
Orkin has a small AS/400 in each of its four hundred plus branch
offices. They're controlled from Atlanta. Critical information is
downloaded to a large AS/400 here each night. Thus there's no
need to back up the individual AS/400's at the branch level.

112 The All-Everything Operating System

Last year, I was talking to one of the support reps on the Orkin help
desk. He told me about a call he got from an Orkin branch
manager. As the manager described the problem he was having,
the support rep became more and more convinced it was an
AS/400 hardware problem. The support rep called IBM hardware
support and they dispatched a CE to fix the problem.

When the CE arrived at the branch office, there was no one there
who knew where the AS/400 was. It had been rocking along doing
its job with no attention from anyone for so long; no one was
currently working, in the branch office, who had been there when it
was first installed. The IBM CE and the branch manager literally
had to go around the office opening doors until they finally found the
broken AS/400. Fortunately it was fixed quickly and was back in
normal operation. The support rep who relayed this story to me
thought it was an incredible testimony to the day-in, day-out
dependability of the IBM i family.”

Bob Cancilla, Formerly of Ignite/400

"There may be some concern and question about the future of the
machine within IBM, but not about the machine. As you well know,
the machine and its software gets better and better exponentially.
Talk about the world's best kept secret!

IBM recently bragged about the big deal they did with eBay selling
them AIX or Linux (non IBM i) based machines with WebSphere. It
was a very huge sale. I think that IBM did the customer a giant
disservice by not selling them on IBM i based technology. The
Power System with IBM i could have reduced the staff and
administrative nightmares that eBay must suffer from by an
astronomical numbers! I would bet you could probably run the
entire eBay network on three of the big IBM Power Systems with
IBM i with total replication and redundancy creating an environment
that would never fail. Furthermore, the total environment could be
managed by a handful of people.

But, IBM's Software Group sells WebSphere Server (WAS) by
processor so, they sold a lot of copies of WAS, ND, and machines
and other supporting software and hardware and the CIO of eBay

Chapter 5 Voices of Users, Analysts, and Industry Experts 113

seems to love having a huge body count to administer his kingdom.
Too bad the CEO wasn't aware of iSeries [IBM i]; she might have
had a different opinion. "

Sr. Marketing Manager at IBM Software
Group

A friend of mine (your author BK) who spent many years in iSeries
activities had this to say in an email note to me just recently:

“A while back.... I was creating my own list of why I love iSeries
[i5]… even though I had been away from that division for 4 years.

I looked up the OS vulnerabilities and IBM i had only one recorded
vulnerability (and it wasn't even on the IBM i partition) vs. hundreds
and hundreds on other operating systems. Check it out at:
www.securityfocus.com

The IBM i platform uses I/O Adapters (IOA). IBM i offloads this
work to the IOA's freeing up the CPU(s) to run many more
applications. This is not how other servers operate.

Automatic Load Balancing - IBM i creates one large disk pool that
automatically balances content across all disk heads for maximum
performance. This means you never need to know where your data
is, therefore negating the need for a $100K+/yr Data Base
Administrator. I remember one of my old roles at a previous
company was to keep track of where and how objects were stored
for my department. And it was a big job. It is hard for non-IBM i
folks to realize that is not necessary. It took me 6 months after my
arrival at IBM to understand why that role is not needed with IBM i-
BIG money saver for iSeries owners.

Again around Data - IBM i allows you to create data spaces that can
be dynamically added to MS Windows or Linux partitions. Because
these spaces are dynamic and not fixed (like adding a 120GB Hard
drive to a PC for extra space), disk space is maximized and not
wasted. Then you get the benefits of having this data under
multiple disk heads. All this equates to lower TOTAL cost of
ownership.

114 The All-Everything Operating System

For writing Java Applications, the IBM i Java Virtual Machine is
embedded in the Machine Interface (closer to the hardware). In
addition to this the JVM utilizes better garbage collection (which
cleans up memory or unused objects no longer running). Instead of
shutting down all threads (like other operating systems) on a Server
to run garbage collection, iSeries shuts down one thread at a time
picking up a double digit performance boost.

And what about TIMI? The Technology Independent Machine
Interface (some call it "Firmware"), which allows a company
to change the hardware without affecting the software and change
the software without concern for the hardware. This is unheard of
on most operating systems.

Also - I remember Over 65,000 virus threats to other operating
systems - none to IBM i operating system or data. DB2 for IBM i
data is particularly difficult to penetrate. Check Symantec’s Site - it
is likely there are still zero threats to iSeries or IBM i data...even
today.

These are a very small number of the long list that makes IBM i so
different... but each makes IBM i boxes less expensive to own. So
I suggest businesses look at the longer term cost of a server or
operating system... instead of just the acquisition cost. Acquisition
of other servers may be inexpensive...but they often bite you over
the long haul. It CAN be much more (or much less) to OWN a
system ...versus what looks like the low cost of ACQUIRING a
system. "caveat emptor." "

Paul Harkins, Harkins Audit Software, Inc

"The Best Corporate Computer there ever was

The IBM System/38 and its follow-on computers, the AS/400, the
iSeries, and now the IBM Power System with IBM i are the very
best combination of brilliantly conceived and revolutionary computer
hardware and software that I have experienced in my 43 years in
corporate programming.

Chapter 5 Voices of Users, Analysts, and Industry Experts 115

In fact, the introduction of the System/38 in 1980 prompted me to
abruptly leave the IBM Data Processing Division (DPD), where I
was a systems engineer supporting the System/370 mainframe
computers, and switch to the competing General Systems Division
(GSD) which developed and announced this fantastic computer.

I was about to accept a great three-year assignment with IBM World
Trade Corporation, in the IBM Process Industry Center in
Düsseldorf Germany, to develop an IBM apparel product for the
unannounced IBM 4300 (code named E series) replacement
computer for the System/370 when I was stunned by the elegance
and power and the simplicity of the IBM System/38 announcement.

The reason for my giving up skiing in Switzerland and living abroad
at an IBM headquarters location for IBM was selfish. The
development of the IBM ERP apparel system on the System/38
would clearly be many times more productive, and be much simpler
and more satisfying, and produce a better product in less time than
developing with the aging and difficult software available on the
System/370 or its follow-on IBM 4300. I actually told my furious
Germany born wife Gisela and our children that they would be
skiing in Switzerland while I was trying to finish my ERP product by
the required announcement date.

With the System/38, IBM Rochester had made what was difficult
very easy and transparent to programmers. For instance, in the
System/370 doing online screens required working with the IBM
online product known as the Customer Information Control System.
CICS required very small program modules called Transaction
Processing Programs (TPPs), which were a maximum of four
thousands bytes each, and complex Assembler or COBOL,
processing of these online processing programs.

The System/38 totally simplified both batch and interactive
programming by integrating and simplifying the online screen
processing in a conversational programming approach within the
OS/400 operating system. This allowed System/38 application
programs to be programmed, in a natural way, in a powerful, but
easy, Report Program Generator (RPG) programming language as
the programmer implemented the application and in “pleasingly
plump” robust application programs that were very easily
maintainable.

116 The All-Everything Operating System

IBM and particularly Dr. Frank Soltis and the Rochester
programming team got it incredibly right with the System/38 by
doing all the difficult system hardware and system software things
and shielding the corporate programmer from that difficulty while
allowing corporate programmers to focus on the creative part of
programming corporate business applications. The result was
perhaps a ten times increase in corporate programmer productivity
with the System/38 and RPG over the System/370.

IBM has multiplied the power of the original System/38 hardware by
many thousands of times with the new IBM Power Systems
processors running IBM i as the OS, and is poised to multiply the
IBM i processing power another billion times over the working
career of a programmer.

Today, the Power System with IBM i also enjoys the unprecedented
capability to completely audit the execution of every source
statement and the variable data in real-time as programs execute.
This allows programmers and auditors to see everything executing
inside the computer and to audit or log everything for later review.
This auditing capability uniquely satisfies the Sarbannes-Oxley
legislation requirement of “auditing at every level”, and provides a
quantum jump in program quality and programmer productivity. "

Bob Morici, Former IBM Systems Engineer
(SE), iSeries Brand Representative

The Casino System

"The casino industry was not automated in the late 1970s. Legal
gaming was limited to Las Vegas. The Las Vegas casinos were
largely family owned, with the exception of Howard Hughes’
corporation (I can’t remember their name, but they owned the
Sands, The Dunes and 3 other famous properties). There were
some systems running payroll and other back office functions, but
the general consensus was that you could not automate the gaming
functions. It was a service industry and good service required a
high touch environment.

Chapter 5 Voices of Users, Analysts, and Industry Experts 117

Casino gaming was legalized in Atlantic City in 1977. The State of
NJ was determined to keep organized crime out of Atlantic City. As
a result, there were many more regulations in Atlantic City than
there ever were in Las Vegas, plus the market was quite different.
While Las Vegas had vacationers and high rollers, Atlantic City had
over 20 million people within a 2 hour drive. This resulted in lots of
day trippers, some of them were regular Atlantic City visitors. For
example, one large AC casino brought in over 150 busses per day.

The intense regulations along with the millions of fairly small, but
regular, day trippers required a level of automation far in excess of
what existed in Las Vegas. The IBM sales team in 1978 located a
Hotel system from a hotel in Atlanta, Ga. It ran on a System/3
under CCP. This system was brought into Atlantic City to run the
hotel side of the business. The local sales team brought a banking
terminal, the 3610, into the casino industry and programmed it to be
a point of sale device attached to the hotel application. This was
the only terminal that the System/3 supported. The last part to be
automated was the casino application.

I had been hired into IBM in April 1979. I had been a programmer
at several large IBM customer sites. As a result, I was asked to
write the first automated casino system on the System/3. I worked
closely with Larry Cole, VP of IT at the Sands Hotel & Casino. Larry
had worked with the accountants at the Sands to spec out a casino
system. We completed the system and went live in August 1980.
The Sands also sold the system to the Claridge Hotel/Casino and
they went live with the application in April 1981.

The System/3 was outdated and we all knew that it had to be
replaced, but it was all we had at that time, plus, having a working
hotel system for the System/3 was a big plus. And we were GSD
[IBM's small system division at the time], so we had to sell what was
on the truck. The System/34 was available, but did not have
enough power for these applications.

In early 1982, we started our rewrite to the System/38. Four
members of the team wrote the hotel system, which later was called
HRGAS (Hotel Reservation Guest Accounting System), another
member of our team wrote a point of sale system, based on 3483
cash registers attached to the Series/1. I began work on the casino

118 The All-Everything Operating System

system. I did receive some assistance from one of the hotel system
programmers. No one really does anything by themselves, and we
were a tight knit group.

I worked with Larry Cole of the Sands again. We developed the
system, but the Sands was in the process of being sold, so we took
the application live at Bally’s Hotel/Casino, which was across the
street from the Sands. The IBM account team was instrumental in
working out all of these joint efforts.

We took the application live in early 1984. We actually completed
the application in 1983, but at that time the Casino Control
Commission was fighting with the property owners for ‘unfettered
access’ to this new system. The industry does not like regulators
wandering around their systems. This issue went all the way to the
NJ Supreme Court who finally ruled in favor of the Casino owners,
and we were able to go live.

Our Branch Manager, Harry Griffiths, had wanted to create a
Hospitality Competency Center in the branch office. Las Vegas was
changing. Large companies were building casinos, the old time
family owners were moving out. Howard Hughes died. Harry knew
that our systems would fit in the new Las Vegas and this would
allow us to poach in their territory. So we tried to purchase these
applications from the Sands (casino) and Harrah’s (hotel). We
wrote the applications under contract with these customers, so they
owned the rights. IBM management did not have the foresight that
Harry had; they soundly rejected this idea. IBM did not want to get
involved with the casino industry.

Larry Cole at the Sands did not want to be a software vendor, but
he owned a valuable asset. He made an agreement with Russ Keil
of the Claridge. Russ left the Claridge and formed Logical Solutions
Inc. LSI added marketing modules and started the re-write of the
point of sale system. Since the POS system was not System/38
based, but Series/1 based, it had to be re-written every few years
as technology changed.

Today, the Casino system is owned by one of the casinos. Russ
has retired, Larry Cole died in Oct., 2002. It has a market share in
excess of 70% world wide. The Hotel system has a similar market
share, but the POS never really achieved the market success of

Chapter 5 Voices of Users, Analysts, and Industry Experts 119

either Hotel or Casino. The People’s Republic of China authorized
3 casinos on Macau, which had been returned to China from
Portugal. All 3 of them run this casino system.

In 2001, my second daughter, Krista, went to work for Bally’s in AC.
She used the system that I developed the year she was born. I
received quite a bit of free advice as to how I should have done
certain interfaces. Krista has since left Bally’s and returned to
school.

If our AC customers had gone with the darling of the industry, they
would have written this on Wang, then rewritten it on a DEC Vax,
then Unix (several iterations), perhaps VSE, and someone would
have given Windows a try (a couple of iterations there too). As it
was, they have never re-written a line of code because of the
changes from the System/38 (at release 4.1) through the AS/400,
through the iSeries and the i5 to the new IBM Power System
running IBM i..

This next piece of the story involves two casinos that were part of
industry consolidations and neither exists today so I will just call
them Casino 1 and Casino 2.

I was still working in AC in 1991. At that time, one of the casinos
where I did some work on behalf of IBM owned 4 other large
casinos. With the Casino Software I wrote, they managed it all with
only 9 professional systems folks. It was a major operation. There
were also secretaries and operators who are not included in this
count.

Then, this casino (a. k. a. Casino 1) bought another casino (a. k. a.
Casino 2) that was actually bigger than them. Casino 2 had been
running on IBM mainframes because the IT management there did
not want to use the System/3, when they opened in 1979, and
instead chose the IBM 4341 mainframe.

I went over to Casino 2 at the time of the acquisition and was really
impressed with the large number of people walking around, the
massive size of the IT staff and the huge computer room with lots of
blinking lights. Soon, I realized that they were not doing anything
more than our AS/400-iSeries-i5-Power System customers, and

120 The All-Everything Operating System

they weren’t doing it as well or Casino 2 would have bought Casino
1 and not the other way around.

As a system that really affects the bottom line, the Casino 1- Casino
2 story, as much as any, demonstrates the value proposition of
today’s IBM Power System with IBM i and that goes way back to the
IBM System/38. With IBM i, as I have found in most instances, less
is more (staff, downtime, errors) and you get much more for much
less, and that costs a lot less than more. As you might expect, the
rigors and exactness of the casino industry could accept nothing
less."

Biographies:

Jim Sloan is a retired IBMer (1991) who is now President of Jim
Sloan, Inc. Jim was the lead software planner on the System/38
Operating System project in IBM's Rochester Labs until he retired.
From the beginning of AS/400 time, through the early stages of
development, through completion and to the ultimate success of the
System/38, Jim Sloan saw major action with the historic AS/400
product line. He continued in this capacity through the development
and the early releases of AS/400 and through his company, Jim
Sloan Inc., Jim has worked with the AS/400, the iSeries, the i5 and
the Power System with IBM i. While he was still working on
System/38, Jim started what is known as the QUSRTOOL library
and he wrote all of the "TAA" Tools in the library. Since 1991, Jim
Sloan, Inc. has had a license from IBM to include the TAA Tools in
his TAA Productivity Tools product. Jim is the developer of this
product.

My interview with Jim Sloan was the first time I had the opportunity
to be one on one with him, but I had spoken with him as part of
small groups at COMMON conferences over the years. He is quite
a guy. He is one of my favorite technical speakers of all time. He
knows APIs and CL programming like the back of his hand, and he
has a masterful presentation technique. As an aside, Jim has
spoken at every COMMON Conference since 1979. He is truly an
AS/400 and System/38 folk hero. He is a legend for those of us that

Chapter 5 Voices of Users, Analysts, and Industry Experts 121

have been with the product since its early days. It is a pleasure to
include Jim Sloan's comments about our favorite system:

Skip Marchesani retired from IBM after 25 years and is now a
consultant with Custom Systems Corp, an IBM Business partner.
Skip spent much of his IBM career working with the Rochester
Development Lab on projects for S/38 and AS/400, and was
involved with the development of the AS/400. He was part of the
team that taught early AS/400 education to customers and IBM lab
sites world wide. I met Skip in Philadelphia, in 1980. He was my
instructor for several weeks of internal IBM System/38 education
when we were preparing to initially install System/ 38 boxes in the
local offices. Those were the days.

Skip is recognized as an industry expert on DB2 for i and AS/400
and author of the book DB2/400: The New AS/400 Database. He
specializes in providing customized education for any area of the
iSeries, AS/400, and IBM i. He does database design and design
reviews, and general iSeries and AS/400 and IBM Power System
consulting for interested clients. He has been a speaker for user
groups, technical conferences, and iSeries and AS/400 audiences
around the world. Skip is an award winning COMMON speaker and
has received their Distinguished Service Award.

As noted in the comments section, Al Barsa, Jr., Mr.400 was

President of Barsa Consulting
Group, LLC and Barsa Systems
Distribution, Inc., at the time of
his death in April, 2008. His
company still specializes in the
iSeries - AS/400 - IBM Power
System with IBM i. Al was the
President of the Long Island
Systems User Group and he
always covered new hardware
and software announcements for
iSeries News. Al was very active
in the COMMON organization as
a frequent speaker at both US
COMMON and COMMON

122 The All-Everything Operating System

Europe, as an Editor of the COMMON technical library and as a
member of the Speaker Excellence Committee, and has addressed
other user groups throughout the world.

In the past, Al had been voted COMMON’s “Best Speaker”, won
Gold, Silver and Bronze medals, and has received COMMON’s
highest honor, the COMMON Distinguished Service Award. For the
year ending 2002 and in six prior years, Al was named on the
'AS/400 Insider Weekly's' "10 Biggest AS/400 Market Influencers"
list, making him the only person in the world ever to be named
seven times! Both Barsa Consulting Group and Barsa Systems
Distribution are IBM Premier Business Partners. Barsa Consulting
Group was the recipient of the IBM Business Partner Mark of
Quality Award.

Albert Simon Barsa was only 55 when he died suddenly Thursday,
April 3, 2008 while attending the annual COMMON Conference, at
which he had always been a staple, a well known and popular
person. As a longtime respected member of the IBM midrange
community, Barsa was the recipient of many tributes after his
passing and as noted, he was the recipient of many awards during
his lifetime. And, Al appreciated them all.

Al Barsa was also one of life's finest speakers to have ever graced
a podium and he had been voted COMMON's best speaker
numerous times. But, above all, he was one of the best people you
would ever want to know. Al was good people! He deserved all of
his many honors and accepted them graciously. He was a friend.
We'll miss him big time. When the Computer Hall of Fame is finally
built, Mr. 400 will have an esteemed position.

Bob Warford is the Director of Information Systems / Computer
Services at Labette Community College in Parsons, Kansas.

Doug Hart is a midrange systems consultant for Whitenack
Consulting, located in Rochester NY and operating in Upstate New
York. He has been in the IT industry for over 30 years, with much
of it focusing on the AS/400 family of computer systems. Doug
works with systems used in very small “Mom and Pop” companies
to the largest Fortune 500 enterprises.

Chapter 5 Voices of Users, Analysts, and Industry Experts 123

Ken Anderson, Quadrant Software -- A frequent speaker
at QUEST, multiple midrange ERP specific conferences, and local
user groups, Ken Anderson has spent the past six years of his
tenure at Quadrant Software promoting the concept of Electronic
Document Distribution (EDD) solutions to iSeries users and IT
managers throughout the North America. He has helped over 400
companies including Sara Lee Foods, Phillip Morris, and Office
Depot recognize the value of automating document processes. As
a speaker, Ken combines the business strategies behind EDD with
case study examples for an informative and thought-provoking
presentation.

Dave Books. For the last three years prior to retiring (for good),
Dave was an AS/400 consultant for Venture System Source, an
IBM Business Partner. For the three years prior to that he was an
AS/400 services consultant to IBM. Prior to that, he spent 30 years
with IBM, mostly as a Systems Engineer. Dave ended his IBM
career with the title AS/400 Consulting Services Specialist.

Bob Cancilla has spent 30 years managing large-scale systems
development projects and technology for both large insurance
companies and independent software development companies, and
he has been involved with AS/400 Internet technology since its
inception. He was the managing director and founder of the 6,500-
member computer user group Ignite/400, before being hired by IBM
in its Toronto Application Development Tools Lab..

Paul H. Harkins, President and Chief Technology Officer of Harkins
Audit Software, Inc., is still an active corporate programmer.

Mr. Harkins has been working with IBM systems for more than 40
years, including 21 years at IBM, where, as a senior systems
engineer, he was involved in hundreds of customer accounts
worldwide and where he created the original IBM Apparel Business
System, the first on-line IBM software package ever designed for
the apparel industry.

124 The All-Everything Operating System

Paul has published articles relating to programmer productivity in
several information technology magazines, and is the author of the
newly published book "How to Become a Highly Paid Corporate
Programmer". He also pioneered a software auditing technique to
increase programmer productivity, the Real-Time Program Audit
(RTPA), an award-winning software utility. In August 2004, Paul
was awarded U.S. Patent 6,775,827 B1, for his invention of the
Real-Time Program Audit software auditing idea.

Mr. Harkins holds BS and MBA degrees from Drexel University, and
is a graduate of the IBM Systems Research Institute (SRI). His
email address is paulhark@aol.com.

Bob Morici is a former IBM Systems Engineer (SE) who, at the
time of this original writing, worked for the IBM iSeries-i5 Brand. In
that position, he focused on IBM's largest iSeries customers world
wide. Bob's IBM career spans 29 years.

As an IBM SE in Atlantic City for 14 years, he took on the major role
in developing the Casino System and he assisted in opening most
of the Atlantic City casinos. When IBM changed its business model
to resellers, Bob left Atlantic City and became a certified AS/400
sales specialist in the Philadelphia area. For a brief period he left
IBM and became a business partner and several years ago he
rejoined IBM in the position noted above.

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=/netahtml/srchnum.htm&r=1&f=G&l=50&s1=6,775,827.WKU.&OS=PN/6,775,827&RS=PN/6,775,827
mailto:paulhark@aol.com

Chapter 6 IBM i -- The Unsung Operating System! 125

Chapter 6

IBM i -- The Unsung Operating
System!

IBM Was the Only Game in Town

In the early 1970's, when I worked for the local IBM Branch Office in
Scranton, PA as a Systems Engineer, IBM small business
computers were the only game in town. Burroughs and NCR were
pushing quasi-ledger card machines as computers and Sperry
Univac had yet to create a small system solution. If they had one at
the time, they did not market it in Northeastern, Pennsylvania.
Digital Equipment Corporation (DEC or Digital), Data General, and
Wang began to make machines called minicomputers. In their early
incarnations, these small, but powerful machines were most often
used as special purpose computers to control processes such as
traffic signalization for cities. Eventually, they gained some
business processing capabilities.

Minicomputers were quite prevalent in academic institutions
because they were affordable and because the manufacturers
would make deals with the academic institutions, so that the
graduates would have an affinity to their products. By the late
1970's, DEC as the company was known then, became the leading
minicomputer vendor, though Wang and Data General and Hewlett
Packard had a nice piece of the pie.

DEC introduced its very popular VAX system and by the end of the
1970's, all the minicomputer vendors had added business compilers
and better data capabilities to their systems. The whole game
changed at this time. While IBM's small business systems were far
easier to use and far more conducive to a small business that was

126 The All-Everything Operating System

barely computer literate than the competition, the minicomputers
cost less and were far more capable in terms of range of
capabilities (also provided analog processing and multiple
terminals) than the IBM small business line.

In fact, if IBM read the bid specs, often influenced by a
minicomputer vendor, and chose to bid on a new opportunity, the
specs would force IBM to bypass the small business line and
propose a small mainframe instead of a System/3. Once this
happened, the cost of the IBM system was often three to four times
the cost of the minicomputer and IBM more often lost the business
than gained it.

But, before this happened in the early to mid 1970's, IBM had
owned the small business sector of computing. There was no real
competition. IBM Systems Engineers were used by the company to
increase the number of new computer accounts dramatically from
the 1960's, as the cost of computing was coming down and ease of
use characteristics were built into the IBM System/3 and then the
System/32 line of computers. So, in the early 1970’s IBM had the
edge on being able to supply hardware and software solutions for
small businesses.

Its systems, for the day and age, were remarkably easy to use. A
small IBM lab in Rochester, Minnesota helped IBM begin its
dominance by introducing a machine called the System/3 in 1969.
By the time 1975 came around, a smaller version of the machine
had been introduced as the IBM System/32. Chapter 7 provides full
details of the System/3 origination and its progression to the IBM
Power System with IBM i.

The new system in 1975, the IBM System/32 was unique in its small
size for the time. We joke today that it was desk-sized, not desk-top
as today’s many PCs. This machine was actually bigger than most
server racks are today in small businesses. But, it was desk sized.
Well, in reality it was big desk sized.

No, it did not use the all-everything operating system that this book
is all about but, at the time, IBM’s General Systems Division, in
which I worked, treated it as the all-everything machine for very
small businesses. I must admit that for its day, it was quite a unit.
And in historical context, its operating system contributed a number

Chapter 6 IBM i -- The Unsung Operating System! 127

of the notions that are in play today in the all-everything operating
system, IBM i.

Application Software Challenge

At the time the System/32 was announced, IBM had a division
specifically designed to create and sell small business computer
systems. It was the best organization that IBM ever had to address
the focused needs of the small business community, many of whom
had never seen a computer system before. IBM's General Systems
Division had intentions of being the leader in small business
systems and they executed their mission very well.

From my perspective, this division was the best place to work in all
of IBM. Helping new IBM customers implement their first computer
application was always a challenge; yet, it was at the same time a
wonderful experience. It gave both the IBMers and the customer a
great feeling of accomplishment when it was done and the IBM
client was live on their new System/32, enjoying the benefits of
"modern" business data processing.

One if the big advantages of the 1975 IBM System/32 was that it
was reliable. Like all real computer systems that I have ever
worked with at IBM, the System/32 did not break… ever. OK, it did!
But when it did, even the IBM repairman was surprised.

To be a leader, GSD had to supply application software solutions to
its prospects. Though these packages sold well at the time, the
only surviving software package of the many developed at that time
by GSD for the System/32 is something called MAPICS
(Manufacturing Production and Information Control System).
MAPICS is a popular ERP package that exists today as an offering
of the Marcam Corporation from Newton, Massachusetts. This
package evolved from a System/32 version called MMAS, which
stood for the IBM Manufacturing Management Accounting System.

In a way, having just one survivor is a big clue that the System/32
application software effort did not succeed in a historical sense.
Over 50 different packages, as I recall, were introduced by IBM's
GSD in the mid 1970’s and MAPICS is the sole survivor and even

128 The All-Everything Operating System

MAPICS is no longer an IBM product. That is not to say that the
packages were not good or that the customers were unhappy. The
packages were good and the customers were mostly happy and the
System/32 was an absolute raging success for IBM. Quite frankly, I
still do not understand why IBM exited the application software
business.

These "Industry Application Packages," or IAPS as they were
called, were sold by IBM GSD Reps to first time computer users.
The new users typically had been conducting business with pencils,
erasers, ledger cards, paper accounting journals, rubber bands, and
paper clips. IBM had a staff of trained computer experts at the time
called Systems Engineers (SEs) who patiently held the hands of its
System/32 customers, sometimes round the clock, until the kinks,
and sometimes the attitudes, were ironed out.

Some Customers Got Free Program Code

Though IBM had unbundled on June 23, 1969, and technically
software and SE services were billable, most if not all IBM GSD
Branch Offices ignored these rules. When our office in Wilkes-Barre
/ Scranton merged with Reading, PA to form a larger office, we
learned that not only were most offices providing free installation
and programming services (whatever it took), some were actually
giving away software packages that they had either written or had
clandestinely acquired.

My peers in Reading called this software "drawer code." I love that
term. They had the code on big 8 inch diskettes stored in their desk
drawers. When a customer needed software in order to close the
deal, the drawer was opened and the big diskettes came out. The
code got copied and the IBM SE installed the system along with the
free "drawer code" applications. IBM was making a killing on new
accounts because of the innovation of many in its field sales force,
who by the way, could have lost their jobs if caught. And, IBM's
new customers were very pleased. The drawer code was enduring
and helped many businesses get a great head-start.

Chapter 6 IBM i -- The Unsung Operating System! 129

Lots of System/32 Installations

In the mid 1970’s, I can attest that SEs were feeling the strain of
working sixty to eighty hours per week to assure the success of
branch office sales to its prospects and customers. Though we
wanted the office to meet and to exceed quota for sure and we were
all motivated to get the job done and leave the client as a happy,
repeat IBM customer, the work was long and sometimes even too
long.

Moreover, the inefficiencies and the "bugs" in the new IBM
application software (not the drawer code) caused the SEs and
System/32 customers much angst and many overtime hours. IBM
had taken Systems Engineers from Branch Offices and put them in
labs in Atlanta during this time to build these "fail-safe" application
packages. Unfortunately, the code was so new and so complex
that IBM SEs were reluctant to modify it to make it work for their
clients -- fearful they would break something else. IBM, like most
software companies did not support modified application code.

Worse than that, the labs in Atlanta were very slow to respond when
the need for a fix was clearly identified. So, the code was complex.
SE's did not understand it as well as drawer code, and the code
could not be fixed by the labs expeditiously enough to rapidly install
a new System/32 account. Knowing the state of the software, you
can imagine the reaction of IBM’s own customer support team when
the company launched its best small business advertising campaign
ever. I present this for historical purposes. In retrospect it is funny
but, it was not funny then.

IBM’s Best Advertising Campaign Ever

It is in the light of 60 to 80 hour work weeks with no relief in sight
that I reminisce about the best advertising campaign that I can
recall for IBM’s small business offerings. At the time, this was the
IBM System/32 and its Industry Application Programs. It was clear
to me when I saw the TV ad for the first time that the IBM Company
intended to sell a zillion System/32 boxes and lots of application
software. It was brilliant.

130 The All-Everything Operating System

I admit that I had two emotions about it at the time. I was first
tickled that IBM was aggressively marketing because I knew there
would be good results and my job would be well secured. At the
same time, I was concerned that there were not enough of us
locally to make the installations occur. New customers who
received IBM’s mass marketing message had their expectations for
a quick and smooth, completely painless installation set by the ad,
would be less understanding when something went wrong. Being a
bit tired of working so much at the time, I can recall my deep fear
that they would all decide to buy at the same time.

I can remember the ad almost as if it were yesterday. In fact, I
would suspect that most Systems Engineers working with IBM’s
System/32 clients still remember it well. The three biggest
problems that we had with the television ad were as follows:

1. We felt that customer expectations for a smooth installation
would be over-inflated.

2. Since initial expectations would more than likely be unmet,

we felt that customer expectations for support above and
beyond the call would also not be able to be met.

3. The ad would create a customer who would not trust IBM or

its representatives (us) again.

Show Me The Ad!

I will be the first to tell you in retrospect that I feel that the ad was
sheer genius. IBM has yet to advertise the Power System with IBM
i as it did the lowly System/32 back in the mid 1970’s. The GSD
Division actually wanted to sell computers and it knew how. If IBM
marketed the IBM i based systems in the fashion of this IBM
System/32 ad, more people in this universe would have heard of the
AS/400, i5, the iSeries, and the new "IBM i" operating system.

The System/32 ad may not have been reality, but neither are most
ads. Since that ad, over thirty plus years have passed. The
hyperbole used by IBM’s competitors in today's ads makes this little
ditty from the mid seventies seem mild in comparison. I wish I could

Chapter 6 IBM i -- The Unsung Operating System! 131

give you a YouTube link. Maybe somebody in the IBM Archives
Department will release this baby one day. It was special.

Picture the beauty of this scenario as the camera breaks away from
your favorite TV program to an ad with no announcement. You see
the loading dock of a company like yours. There is a long haul
carrier truck backing in. You see the desk-sized System/32 being
wheeled into the factory / warehouse and then very quickly into the
office. Whoosh! It is that fast!

You see a short period in which a small amount of packing material
is removed and the brave installer from IBM plugs the unit into the
wall – all very quickly. (I forgot to note that the machine needed
electricity -- in fact, just about all the electricity that one wall outlet
could pump out!). An already trained System/32 operator from the
company lucky enough to receive this ready-to-go unit goes ahead
and takes control of the machine and quickly types a command.
That fast, the camera moves to the printer and already this miracle
computer is rapidly producing the company’s aged receivables
report – just in time. And, you could see it on the printer. It was
using the current customer information and it was just amazing and
all of the company personnel were in awe. It was a miracle. And,
everybody lived happily ever after. And that miracle was available,
for the asking, from IBM.

Being trained to be a nitpicker, I had all kinds of questions of how
that could ever be. Where did the data come from and how could
the customer person already know everything to do. Selfishly, I saw
my workweek increasing even more than it already had – for no
additional compensation. None of my peers were thrilled with the
ad either. We hoped nobody actually saw it and if they did, we
hoped that they did not believe it.

You Gotta Be Kidding!

I am in my fifties today and perhaps then some. Back then I was in
my twenties. I have learned plenty since the 1970’s. In retrospect,
as noted above, it was a wonderful ad and no rational being
expected that this machine would be able to do all that it did in
those few seconds in that ad. No company at the time would
already have the applications and up-to-the-minute data pre-loaded

132 The All-Everything Operating System

on the computer at the plant from which to produce the business
reports that just kept coming off this obviously phenomenal new
machine.

For anybody in IBM who was not working the 60 or 80 hours per
week, it was viewed immediately as a great ad. IBM had done the
right thing with the ad. It worked. The systems sold as fast as IBM
could ship them. People in strange places were talking about an
IBM business system. The ad had done the trick. Perhaps, just
perhaps, advertising actually can help a marketing organization.

So SEs had to become better friends with their customers to get the
extra time needed to make the increased installations a success.
We did! Looking back, it was all good. And, IBM customers really
appreciated the effort. IBM had a killer machine for the small
business community.

As you will learn in the next chapter, the all-everything operating
system came from the same roots as the System/32's mini OS. It
was intended for the same general audience, though perhaps the
specific takers of the newer technology would have somewhat
larger wallets and bigger issues to solve.

In 1978, IBM announced to the world its first iteration of the all-
everything operating system as an infant in the data processing
industry. It had a very humble name back then, Control Program
Facility (CPF). There was a huge worldwide series of
announcement meetings and a big press conference in October,
1978 when the first all-everything OS was unveiled with the
System/38. However, from 1975 to today, even on the IBM Power
Systems with IBM i worldwide announcement day, I cannot recall an
IBM sponsored TV ad that was so realistic that IBM’s own
technicians did not know how to limit the customer perspectives and
expectations.

Chapter 6 IBM i -- The Unsung Operating System! 133

Do You Know about the All-Everything
Operating System?

So, “Why have you not heard about the all-everything operating
system?”

The business answer to that question is that IBM has been
successful with small businesses systems for over thirty years from
well before the time of the infamous System/32 ad. The IBM
Company has not had to advertise in order to achieve its sales or
revenue objectives. There are those of us out here though who
have a feeling that we may have complained a little too loudly back
in the mid 1970’s when IBM broke its tradition of not advertising on
TV and chose to tell the world about its marvelous “little” System/32.
Hey IBM, It’s OK to tell the world about the all-everything operating
system – even if sales are good.

At any rate, though IBM’s systems are still very successful, and they
still sell, it is my humble opinion that more and more business
people should know about today’s all-everything OS. It is a fine
alternative to the most hyped systems and operating systems of
today coming from Intel and Microsoft and from Unix and Linux
vendors.

Windows Reliability = Low Expectations

Let me give you just one general scenario that I hear about all the
time. Over the sixteen years since I retired from IBM, I have had
many business friends and even my graduate business students at
Marywood University ask me if it is a normal thing to not be able to
use their business computer system for days at a time. In almost all
cases, they refer me to a Windows Server running on Intel
Hardware. They have never heard of IBM i and in most cases think
IBM has sold about 500 huge computers to Fortune 500 companies
and that is that.

Some try to minimize the time their systems are down by hiring an
extra person or perhaps even two people to keep their servers and
the software running so that the business can conduct business. I

134 The All-Everything Operating System

tell them that the systems with which I work don’t behave that way
but, their own experience often causes them to doubt me. They
think that all computers are the same and that perhaps I did not
understand that they were merely expressing frustration about the
way life is using all computer systems.

The fact is that IBM has the only hardware and software on the
planet that actually plays to the crowd for the answer to that
question. But, IBM does not advertise its wares so nobody knows
or desires its solid, fully functional, never go down solutions. So, I
tell those that ask that I use a PC for my own small business
because my part-time business cannot afford IBM i but, I regret the
choice every time I must do work that otherwise, I would not have to
do, when my own desktop PC goes down. And, with Windows, and
Intel, that happens quite frequently.

Yes, you may accuse me of being prejudiced in favor of IBM
products. But, if you looked at my resume for any length of time,
you would see that I have worked on just about all systems. Not to
be snippy, but I have been there and I have done that. The IBM i
platform is simply the best there ever was and the good news is that
it still is.

No other system comes close to stacking up, feature by feature to a
system family that has endured and has advanced and has helped
many businesses prosper and has now evolved into a system that
is truly powered by an immensely capable Power 6 processor and
an all-everything operating system.

So, you may be asking, what is it about this all-everything operating
system now that you know that it is special? You are about to learn
its origins in Chapter 7 and more about it in each of the following
chapters. It’s a big story. I can’t tell you that the all-everything OS
will be pumping out your A/R reports right off the truck. However, I
can tell you that it is a quantum leap in sophistication, elegance,
and capability over the ever popular IBM System/32, and all
systems and operating systems between then and now. You and I
would both be tickled if we had one running our respective
businesses.

Chapter 7 Brief History of Computers from IBM Rochester 135

Chapter 7

Brief History of Computers from
IBM Rochester

The Rochester Mission

I am about to begin the story about the all-everything operating
system as if it is a fairy tale that obviously is too good to be true.
Though it is too good to be true, through 23-years at IBM and a
number of years afterwards, I have made my living on this system,
so I know it is real.

Once upon a time, in a small IBM laboratory in Rochester,
Minnesota, there was a team with a big mission. Their job was to
build a more modern set of unit record equipment. The Rochester
team was blessed with the electrical and mechanical engineering
know-how that could make the project a success; but, they realized
that because it was the 1960s, electromechanical machines would
soon not be in demand. After all, the first IBM System/360, the first
solid sate chip-based computer had already been shipped; it was
already a huge success; and computers were really catching on in
the marketplace. Oh, and by the way, Rochester did not have a
mission to build a computer system.

Note: Unit record equipment is a term used to describe the family of
machines that would read or punch out IBM cards prior to the
advent of bona fide computers. This gear was also called punched
card processing equipment. Even after computers came to town
these machines continued to provide accounting reports, sorted and/
or merged card decks, duplicate card decks, and interpreted card
decks, as well as calculated punched card decks for countless

136 The All-Everything Operating System

businesses. It was always impressive to see and hear all of this 80-
column card gear in action. For a better understanding of unit-
record gear and to see pictures of many of these behemoth
machines, please read the next section. ...

A Quick Look at Punch Card Gear

In 1969, when I joined the IBM Company, the Company trained me
to wire the panel boards that controlled the myriad of punch card
machines that had been the mainstay of the company for decades.
Back then, IBM customers could get themselves a keypunch, a
sorter, and an accounting machine for just over $500.00 per month.
Before the Rochester mission was accomplished, to get a jump on
automated data processing, many chose to do exactly that.

I hope you enjoy this quick tour of a number of the machine models
that were necessary in the pre-computer 80-column card
processing world. If you do not want to take the tour, feel fre to
move to the heading announcing the end of the tour.

Over time, the machines you are about to see and learn about were
collectively and methodically replaced by the Rochester mission.
Therefore, this is the right place to view this equipment, as the
history of the IBM Lab in Rochester, Minnesota and its all-
everything operating system continues to unfold.

The Punch Card Equipment Tour Begins

Let's start the tour with a look at the IBM 129 Keypunch as shown in
Figure 7-1. This is a machine that data entry personnel would use to
type in data. The process of typing data into a card was called
keypunching. For each of these unit records (cards) that were
typed, the keypunch machine would “punch out” a card to represent
the information record that had been keyed.

Chapter 7 Brief History of Computers from IBM Rochester 137

Figure 7-1 IBM 129 Keypunch Circa 1970

Early keypunches had no memory. When the typist typed an "A,"
for example, the unit immediately punched the holes in the card to
represent the letter A. The codes had been determined earlier by
one of the founders of early IBM whose name was Dr. Herman
Hollerith. Thus, these holes punched in the card columns were said
to use Hollerith encoding.

Back then, to assure that the input process would not discover
errors, immediately after a stack of cards was punched, the original
source documents containing the information as well as the
keypunched cards were sent to the verifier station. Using a
machine that looked very much like a keypunch, the verifier would
read the holes column by column as the key-verifier retyped the
important card columns, thereby assuring their accuracy. So, before
any cards were processed, they were key-punched by one operator
and key verified by another. Yes, if you are counting, the data was
typed twice.

The IBM 129 keypunch was a later model unit with memory. Just
like a memory typewriter, the card would not be punched until it was
complete and the keypuncher said it was OK to punch the holes.
Thus, if an operator made a mistake, they could tab backwards to
the column to correct the error before the card was destroyed by the
punching process.

138 The All-Everything Operating System

The 129 keypunch could also serve as a verifier. It read the card
into memory and then compared each keystroke, signaling the key-
verifier whenever there was a mismatch in a column. If there was a
mismatch, the operator would type in the correct code and then,
when finished, the 129 would punch out a new card that was perfect
and the operator would throw the old one away.

Once cards were punched, they were arranged in batches for the
various applications and filed temporarily. From the file they went to
a number of different machines that could perform operations on the
stacks of cards. The machines that we show below are capable of
operations such as sorting, merging, collating, matching,
reproducing, interpreting, calculating, gang punching, printing, and
more. Let's look at these units now.

An IBM 082 Sorter is shown on the left of Figure 7-2. Compared to
other electromechanical card processing units, Sorters were
reasonably small electromechanical machines, typically with one
input hopper and eleven stackers. There were ten stackers for the
digits 0 through 9 and an eleventh stacker for cards that could not
be read (rejects).

Figure 7-2 IBM 082 Sorter circa 1965 and IBM 085 Collator

The operator would placed cards in the sorter and the machine
would read the value in the selected column and place the cards in

Chapter 7 Brief History of Computers from IBM Rochester 139

the proper stacker after one pass. The operator would carefully
place the results from all the stackers one on top of the other and
the card deck would be in sequence (sorted) on that column. The
operator would then again place the partially sorted cards into the
hopper an repeat the process for as many additional passes as
there were columns remaining to be sorted.

An IBM 085 Collator can be seen on the right side of Figure 7-2. I
operated one of these when I was a student aide in the King's
College Computing Center, in my Sophomore year. This was a
larger electromechanical machine than a Sorter. It typically had two
card hoppers and four stackers. In normal operation, the operator
would use the Collator to merge cards together. However, the unit
was programmable through wired panels so the operator could use
a different panel board and use the Collator to match cards instead
of merge them. This process would help assure that there was a
master card, for example, for every transaction card. The extra
stackers would be used to select the unmatched masters and the
unmatched transaction cards, respectively.

The IBM 519 Reproducing Punch is shown on the left side of Figure
7-3. Like a collator, this was a large electromechanical machine
that would read in a deck of punched cards and punch out an
identical deck. In addition to duplicating cards, it could also be
hooked up to an accounting machine via a big cable and be used to
gang punch summary data produced by the accounting machine
into blank cards.

Figure 7-3 IBM 519 Reproducing Punch and the IBM 548 Interpreter

140 The All-Everything Operating System

When the cards were punched by the IBM 519 or another
automated high speed punch -- such as a card punch connected to
a computer system, the cards came out with no printing on top. As
a next step in the process, the decks of just punched cards were
placed into the hopper of something like the IBM 548 Interpreter as
shown in Figure 7-3 on the right side.

This was another large electromechanical machine that would read
in the cards that had been reproduced without printing, interpret the
holes mechanically then, it would print their meaning in the form of
letters and numbers on the top print line of the 80-column card.

When unit record gear was used for big operations that required
calculations, it was time for the operator to use a device known as
the Calculator, such as the IBM 604 Calculator shown on the left
side of Figure 7-4. This huge machine was capable of performing
computer-like mathematical functions using electromechanical
circuitry. A technician would wire a panel describing the work to be
done, for example to read in values from distinct columns of an
input card and the calculator would produce a result, such as a
price extension. To show the results of the calculations, the
machine would punch the result into a set of columns that were
different that the input columns on the same or a different 80-
column card. .

Figure 7-4 IBM 604 Calculating Punch (Calculator) and IBM 407 Accounting Machine

Chapter 7 Brief History of Computers from IBM Rochester 141

The old sage of all the electromechanical behemoths was the
Accounting Machine, as shown on the right side of Figure 7-4. This
circa 1969 Accounting Machine, as shown, is an IBM 407, which
was a very capable and very large unit for its day. This unit would
read in pre-arranged decks of cards -- after all the sorting and
manipulating -- and it would produce accounting / business reports.
So, in many ways, it was a big card reader with a big printer.
“Programmers” would wire a panel board to tell the machine which
card columns to read and which print columns to print the various
data elements on the card. Additionally, the machine itself could be
used to perform light calculations and print the results on a report.

The Punch Card Equipment Tour Ends

The purpose of this tour was not just to show you the magnificent
machines of early IBM fame. Many of these very machine models
shown in the figures above were made in Rochester, Minnesota.
Now, you see the reason why IBM Rochester was chosen as the
place to build the newest punch card units. IBM was hoping to get
a set of smaller 80-column units that were less expensive to build
and, perhaps, a bit faster and more capable. As you are about to
see, IBM got lots more than what it had asked for.

Rochester Moves on with Its Mission

The Rochester team was well aware that the mission to build real
computers rested elsewhere in IBM, yet they earnestly believed that
they should use computer technology in addition to
electromechanical circuitry, in the new set of machines. Though
there may always have been a desire in Rochester to produce the
all-everything operating system, before 1969, when they completed
this mission, they knew that if they called this new machine a
computer in its internal project stage, they would not gain IBM’s
approval to build it. The small mainframe lab in Endicott, NY more
than likely would have been selected.

However, Rochester was approved and it got the budget to build the
next generation of “card processing machines.” Officially, that’s

142 The All-Everything Operating System

what they began to develop. Unofficially, however, the team knew
they were designing and building a new computer system based on
unit-record storage. The machine that flowed from this work would
be called the IBM System/3. It would change IBM forever, offering
ease-of-use computing to small businesses for the very first time.

Once the IBM System/3 was introduced in the fall 1969, the
Rochester team was no longer able to hide the fact that it had built
a bona fide computer system. The first System/3 Model 10 Card
System would be recognized in the industry and in IBM as a
computer system, albeit one with limited capabilities.

Lots of Time to Think

Some say Rochester, Minnesota is a land where all there is to do is
think. The opportunity to think in the cold while enjoying more than
250 days of sunshine each year made Rochester the perfect site for
the conception of a new generation of computing. Though the
System/3 was simple, it was very capable and innovative. A picture
of the announced System/3 Model 10 card-only system is shown in
Figure 7-5.

One-Third Size, 20% More Data

The first innovation at Rochester was the introduction of the 96-
column card (see Figure 7-6). It was one-third the size of the 80 -
column punched card forms, in which many people over the years
had received their paychecks and income tax return checks. By
using a smaller card, all of the card processing equipment would be
smaller and therefore, less costly to build. After cards were
processed, as you can see on the left side of the unit, the System/3
had its own printer, the IBM 5203 which could be used for report
production.

The main input unit for this card size on the System/3 was a device
called the 5424 multi-function card unit (MFCU). It is located on the
right side of the picture in Figure 7-5. This name is a derivative
from IBM’s System/360 Model 20, which had a similar, but much

Chapter 7 Brief History of Computers from IBM Rochester 143

larger, multi-function card machine (MFCM) that processed 80-
column cards.

Figure 7-5 IBM System/3 Model 10 with MFCU (Right) and Printer (Left)

Figure 7-6 No Holes, 96-Column, System/3 Punched Card

144 The All-Everything Operating System

The 96-Column Card Processing Gear

In addition to the System/3 itself with its magical MFCU, Rochester
actually did build a new set of unit-record equipment. Along with
the MFCU, this gear could do all of the work for 96-column cards
that IBM’s 80-column workhorses had been doing for 80-column
cards since the 1930’s. The two other pieces of card gear built by
Rochester at this time were the IBM 5496 Data Recorder (Figure 7-
7) and the IBM 5486 sorter (Figure 7-8).

Figure 7-7 IBM 5496 Data Recorder

Figure 7-8 IBM 5486 96-Column Table Top Card Sorter

Chapter 7 Brief History of Computers from IBM Rochester 145

The IBM 5496 "keypunch" was very much like the 129 keypunch
described earlier in this chapter, and it had all its attributes, but it
was lots less expensive. The IBM 5486 had the same functionality
of the IBM 082 sorter, but it had less stackers and thus required
more sort passes. Compared to the four stacker MFCU shown in
Figure 7-5; however, the 5486 was quite effective, plus it did not tie
the main system unit up while it was sorting.

By any other name, the 5496 data recorder, just like the 80-column
IBM 129 Keypunch would be an intelligent keypunch machine. It
was the source of original entry. Its purpose was to permit an
operator to create 96-column punched cards that represented either
master records or transaction records for the business.
Combinations of holes in the three-tiered card represented numbers
and letters. Together, these were the data elements that provided
input for the system.

Before being processed in the MFCU, the data often would be
sorted using the IBM 5486 sorter. This was a two-tiered desktop
device and was necessary in order to re-sequence cards for
processing. IBM also provided a sort program for the System/3 to
companies that believed that they could not afford a 5486. This
permitted them to sort their cards using the two hoppers and four
stackers of the MFCU attached to the System/3.

96-Column Card Processing Versatility

Unlike other unit record incarnations over the years, there was no
separate collator unit needed to merge two decks of sorted cards.
There was no interpreter needed to print the meaning of the holes
on the top of the cards. There was no reproducer needed to
duplicate card decks. There was no big calculator needed for
computations. And there was no 96-column accounting machine
needed to list the cards and provide printed invoices, orders, or
management reports. As shown in Figure 7-5, the System/3 could
provide all of these unit-record-like 96-column card functions by
itself. It had its own printer and the MFCU which was truly multi-
function

For example, the MFCU, instead of a collator, could be used for
merging card decks. Special card programs were provided that

146 The All-Everything Operating System

enabled two columns of cards to be merged into one. The 5496
data recorder served double duty as it could interpret already
punched cards in the same fashion as the big IBM 548 80-column
unit. Thus, the IBM 5496, shown in Figure 7-1 served as a
keypunch, a verifier and as an inexpensive interpreter to print on the
cards punched by the MFCU.

Another special card program permitted the System/3 MFCU to
reproduce cards by reading one deck on the left side and punching
out a duplicate deck on the other side of the MFCU. The central
processing unit (CPU) of the System/3 provided any calculations
and report formatting. The CPU frame can be seen as the highboy
column in the middle of the picture in Figure 7-5. Finally, the
System/3 hardware complex included a choice of printers. The
5203 Printer (shown on the left side of Figure 7-5) printed reports at
several hundred lines per minute. Faster printers, such as IBM's
1403 eternal workhorse, became available as the product matured.

There was no disk on the original System/3 computer system.
Cards were the only storage medium. The system came with just 8k
of memory as standard. That’s a mere 8,096 memory positions.
The System/3 card system did have a mini no-name operating
system. It was provided in a stack of cards less than an inch high.
This deck of cards was called the System Initialization Program
(SIP), and its job was to simply “boot” the system. After powering
up the unit, an operator would place the SIP deck in MFCU1 (the
first hopper of the MFCU) and press the Start button. The system
was hard wired to begin reading cards at power-on. When the SIP
deck was read, the System/3 was ready for business.

Powerful Business Language for New S/3

Another major innovation for IBM at the time was the perfection of
the RPG (Report Program Generator) programming language in the
form of RPG II. This language was originally built for very old IBM
computers in the late 1950s, such as the IBM 1401. As innovative
as it was, it was never quite perfected for the IBM 1401, and prior to
its use on System/3, it had a questionable reputation. The newly
named RPG II language for the System/3 included many
improvements.

Chapter 7 Brief History of Computers from IBM Rochester 147

To sum it up, RPG II had all the characteristics of a real
programming language. Additionally, it was rich in business
functions including decimal math, and thus it made the System/3 a
real business computer. The language was instrumental in making
the System/3 an instant success in small businesses. It was
simple. It was somewhat English-like, and, unlike COBOL, it was
not verbose or intimidating for new programmers. Most of all, it was
easy to learn.

Since there were not many for-hire programmers back then, the
lucky folks tapped to learn RPG in the 1970s with System/3 were
often young, bright, and trustworthy. They held other positions in
their companies and seemed like the right candidates. Most of
these programmers have grown up to become the gray-haired IBM i
professionals who are now approaching retirement age.

Disk Drives for the System/3

In late 1969, IBM saw the need to make the System/3 an even more
capable computer by adding disk storage. As shown in Figure 7-5
and in 7-9 below, in the area directly under the MFCU, Rochester
provided space for four disk drives. These drives were known as
5444s, and they were stacked two in each of two drawers. In each
drawer, one drive was fixed and the other drive permitted
removable cartridges to be mounted / dismounted, thereby
providing additional removable storage. Each drive, fixed or
removable, could hold 2.45 million characters of storage. That was
it. But back then it was so much that for disk based System/3’s, the
second drawer was optional. The Photo in Figure 5-3 shows the
optional second drawer open and a friendly IT person is inserting a
removable disk cartridge.

148 The All-Everything Operating System

Figure 7-9 System/3 5444 Disk -- Open Bottom Removable Drawer (R2)

New Disks Form Basis of New System/3

In 1970, IBM created a new model of the System/3 with a keyboard
console and a dot matrix printer as part of the basic setup. The
System/3 Model 6 also used the new IBM 5444 Disk Drives. The
keyboard was its only input device. No card reader / punch would
ever be attached to a Model 6 so, disk was its only storage.

Later as CCP (See CCP later) became successful on the large
System/3 models, IBM re-introduced the System/3 Model 6 with a
name change. It had substantially more standard memory, along
with local terminal capability. The System/3 Model 4, announced in
1975, looked almost exactly the same as the Model 6 since it used
the same frame. The one noticeable difference was that a model 4
had a 480 character CRT as its communications console. A picture
of a System/3 Model 4 is shown in Figure 7-10. Take the CRT from
the picture and you have a Model 6.

Chapter 7 Brief History of Computers from IBM Rochester 149

Figure 7-10 IBM System/3 Model 4

More Storage, Please

As the demands for more storage on the System/3 model 10
increased, the 5444s did not hold back the masses for too long. So,
IBM attached its more capable mainframe heritage 2319 drives to
the System/3, re-christening them as the 5445 Disk System. (See
Figure 7-11.) Each of these drives could hold 20.48 million
characters of storage. No, I did not say gigabytes, it was
megabytes. A few million bytes was about all you could get back
then, as disk drives were in their infancy. Look how physically large
each unit is! And, that young lady in the picture is tall.

150 The All-Everything Operating System

Figure 7-11 IBM 5445 Disk Drives

As the System/3 product matured, the 5445 drives were no longer
adequate to satisfy the storage requirements of larger System/3
customers. In the mid 1970’s, IBM announced that four of the
mainframe developed, innovative 3340 disk drives using the 70 MB
IBM data module were able to attach to the System/3 model 15D,
the largest System/3 ever built. Four IBM 3340 drives are shown in
Figure 7-12, along with an IBM 70 MB data module sitting on top of
the third drive.

The BattleStar Galactica

Quite often, I would have to accompany my computer clients from
Wilkes-Barre / Scranton to large datacenters in Philadelphia, New
York, or Syracuse to convert their data to the IBM data module
shown on the top of the cabinet in Figure 7-12. I never drove very
new vehicles as I always wanted to look poor to IBM management.
That way they would not skip me on the next raise cycle. Hah! Just
kidding -- but not by much!

The best explanation for the quality of the vehicles I drove at the
time came from a co-worker, David Smith, who has since passed
on. David referred to my huge two-tone teal and light blue Buick
LeSabre as the "BattleStar." I do not think that at the time, teal had
even been formally introduced as a real color. When he first called
my vehicle the BattleStar, his eyes lit up and I knew that he thought

Chapter 7 Brief History of Computers from IBM Rochester 151

that the color combo and the aging never-waxed look made my car
look like a large piece of space junk. So, rather than call my car
"Space Junk," he upgraded me to the "Battlestar." For years until
that vehicle's retirement, I relished in the fact that I was driving one
of the few land-based BattleStars in the universe.

The data modules shown in Figure 7-12 retailed from IBM at about
$2,500.00 each. I am not kidding. IBM offered no discounts on
"disk packs." For 70MB, about 1/10 the storage of today's CD
ROM, the price was $2,500.00. Often, I would pack as many as
four of these in my car and take the customer to a remote data
center for a data conversion. During these trips, my car was always
worth about four times its normal value.

Figure 7-12 IBM 3340 Disk Subsystem with Data Module

Tape Drives and Faster Printers

For backup, all of the models of the System/3, except the Model 4
and Model 6, were able to attach the IBM 3410/3411 Tape
subsystem as shown in Figure 7-13. Some companies had big
enough budgets at the time to choose to backup on removable data

152 The All-Everything Operating System

modules. Backups were much faster and no tape drive had to be
purchased.

Figure 7-13 IBM 3410/3411 Tape Subsystem

Eventually, faster printers, such as the legendary IBM 1403 (1100
lines per minute), as shown in Figure 7-14, were added and the
System/3 line became a very popular small business computer
capable of large computer print jobs. All models of the System/3
were very successful and profitable for IBM, and the machine was
well-loved by its users.

Figure 7-14 IBM 1403 Printer

Chapter 7 Brief History of Computers from IBM Rochester 153

IBM rewarded the Rochester Lab for its accomplishments by
permitting the lab to continue making these computers. The biggest
and most powerful System/3 was introduced in 1973. It was known
as the Model 15D. Other System/3 models included Models 4, 6, 8,
10, and 12.

System/3 Models

The System/3 model 15 is shown in Figure 7-15. The System/3
Model 12 is shown in Figure 7-16. The System/3 Models 4, 8, and
12, were introduced later than the Model 15 in the System/3 product
life cycle.

Figure 7-15 IBM System/3 Model 15

154 The All-Everything Operating System

Figure 7-16 IBM System/3 Model 12

During this period, IBM moved from card-oriented processing to
floppy disks in eight-inch packages. The later System/3s all used
this technology and were shipped as “cardless.” (See Figure 7-17
for a picture of a System/3 model 8 cardless computer with its direct
attached IBM 3741 Data Station / diskette reader. Note also that
the Model 12 in Figure 7-16 is also “cardless.”). Without card
systems being built anymore, the unit record façade for Rochester
soon came to an end; yet, the plant continued to make System/3
machines, which everybody referred to as “computers.”

Chapter 7 Brief History of Computers from IBM Rochester 155

Figure 7-17 System/3 Model 8 “Cardless” Computer with attached IBM 3741

Made for Humans, Not Machines

In addition to RPG, one of the factors that made the System/3 easy
to use was its control language, known as the Operator Control
Language (OCL). All computers preceding the System/3 required
humans to learn cryptic languages, such as Autocoder, Symbolic
Programming System (SPS), or Job Control Language (JCL), in
order to communicate with the machine. Rochester intuitively knew
the old way was not going to fly with a machine destined for small
businesses and run by non-IT professionals. Programmers, at the
time, who got their first look at OCL for the System/3, especially
those who were mainframe-trained, were amazed by its simplicity.

IBM made the System/3 control language easier for the
programmer and user in the business environment, rather than for
the software engineer in IBM who had to write the complicated
routines that would scan the cards and interpret their meaning for
the machine. Before the System/3 existed, the control language
used on IBM’s and others’ machines was very cryptic and quite
difficult for a normal human to read, and even more difficult to write.

156 The All-Everything Operating System

A control language statement for a mainframe disk drive, for
example, might look like the following:

// DLBL,,,3,,42,,sys011,,39,payroll,,,,99999,,,en

There was nothing easy about writing this type of mainframe
statement. If you are an old mainframe person, you know that this
is not exact but, it is representative. Mainframe job control
language (JCL) was quite difficult to master and it took a significant
amount of time to get this stuff to work. For the non-veteran, it was
almost impossible to know how many commas were needed in-
between parameters. If you were off by one comma, the statement
would mean something entirely different than what you intended,
and the mainframe machine was very unforgiving and not very
helpful in debugging. System/3 OCL was much different. It was
English-like, keyword-driven, very forgiving and instructive. A
sample statement might look as follows:

// File Name-Payroll,Unit–F1, etc.

The purpose of showing these statements, of course, is not to teach
about old computers, but to give a perspective as to how much
simpler the new System/3 made computing at the time. Because
the new OCL was keyword-oriented instead of positional,
programmers no longer had to worry about how many commas to
leave in between parameters. The “Unit=F1” part of the S/3
statement above was needed because the system back then had
more than one disk drive. Just like a PC with multiple disk drives
uses one-character symbols, the letters A through Z, to distinguish
the drives, the System/3 used two-character symbols. Instead of A,
B, C, or D drives; the System/3 drive names were F1, F2, R1, and
R2. The F’s were for the two fixed drives, and the R’s were for the
two removable drives. Today, other than diskette, CD, and DVD
drives; disks are “fixed” in all computers and are non-removable.
They are fixed in place. The day of the removable hard disk passed
when System/3 technology made its exit from the marketplace.

Chapter 7 Brief History of Computers from IBM Rochester 157

Terminals for System/3

During the mid-1970s, IBM developed a program on mainframes
called the Customer Information Control System (CICS). This
program ran in one part (or partition) of a mainframe and permitted
many terminals to be used simultaneously with the machine. CICS
was in a phrase, “difficult to use.” The IBM 3270 terminal (Figure 7-
18) was the terminal of choice at the time for CICS and other IBM
terminal oriented operating systems.

Figure 7-18 IBM 3270 Terminal as Used on System/3

So that System/3s could also support terminals, after disk drives
were introduced and accepted, Rochester built a program called the
Communication Control Program (CCP) between 1971 and 1972.
The System/3 model 10 was too small to support CCP well, so IBM
built and introduced the System 3 Model 15. This box came with
three partitions so that CCP would be able to have its own partition
while the rest of the machine could do normal batch processing.

I can remember learning CCP in Syracuse NY at the IBM Education
Center and then bringing back the "foils," to teach my peers in the
IBM office in Scranton, Pennsylvania. CCP was very similar in
function to CICS. Along with the new capabilities, however, CCP

158 The All-Everything Operating System

added a higher degree of complexity to the System/3 environment
for terminal processing, but it was nothing close to the degree of
difficulty brought forth by CICS in the mainframe environment.
Nonetheless, CCP was not for the casual System/3 programmer.

The IBM System/32 Is Introduced

With all of this innovation, the System/3 became a big hit in
businesses all across the world, and Rochester became a big hit
within IBM because it was making money for the corporation. In
1975, IBM Rochester was at it again. The lab introduced a
System/3-like machine that was desk-sized. Notice I did not say
desktop. Desk-sized is about as small as it got back then. This unit
had a keyboard and a small monitor, and it had a printer attached to
its back. It was an all-in-one computer called the System/32 (see
Figure 7-19). In Chapter 6, as you may recall we discussed a TV
commercial, which IBM ran during the System/32 era.

Figure 7-19 System/32 – Circa 1975

The System/32 used the same notion of OCL, as did the System/3
disk systems—shown in Figure 7-19. However, since there was
just one big disk drive on the left side of the unit, the OCL was even

Chapter 7 Brief History of Computers from IBM Rochester 159

simpler than that of the System/3. There was no need for the R1,
F1, R2, and F2 designations in OCL since there was only one disk.
So, for System/32 OCL, IBM removed the Unit parameter and it was
never to return. Note below the two OCL statements. The first is
System/3 format with the Unit parameter and the second is
System/32 format where it is not needed.

// File Name-Payroll,Unit–F1, etc.

// File Name-Payroll, etc.

Though System/32 had just one drive, all IBM small systems that
followed the System/32 took advantage of the big change in OCL
brought forth with the System/32. There was no unit keyword
needed since there was only one disk. This change may not seem
revolutionary but subsequent systems had multiple disk drives and
yet the OCL did not require the unit parameter. IBM Rochester had
begun to make their systems more intelligent and more self-
managing. The operating systems, the predecessors to the all-
everything OS, knew where the file was by knowing its name only.
The system had internal tables to locate the files and the
programmer was spared the work.

IBM small systems no longer had to care about how many disks
existed on a system. They treated all the disks as one. This was a
powerful notion and current Windows users know how powerful this
is as they struggle to figure out which files Windows manages on
the C Drive and which ones are on the D drive, and the E drive
etc… When Windows shops get that second disk, all of a sudden
they must decide where to put the data. IBM operating systems
solved this problem in 1975.

The IBM System/32 came with one major disadvantage -- even for
its time. Like a modern PC, it had just one input keyboard attached
to the top part of its frame. Though key to diskette units, such as
the IBM 3741, could be used to help with the keypunch (date entry)
load, and the System/32 did have a diskette reader that could read
the standard fare 8” diskettes of the day, the one keyboard proved
to be the major disadvantage of the box. As such, the System/32

160 The All-Everything Operating System

lasted for just two years before IBM improved the design and
changed multi-user computing forever...

In 1977, IBM announced the new and improved System/32. It had
everything but the name and the limitations. It was a big, boxy
computer (not desk sized at all) called the System/34 (see Figure 7-
20). It used Operator Control Language, just as the System/32 and
the System/3 before it. Therefore, the System/34 was also easy to
work with. IBM's invention of OCL was a big reason.

With the System/34, IBM shipped up to two disk drives. Unlike the
System/3, whose OCL had to tell the system which drive a file was
on, as a predecessor to Single Level Store (Chapter 13), IBM had
improved its ability to treat all disk drives on a small business
system as if they were part of one mass storage unit.

Note: This was in 1977. Windows and Intel and Unix and Linux
have still not achieved this major ease of use characteristic.

By using as many as sixteen terminals instead of a built-in console
keyboard, the System/34 solved the “one keyboard” problem of the
System/32. It had no console keyboard whatsoever. Up to sixteen
separate terminals could be attached to just one System/34,
providing fifteen more online input devices to the system than the
System/32. Try typing that fast! The computer console could be
any of those 16 terminals and when it was not in console mode, it
was a regular terminal.

Thus, the big difference between the System/32 and the System/34
was that the new System/34 was a multi-station, multi-user system.
Its multiple keyboards were provided by PC-like independent
stations that were dumb (unlike PCs) and they communicated
directly to the System/34 processor in very similar fashion to how
the PC keyboard talks to the PC. Just one difference, the terminal
waited until the user hit the "ENTER" key to send all the data to be
processed.

By introducing the notion of multi-user and multi-programming /
multi-tasking with the System/34, IBM enabled each user to have a
piece of this one computer system as if it were his or her own
machine. At the time, it was as if each user had their own PC.

Chapter 7 Brief History of Computers from IBM Rochester 161

Figure 7-20 IBM System/34 Multi-Station Computer

Though the System/34 used terminals, it did not need the
complexities of IBM's System/3 CCP or anything like IBM’s CICS or
even BEA’s Tuxedo. (See Chapter 19, Integrated Transaction
Processing.) Terminal management was built-into the S/34’s
System Support Program (SSP) operating system and the system's
hardware. It was an industry first.

Note: Tuxedo is BEA’s terminal monitor program, introduced in the
1980’s with similar function and purpose to CICS and CCP.

For the first time on any computer system anywhere, the compilers
were written to recognize a terminal as a real device thus making
programming the S/34 for interactive work far easier than any
computer vendor has even yet to achieve. Moreover, you could
attach these semi-intelligent, high-speed terminals to the system
over a local high speed wiring type called twinaxial cable, without
the need for modems. Because data communication over the

162 The All-Everything Operating System

Internet today is so fast, many of us have forgotten how slow getting
data to the main computer once was.

Programmers even had it easier as IBM provided a link to RPG and
COBOL so that programmers could directly control one or all
terminals from one program rather than requiring a program for
each terminal. The all-everything operating system design notions
were in play with the IBM System/34, but there was a lot more
function to come.

Hardware was important back then because smart terminals were
not really the notion of the day. Most actually were pretty dumb.
The new terminal that IBM invented was also a major innovation for
its day. Though it was big and square, built by Rochester, it was
ahead of its time. IBM called it the IBM 5250. See Figure 7-21.

Each of these terminals, at the time, could be purchased for about
$4,000. Though 5250s are no longer sold, the green-screen 5250
legacy continues today through PC products that emulate the 5250
terminal’s data stream. The System/38 machine and the AS/400
historical line including the IBM i5, and now the IBM Power System
with IBM i, use the 5250 display station protocol as their native
terminal discipline.

Chapter 7 Brief History of Computers from IBM Rochester 163

Figure 7-21 IBM 5250 Type Terminal

The 5250 terminal had actually been built for the Rochester
designed and developed System/38 computer system, which was to
be the follow-on computer to the System/3 Model 15D and the
entire System/3 line. The System/3 had used the IBM 3270-type
terminal (Figure 7-18) that had been the normal device for
mainframes. The 3270 line continues to be popular on mainframes
today and is an often-emulated terminal device.

In 1977, when the in-process System/38 was taking much longer to
complete than IBM originally anticipated, Rochester decided to
announce the System/34 product line as an upgrade to the
System/32 and as a stop-gap while the System/38 was being
perfected. The 5250 terminals and printers that were designed for
the System/38 were thus first used on the IBM System/34.

164 The All-Everything Operating System

The First Version All-Everything Operating
System

The very first all-everything operating system was something called
Control Program Facility or CPF. It was the brains for the most
advanced commercial computer system ever built, the System/38.
As we have learned in previous chapters, this was the direct
predecessor of the AS/400, on down to the current line IBM Power
System with IBM i.

To say the System/38 was unique is an understatement. It was a
well-designed system for sure and being part of IBM, it used the
best notions in computer science. It represented what the entire
IBM company knew about computers. Rochester, Minnesota had
never really built a sophisticated computer before and so there was
a longer learning curve than there would have been if the
mainframe division were to have built the System/38. Having said
that, I would bet that Rochester engineers and developers would
argue that I am wrong. They would probably be right but we'll never
know.

It was almost impossible for any group of engineers and scientists,
mainframe or otherwise, to anticipate the difficulty in achieving the
groundbreaking technical advances brought forth with the
System/38. As good as the 48-bit hardware proved to be in the
System/38 unit itself, the biggest part of the accomplishment was
the first commercial shipment of CPF, which, as noted above, was
the first iteration of the all-everything operating system.

Unexpected Delays

When IBM announced the System/38, in October 1978, IBM
Rochester knew that the machine was not working well enough for
prime time. However, based on experience with other systems, the
Lab felt that the machine would be ready in 1979, in time for the first
customer shipment.

System/3 Model 15D customers, as well as many others, who were
using minicomputers or the small computers produced by the
BUNCH (Burroughs, Univac, NCR, Control Data, and Honeywell),

Chapter 7 Brief History of Computers from IBM Rochester 165

were enamored by the outstanding specifications of the System/38.
They signed up in droves on the day it was announced in 1978 for
an early shipment of this new box. They actually expected to
receive one soon after they ordered the machine. IBM had not
missed a shipment since its 1964 introduction of System/360 and
the executives were not about to start missing shipments with a
small system built in Rochester, Minnesota.

For IBM's System/38, there would be no early shipments. The
Rochester plant seemed to take forever to give customers a ship
date, and when they finally got one, it was over two years out. I
saw the reaction to the implicit, unannounced delay. My customers
were outraged. There were big technical problems with the box.
There were so many new computer science attributes built into the
System/38 that for a time it seemed almost improbable that the
system would ever be completed, no matter how hard IBM tried.

Yet, IBM did not compromise on the underlying advanced
architecture of the System/38. The company just dug in and made
it work. It is no wonder why even today there is not any system in
existence that has yet to catch up, technology-wise, to the
System/38 machine that IBM announced way back in 1978.

Of course not being able to get a system out the door as promised
created a big public relations problem for the IBM Company. It is
ironic that Microsoft, a company competing for IBM’s all-everything
OS customers today has never seemed to have a problem
announcing new worlds and delivering often less than a city block in
need of immediate repair. At IBM, however, the inability to bring out
a system on time was looked upon as shameful.

In 1979, to call off the dogs, Frank Cary, Chairman of IBM at the
time, appeared before IBM’s customers and the world, and asked
for forgiveness for delaying the System/38 for 11 additional months
so that it would be ready for business use when it was first shipped.

Make It Work, Please!

IBM called upon many employees in the corporation to help bring
this box out so that it could work well in a customer shop. I was one

166 The All-Everything Operating System

of those who got the call. I had the pleasure of spending time in
Rochester in January 1980 in the freezing cold, months after the
first shipment was missed. My job was to test the first conversion
package built to move System/3 shops to System/38.
Understandably, IBM considered this critical for the product launch
so that it could have immediate successful implementations.

Not only was the product that I was working on inadequate, it was
buggy and would fail in the middle of long runs and it could not be
restarted. Our group recommended that it not be announced and
that a better way be found. At the same time an SE in Atlanta, a
folk hero now to many of us, Gerson Arnett, wrote a much more
simple conversion tool that saved the day.

While in Rochester, in addition to the problems with the package, I
recall the instability of the OS pre-releases at the time. You could
set your watch once an hour as our test machine would fail like
clockwork. The new term for a software failure introduced with
System/38 was "Function Check." We saw lots of these and often
they required an IPL, or as Microsoft would call it, a reboot. The
IPLs were a real pain as they took at least a half hour. There was
clearly plenty of work needed to be done on the all-everything
operating system before it would be perfected.

Another one of the problems that I discovered was that the
messages would often not give a reasonable clue as to what
caused the problem. Sometimes there was no clue at all. In the
brief time that I was in Rochester, a number of new versions (builds
as they called them) of the OS were installed on our test machine.

By the time I left Rochester, the function checks were fewer and
farther between and I saw hope that this machine and its operating
system would eventually be completed. It was like no other OS that
I had ever worked on. Its design was right on and, at that time, in
very early 1980, the only thing separating the IBM System/38 from
its future greatness were the bugs. As I personally observed, the
software developers had huge swatters and they were on a mission
to eliminate all the bugs to create a stable system. Eventually they
did just that.

Chapter 7 Brief History of Computers from IBM Rochester 167

1980: First Year System/38s Were Spotted

Clearly, to build this all-everything operating system, IBM Rochester
had bitten off lots more than it was able to handle without help.
When IBM is embarrassed about anything, it does have the horses
to solve the problem. Frank Cary made sure those horses were
available to help Rochester. In retrospect, from what I heard after
the fact, a good number of the many horses often just got in the
way. I got the sense that Rochester engineers, scientists, and
developers for the most part solved their own problems. They just
needed more time.

The System/38 finally arrived in mid to late 1980 to a mostly
welcoming customer set (see Figure 7-22). It was the best system
that IBM had ever built. It used the all-everything operating system
principles that are described fully in Chapter 10. Its underpinnings
were so advanced that no machine, besides its direct descendents,
the AS/400, iSeries, i5, and now the Power System with IBM i, has
ever reached the same level of hardware and software technology
and integration.

Figure 7-22 IBM System/38, Announced in 1978

168 The All-Everything Operating System

System/34 Was Available

Because of the delays, as well as the remarkable popularity of the
1977 introduction of the IBM System/34, total sales for the
System/38 never surpassed 50,000 units. There are unofficial
estimates that the total of System/38 shipments was even as low as
20,000 units. Yet the System/34, with its 5250 workstations, caught
on like gangbusters and shipped well over 100,000 units. These
would have been lots and lots of System/38s had it not been for the
delay.

The System/34 became so popular, it had its own user "cult." IBM
expanded the capabilities of the System/34 and announced new
hardware to permit the box to handle expanded workloads. IBM's
1983 introduction of the System/36, for example, expanded the
number of locally attached devices (no LANS then) to over 70 from
just 16 on the System/34. The Sytem/36 was very much like the
System/34 but it was much stronger.

Mainframe: Who Are those Guys in
Rochester?

In the early 1980s, the mainframe division of IBM became
concerned that there were too many IBM systems aimed at the
same customer. Mainframe executives were never particularly
happy that Rochester built computers, and felt that job should be
done in a mainframe plant, such as Endicott or Poughkeepsie. As
Jim Sloan noted in his remarks in Chapter 5, IBM's mainframe
executives tried to eliminate the System/38 from the product line a
number of times in the 1980's.

Looking at the architecture of the System/38, IBM mainframe
executives knew that its all-everyting operating system, and its
overall architecture, was built better than anything the mainframe
had available. They feared that one day it would compete in IBM
for the same customers that were in the mainframe purview.
Considering that today's IBM Power System with IBM i is more
powerful than IBM's largest mainframe, perhaps their fear was well
founded.

Chapter 7 Brief History of Computers from IBM Rochester 169

The First Big Consolidation Project

Ostensibly to assess the feasibility of a product line consolidation
and to get a jump start on that effort, IBM commissioned a big
project called Fort Knox, and spent hundreds of millions of dollars
trying to come up with a new system that, among other things,
would do everything that the System/34 and the System/38 could
do. Many of us in the trenches knew that this was a mainframe
division attempt to eliminate the advanced all-everything OS from
ever becoming an integral part of IBM.

The team in Rochester knew very well that IBM did not want them
to be building a better mainframe than the mainframe and they
certainly did not want Rochester to be building anything that
Corporate IBM and its customer set could not do without. The
problem, as those familiar with corporate politics can easily
recognize, was that this highly advanced but small business
oriented machine had been developed in Rochester and not
Poughkeepsie where all the smart people in IBM worked.

Before this new Fort Knox product design, which the mainframe
chiefs in IBM anticipated would herald Corporate IBM's all-
everything operating system, to replace the all-everything OS built
by Rochester, had born any fruit, it was canceled for failing to come
close to accomplishing its mission. The project did bear some fruit.
So, if I were IBM at the time, after paying for a forest and receiving
just a tree, I would not have been pleased either.

While Fort Knox was underway in the early 1980's, the IBM
Rochester Lab designed a new system to replace its aging
System/34 line. It was a snappy little box called the System/36.
See Figure 7-17. Even while Fort Knox was underway, Rochester
could not stand still with its small system line as customers were
demanding more horsepower and unlike the mainframe division,
they paid with cash. The System/36 was in many ways a chubbed-
up System/34 so it was not a really large effort to create as was the
System/38.

170 The All-Everything Operating System

By 1985, it did not matter anymore that Rochester's work with the
new System/36 might have been redundant to the Fort Knox effort
as the systems consolidation project had failed. IBM lost millions of
dollars trying to eliminate System/36 and System/38. When Fort
Knox was cancelled, CPF (S/38 OS) was the only contender in IBM,
and in the world to be a successor to the System/36 with an
advanced enough OS architecture, even more advanced than the
mainframe, ready to live on as the all-everything operating system.

You Can't Handle the Truth

Jack Nicholson would have a fine comeback to the mainframe
division who kept thinking they had the one true system. You know
he would have said, "You can't handle the truth." The fact is that
the mainframe division did not have to handle the truth since their
benefactors ruled the IBM Corporation.

Looking back, even the mainframe component of IBM with access
to all of the secrets of the System/38 advanced machine, could not
launch an affordable product that would include all of its design
points. There is no question that IBM was “mighty” during this time
period. If the mighty IBM itself, with all its resources, could not re-
build the System/38 as part of the Fort Knox consolidation project, it
is no wonder that nobody else has yet to be able to do so. Regrets
to Intel and Microsoft and Sun and HP and many others. It'll never
happen.

Even after twenty plus years, other formidable 1980 era computer
companies from DEC (DIGITAL) to Microsoft to Intel to HP to Sun
have not been able to introduce a system as architecturally powerful
as the old System/38. I mean even today nobody has yet done this.
Considering that the underpinnings of the System/38 are well over
thirty years old, IBM’s competitors clearly had the time to catch up.
The fact is that they could not and still can't. Even IBM couldn’t do it
again, as it once tried with its Fort Knox project.

The fact is that if IBM had known, when it launched the System/38
project in the early 1970’s, exactly how much effort and internal cost
the System/38 was going to require, most analysts would bet that
the machine, no matter how good, never would have seen the light

Chapter 7 Brief History of Computers from IBM Rochester 171

of day. That's why the Rochester team kept it a secret, even from
mother IBM.

A naïve new IBM computer lab in Rochester, Minnesota literally did
not know it could not build a system as powerful as the System/38,
and so they went ahead and ultimately did it. Without this naiveté,
and mother IBM’s big pockets, when Rochester failed in its
prescribed time frame, the company would not be in the position
that it is today of reaping the benefits of all this effort with its very
own all-everything operating system. .

Figure 7-23 IBM System/36, Announced in 1983

Finally, the AS/400

After Fort Knox had failed, a project called Silverlake was initiated at
Rochester in the mid 1980s to create one replacement box for both
the System/38 and the System/36. Many books have chronicled the
Silverlake Project for its many triumphs in an IBM envirinment that
would have been just as happy if it had failed.

172 The All-Everything Operating System

IBM had wasted a ton of money and precious time on Fort Knox
and nothing came from it; so, the company had missed the normal
replacement cycle for the System/38 and System/36 units. It was
time to catch up. After just a little more than two years, and one of
the most heralded efforts of all time, in June 1988, IBM announced
the results of its secret Silverlake project as the Application
System/400, or AS/400 (see Figure 7-24). Those who tell only the
truth will tell you that Silverlake was such a non-secret that by the
time it came out, it had been re-code-named Olympic. How about
that?

Figure 7-24 AS/400 Model B60 Circa 1988

In many ways the AS/400 emergence from the Silverlake Project
was a repackaging of the System/38, but it also ran System/36
programs untouched. It also ran untouched System/38 applications
in its own separate environment. Besides all that and with a far
superior processor than the System/38, it also ran specific
mainframe programs using a facility called the Cross System
Product (CSP).

After quite a few incarnations, including CISC technology to RISC
technology, explained in many parts of this book, in May, 2004, the
AS/400 was reincarnated again as the eServer i5, or what I called it

Chapter 7 Brief History of Computers from IBM Rochester 173

at the time, the all-everything machine, running the all-everything
operating system. The hardware is shown in Figure 7-25. In 2006,
IBM subtly rechristened the system with the introduction of Power
5+ technology as the System i.

Bringing us back to the present and the future, in 2008, IBM
changed the whole notion of 64-bit RISC based computing with its
introduction of new hardware that used the most powerful IBM chip,
the Power 6. This new chip along with the final touches to the
former System i frame, and IBM was able to create a box that could
run the System i operating system known as I5/OS. Unix and / or
Linux also ran on this box and IBM i was not necessary to
accommodate this.

The IBM Company also changed the name of the all-everything OS
to IBM i, with the "i" meaning integrated. So, today's platform is
known as the IBM Power System with IBM i, and it is the best
system ever made by IBM. The IBM Power System Family is
shown in Figure 7-26

174 The All-Everything Operating System

Figure 7-25 The IBM eServer i5, the New All-Everything Machine.

Chapter 7 Brief History of Computers from IBM Rochester 175

Figure 7-26 IBM Power Systems Announce April, 2008

The Best System Ever - The Best Operating
System Ever

It was way back in 1978 with CPF and then again in 1988 with
OS/400 that the AS/400 became the great ... grandfather and the
basis of the all-everything operating system that now drives the best
versions of the IBM Power System. If you start adding them up, the
AS/400 machine in 1988 was equipped with the following four major
facilities:

• Native AS/400 Processing

• System/36 Environment

• System/38 Environment

• Mainframe Environment with CSP

Note: The AS/400 is the immediate successor and a derivative
of the revolutionary System/38 that was introduced by IBM in
1978. In October 2000, IBM renamed the AS/400 as the
iSeries. In 2004, IBM renamed the iSeries as the eServer i5,
a.k.a. IBM i5. In 2006, the box became the System i. Then

176 The All-Everything Operating System

again, in 2008, IBM renamed the AS/400 hardware as the IBM
Power System and it began to market the all-everything
operating system separately under the name IBM i.

System/36 Shops Had Reservations

The 1988 AS/400 was a resounding success by all measurements,
but one. System/36 shops were not too happy about it. It was
much different from the System/3, System.32, and System/34
heritage machines. It appeared to those looking for the same look,
but on a faster machine, as a more complex unit because of the
many new features in the all-everything operating system.

Computing was far simpler in those days, in the IBM small business
world, and few were looking to complicate their lives with advanced
computing notions, no matter how easily they could be achieved.
Moreover, and perhaps more importantly, when the AS/400 came to
market, its emulated System/36 environment did not initially perform
as well as System/36 customers had expected. In fact, from my
experience, the AS/400 running the System/36 OS in an emulated
environment in 1988 was functionally complete but it ran like a dog.

As another bugaboo for System/36 users, IBM did not hide the look
and feel of the AS/400 from its S/36 users. Thus, many were
intimidated at the lack of the same simple interface as provided by
System/36.

While the AS/400 was a resounding market success, it was not
because System/36 customers liked it. The System/36 crowd
expressed their displeasure by keeping their old System/36 boxes
as long as they could, and when they upgraded, they would buy
either a second used System/36 (same size) or a bigger used
System/36. It took a long time for IBM’s System/36 customers to
warm up to the AS/400. However, there was enough new AS/400
business at the time for IBM, from the former minicomputer
vendors, such as DEC and Data General. So, at the time, it was
OK with IBM that the System/36 installed base stayed where they
were, in their existing, “happy-with-their-old-system-state,” for many
more years.

Chapter 7 Brief History of Computers from IBM Rochester 177

AS/400 Evolution

In 1994, IBM was in the process of changing its AS/400 hardware to
64-bit RISC from 48-bit CISC, yet the company chose not to
rename the system. Other than being bigger and faster, when the
AS/400 replaced the System/38 it was mostly a change to bring
more powerful but similar hardware on board. Customers had been
clamoring for more capacity, more memory, and more CPU power.
AS/400 addressed all that big-time. It was so big that IBM changed
the name. Yet, the fundamental system hardware stayed at 48-bits
and the architecture stayed in the Complex Instrucstion Set
Computing (CISC) realm. There was no hardware bit-change and
no move to Reduced Instruction Set Computing (RISC).

Moving from 48-bits to 64-bits was unprecedented in 1994. Moving
from a CISC architecture to a RISC architecture without forcing a
recompile had never been done in the history of computing. Yet, the
name remained as the "AS/400" because IBM beleived that there
was a good market sense about the name. But, the changes
actually made the hardware completely different. The all-everything
operating system basically stayed the same, requiring a relatively
small amount of effort to ride on the new RISC 64-bit hardware. See
High Level Machine Interface in Chapter 12 for a more complete
explanation of how IBM achieved the OS migration to 64-bit RISC.

A Gift for the System/36 Community

At the same time, IBM made some additional changes to the box,
and the new chips (early stage Power processors) permitted the
former System/36 operating system called System Support
Program (SSP) to run natively on a pre-release version of the new
RISC chip. IBM announced their work-in-process RISC chip in
1994 in a small frame AS/400-type box that it called the AS/400
Advanced/36. The AS/400 version of the chip would not be ready
for another year.

In other words, after six years from the time the AS/400 was
introduced until it moved to RISC technology, many System/36
users stayed on their old hardware. Why? Because they liked it
and they perceived the AS/400 world as too complex.

178 The All-Everything Operating System

This new RISC based AS/400 style hardware machine performed
exceptionally well, and it ran IBM's SSP operating system with an
updated set of code called Release 7, right from the Power chip.
System/36 users were quite pleased that their OS was in full control
of AS/400 hardware. IBM gave them exactly what they wanted in
this new RISC AS/400 known as the Advanced 36 model. While
IBM was perfecting the RISC chip for use with the new line of
AS/400 boxes to come in 1995, they were able to etch the more
simple System/36 instruction set onto the Power chip. Since this
worked so well, IBM was able to release the AS/400 Advanced 36
RISC machine about a year before the RISC-based full AS/400 line.

1995 -- IBM Announces 64-bit RISC Processors

IBM’s System/36 customers rewarded IBM for giving them what
they wanted by purchasing lots of these new boxes with the partially
implemented RISC chip. Eventually, IBM was able to place the
entire System/36 instruction set, as well as the AS/400 instruction
set, and other instruction sets on the newer and better 64-bit Power
chip. After just a few years, IBM did so well that it was able to
withdraw the Advanced System/36 from marketing since the AS/400
actually was able to run the System/36 applications in the same
fashion as the System/36 had previously. Today, the AS/400, the
iSeries, the i5, and the IBM Power System with IBM i can all
perform System/36, System/38 and AS/400 operations from
instructions built within the same Power 6 chip.

Continual Improvements in Power

Since 1995, with the introduction of the 64-bit RISC processors,
IBM has boosted the power and the number of processors that are
available on the AS/400-iSeries-i5-Power System with IBM i product
line. In 2004, for example, with the POWER5 series of
microprocessors, the company doubled the number of processors
that could be packaged in one IBM i5 machine from 32 to 64 and
increased the performance of each processor by well over 200%.
In addition to changing the system name to the eServer i5, IBM also
changed the name of the operating system from OS/400 to i5/OS.

The Power 5 chip brought with it the capability of having sixty-four
phenomenally high-speed computers operating simultaneously in

Chapter 7 Brief History of Computers from IBM Rochester 179

one i5 machine. That sounds a lot like a mainframe because it is.
The eServer i5 running the all-everything OS was recognized as a
mainframe-class machine. Industry watchers, who expected
function and power to be extended with the introduction of the
Power 6 chips, were not disappointed. IBM has hinted that perhaps
the mainframe will be using the Power 7 chip when it hits the market
in a year or so.

With all of the enhancements over its 20 + years, the AS/400
heritage machine, now embodied in the IBM Power System with
IBM i, clearly uses the most architecturally elegant and capable
machine configuration in the industry. From the ground-up, it is built
as an integrated machine with the all-everything operating system
as the go-to component.

When you add this internal elegance to the powerful engines (64-
way Power 5, Power 6, and soon to be Power 7) now available with
the IBM i advanced OS technology, the Power hardware and the all-
everything OS together are clearly the best and most powerful
computer system of all time. With all this going for it, the Power
System with IBM i is the machine that is recognized as giving the
most value to businesses for the least cost.

Is It Really That Nice? Yes!

If the all-everything OS were as easy to explain as it is to use, the
public would already be aware of its nuances and ramifications.
Knowing about the systems that came before the IBM Power
System from the Rochester Lab, and recognizing that the hardware
and the all-everything OS is the follow-on to all those technologies,
it is easy to surmise that with IBM i at the heart of your computing
infrastructure, life could not be much easier or more productive. It is
a fact that IBM i adds more business value and that value goes right
to the bottom line, exponentially more than any other operating
system running on any other system or server.

Enhancements & AS/400 Marketability

180 The All-Everything Operating System

As you can see in this little history of the IBM Power System with
IBM i product line, the company has enhanced the machine to make
it a technology leader in many areas. However, until May 4, 2004,
IBM had priced iSeries hardware substantially higher than the same
hardware in other systems. As an integrated machine that shipped
with a complete operating system, integrated database, integrated
transaction processing, etc…, customers always saw great value in
the machine and its all-everything OS; so, sales were not affected
by what some thought was a higher price. Most of IBM’s AS/400
heritage customers believe that the most advanced operating
system in the world ships with the system, and so the extra value is
worth the extra charge.

When the company announced the new IBM Power System with
IBM i, IBM signaled that a big part of the additional hardware cost
for acquiring a new iSeries family machine was being eliminated.
With the April, 2008 jump in power and capability, coupled with a
substantially lower price, the IBM Power System with IBM i is now
an even more affordable machine for many small businesses.

There sure is no reason for complaining, especially if you examine
the cost of Windows server software and Microsoft SQL Server
software. Microsoft licensing makes today’s IBM Power System
running the all-everything operating system an even better value
than the popular AS/400 heritage systems of the past.

Chapter 8 IBM Power System with IBM i 181

Chapter 8

IBM Power System with IBM i

The Best Operating System Ever

The historical IBM i5 (now known as the IBM Power System with
IBM i) is the best and the most special computer ever built. It's IBM-
built all-everything operating system is now known as IBM i and as
you well know by Chapter 8, it is the premise of this book. It is also
the vehicle that drives the hardware platform to its many
accomplishments.

That is why it is inconceivable that the company that owns the rights
to this operating system does not seem to try hard to earn even
bigger revenues from it. For you music lovers out there, it may help
to know that the IBM Power System with IBM i is to computers as
what Bose is to great sound. Bring on the music.

As the direct descendent of the System/38's CPF, IBM i is even
more functional and more powerful. The older System/38 line was
not as well endowed performance-wise. In fact, because it was
intended for smaller businesses, in its infancy it suffered from
capacity constraints imposed by the culture of IBM’s mainframe
division. Just as you would run your company, IBM management
found no value in the idea that Rochester machines would compete
with traditional mainframes while the mainframes were bringing in
the bucks.

So, in the beginning, IBM gave the engineers in Rochester specific
constraints to assure that this all-everything operating system was
being built to support small businesses. IBM was very careful in its
cautions that the Rochester systems were not to be used for big

182 The All-Everything Operating System

businesses. For these, IBM targeted its mainframe line of
computers. The resulting first iteration system was known as the
System/38 and IBM introduced it in 1978. It was well underpowered
for all of its inherent advanced capabilities. However, it was a heck
of a machine for small businesses, most of which had no idea the
box was so underpowered for its architecture. It just happened to
work well for them because the all-everything operating system is
so spectacular.

As underpowered as it may have been, the System/38 was built
with the same advanced architecture, and thus, by design, it was
the same high tech machine as the AS/400 and now, the IBM
Power System with IBM i. Therefore, one could argue that the
historical IBM Power System and the System/38 are singularly the
finest computers that any company has ever made.

AS/400 Becomes eServer iSeries

In the fall of 2000, IBM changed the name of the AS/400 to the
eServer iSeries 400. While IBM had no problem changing the
name of the machine in 2000, the Company left well-enough alone
with the all-everything OS and it remained as OS/400. However, in
2004, with the i5, the Company chose to rename the operating
system as i5/OS to match the Power 5 chip.

Before rechristening the OS as IBM i in 2008, and changing the
name of the box to the IBM Power System, in 2006, IBM subtly
renamed the AS/400 yet another time. This time the name reflected
the new religion in IBM that its machines were systems and not
servers. So, Big Blue renamed the i5 as System i and the p5 as
System p, and that brings us to today.

IBM’s customers see the new IBM Power System with IBM i as a
logical extension of the finest computer system ever built, the
System/38. When the Application System/400 (AS/400) was
introduced in 1988, it was so different looking and had such better
hardware specifications that System/38 and System/36 aficionados
accepted the AS/400 name with no complaints. It was clearly a
different hardware machine inside and outside; however, the base

Chapter 8 IBM Power System with IBM i 183

attributes of the operating system and the underlying chp
architecture had remained the same.

Regardless of what you call it, the all-everything operating system is
still a computer science phenomenon and the finest OS and
computer hardware combo that any company anywhere has ever
developed and marketed.

Anyone who takes the time to look deeply into the full system
package would see a machine and an OS that is the embodiment of
all that IBM knows about computers, implemented with elegance
unparalleled in the computing era. Perhaps now that the Unix and
IBM i systems are consolidated there will be no more need for big
name changes and IBM can pack away that hot branding iron for
the long haul.

Only IBM Could Create an All-Everything
OS

Besides the all-everything operating system, the IBM Power System
hardware is also quite special in that it incorporates all the
advances in chip technology that make IBM Power chips the best in
the industry. Additionally, because the chip and the hardware
components and the OS are built together, the operating system is
chip aware as many software instructions are imbedded in the
silicon to help the system's function and performance. Additionally,
while IBM i runs at 64-bits, along the way to 64-bit Unix, IBM added
instructions to assure that both 32-bit and 64-bit Unix could run on
the same hardware using native chip instructions.

The pundits in the know suggest that within a year or so, when IBM
ships its Power 7 processor, the Company will add the mainframe
instruction set to the chip along with the mainframe optimization
instructions that have been buried in the mainframe chips for years.
Now, how’s that for a special hardware platform? For all that to
happen, the hardware really did need to be separated from all the
operating systems yet be fully cooperative with them all, not just
IBM i.

184 The All-Everything Operating System

Experts in the industry who regularly study all computing platforms
know the value of the mainframe and IBM i computing. Surely
Microsoft and Intel, and Sun and HP fear the day that IBM realizes
this also. On that day, IBM will announce that IBM i for Business is
its best all-around business OS and its proprietary mainframe line is
the best large enterprise system bar none. On that day, IBM's
system competition will have plenty of reason to fear. For now, for
its own reasons, IBM chooses to let its customers choose the type
of system they wish to deploy.

Only a big company with such huge resources as IBM could have
ever conceived, designed, and built such a superior OS and
machine model. For this, I regularly thank the IBM Corporation.
IBM spent billions of dollars to develop and billions to improve the
advanced integration features of the IBM Power System with IBM i.
None of the company’s current competitors are in a position to even
consider making such a technological investment.

If IBM i were IBM's only operating system product, Big Blue would
choose a different course of action regarding its public face on the
power of IBM i. It would no longer have to protect the less capable
platforms that bring in the most revenue. So, IBM would be in a
position to raise the technology standard and up the ante for
prerequisite features in an advanced operating system. If Microsft
or Sun or others could not meet the technology standard, then their
offerings would be inferior by comparison. IBM could have a field
day educating the masses about the power inherent in its all-
everything operating system, simply by highlighting the unique
features that have been part of the IBM i base function for thirty
years.

As you will see beginning in Chapter 10, the capabilities built into
IBM i are superior to any operating system that was available before
the System/38. CPF on System/38 changed IBM computing
paradigm forever -- and yes, for better. Ironically, the approach
used internally for the operating systems that claim to be modern,
namely, Windows, Unix, and Linux on Intel hardware, uses the
same architecture as the systems that predated the revolutionary
IBM System/38.

A less than savvy marketing manager could go to town on the facts
in that statement. In other words, all other operating systems than

Chapter 8 IBM Power System with IBM i 185

IBM i are legacy-ware design brought forth to the future. Yet, for all
the truth is worth, the industry press continues to hail the majesty of
Windows et al. wares for technical accomplishments and it
consistently refers to these wares as modern. It is IBM; however,
that has the most modern architecture ever developed for any
computer system. It sits in the attractive frame of an IBM Power
System and it runs the all-everything operating system. Any
questions?

Yet, again, for all the truth is worth, the press has no problem calling
IBM's compelling operating system and machine combination, a
legacy system. Hah!

IBM Has the System Bases Covered

What a blessing the IBM Corporation has in terms of advanced
technology in its stable of products. It has all the computing bases
covered. IBM is the only operating system and hardware vendor
that can sell anything from first base to a grand slam home run. If
you are IBM, that is a blessing. If you are an IBM i shop hoping that
one day your wife or husband or significant other will hear about the
platform that you use, the fact that IBM can do fine without IBM i is
somewhat of a curse. When you consider that Microsoft has just a
piece (though a reasonably large piece) of just one base, PC
software, you can readily conclude that IBM has the armaments that
should power it to victory in today’s computer marketplace. There
really should be no prisoners.

First Base – PC Servers

In the personal/micro/X86/X64 space, just a few years ago, IBM had
first base well covered with its industry-heralded ThinkPad, its
appealing and inexpensive ThinkCentre, and its NetVista line. Now,
IBM markets none of these personal machines but, all are offered
by IBM partner Lenovo.

The IBM company also has its high-function, high-speed Netfinity
Servers (now the xSeries). The mainframe-enriched xSeries
servers compete head on with all PC Network servers running
Windows NT, Linux, Netware, and OS/2 LAN Server. Most of IBM’s

186 The All-Everything Operating System

success in this space is shared with Microsoft and Intel, who
provide the bulk of the software and processor hardware in this
system area. However, today, there is no question that IBM has
very formidable offerings in this area.

Second Base – The Unix / Linux Box

In the multi-user and advanced workstation Unix spot, IBM is well
positioned at second base with a rugged “taken no prisoners”
submission. The Company had developed a mature offering with its
RS/6000 hardware which migrated to the eServer pSeries, then p5,
and recently to the IBM Power System. The other part of the
equation is IBM's high-powered and stable Unix offering under the
name of Advanced Interactive Executive. Dubbed AIX by IBM, this
is the company’s Unix operating system offering. If you want to buy
Unix from IBM, you would buy its AIX offering.

Along with Unix as AIX, IBM also runs the Linux operating system
on the IBM Power Systems and this has only strengthened the
product line in the overall Unix marketing space. The IBM Power
System offers top tier hardware facilities to system customers who
prefer the personality and the unique applications of a Unix or Linux
machine. IBM i can run along with Unix and Linux on the same
processor if the customer so desires. There’s no question you can
get to second base with today’s IBM Power System as it has
extended the capabilities of Linux and AIX even further.

Third Base -- Mainframe

In the traditional mainframe system arena, IBM’s leadership in
commercial hardware technology is unquestioned. Mainframes are
the types of computers that Exxon, Boeing, AT&T, Metropolitan Life,
and other Fortune 500 companies use as their main processors to
run their billion dollar businesses. IBM’s System/390 product set
(now called the System z) competes against relatively few. The
players in the large mainframe and supercomputer marketplace
include Fujitsu, Hitachi, Cray, and not many others. In this period of
resurgence for the power of mainframe computing, IBM is doing
very well for itself. For sure, you can get to third base with a
System z. And, there’s not much wrong with a triple!

Chapter 8 IBM Power System with IBM i 187

Home Run – IBM i (for Business)

In the business solutions sweet spot, IBM has hit a home run with
the IBM Power System with IBM i product line as it stands on home
base as the obvious winner. If there are any runners on base when
IBM i gets it's chance, you can expect a grand slam.

The biggest recognition problem here is that since the work that
IBM i does so nicely can also be performed on the other three
bases, though with far greater difficulty, IBM has a real marketing
dilemma in knowing exactly how to position its IBM i box to
capitalize on its inherent market strengths. The company also has
a dilemma in making its purpose for the IBM i box crystal clear to its
IBM computer prospect list. Unless you already know about the
compelling business case for IBM i, or you are reading this book to
learn, it would be hard to tell the circumstances in which the IBM i
box would be the overriding system choice over IBM’s other fine
servers.

Regardless of where it is positioned however, IBM has invested
tons of money into the IBM i platform and has in fact created this all-
everything operating system on top of the finest processor chip and
the finest hardware packaging in the industry. Some analysts
predict we will one day soon be able to run applications from all of
the popular operating systems on the IBM Power System with IBM i
platform. This includes Microsoft Windows and the many IBM
mainframe operating system flavors including z/OS. We'll see.

Though Windows and z/OS are not yet on the list to run natively on
the Power Systems box or the Power Chip itself, in 2008, both Linux
and AIX (IBM’s Unix) made the run and now all three of these
operating systems run on the upgraded System i server now known
as the IBM Power System. Additionally, these operating systems
can still run in partitions under IBM i so that even a small IBM i
machine can run all of these operating systems at the same time
with just one processor engaged.

Other than some confusion in product positioning as IBM works out
the details of releasing the full bodied all-everything operating
system, the Company is well positioned with the new IBM Power

188 The All-Everything Operating System

System with IBM i on home plate for the big home-run score of the
millennium.

Even More Environments

In Chapter 7, we discussed the base capabilities of IBM i in terms of
computing environments supported within the one operating
system. Running four different environments plus running Unix and
Linux under IBM i is surely the makings of an all-everything
operating system. To refresh your memory, the four IBM i
environments are as follows:

1. Native AS/400 and i5 Processing
2. System/36 Environment
3. System/38 Environment
4. Mainframe Environment with CSP

With the availability of running multiple operating systems as noted
above and with about fifteen years of work perfecting a native Java
Virtual Machine (JVM), the all-everything operating system can
now do even more, as shown in the following add-on list in addition
to the four items above:

5. Java Processing through an integrated Java Virtual Machine
6. Unix Processing through AIX and IBM i partitioning
7. Linux Processing through standard distributions and IBM i

partitioning

Considering that there are only two operating systems /
environments that the IBM i OS does not support today on POWER
processors, (1) Windows and (2) IBM mainframe OS flavors such
as z/OS, from a hardware and operating system standpoint, the
future IBM Power System is the future all-everything machine
running the all-everything operating system. This combo is certainly
well on its way to realizing its full future. In case you were
wondering, no other machine in the industry, from IBM, from HP,
from Sun, or from Dell can do anything close.

Chapter 8 IBM Power System with IBM i 189

Mainframe Future on Power 7?

As we keep telling you, if you can believe the industry
prognosticators, both of these missing capabilities will be added to
the Power chip hardware when IBM changes the microprocessor
base from the Power 6 platform to the Power 7.

It makes sense that IBM will stop making expensive CISC (complex
instruction set computing) processors that are unique to the
mainframe and begin to migrate mainframe OS ware to run on the
Power 7 processor line. The newest chip in the mainframe line, the
z6 does have a lot of Power 6 chip features but, it is still its own
proprietary mainframe baby for sure in lots of other ways.

The fastest AS/400 heritage machine today is the IBM Power
System model 595 with 64 integrated Power 6 processors. Such an
IBM Power System rivals the mainframe for best commercial
performance. With even greater CPU power available in the IBM
Power 7 processor expected in 2010, it would be imprudent for IBM
to continue investing billions in unnecessary mainframe-only
technology. Those billions would clearly be better spent making the
mainframe OS run seamlessly on the next generation Power
processor. That’s what I see happening; but, it won't be without the
mainframers getting a lot more mainframe-only stuff on the Power
chip than currently exists.

Windows on Power 7 Anyone?

Then, there is Windows. In many ways, knowing the haphazard
methods that Microsoft has historically deployed in its OS
construction over the years, as characterized in the book,
Barbarians Led by Bill Gates, and in other media, IBM is
understandably skeptical about running an error-prone operating
system on such a solid hardware machine. The book, Barbarians
Led by Bill Gates, was a joint effort by Microsoft insiders, Jennifer
Edstrom (daughter of Gates long time PR chief, Pam Edstrom) and
Marlin Geller, a 13-year veteran developer who worked on DOS,
Windows, and the Pen operating system. This book is so revealing
about Microsoft’s lack of discipline in its OS development efforts
that there is no longer a mystery for me as to why I must reboot my
PC so frequently.

190 The All-Everything Operating System

IBM is not looking for unique ways to have to bring down its steady
as a rock all-everything operating system or it would have
embraced Windows already, as an IBM guest on the Power
Platform. One can bet that the IBM Company is concerned about
machine stability and that surely is one of the impediments to
having any Windows type operating system run on Power.

Having said that, it is a fact that Windows NT is the grandfather of
Windows XP and Version 4 of Windows NT once ran on POWER
technology. We know that Windows 7 will be coming soon as Vista
has run into its own Microsoft adoption issues.

In 1999, Microsoft decided that Windows NT would no longer be
updated for any processors other than Intel and the DEC Alpha and
it stopped development for the IBM PowerPC chip. The DEC alpha
was taken over by COMPAQ in 1998, which merged with HP in
2002. So, one would conclude that the IBM Power System is a
"never again" for Windows. Yet, the Microsoft X-Box 360 runs on
IBM Power chips. How'd that happen? Did Microsoft dust off some
of that old Power processor code from the NT days?

Knowing this history, it is clear that there are no technical reasons
why the Windows Server operating systems could not be up-tuned
to run again on Power technology. In fact, many speculate that
Microsoft already has XP, Vista, 7, et al. running on Power and is
just waiting for its negotiations with IBM to complete. There would
be no reason at all why Microsoft would not like to enjoy the benefit
of the solid, reliable hardware base in the IBM Power System
platform so that Windows would be able to scale substantially better
than in the Intel line and run right along with the all-everything
operating system.

Of course, once the mainframe z/OS and Windows next version
runs on the IBM Power System, IBM can change its hardware name
to the all-everything machine for indeed it will have become exactly
that. Add these two to the list above and you have a machine with
just about all the needed capabilities to have it all:

8. Windows XP Native Processing
9. Mainframe z/OS Native Processing

Chapter 8 IBM Power System with IBM i 191

Now, that’s an all-everything machine from a hardware and OS
perspective if I have ever seen one. At this point of the game, the
IBM Power System with IBM i would be able to run all applications
from all operating systems. Moreover, since the applications would
be from four different environments, it would be proper to conclude
that the Power platform would be providing four times the business
value of one machine. That sure is a lot of everything for one
machine to handle by itself. Having the all-everything operating
system as one of those pillars means that many more companies
will be able to take advantage of all-everything computing on the
IBM Power System.

Chapter 9 Automomic Computing From the Start 193

Chapter 9

Autonomic Computing from the
Start

Automatic Transmissions 'R' Us

From the very beginning, the IBM i operating system was designed
to be simpler and more capable than all others. To this day, no
other platform has such a good balance between “easy-to-use” and
“powerful.” Unlike Mainframes, Windows, and Unix/Linux, IBM i
comes without a clutch. It’s got a fully functional automatic
transmission. In fact, when you drive one, you find that for the most
part, you are not needed as the system drives itself--it’s like cruise
control! You can know enough to run an IBM i-driven Power
System machine when you know less than a few percentages of
what there is to know.

With IBM i, the all-everything OS, for example, much of what you
want to do is already set up with default values, and thus, you do
not have to think out each piece of a command. You just run it.
With a minimal amount of training, one person can in fact know
enough to run an entire company using IBM i. It’s done all the time.
That’s why once people have worked with IBM i, they become
spoiled and resent working again with other machines.

In basic no-frills form, IBM i is hard to beat for a new install of a
reliable system at any new customer location. PCs are still for fluff
things such as e-mail clients, drawings, messaging, chats, and
things requiring really cheap connectivity. You may not yet want to
surf the net with an IBM i as a client, but you surely would not want
to trust a fully audited, transaction-controlled, mission-critical
invoicing application running on behalf of 100 users if it were written
in a PC-oriented kids’ language, and if it were running on a farm of

194 The All-Everything Operating System

Windows PC servers with multiple label printers in multiple plants.
For this, you need a nice sized professional staff--- yes and then
some--- even for a PC-based system. I ask myself all the time,
"Why would anybody do this with a PC-based system?" If the
system were an IBM i, just one person would be able to handle the
mission, and the person would also be able to take lunch. And, the
box would not go down.

Part of how IBM i is able to get lots done in a reliable fashion is that
it is much easier to use, and its rules are stricter than any other
environment. Hackers don’t like rules, so for the most part; they
stay clear of IBM i. On other platforms, for example, you can write a
program that destroys the operating system and leaves you to
reload it. You can do it intentionally as a hacker, or you can do it by
error, unintentionally, because you did something wrong.

Most of us have seen the ease with which viruses can be created
on Windows systems and how hackers break into Windows and
Unix boxes all the time. IBM i prevents this within its architecture. It
prevents users from killing themselves. It is not unimportant that
the techno-geeks don’t like it as much as they like Unix or Windows.
They get stopped at the door like a wolf and a brick house. They
can’t hack IBM i and bring it down successfully--and they really
don’t like that one bit!

Ease of Use for Technical Staff

AS/400-iSeries professionals love the ease with which they can
manage the IBM i system and its integrated DB2 for i relational
database facility. On mainframe computers and Unix boxes, and
even Windows boxes, it is not quite so simple. For example, on all
three of the non-IBM i flavors, the database is not integrated. That
means that you get to buy it, install it, apply the patches, and ensure
that it is fully functional before you ever get to use it.

For the record, Oracle database administrators, which are needed
in heavy database environments, get paid a ton of money. Oh, they
are worth it all right! Without them, your Oracle database would be
crashing as often as a Windows client PC. See Skip Marchesani’s
comments on Oracle in Chapter 5.

Chapter 9 Automomic Computing From the Start 195

With this environment, you get to make sure all the pieces work.
You get to integrate it with everything else on your machine. It is
shipped as piece parts. Moreover, as noted above with Oracle and
SQL Server, in order to have a database, you have to hire an
expensive extra person to your staff. This new person is called a
database administrator (DBA) and he or she comes with a price tag
of more than $80,000 per year. Whatever business value a system
with a database provides, the extra care and feeding and the extra
staff quickly chip away at that value.

A DBA is definitely needed in a mainframe shop, but that's not the
only environment in which one is needed. When A PC (X64) server
is used for real business applications, a DBA is required on this
inexpensive platform as well. Moreover, on the PC platform, you
always install servers in pairs, in case one goes down. Of course
you have to buy the backup server first and then install its software
and install the synchronization software before you get to deploy it.
So you get to do the OS and the DB installation work twice.

If you know of any advanced PC shops with database products that
do not have a DBA, you also know they are not doing too well,
operationally. Though the IBM i OS makes the IBM Power System
a database machine, you need no DBA because the database is
built into the OS. The OS and the database and all the other
advanced componentry is already installed when you get the
machine from the plant. It is somewhat humorous in new
installations that often users and even programmers discover that
they have been connected to a database long after their
applications have been using it successfully with the IBM i family for
years.

IBM i Power Systems Keep on Ticking

Internet and IBM i-oriented magazines have many wonderful stories
about how the machines just go ahead and get their work done,
regardless of the level of attention the systems get. The newest
IBM i units and even the older ones are very much like good old
Timex watches. Sometimes, however, IBM i units keep on ticking
long after they are forgotten. For example, this story relayed by

196 The All-Everything Operating System

Mark Villa of Charleston, South Carolina, is one that brings the ease
of AS/400 operations picture well into focus.

“There was an AS/400 in a plant that was doing its thing on a
regular basis, and it was basically unnoticed out in the plant.
Unknowingly, the company built a wall in the area during some
construction, and someone went hunting for the AS/400 months
later, and found it was enclosed in brick.”

That quickly gives us an idea of how much constant care an IBM i
database requires Not too much!

Runs Many Applications At Once

Unlike Windows Servers, IBM i based machines run many
applications at the same time on behalf of as many as thousands of
users- all that on just one physical system. Even Microsoft Certified
Professionals admit that Windows servers do not do well when used
for more than one function on the same machine at the same time.
That’s why a single-server PC grows into a small farm of PC
servers almost overnight. Today’s IBM i machine can be a Web
server, a Domino Notes server, a Java Virtual Machine, a firewall,
an invoice machine, an accounts receivable machine, and so on --
all on the same single-processor box, without even having to
partition the unit.

With partitioning, of course, your IBM i unit can also be a Unix
Tuxedo Application Server, or a Linux application server. More
industry analysts are noticing this facility and giving IBM i very high
marks in their total-cost-of-computing analyses. There is a high
cost to run a server farm as each machine needs attention.
Additionally, the more machines you have in the ‘farm,’ the more
likely one of them is down right now.

An IBM i unit can actually be a server farm under its one set of
covers in just the one system box. It can also provide the same
facility for Windows servers as a storage area network (SAN).
Because IBM i is so many machines in one, sometimes it gets no
credit from the industry press for being any, when it is actually

Chapter 9 Automomic Computing From the Start 197

closer to all than none. From its inception, IBM highlighted the IBM
i family as its workhorse of midrange servers for business. IBM
called the early AS/400, for example, its midrange business system.
It still is IBM’s finest business system in its newest form, IBM Power
Systems running IBM i (for Business). It If it sounds impressive, that
is because it is impressive. When IBM's next Power chip iteration
comes out and all the pieces (mainframe and Windows) come
together on the one chip, the IBM i platform will be even more
impressive.

Technical Note: A SAN is short for Storage Area Network. This is
a modern notion involving the separation of the data storage
elements from single computers and the centralization of that data
on a central disk server, the role of which is storage management. A
topology would show many servers all accessing data from the same
set of disk drives managed by the Storage Server in the Storage
Area Network. Because many Intel servers can be installed as
blades in an IBM i Power System chassis, the box itself already
serves as a SAN for Windows Server blades at 10% to 15% of the
cost of a typical SAN approach. Considering that reduced cost is
one of the most typical and most quantifiable categories of business
value, one can see the impact that an IBM i based SAN, instead of
the “farm,” can have on the bottom line.

Today IBM i on the IBM Power System is alive and kicking, with an
installed base of more than 400,000 and, perhaps as many as
750,000 systems, in about 250,000 businesses around the world.
Between 30,000 and 90,000 new IBM i systems are sold each year,
according to industry analysts. The IBM i platform continues to be
successful because many of its customers buy a new one every
four or five years, and because IBM continues to enhance the
product line to levels far exceeding all other machines on the
market.

Old Reliable

The most cited reason behind the continuing popularity of the IBM i
heritage line is its reliability. The unprecedented ease of
programming, ease of use and the low cost of management follow
right behind. The IBM Power System models continue to be

198 The All-Everything Operating System

out-of-the-box products with bundled applications, communications
software, and an integrated database. No commercial system
requires the small amount of care as an IBM i box- and, when you
try to sign on, the machine lets you in because it is not
unexpectedly down.

Ease of Migration

The system provides the ability to integrate new technologies with
very little disruption to business operations. IBM i heritage users
have been benefiting for many years. For instance, Pagnotti
Enterprises of Wilkes-Barre, Pennsylvania, a holding company for
some mining and insurance businesses, replaced its old AS/400
CISC architecture system with a 64-bit RISC system in 1999. Two
years ago, the company's older RISC machine was taxed enough
from the Company's growth that management chose to replace it.
Each time they had ever replaced an IBM i heritage machine, the
new box had cost less than the old. The last go round to the i5,
they saved money again. In retrospect, despite the magnitude of
the 1999 shift from CISC to RISC, resulting in a major performance
increase, no changes were required to the application code or logic,
according to Betty Carpenter, IT Director, at the time, for the
company.

"The conversion to 64-bits was as simple as restoring the objects on
the new system," said Carpenter, who had worked on AS/400s for
more than a decade. That’s why IBM i customers do not want to
switch. Betty retired several years back and her protege, David
Dakin, along with yours truly, masterminded the recent Power
System upgrade.

In 1988, IBM launched the AS/400 to replace its aging System/38.
It renamed its all-everything OS from CPF to OS/400. Over the
years, IBM has kept many of the original features but adapted the
overall system to the technology changes needed for the times.
Over these 30 years, counting the System/38 years, IBM also has
succeeded in making the platform far more open than anyone ever
would have expected. For instance, the IBM i OS today offers
native support for mail and messaging technologies, such as SMTP,

Chapter 9 Automomic Computing From the Start 199

POP, IMAP, PHP, MySQL, as well as Lotus Domino, and ERP from
companies such as SAP, PeopleSoft, and Baan.

Logical Partitioning Can be Logical

The IBM Power System with IBM i has grown to become a
mainframe in size at the large end, and a mainframe in capability on
all models. Super mainframe capability can be seen in a concept
called logical partitioning using IBM i. This feature was borrowed
directly from the mainframe. Using this capability, an implementer
can define one processor as if it were many processors running IBM
i or other operating system flavors. Each part of a processor
(partition) can behave as a separate machine. Moreover, one unit
may be running IBM i OS, Linux, or IBM’s AIX at the same time.
The future is wide open. In private meetings, IBM has announced
that Bill Gates would like Windows to run on an IBM i type unit, and
IBM has not ruled it out.

How Popular Is the All-Everything
Machine?

Besides my little cadre of IBM i customers in Northeastern
Pennsylvania, there are several hundred thousand others. Of
course, I think they all should be my consulting customers, but I am
happy with what I have got. A few national and world-class IBM i
heritage customers, last time I checked, include the following:

Enterprise Rent A Car,
with over 40 AS/400s, 20 of which are dedicated to handling an
application with 1.3 million transactions each hour.

Ball-Foster Glass Container Co.
in Muncie, Indiana.

J&L Fiber Service
in Waukesha, Wisconsin, a materials supplier for the paper industry.

200 The All-Everything Operating System

Cornerstone Retail Solutions
in Austin, Texas.

Bergen Brunswig Corp., a pharmaceutical distributor in Orange,
California.

Saab Cars USA,
Inc., in Norcross, Georgia (U.S. headquarters).

AppsMall
(AppsMall.com) in Rochester, Minnesota.

CoreMark
One of the largest candy and tobacco wholesalers in Canada and in
the United States.

Nintendo of America
Seattle, Washington, Nintendo's major distribution arm in the U.S.

Costco
Seattle, Washington. Running several of IBM's largest IBM i boxes
and controlling their distribution and retail network across the World.
IBM i does such a good job of running their business their growth is
more limited by electric power than their Power Systems.

Marywood University,
Liberal Arts higher education institution in Scranton, Pennsylvania.
Used for Academic and Administrative functions.

Better than half of all IBM i heritage machines are installed in
countries outside the United States.

Users and Consultants Who Check It Out,
Like IBM i

You’d have to pry an IBM i box away from its users with the biggest
crowbar ever invented in order to create some separation. Check
out this comment from a leading IBM i news company,
NewsWire/400, of Penton Media:

Chapter 9 Automomic Computing From the Start 201

"We've been running our Web site on Domino on the AS/400, and
we're not even running on the latest and greatest platform. We're
running on a [model] 50S. The beauty of it is, the thing never goes
down. Our maintenance on it is almost nil. We don't do anything
with it; it just runs."

--Terry Bird, principal, Appsmall.com

It’s not just the IBM i-biased media that pump the IBM i line from
time to time. In an InfoWorld article on July 31, 2000, just before
the rebranding of the AS/400 to the iSeries, Maggie Biggs, writing
for the "Enterprise Toolbox" section of InfoWorld’s e-magazine,
noted that the industry perception of the AS/400 heritage family
seemed to be changing.

In her article, Biggs discussed the changing perceptions as the
traditional AS/400 heritage box morphs into what she calls a
powerful, dynamic e-business server. The article was published a
few years after IBM had stuck the little "e" on the back of the
AS/400, making it the AS/400e. While writing the article, as a
matter of course, Ms. Biggs felt compelled to suggest that IBM start
marketing the box more aggressively.

"Actually, the AS/400 has been e-business-ready for several years,
but it's nice to see the marketing folks at IBM finally catching up
with the platform's technological advances."

Biggs continues:

"Our experts from the Test Center and Info-World Review Board
(made up of our free-lance writers) examined the newest release of
the AS/400 and its operating system, OS/400 [now IBM i]...

"After more than 10 years of advances and a metamorphosis into a
beefy e-business server, the majority of people still view the AS/400
[IBM i] as a legacy platform. This is a shame because the AS/400
[IBM i] is a multifaceted server capable of fulfilling a myriad of
business needs regardless of the size of the enterprise or the tasks
that are thrown at it. And the AS/400 [IBM i] continues to be one
of few platforms that can simultaneously support legacy,
client/server, and Web-based computing.

202 The All-Everything Operating System

"...what kind of ROI you might expect to gain by adopting the
AS/400 [IBM i]... found the costs low when compared to the
software and hardware capabilities of the platform, which stand out
favorably in many ways when measured against competing
servers...

"These servers can be configured to meet the requirements and
budgets of businesses both large and small. IBM has enabled
technologies that let you run both Unix-based applications and
Windows NT and Windows 2000 applications within your AS/400
[IBM i] environment. You might use these technologies to
consolidate servers, reduce expenditures, or to improve business
process integration...

"From what we experienced during our testing and analysis, the
AS/400 [IBM i] appears ready to provide some stiff competition for
its server rivals. You may not hear about the AS/400 [IBM i] as
often as you might hear about other platforms, but just ask any of
your colleagues who have worked with the platform and I think
you'll hear a positive response.”

Amen!

As the client/server revolution went sour and Windows server farms
began proving to be more and more difficult and expensive to
manage, there has been a resurgence of interest in the IBM i
platform, fueled mostly by word of mouth. Businesses are fed up
with their systems being down on a scheduled basis and especially
with unscheduled outages. It is a Microsoft / Intel way of life. It
does not have to be that way, though most non-IBM i shops think
that I am kidding. Businesses seeking a reliable, scalable platform
are starting to notice that out of all the technology that is inside the
IBM Power System with IBM i, the bottom line is that it works well
and it does not go down.

Though it would be good for IBM to let the word out, most IBM
Power System shops are not complaining about the tenth
generation, 64-bit architecture of the box. The IBM i platform
continues to benefit from Big Blue's ongoing, annual multi-billion-
dollar investment in technology. There would be no IBM Power
Systems today running IBM i without IBM's support and heavy
investment.

Chapter 9 Automomic Computing From the Start 203

IBM i Waiting to Be Successful

IBM i is poised to become the flagship for IBM once again, as Big
Blue completes its transition to the all-everything operating system
and chooses to hoist the flag. Besides having the most elegant
packaging of computer basics, its features include enterprise e-
commerce applications, and a free "integrated" version of IBM's
WebSphere server.

Not to be outdone by the big jobs, the IBM Power System running
IBM i also boasts support for Windows NT, Windows 2000,
Windows XP, Windows 2003, and even Microsoft's newest
operating systems as application servers through special bolt-on
Intel processor logic cards (like blades) that are installed inside the
Power System chassis. A little farm of diskless Intel boxes can also
be managed externally from the IBM i box, and in these cases, the
IBM i management of the Windows environment actually helps
Windows stay up with less crashes.

A Reliable Team on Duty

The free IBM i operating system shipped with the first processor of
every IBM i machine is on duty from the moment you turn it on. The
Windows process of installing the base operating system and then
adding all the Windows fix packs is not necessary. The IBM i
operating system, originally known as Operating System/400, or
OS/400, then i5/OS and now IBM i is pre-installed at the factory,
and is tested for hours before shipping. As you would expect, like
the Spaghetti ad, as you list features that an operating system
should have, when you talk about the IBM i all-everything operating
system, you’ll find yourself saying, “It’s in there!”

Before I close this chapter, I would like to present a quick laundry
list (Figure 9-1) of some of the advanced facilities that you will find
in your average IBM i system. If you are not technical at heart, it
may not be too meaningful. However, the list at least gives an idea
of the Power System running IBM i and its full capabilities to solve
business problems and its ability to provide solutions in many areas
that might not at first be obvious

204 The All-Everything Operating System

Figure9-1 Some Major IBM i Capabilities

• Up to 64, 64-bit Power 6 RISC-based architecture – IBM’s
most powerful RISC processors.

• 128-bit software architecture.

• Spooling and job management for multiple users/separate
queues.

• Performance management for allocating resources.

• Single level store (IBM i unique).

• Technology-independent machine interface (IBM i unique).

• Integrated DB2 for i Database (IBM i unique).

• Capability-based addressing for integrated security (IBM i
unique).

• Object based (IBM i unique).

• Clustering--integrated.

• Consistent, intuitive command language

• Apache Web Server (HTTP) Server--integrated within
system.

• Web search engine.

• Enhanced TCP/IP stack and utility--integrated within
system.

• Native encryption for communications and backup media.

• File serving and client/server integrated features.

• Logical partitioning--advanced system facility.

• GUI application development tools for client/server and
Web.

• Intel integration--Windows under the covers.

• PHP / MySQL packaged with IBM i

• Etc…, etc…, etc…

It’s simply the all-everything operating system running on the
industry's best hardware with the fastest processor chip ever
developed. That's all it is.

Chapter 10 Advanced Computer Science Concepts in the All-Everything Machine 205

Chapter 10

Advanced Computer Science
Concepts in the All-Everything
Operating System

IBM i Has What It Takes!

From traditional code crunching to Web services support to Linux,
Unix, Windows, and even autonomic computing, the often-
underestimated IBM i platform can match any IT environment. This
truly all-everything operating system literally can do it all.

If you strip from the newest IBM i platform all of the fancy stuff the
press seems to be excited about, such as client/server, ODBC,
Linux, Windows, logical partitioning, AIX, PASE, QSHELL (Unix
KORN Shell), and Java, you are still left with the most elegant, most
functional, and most powerful operating system in the world. It is
just waiting to be loved by the masses.

Along with a number of other graying IBM i lifers who worked with
the advanced technology of the System/38 after its announcement
in 1978, and saw it become the AS/400 and now the IBM i box, I
know that there is no computer that can top IBM i for pure
architectural elegance. After this chapter you will know the
principles of advanced computing of which I speak. After Chapters
11 through 19, you will have a more detailed perspective.

In Chapters 1 to 3, as you may recall, I briefly introduced the
architectural elegance and advanced computer science facilities
that are built into all models of the all-everything machine. In just a

206 The All-Everything Operating System

partial list, as you may recall, I identified 39 high profile business
value factors for executives along with 60 some major technical
factors that demonstrate the efficiency and effectiveness of this
killer technical system to the IT department. I am now compelled to
ask the question: "why shouldn’t an organization be able to have
no-sweat, low cost, highly functioning IT facility, while providing the
IT department with tools that make the whole thing easier than it
has ever been?" The answer to that question is simple: "There are
no reasons to not want an IBM Power System with IBM i."

In Chapters 1 to 3, we identified a number of features that affect the
bottom line in terms of benefits, costs, and organizational
productivity. In this chapter we introduce nine advanced factors that
separate the IBM i from all other computing environments and, in
the next nine chapters, we put substantial meat on the bones of
these features. The objective is to help the most doubting of the
Thomases to understand how this all-everything operating system
provides so much benefit for so little cost.

To Know the IBM i box is to Love the IBM
i box

There is no reason not to love IBM i if you really know it. So I might
be so bold as to suggest that the Teddy Bears, a musical group
from the 1950s, would have taken notice of the AS/400 in 1988, if
the non-IT world were in on IBM’s secret weapon. They would have
been able to capitalize on a great theme to reenergize their group
for a new hit tune to meet the times. Yes, the Teddy Bears could
have taken the now defamed Phil Spector’s hit tune and adapted it
to the computer world back then and again today by changing just a
few of the lyrics: “To know, know, know IBM i is to love, love, love
IBM i!” "And I do!" As silly as it may sound, I know I do as do
many others who use it every day and, our reasons are not silly.
They are big and compelling. It's how we feel and we have good
reason.

Twenty some years after the 1958 song, starting in 1978, with the
introduction of the System/38, followed by the AS/400 in 1988, the
iSeries, and IBM i in 2008, this not-so-well-known IBM platform
parlayed advanced system architecture while never abandoning

Chapter 10 Advanced Computer Science Concepts in the All-Everything Machine 207

the notion of small system ease-of-use. That’s another way of
saying you get the error-free, function rich, highly secure computing
model that the big companies get with mainframes, but you get it
with a personality that is a perfect fit for a small business. Moreover,
it comes at a cost that a small business can readily afford.

If you are still not impressed, please think of this fact. It has been
over thirty years and it is still the newest idea in town. No other
platform comes close and I will prove that to you in this chapter.

The purpose for this duopoly of advanced architecture with ease-of
use is to enable powerful customer-oriented applications to be built
that will last long into the future, without having to be scrapped or
reengineered. If there is any legacy that the IBM Power System
with IBM i possesses, this is it. However, because software code
runs forever and yes, for better, on this platform, competitors and
the Windows-dominated press have chosen to call the IBM Power
System with IBM i itself a legacy (meaning old) system. I don't think
so. .

Yet, if called to task, no industry expert could deny that IBM i is an
“all-everything operating system." Combined with the IBM Power
System it provides a compelling information technology platform
that is the best in IBM and in the industry. It is by far, the most
advanced, the most unique, the best, the most productive, and the
least cost all-around commercial system that has ever been
conceived, designed, and built. That does not sound much like
legacy to me.

All Everything OS: Six Advanced Principles

IBM i is the only operating system you can buy that offers nine
major advanced architecture facilities as part of its standard,
integrated offering. Six of these are in the computer science realm.
The fact that many of the OS functions are implemented right in the
Power chip itself makes the notion of tight integration even more
compelling. The purpose of this book is not to teach about IBM i per
se. However, in order to gain an appreciation of this computer
system platform, some things are helpful to know. There is no other

208 The All-Everything Operating System

commercial system or server that has been able to deliver even one
of the below advanced architectural properties.

Let me repeat that please: There is no other commercial system
or server that has been able to deliver even one of the below
advanced architectural properties. At the core of the IBM i
platform's machine and software architecture are the following six
advanced computer science principles:

1. Integrated system functions
2. High level machine
3. Single-level store
4. Object-based architecture
5. Integrated security / capability-based addressing
6. Integrated relational database

Because IBM itself did not announce a seventh or eighth or ninth
principle, I chose not to include these next items in the above list,
but, from my perspective these three items belong there because
they are part of just about every IBM i box and together, they help
make IBM i serve as every programmer’s dream machine.

No other operating system has any of these facilities integrated into
the operating system / machine. The add-ons that are used on other
platforms to provide this function are at best less functional and at
worst, difficult to program and use. These principles are explained
in Chapters 17, 18, and 19 after all of the six advanced principles
are fully explained in the next six chapters. I would call them
principles 7, 8, and 9 as follows:

 7. Integrated business language compilers
 8. Consistent, intuitive command language
 9. Integrated transaction processing

These nine features provide a platform that is renowned for
flexibility, large system function, ease of use, and non-disruptive
growth. To help you get a better appreciation for what these mean,
without hurting the non-technical brain along the way, let’s take a

Chapter 10 Advanced Computer Science Concepts in the All-Everything Machine 209

nice peak at each of these nine principles in turn, one chapter at a
time.

Chapter 11 Integrated System Functions 211

Chapter 11

Advanced Computer Science
Concepts: Integrated System
Functions

Integration Beats Add-On Any Day

The traditional approach to gaining computer function has always
been to use add-on software. IBM i uses a different paradigm.
Everything is included or "integrated" from the beginning so there is
little or nothing to add. IBM calls this the integrated approach and
the little i in IBM i means integration. The other approach is called a
piece parts approach or an a la carte approach as parts are pieced
together as the need for them is discovered. In the piece parts
approach, for example, if you need a database, you buy one. If you
need a transaction processor, you buy one. If you need language
compilers, you buy them. Keep your wallet out because there are
lots of lieces.

Getting more specifica bout piece parts, you may have heard of
Tuxedo as a transaction processor facility for Unix and Windows
and CICS for mainframes. You may have heard of Oracle or
Microsoft SQL Server or even MySQL in the database area.
Moreover, you may know that Bill Gates' company from Redmond,
Washington got started making language compilers and that
Microsoft makes a lot of money in these areas even today. These
are all piece parts.

For example, you may have heard of Microsoft C Language,
Microsoft Visual Basic, and Microsoft COBOL. All of these are
separate products that IT professionals get to install and make them

212 The All-Everything Operating System

operational on various computer systems in IT shops. To get those
from Bill Gates, you just have to write Microsoft a check for each
one you want.

Traditional A la Carte Approach

This traditional approach to computing thus is an a la carte
approach. You never get a full dinner. In fact, as you read the
above paragraph you get the idea that the parts of the dinner are
coming from different restaurants. And, they are. So, there is no
guarantee that they will always fit nicely on your one plate or all be
ready at the same time at the same temperature.

I like to call this traditional approach to computing legacy computing
since its style dates back to the 1950’s. Most vendors in this legacy
software space work with the Unix and Windows operating systems.
They have found it easier over the years just to add software
function as patches and sell them as new products. They make
patches to their products seem like exciting new products to get you
to buy them but they are nonetheless patches for pieces they forgot
to include when the designed the operating system.

Moreover, they have found this a far more cost effective approach
than ripping the guts out of their operating systems and adding the
function where it belongs. Thus, no operating system vendor has
ever started over and designed an operating system the right way
from scratch. Well, nobody but IBM. OK, Microsoft tried a few
times, but each time had to revert back to their standard code as
the basis for the "new function." Is Windows 2000, a lot different
from XP, and Vista and 7 or the Windows operating system du jour?

I can think of no time in the history of the IBM i operating system,
and the several renames along the way, that any customer said, "no
thanks, we like your older version better." Has anybody ever said
that to Microsoft? IBM i has proven you do not need go to Vista or
Windows 7, take it or leave it. Actually, with IBM i, it would be OK if
you left all your Windows behind, unless you like unplanned
outages and lack of function.

Chapter 11 Integrated System Functions 213

If you have followed Microsoft's history, you may recall that
Microsoft has asked its software vendors to deep-six their wares
and start over as the Microsoft Company changed critical OS
interfaces with their new named operating system versions--and not
just once. They do not just add things, they deprecate the old
method so you must use the new. Then, when they are done, the
user community gets to buy the new version of the old product as if
it were a new product. Additionally, in some cases, you get to buy
your software again, such as your office ware, or your programming
tools. You see what I mean? It is good for Microsoft revenue
streams, but not too good for a stable computing environment.

Way back in 1978, the first predecessor of IBM i was introduced as
the System/38. IBM in Rochester, Minnesota, took its list of best
computer science features that its mainframe division had collected
from its customers and started building an operating system from
scratch. The mainframe division also gave Rochester the benefit of
the current thinking at the time as to how to achieve the customer
objectives. It took a lot of years to get it right and it cost IBM a pretty
penny to make it happen. IBM i is an integrated platform and that
just does not happen. Nobody else has even attempted it because
no other vendor has the resources or the hardware / software lineup
to get it done.

Unix, Linux, Windows: Legacy at its Best

As you may have concluded, Unix and Windows still have not
abandoned their legacy a la carte tradition, and Linux models itself
after Unix. Even IBM's mainframe systems never went back and
did it completely right. Actually they couldn't, and really nobody who
expects to support its customers on its new iron can ever go ahead
and just start from scratch. Thus, all other operating systems, other
than the IBM i (for Business), are full of patches and add-ons, since
their architectures were never fully redone to accommodate the
future.

New Ideas Require New Thinking

At the time that the System/38 was being scoped out, among other
things, the library of programs in IBM System/3 accounts was not

214 The All-Everything Operating System

substantial. It had been just nine years since the System/3 was
orinally made available. Moreover, the System/3 did not support
many users concurrently and it was tough to write terminal
programs. Consequently there were few terminal oriented
programs written for System/3 and CCP (Interactive) . Moreover,
there was no database on System/3 so there was no database
"conversion" per se.

The migration path for System/3 customers to migrate their RPG or
COBOL code to the new System/38 was well thought out. An
interactive aide was not necessary. Even without a CCP aide, 75%
of interactive programs were usable and with just a bit more effort,
they ran fine on System/38. IBM in Scranton PA, where I plugged
away as a Systems Engineer during this time, got pretty good at the
interactive conversions as did most offices. It wasn't long after the
methodology was in place that many System/3 clients were
enjoying the benefits of the System/38. When the word got out, the
rest came quickly. Batch programs moved to the new compilers
quite easily with no real work.

Admittedly, the fact that System/3 customers at the time used
terminals for very few functions made conversions lots easier. I
know this for a fact because as a Branch Office Systems Engineer,
my job was to assist IBM clients in making the transition. Once
System/3 clients made the transition to the System/38, they never
looked back. Their programmer productivity factors went through
the roof and they became IBM loyalists from that moment on. I
know of no IBM System/38, AS/400, or IBM i professional who
voluntarily switched platforms. If the business chose to move from
the IBM i historical platform, the IT people either grimaced and
stayed or quickly changed jobs to an IBM i shop.

No Systems Programming

Systems programming is something that is not required in the
typical IBM i shop because of integrated system functions. Since
Systems programmers are very well paid, this is a value factor for
those keeping score about the business value of an IBM i system.

Chapter 11 Integrated System Functions 215

To put the patchwork quilt puzzle into perspective, because of piece
parts and a la carte software on other platforms, there still exists a
function in IT called systems programming. In many ways, systems
programmers finish the computer vendor’s work in the IT shop.
When as many as 40 or 50 essential software products must be
installed, tailored, configured, and continually monitored, you can
bet there is a high-paying job opportunity available for a highly
technical person. The function name of this person is "systems
programmer." To be frank, in many ways, it's like hiring a mechanic
to drive with you, wherever you go.

The systems programmer position, which was introduced in the
1960’s in IBM mainframe shops is now required in many Windows
and Unix shops to assure that all of their heterogeneous piece parts
fit together well enough to run the data center. Of course they don't
call it that, especially in Windows shops. Instead you have a
Microsoft Certified Engineer (MCE) or a team of them assuring that
all goes well on your server(s). You can bet the "farm" on that!
Next time you hear MCE, think "Systems Programmer."

The fact is that these Windows Certified Engineers, in some shops,
are nothing more than systems programmers, a throwback to the
old legacy computing days. They don’t write programs or add value
in any way to the IT shop, yet they are essential because they take
piece parts and build and maintain operating systems and software
applications on the IT shop floor. Without their efforts, of course,
there would be no completely installed servers with which to work.
So, they are very necessary. Such a position does not exist in an
IBM i shop because the system is designed to manage itself.

Well, for full disclosure, there are some IBM i shops that need
systems programmers. But there are very few and these are so big
that they have hundreds of processors in their enterprise data
centers running on several of the largest IBM Power Systems.
Companies like Costco and Nintendo USA, and other mega-
companies need so many systems to run their complex operations
that they need several people with systems expertise on staff. Most
of the time, however their "systems programmers" are like Maytag
repairmen. Now, if they chose to use Windows or Unix, they would
need more people and they would be on their feet most of the time.

216 The All-Everything Operating System

So, only in the most complex, multi-system environments is such a
position required in an IBM Power System with IBM i shop. I know
of no small businesses that are using IBM i that need a systems
programmer. IBM ships the system complete and already
assembled so that its customers can use it immediately, instead of
first having to finish building it on site. That's what we mean by
integrated system functions.

For those paying the bills, this can be thought of as a huge cost
savings and it also increases the productivity of the organization
because the system is already built when it arrives. Just consider at
least $100,000 per year for a systems programmer over the three to
five year life of the system. You can buy an awful lot of hardware
for that... perhaps even an actual farm.

Unlike the Windows and Unix piece parts approach, one of the
major design criteria for the 1978 System/38 was to ship a complete
product to IBM’s customers. The System/38 was designed not to
need additional time, effort, or skill for its completion. That’s system
integration, as in the "i" in IBM i. The great grandson of the
System/38, IBM i uses the same integration paradigm.

The Best of the Future

In the early 1970's, IBM had a major project underway for their large
customers that would permit them to use the most advanced
technology that IBM or any computer company could produce.
After millions and millions of dollars spent on analyzing customer
needs and after consulting the brightest minds in computer science
at the time, along with the consultation and leadership of a
phenomenal cast of engineers and scientists within IBM, the result
was a definition for the finest computer that could ever possibly
built. Not only was it spectacular in its immediate capabilities, but it
was so inclusive of advanced technology that the IBM team
believed it covered so many advanced notions that it would last as
much as 30 years into the future.

When I tell you what happened next, depending on who you are,
and how much you know about the internals of IBM, you may not
believe me. Please note that it was not a bunch of clowns in the

Chapter 11 Integrated System Functions 217

corner trying to rick mother IBM. This was IBM's finest scientists
and engineers coming together with a solid recommendation for the
future. To be exact, and to be a bit facetious at the same time, it
handled everything, or at least everything that these big brainiacs
could conceive would be important in the future. The bad news for
most brainiacs is that eventually they must meet the business
people and convince them that their recommended approach is best
for the company..

IBM at the time had this thing called the Corporate Management
Committee. If you had something to say, no matter how much had
been invested in it by the very people to whom you were presenting,
you had better be prepared to make a great case for your idea. No
idea stood by itself.

I think you know where I am heading. IBM was run by mainframe
chieftans who were already realizing a major cashflow from the
mainframe software and hardware the company was producing.
There was no business crisis that needed fixing. Things were
already good! Every other new system that IBM had introduced,
from the 650 to the 1400 to the 360 had caused its customers major
disruption in order to gain its benefits. IBM business analysts saw
this as an impediment for an ordinary business to move to newer
IBM technology. Perhaps more importantly, IBM had promised its
customers with System/360 that those days of year-long
conversions were over.

Consequently, with the advice of the IBM business analysts, the
CMC rejected the notion of what by then was called "Future
System" or "FS" for short. There would be no future for "Future
System." The business analysts and the executives in IBM's
mainframe division believed sincerely that it would cause too much
disruption for their large customers to make a major conversion to
this phenomenal technology idea.

At the end of the project, IBM had built a model for a system that
would be the best for the times and would be a 30-year blueprint for
all future computing. Corporate IBM felt compelled to scrap the
project to save its customers from the anguish of another major
conversion.

218 The All-Everything Operating System

Did FS Hurt IBM?

Bad news for some is sometimes good news for others. While IBM
was protecting its System/360 and System/370 large system
customers, some places in IBM did not have the same constraints.
The Rochester IBM team, who had built the System/3 and who had
the System/34 in its cross-hairs, were looking for a machine to
capture the small to medium sized market once and for all for IBM.

IBM was really doing well with billions of cash reserves and a future
that looked like it went to infinity. The corporate cheiftans,
espacially Frank Cary, IBM's Chairman for a good part of the 1970's
was often concerned about the US Justice Department's anti-trust
suit than conducting normal business. Cary wanted Uncle Sam off
his back. One of Cary's pet notions was that if the Uncle Sam axe
were to fall on IBM, it would be better for IBM to decide how the
company was to be split than to have Uncle Sam do it.

This was not lost on the Rochester team, who knew that if IBM split,
they were the first to go... and maybe that would be enough. Frank
Cary positioned Rochester and in fact all of IBM's General Systems
Division to be an easy spinoff. It was no secret. So, in addition to
looking for a machine that would be a winner for the System/3 client
set, Rochester was looking to create something that could grow
very big, if need be, to compete against mainframe IBM if it ever
had to do so. Yet, the system, while Rochester was part of IBM,
would have to be small in horsepower, yet large in potential. .

Nobody, including mainframe IBM, cared how big it was in
architecture. Having bright people on the team, some of whom were
also on the FS team, gave Rochester access to the full content of
the FS report as well as the "back and forth." Moreover, Rochester's
scientists and engineers had enough self confidence that they knew
that they did not have to take a back set to any of the other great
minds in the corporation.

Ostensibly looking for a follow-on design for its System/3 product,
IBM’s Lab in Rochester, Minnesota spent most of the 1970s
designing the architecture and then building the hardware and the
software for the revolutionary System/38. The big blueprint was FS,
but there were lots of additional innovations, from IBM scientists

Chapter 11 Integrated System Functions 219

such as Dr. Frank Soltis, Roy Hoffman, and the recently deceased
Dick Bains. Soltis is credited with being the Father of the IBM
System/38, but he would be the first to tell you about Hoffman and
Bains. If you ever have a chance, you owe it to yourself to hear Dr.
Frank talk about "this baby."

The System/38 itself therefore is the product of the IBM
Corporation's finest minds. To keep its mainframe computer
systems running faster, better, and more reliably than its
competitors, IBM performed advanced research in both hardware
and software architectures. Being a successful computer
corporation and wanting to maintain its success, IBM had a division
called the Advanced Systems Development Division, whose
mission it was to identify the technology that was to be used ten
years hence. Consequently, IBM owns a lot of patents and many
other companies have licensed its technology over the years. On
top of all this, the focused FS project realized major dividends.

Pass the Jigger

The Future System project was not run by a bunch of lightweights in
a bar having a few martinis. IBM commissioned a group of its best
scientists, engineers, and software architects to study the best
possible architectures and the best ingredients for a new system
replacement for its mainframe processor line. After being designed
for the mainframe division, this superior design became the
foundation for the most advanced computer system that would ever
be built. Internally, as noted above, IBM called it the Future
System. Though it would never be a mainframe division product,
the work lives on in IBM i. It is no longer a secret that the first
system in IBM designed with these Future System (FS)
specifications was the 1978 vintage IBM System/38.

Integration was at the forefront of this advanced design notion. If
announced today, the 1978 System/38 would undoubtedly be the
sixth most-advanced computer ever built. It would follow the
AS/400, the iSeries, the i5, the System i, and the IBM i platform.

When you build a computer system in which the hardware, the
operating system, and all of the support for program development

220 The All-Everything Operating System

and operations are all built together, you can build a system in
which function is distributed to the proper layers and components.
You can achieve integration. This means smaller code paths, better
performance, better stability, more productivity, and less functional
redundancy. Everything a developer needs in order to be
productive can be built together. Each important piece knows about
every other important piece.

Systems like Windows and Unix and Linux built from multiple add-
ons and patches and after-thoughts and other bits and peices
cannot achieve this. And, so, they never suggest that their
operating systems are integrated with anything, because they
simply are not.

IBM announced and made available the most advanced system of
its time with the introduction of the System/38 and you can acquire
this technology today under the name IBM i. There still is nothing
close to it architecturally, performance-wise, or functionally.

No longer do system programmers have to spend hours
determining which versions of which products could be built
together in a complex on-site system generation process. For the
first time, every system model in a computer product line had (and
still has) all of the functions. From top to bottom, every System/38
could be used to build and to run the same application programs. It
was in there! It still is with the AS/400, the iSeries, the i5, the
System i, and now, the IBM Power System with IBM i.

What A La Carte Can Mean (On a Good
Day)

In Chapter 10 we used the analogy of a full dinner vs. a la carte to
differentiate IBM i from its competitors. Another worthwhile analogy
is the notion of a house in which the pieces are all designed and
built separately by different companies. What if BEA Systems
(Tuxedo) built the bedrooms, and Microsoft (Windows) built the
bathrooms [OK the Windows], and Oracle (Database) built the living
room, and Intel (Xeon) built the basement. And, what if they never
compared notes before they sent the guys to do the work... what
would you expect?

Chapter 11 Integrated System Functions 221

Building Airbus 380 Analogous to Bulding your
System in your Data Center

What you would get would be something like the Airbus 380. You
may already know that when the European Airbus partners sent
their large pieces to Germany for final assembly, they found, the
first time, that it did not quite work as it did on the separate drawing
boards. This is very similar to how all computers are made. Giving
France, Spain, and the UK, different pieces of the plane to
manufacture was a great way of splitting the load; but, not having
the Airbus 380 built in one place created major engineering snafus
that delayed the plane's initial flight by two years.

Many of you may have heard this story of how there was no real
coordination of the engineering effort. Thus, even the tools and the
measuring mechanisms that were used were different. Hey, they
were similarm but different enough to cause issues. Their results
were marginally different; but, they were different enough that when
the huge piece parts came together in Germany, the plane simply
did not work-- because it simply could not work. That was a very
costly engineering mistake. I bet you’re glad it didn’t happen in your
data center.

The different engineering groups in the huge Airbus project had
their missions outlined fine, but nobody prescribed the specific tools
those engineers needed to use to build their pieces. Consequently,
the autopsy of what went wrong found that the different labs had
used different versions of CAD/CAM and CATIA, etc… that were
incompatible. The incompatible output of the 3D software created
big issues. The results were close, but no cigar!

Additionally, as we know in any software project, change
management is very important. Having four separate groups with
poor communication caused issues in change control. There was
little in the way of rigorous change and management procedures
deployed. There were major wiring issues and other engineering
defects unveiled during the battery of tests conducted. Even the
landing gears had problems and the initial assembly had some
weight issues that lead to other delays.

222 The All-Everything Operating System

There is no question that such a design / engineering effort put forth
by separate labs was bound to create big issues. Thankfully, they
were not discovered in flight and have now all been corrected. Like
the original System/38 and its delays, the Airbus is literally a huge
continual monument to what mankind can accomplish, when
properly motivated -- even if there are initial issues. Take a look at
the Airbus 380. It is as physically impressive as I see the internals
of the IBM System/38 and on to IBM i. The big difference is that
IBM i was built by the same labs with the same tools and so there
was no real final assembly issue. Integration was part of the design
all-along.

Each corporate datacenter, with its farms of various servers and
software from various companies, is a unique, continual project.
Unlike the Airbus 380 or the System/38 that can have its kinks
ironed out eventually and be good for the next round, the current
datacenter paradigm, with heterogeneous servers, engineered in
your datacenter, is sheer madness. Only an integraded system can
help management avoid such issues. Only the IBM i can help
management avoid such issues.

Piece Parts Assembly - By Design

Let's look at a bank and its need for perfection. Why would a bank
want a team of software engineers, continually on site to keep an
ongoing Windows farm properly seeded. This has been a puzzle for
me for many years. I have not solved it. How does that help a bank
or any company to require piece parts experts and expert assembly
personnel to live in the datacenter along with the mahcines? I don't
think it does.

When IBM i does not get selected by a company, it creates dat
center chaos. IBM doesn;t forecast the chaos since it is not in
IBM's interest to do so. Yet, the client knows there will be chaos
because there always is. For IBM's part when IBM i is left on the
table and it does not win the day, the Company makes a lot more
money.

Chapter 11 Integrated System Functions 223

Think about this and it gives some cluses as to why you don;t see
IBM i advertised on National TV. IBM cannot take sides and it does
not. IBM wins either way but it wins more when IBM i is not
selected. So, as a stockholder, I have no motivation to ask IBM to
solve this "problem." Having all those IBM guys on site must prove
a reassurance factor to a bank or a big business that even and
integrated system cannot replace. Even if the IBM service people
were not need in many cases, the large bank would not feel right
unless they were there.

Often, the onsite engineers, the software company supporting the
bank and even the wireless phone company all may work for the
IBM Company's Service Division, directly or indirectly. Feel free to
substitute HP or another front-line computer service company to
make the story more generic, but the fact is IBM makes lots more
money in its service business than HP.

If IBM is invloved, many of the people at all levels are paid directly
by by IBM. Thus, these people, working directly as employees of
IBM or as contractors for IBM bring in a lot of service revenue to
IBM. In all fairness, they do the same for HP if HP is the contractor.
Why should IBM or HP suggest an integrated solution, such as IBM
i when it will decrease their revenue potential? If IBM i wins and
IBM loses, that makes no sense. The moral of the story is that built-
in integration is great but it won't necessarily be IBM that points that
out to you.

Piece Parts Assembly Is Done by Your People

Back to the house analogy, the problems exist in full assembly
because the separate companies do not share one design for a
house; but, instead, use their standard room functions and
components. Just like the Airbus 380, no matter how good the
people or the tools are by themselves, without integration from the
start, when it all comes together on your lot, there will be some
anomalies. Since piece parts computer vendors merely rearrange
their standard offerings for different housing needs, it is
understandable that the rooms can’t all blend well when they
eventually come together for the first time. Heck, lets' face it, if
there is a way to get into any one of the rooms in this scenario, the

224 The All-Everything Operating System

home builder and the home buyer are lucky. Plan on having a few
hammers and saws available to get it right.

Surely in this type of “build it from standard parts design” with no
customization of the parts ahead of time, you can expect to need a
highly paid contractor / builder to get the electricity and plumbing
working right, cut doors where there are none, steal pieces of rooms
for hallways, line up the steps to open spaces, ad infinitum.

Piece Part Design Does Not Work Well

The same inefficiencies that you see in having home parts built by
separate contractors unaware of the total design of your house are
prevalent when computer vendors try putting their disparate piece
parts together in your computer room. You actually pay for the
assembly and when it finally is all assembled, before it provides one
little benefit, there is often a sense of elation once the big tool has
finally been built. The irony is that after piece parts assembly,
despite all the money and all the hassle, not one business benefit
has been accrued. If you are adding benefits to IBM i for
integration, for determining its proper business value, don't forget to
add the cost of continual datacenter assembly.

Other than that they all eat the same electricity, there is no other
real standard in today's computer systems, especially the most
popular using Intel and Windows. In the piece parts approach, two
imporant puzzle peices come from Intel and Microsoft, two
companies who really do not even like each other. They don;t trust
each other but somehow when their pieces come together, many
datacenter managers trust that they will work. (BTW, to see more
about the Intel - Microsoft relationship, type in "Does Intel hate
Microsoft")

In computer shops where vendors actually do install their wares, in
most cases, the contractor/ builder works for your company, not any
of the companies whose products you are using. This contractor/
builder person is your systems programmer (Microsoft Certified
Engineer) and the system is not complete until he or she finishes
his or her work, at your expense.

Chapter 11 Integrated System Functions 225

There is just too much irony in this scenario and there is more here.
If your company is substantially larger than the mom and pop
variety then it is highly likely that the Microsoft Certified Engineer
who works for your company, in this effort, receives his or her
paycheck from IBM. IBM has lots of Microsoft Certified Engineers
working for its services division because IBM gets lots more service
business from Microsoft shops than from IBM i shops. That alone
says something, doesn’t it?

A La Carte Software Is a Negative Annuity

Unlike a house, however, the engineers in your datacenter do not
go away when the project is completed (when the piece parts
software is all assembled and configured and made operational).
They're on the payroll or the A/P system as contractors for the long
haul. Because piece parts that fit together well one day in a non-
integrated computer shop may not operate well with tomorrow’s
updates, the systems programmer role is essential to making the
system work after it crashes, gets whacked with a virus, or simply
hangs. Has this ever happened in your shop?

Thus, these guys get hired and they stay on and are part of the
ongoing expense until you choose a different paradigm for
computing, such as an integrated, custom built once-and-for-all
approach--like perhaps an all-everything operating system.

I am ready to leave the house analogy but it keeps fitting. Think
about this scenario: Would you hire an in-house plumber for your
home because you expect your cheap plumbing to go down, all the
time, or would you consider getting better pipes?

Besides the indisputable fact that it is so much more productive and
cost effective, it just makes common sense to have the whole house
or the whole system built together. You just don't want the
construction done in your datacenter. You don;t want the plumber
living under your sink. The new paradigm is integrated computing
and it is available today with an IBM Power System with IBM i. It’s
like having the whole house built together. What's wrong with that?

226 The All-Everything Operating System

A PC is a PC is a PC

If this sounds like a commercial, it's more than likely because many
businesses have come to think that crashes and down-time are part
of normal computing. They don't believe it can ever be any different
than it is. The Microsoft Certified Engineers are not going to tell the
company to get an integrated IBM i box because they have never
heard about it. Moreover, they would no longer have a job. All the
problems we discussed so far emanate from the Microsoft and Intel
"unholy partnership," which took a small-time PV architecture that
IBM created in 1981 for desktop PCs and tried to stretch it into the
corporate datacenter. The problem is that the rubber bands do not
always hold. PC Server shops learn this every day.

PCs were designed for desktops and light computing, not for
datacenters. That is the problem. The word "Personal" is the "P" in
PC. Like all good things with stretch marks, a PC being can be
used to run a business. But once stretched too far, the rubber band
snaps, and, chaos is the order of the day. Problem # 1 is trying to
figure out which company warrants which of the piece parts.

Wouldn't it be nice to be able to use a system without rubber bands
as a major design component? Wouldn't it be nice to have a well-
built tubeless tire, instead of a tube with a million patches plus a
tire? You see what I mean?

Having it the way you want it is having an integrated system. There
are not that many integrated systems out there. IBM i is the only
one that comes to mind. If you find strange people building things in
your datacenter, you don't have an integrated system. On the other
hand, if you don't even know that your new system has arrived and
is operational, it is more than likely because it is an integrated IBM i
system, whose mission it is to quietly do your job while you wonder
whether or not your company is even automated.

Chapter 12 High Level Machine Interface 227

Chapter 12

Advanced Computer Science
Concepts: High Level Machine
Interface

Pleasing Users Is Never Having to Say You
Are Sorry

Quite simply, a high-level machine implementation works in favor of
the user, rather than the computer guru. Low-level machines, such
as Unix, mainframe, and Windows boxes operate with languages
and interfaces that are machine-oriented, not people-oriented. If
you like talking in ones and zeros, you’d like the lowest level
language -- machine language. Most people use a real language
like English, and ones and zeroes makes no sense to them.

A high-level machine is another way of saying that user functions
are built into the machine without the user having to worry about the
machine itself. To simplify this notion, it means that you speak
English and the machine hears ones and zeroes. If this were an
international notion, you would be able to speak Swahili and the
machine in question would hear it in machine language and yes,
that would be ones and zeroes. Now, that's a novel idea, isn't it?
Yet, for a system that has been out since 1978, you have not heard
the IT press doing much ballyhooing about it.

A high-level machine, as implemented in IBM i, is like a high-level
language, in that you talk to it in all ways and at all times at a level
far away from the ones and zeros and the bits and bytes. Thus, this
advanced notion brings with it a tremendous increase in operational

228 The All-Everything Operating System

and system productivity. There's lots more to this advanced notion.
Only companies who must get their work done even care. Only IT
staffs that are challenged to address the issues of the day, care.
Those companies rich enough to permit the IT expense to be many
times what it need be are so well-endowed that they do not even
need to check out IBM i. Yet, it's worth a look.

The Technology Independent Machine
Interface (TIMI)

Though, many do not care because they see computing as
inherently flawed, it would not matter if they knew that access to the
vast array of advanced system functions on IBM i is provided by a
powerful, consistent interface that computer scientists would label
as a high-level machine interface. IBM chooses to call this
interface the Technology Independent Machine Interface (TIMI).

Would the students of computer science approve of this high level
notion? Computer scientists would carry this notion even further
and would suggest that the high-level machine interface on IBM i is
really a full abstract machine, since the architecture of the
"machine" and its instruction set are basically invisible. The actual
low-level hardware looks substantially different than "English."

Moreover, the user or programmer never needs to interact at the
lower levels with the machine. This is known as user and developer
productivity. Ones and zeroes are not the way when the interface is
at a high level.

If you happened to be an outsider looking in during the late 1970's,
in Rocheter Minnesota, you would have seen a computing model
being built more on the theoretical than the practical. The practical,
after all, was the architecture of the IBM System/360 carried forward
to the IBM System/370 and on to the subsequent mainframe
platforms. The "practical" was ones and zeroes and not much else.
There was no reason to surmise that the IBM System/38, in 1978
was more technically advanced than anything IBM had ever
produced.

Chapter 12 High Level Machine Interface 229

So, would the theoretical win or the practical? Only engineers and
computer scientists knew for sure that the inherent architecture of
the Rochester produced System/38 was really something to rave
about or not. They were right. It is the best idea in computing that
any vendor has ever brought to market.

The High Level Machine Interface was one of those things that
separated IBM's System/38 and now IBM i from all other systems.
The System/38 was built better architecturally than the best of IBM's
best mainframes. All system administration and programming
functionality were included in the operating system – compilers,
database management systems, and backup/recovery utilities.

In addition to the integration and high level machine interface, there
were a ton of other things that made the System/38 IBM's finest
computer for the 1980's. It was an object-based system, designed
around an abstract machine interface. This abstract machine
interface or, as we call it, high level machine interface, allowed IBM
to upgrade processor hardware, at will, without affecting application
performance or stability.

Eventually, in 1988, IBM decided to use the first derivative of the
System/38, the AS/400 to kill its major minicomputer competition.
Microsoft was still selling desktop operating systems - not servers
so, IBM paid little attention to the future Microsoft juggernaut. When
it came time to creating an AS/400 from the System/38 and the IBM
System/36 lines, both systems made some contributions in different
ways.

The System/36 contributed its more advanced communications
capabilities, such as LAN communications, as well as its more user-
friendly menu interface. The System/38 provided the AS/400’s
overall architecture – object-based, imbedded database,
relationship with hardware mediated by the high level "abstract"
machine interface, and many operating system utilities all of which
were object and database aware.

Though all System/36 customers were far from enamored with the
AS/400, the System/36 brand contributed much of its large installed
base and large community of software vendors to the success of
the AS/400. The combined platform, named the AS/400, was
released in 1988. Over the years it has undergone major changes

230 The All-Everything Operating System

in underlying processor hardware, peripheral support, and operating
system functionality, without compromising the six underlying
design principles upon which it was built. The TIMI was the reason
this was able to occur without creating a user burden.

Comparing Traditional Architectures to
High Level Machines

Figure 12-1 gives a snapshot of a machine with a TIMI, compared
with a traditional architecture machine such as the mainframe, Unix,
Linux and Windows. Instead of the IT shop buying the traditional
add-on software functions such as those listed on the left in Figure
12-1, access to the system function is provided by a powerful,
consistent interface - CL - the visible part of the high-level machine
interface as shown on the right side of Figure 12-1.

Figure 12-1 Technology Independent Machine Interface

Chapter 12 High Level Machine Interface 231

Functions that had traditionally existed above the machine interface
were brought below the interface, making it much higher than any
other machine ever created. IBM i is shown above the interface
and thus IBM i presents a consistent interface to all developer
programming, so that when the machine and low level functions
change, the user and the programmer’s code library are protected
and do not have to be re-done.

At the interface point, at a high level, neither programmers nor
users have to learn cryptic machine code for normal functions, since
the high level instructions are more English-like. For example, at
the high level machine interface, one instruction can be used to get
a data base record, perform multiprogramming, handle storage
management, and query a data base file. In traditional systems,
such functions are handled by multiple software programs. The
IBM i all-everything operating system is much "smarter" than
traditional systems because of the TIMI. For example, it can be told
to query a data base with just one above the TIMI instruction.

High Level Interface Analogy:

Unlike a picture, an analogy is worth about 100 words, since it uses
words to make the analogy. Nonetheless, an analogy is often far
more effective in making a point than a mere description of the
facts. So, here we go. There is a good analogy that IBM has used
for a long time to describe the high level machine interface.

Suppose that we built two wood-cutting and stacking robots. Let's
say we build our first robot with a high-level machine interface. At a
"high level," we should then be able to operate the robot with
instructions such as the following:

1. Go get some logs
2. Clear out a spot for the cut wood
3. Cut the logs into firewood pieces
4. Stack it over there.
5. etc…

232 The All-Everything Operating System

Now, suppose we build our second robot with a lower level
interface. With this robot, we will have to give more and more
detailed instructions. To minimize the writing for this book, let's just
use high level interface operation 3 above as an example:

1. Position a log on the block
2. Find the ax
3. Raise the ax
4. Whack the wood
5. Check the log
6. Check the drop zone.
7. Set the ax down
8. etc…

So, now let's say you need to write programs for both robots.
Programs for the high-level robot are less complex, since there are
fewer instructions. But both robots perform their required tasks
well. It just takes a lot more programming to get the lower level
interface robot working; but, once it works, it will work forever, right?

Suppose the Chainsaw is Invented

Now suppose the chainsaw is invented. What impact does this
have on your programs? If you have become a low-level interface
fan, you are about to be disappointed. To incorporate chainsaw
technology at the low level interface, the low-level log-cutting robot
programs must be completely rewritten since they are bound to the
specific tool... the ax.

As you can see the reason is quite simple, the second robot
operates at the "raise the ax" level which is a low level of
instructions. These low-level programs know nothing about starting
chainsaws, adding gasoline, or anything to do with the new
technology that has replaced the ax. In other words, the old
software is tied to an old technology and when the technology is
changed, the old programs will fail.

Chapter 12 High Level Machine Interface 233

Now, let's look at the high level interface to see where we can
incorporate chainsaw technology. Since the program instructions
exist at a high level, the high level robot's programs can remain
untouched. Specifically, the chainsaw technology is affected by only
one of the high level statements, as shown in instruction # 3, "Cut
the logs into firewood pieces."

Notice that this instruction says nothing about how to get the job
done. In other words, the instruction at the high level does not care
if it's an axe or a chainsaw or a Bowie knife or a stick of dynamite or
something else. The program for Robot 1 is written to not care
about the underlying "how." It is concerned only about the "what."
Thus, this robot program, at the high level, is independent of any
particular hardware implementation. Thus it does not have to be
rewitten to accommodate a chainsaw.

How Does This Relate to Business Computers?

Let's ask ourselves, what if disk technology changes? What if the
system begins to use 30,000 RPM technology and there are ten
read/ write heads per disk platter. The interface question du jour
becomes, "Do our programs have to be re-written to use the new
disks? How about the following questions?

• What if you get another disk drive?

• Should it be the "D" drive a la PC?

• Should all of your programs change to reference the new D
drive?

• What files / programs should you now put on the fancy new
"D" drive?

• What if CPU technology changes... like 48bit CISC to 64 bit
RISC?

• Should the Operating System be re-written to handle it - like
Windows-95?

• Should programs be re-written to use it -- like WordPerfect
for Windows-95?

• What if you get a new printer?

• What if you get a high capacity tape drive?

234 The All-Everything Operating System

The question really is, do you want to change your software in order
to use advanced technology so you can grow - every time? Of
course the answer is no. And, with the exclusive TIMI, found only
with IBM i systems, you don't have to rewrite one line of code.

For those who are technically savvy, who have been using PCs
since the 1990's, you know that each time Microsoft, for example,
changed its operating system with an "advanced technology"
milestone release, such as Win 3.11 to Win 95 to 98 to 2000, even
they had to rewrite their dependent software. For Microsoft, it was
MS Office components like Word and PowerPoint and Excel etc…

I bet Microsoft would have liked to have its software written at
something other than a "raise the ax," level. Wouldn't Microsoft like
to have a TIMI! If Microsoft operating systems were built at a high
level, Bill Gates's bank account would be even larger, and there
would be less employees needed in Redmond, Washington
upgrading Microsoft applications to the new operating system du
jour. It's really that simple.

Obviously, with IBM i, and its high level interface, there are no do-
agains because of technology. The application software has no
idea what the hardware really looks like and that is a big advantage.

Dr. Frank Soltis was the IBM i Chief Scientist before retiring at the
end of 2008. He often talks how the TIMI came about in his many
speeches and in his published works. The TIMI was an early
design decision.

The original System/38 architects decided that the hardware would
not interpretively execute the TIMI architecture so, not only was the
notion of abstraction part of the original plan but, making it operate
natively was a big design decision. In this way, code did not have
to be interpreted against the TIMI every time it ran.

Considering that processors were substantially slower in the 1970’s
when these decisions were made, it was clear that using hardware
to interpret such a high-level instruction set architecture (ISA),
a.k.a., hardware/software interface, would not provide the level of
performance needed for a commercial server.

Chapter 12 High Level Machine Interface 235

Moreover, since most commercial applications are executed over
and over again, the translation cost would have to be paid too many
times for the notion to be efficient. As programmers know,
interpretation as a method, is most useful when a program is to be
executed once or only a small number of times. The biggest
example of this is the CL or control language for the system. Unlike
all other control languages, such as OCL or JCL, CL from the
System/38 to the IBM i systems is compiled.

As Dr. Soltis explains, because the TIMI would not be directly
executed, the architects had to design another lower-level ISA that
the programmers above the MI would know nothing about. This
“second” ISA had to be created so the hardware could execute.
Programs at the Machine interface level would be translated into
this lower-level ISA before they were executed. For performance
purposes, this translation would occur only once. The translated
machine code, along with the original MI version of the program in
its template form, would then be stored within a program type object
for future use. Thus, when low-level hardware changes occur,
without going to source, the template in the object could be re-
encapusulated at first-use to immediately use the new hardware--
with no human intervention.

Before the grandfather of the all-everything machine (IBM Power
System with IBM i) was re-oriented to 64-bits and RISC (reduced
instruction set computing) hardware in 1995, the pre-1995 AS/400
used a CISC (complex instruction set computing) instruction set
architecture as its executable interface. So did its immediate
predecessor, the System/38.

When IBM revamped its 1988 AS/400 line of computers to use a
new Power RISC chip as its processor engine, the underlying
hardware changed from 48-bit CISC to 64-bit RISC. This new
processor was nothing like the 1994 version and thus, this was a
major hardware modification to the AS/400 model line. The older
CISC ISA itself was not typical of the ISAs of the 1970s and 1980s.
In fact, from 1978 to 1995, the CISC processors that had been used
to drive the system were far more advanced than even IBM's
mainframes in their virtualization. For example, at a hardware level,
these machines worked with 48-bits, whereas the mainframes of the
same era used 24 to 31 bits.

236 The All-Everything Operating System

As noted, IBM totally changed the hardware and the executable
interface on the AS/400 to a 64-bit modified Power processor in
1995. The operating system above the machine interface (MI) thus
continued to work, as it had previously, as the materialized OS
called the same APIs as before; but, now the code in those objects
called were built for the 64-bit RISC chip, not the 48-bit CISC chip.

Note: API is short for application programming interface. It is
the point in which the application code meets the operating
system. There is also the notion of an ABI, or application
binary interface where the operating system meets the low-
level ISA. For this book and this discussion, there is no need
to differentiate API and ABI any more than in the last
sentence. So, consider an API / ABI as a set of routines,
data structures, object classes and rules provided by
operating systems in order to support the building of
applications. An API itself is largely abstract in that it
specifies an interface and controls the behavior of the
objects specified in that interface. There's more but for us, if
we think of it as the point of contact, we have enough to get
the point of the value of the TIMI.

Because the change was at a level lower than the high-level
interface, all functions above the MI, such as all the compilers and
yes, their by-products, business application programs, continued to
work once they were re-linked to the lower levels. When most
technical personnel hear something like "once they were re-linked
to the new lower levels," they see themselves running linkage
software against the programming library to make this happen. This
was not necessary to move from AS/400 48-bit CISC to AS/400 64-
bit RISC even though the processors were completely different.
They thanked the high level machine interface for that.

For example, in the post 1995 timeframe, when an organization
upgraded its older CISC 48-bit AS/400 hardware models to the
newer RISC, 64-bit models, as the object programs were
reconstituted from tape onto the new system, they were
automatically joined to the new hardware. No source code was
needed because none had to be changed. The reconstitution
process involved the new system reading the old programs and

Chapter 12 High Level Machine Interface 237

their high level template, and writing them back out with the proper
linkage. This could not have been done without a high level
machine interface.

From a programmer perspective, it was that simple. No
programming was necessary. Programmers did not even have to
know where their source libraries were located. In fact, the source
never had to be migrated. The new code and the new interfaces to
the new hardware were created on the fly with no developer work at
all. When the system woke up after all the libraries were loaded
and it began to execute the business applications, those old 48-bit
CISC apps were now 64-bit and they were running on RISC
architecture immediately. They were not emulating 48-bit CISC on
RISC, they were running 64-bit RISC and they were running very
fast.

IBM Won the 64-Bit Technology Race

This is significant technologically because once Intel conquered 64-
bit computing, thanks to AMD, and once Windows was able to use
the 64-bit-ness of the new Intel / AMD machines, six to eight years
or more had passed. That's how far ahead IBM's unknown AS/400,
now, the IBM i platform, was in 1995. The Windows servers are still
not totally comfortable in this big-bit environment and many
Windows applications still run at 32-bits. An IBM ad, at the time,
talked about the AS/400 as being "64-bits with no buts," as all
programs ran at the 64-bit level from day one. The Intel and
Microsoft world, even today, is filled with lots of buts.

Today's IBM Power 6 processors in the IBM Power System with
IBM i implement this same 64-bit, RISC notion as the 1995
versions. They are just much faster. The benefit of this overall
virtual machine design is that the hardware can change
dramatically, as it did in 1995, with no changes required for
operating system or application programs.

It is worthy to note that no other commercially available system in
history has ever been able to accomplish this feat. That includes
the ever popular Intel, Windows, Linux, and Unix flavored machines
that dot the computing landscape of today. Though the Unix and

238 The All-Everything Operating System

Linux operating systems run well on the IBM Power System
hardware, they provide none of the high level machine functionality
provided naturally with IBM i.

Why? Windows and Unix operating systems have been around for
ages. The machines upon which they run do not provide for the
object-orientation or high level interface or advanced computing
notions we are discussing and they never have and never will.
They are not object-based and they are not object-oriented.
Though Windows NT and its follow-on versions, 2000, and XP, and
now Vista and 7, also have a hardware abstraction layer, it is not
nearly as comprehensive as the TIMI approach as used in IBM i. If
it were built as well as the IBM Power System with IBM i, Microsoft
and Intel would not be struggling today to be able to use the full
power of the Intel 64-bit chip in Windows.

Change Made Painless

Even as I write this book, years after IBM was able to use 64-bits
with no buts on IBM i, in almost all cases, Microsoft operating
systems continue to waste half of the capabilities of the chip.
Thirty-two of the 64-bits on the new Intel chips remain dark and
unused in the most popular x64processors. Whether Windows 7
makes change a bit easier is for future users to gauge, but judging
from Vista, some think that expectations should be kept at a
minimum.

If the Windows “hardware abstraction layer” was fully implemented,
as in the IBM Power System TIMI with IBM i, all 64-bits would be lit
up in short order with no programming sweat. But it is not.
Moreover, the same goes for Windows applications. Since the OS
cannot deliver consistent 64-bit computing, Windows applications
run at 32-bit speed on the 64-bit platform. Eventually they'll catch
up but, if you read the trade press, you'd think that they already had.

Note: Here is the skinny on Windows 64-bit support. Enjoy:

Even now, mostt Windows users are confused about when
their machine is running in 64-bit mode or in 32-bit mode?

Chapter 12 High Level Machine Interface 239

To know for sure, click on My Computer and select
Properties. If it does not tell you that you are running 64-bit
Windows, then you are running 32-bit Windows. It is that
simple. Please note that the 64-bit version is only available
from MSDN or original equioment manufacturers (OEMs) so
chances are half of your 64-bits, if you have a new box with
x64 architecture, are dark and unused.

Of course 64-bits is better than 32-bits but it is tough to get
64-bit software for Windows, especially when Windows itself
often runs at 32-bits. On 64-bit Windows machines, there is
some PC software available for 64-bit. Those programs,
specifically compiled to run in native 64-bit, are few and far
between. Most are open source (such as Firefox) or they
are high-end professional products, such as Adobe’s image
and layout tools.

You can almost bet that your software, including most office
suites, productivity applications and games are typically
compiled for the lowest-common-denominator, 32-bits and
thus, you are not using the 64-bit machine you bought. You
see, there are a lot of buts. In most cases, you can't even
upgrade to 64-bit since the Microsoft installers don’t support
that kind of upgrade. If you get the right environment you
would first have to back up your files, format your hard disk
and do a clean install to get to 64-bit Windows. Still, much of
your stuff would continue to with 32-bits dark.

You might ask if it is worth the trip to 64-bits. Well, if your
applications are 64-bits, they will run better and faster. It's
like getting a faster processor. A 64-bit processor can
operate on integers of up to 64-bits in size. Likewise, a 32-
bit processor can operate on 32-bit numbers. A 64-bit
processor can also access memory using 64-bit addresses
and thus the machine can have more memory. Instead of a
4G limitation with 32-bits, memory is virtually unlimited by
the address size.

Many credit Microsoft and Intel for the move of PC
technology to 64-bit. However, it was actually AMD that
introduced 64-bit processing when it introduced the Athlon
64. The Athlon 64 fully supported previous 32-bit programs.

240 The All-Everything Operating System

AMD added about ten new instructions and did some other
major redesign to the Intel chip structure for the extra 64-bit
capabilities, which AMD called AMD64 or x64.

Later, Intel finally realized that its over-hyped 64-bit Itanium
chip was not going to rule the world in our lifetime. They
then decided AMD had an idea worth copying. Yes, Intel
cloned the AMD64 / x64 instructions, But, they tricked us out
here in Slumberville by calling their implementation EM64T.
Today, all of Intel’s Core 2 processors support EM64T.
Likewise, all current AMD processors support AMD64 or
x64. BTW, Intel now calls their units Intel 64.

The good news about the failure to use all 32-bits is that the
AMD64 implementation was so good that it also permits 32-
bit programs to run so all of your programs run in this new
Windows / AMD64, Intel 64 environment. Every 64-bit
version of Windows has what they call a Windows on
Windows 64-bit emulation layer, a.k.a. WOW64. This
creates an environment in which 32-bit Windows programs
can run without modification on 64-bit Windows systems.
Unfortunately, though your programs do run, they won’t take
advantage of some of the performance benefits of 64-bit
Windows.

Though you don't get it just by asking or wishing or hoping,
64-bit Windows has advantages if you can get it and if you
can make some of your applications run under the 64-bit
environment. But, it certainly is not as easy as merely
having a TIMI as on IBM i and waking up one day and IBM
has done all the work for you and all your programs run
using all 64-bits.

The part about Windows servers that bugs businesses is that they
are never sure whether they will be available for duty the next
minute or not. I had the pleasure of teaching a course in Health
Information Technology just last semester and a Doctor, going for
his Masters in Health Care Administration noted that his practice
has to put up with outages that are unplanned all the time. He is
impressed with technology but, would like technology to be more
reliable.

Chapter 12 High Level Machine Interface 241

I shared with him that in my IBM career and in my consulting career,
my clients must be even more spoiled than I thought they were. My
clients expect their machine to stay up and be there when they
need it at all times. He lamented that this was not how his practice
performed and prior to my class he had believed that all computing
was fatally flawed.

The fact is that Microsoft computing is fatally flawed. That which is
so easy to set up and get going often forgets that it is supposed to
perform flawlessly once the configuration is set and the fix packs
are on. Sorry Microsoft, it's how it is.

IBM i programmers love the notion of the TIMI, and they don’t want
to give it up, because they don't want to have to learn cryptic
machine code and silly names for normal functions. Anything less
is inferior. Even the machine instructions are more like the spoken
word, or as we say in the United States, English-like.

The interface is at such a high level (more human than machine) on
the AS/400-iSeries and IBM i units that machine instructions, not
add-on packaged programs, are used to retrieve and update
database records, perform multiprogramming, handle storage
management, query database files, and create indices over DB
files.

Having said all that, as noted above but worth repeating, one of the
biggest benefits from a high-level machine interface comes when
you are changing hardware. For example, when IBM changed its
AS/400 hardware in 1995 from a technology known as Complex
Instruction Set Computing (CISC) to the IBM-invented, industry-
leading Reduced Instruction Set Computing (RISC) model, even
though the hardware was completely different, using the TIMI,
Rochester got the operating system functional without a rewrite for
the new hardware. More importantly the IBM i business community
could use the full benefits of the new technology without any
additional work. Like IBM's ad said, 64-bits, no buts!

242 The All-Everything Operating System

No OS Rewrite Necessary

Only the very-low-level microcode (IBM calls this licensed internal
code) had to be touched. This represented less that 5 percent of
the code and it existed below the TIMI. The microcode portion
presented the hardware machine personality to the operating
system. IBM had written the original operating system, called
Operating System/400, now called IBM i, using the high-level
machine interface. Since OS/400 spoke to only the high-level TIMI,
it remained virtually unchanged, even though the processor type
and the number of bits had changed. If you are a tech guy or gal, let
me ask: Isn't that impressive?

Immediate 64-bit RISC Processing

IBM i still knows nothing of the processor architecture. So, when
the processor architecture was changed from CISC to RISC in
1995, and the hardware instruction set was redesigned, and the
architecture shifted from 48 to 64 bits, the operating system
programs did not have to be modified. All programs ran, even
programs from the System/38 era that were written and never
modified, ran the same after the hardware change in 1995 because
they were always shielded from the actual look of the hardware.
And, yes, they used all 64-bits.

Programs for IBM i and its precedents were always based on the
high-level interface, and, therefore, they continue to run. More
importantly, and I repeat, for IBM’s AS/400 customer programmer
community, the millions of System/38 and AS/400 compiled
programs, written by IBM customers and software vendors across
the world, were enabled to run, unchanged with the new AS/400
RISC platform. The source code was not needed. Please note as I
say again, "The Source Code Was Not Needed." This could not be
done on any other system today or any time yesterday or any time
tomorrow.

From a business value standpoint, this feature provides for innate
investment protection. Program code written for IBM's System/38
computer from the 1978 era runs today on an IBM i box without
recompilation. The TIMI uses a self adaptation scheme with an

Chapter 12 High Level Machine Interface 243

imbedded program template and the TIMI re-encapsulates the older
program using the new interface. Because IBM can change from
48 to 64 to 128 bits and from CISC to RISC and because programs
do not have to be rewritten and because packages do not have to
be scrapped or reengineered, there is a tremendous cost savings
for the firm. Nobody has to go out and find new software and the
CEO does not have to disrupt operations in order to permit his or
her IT staff to migrate purchased or developed software to the new
wares.

While IBM was changing its AS/400 line hardware to RISC in 1995,
it did one more thing that is historically significant at the same time.
You already know what it is; but, it really is a big deal as every other
computer chip vendor, including Intel, did not make the transition in
its expected time frame.

The IBM Company introduced 64-bit processors in 1995. Nobody
else was close. Suffice it to say these were much bigger than the
Windows and Unix and even the mainframe 32-bit processors that
existed in 1995. Another point in all of this is that the more bits one
instruction can carry in one machine cycle, the faster the machine.
All this change occurred in 1995, going on fifteen years ago, and
the technology was immediately available to AS/400 and now IBM i
shops, without even having to recompile their programs to use all
facets of this powerful hardware and OS architecture combo.

IBM achieved this in a very short time because of the nature of the
TIMI. Intel, a company that IBM enhanced to world status in the
1980s by adopting its chip instead of building an IBM proprietary
chip, would prefer that you not look at the facts. It took Intel until
the year 2000 to create a 64-bit processor.

The first Intel 64-bit processor did not run well. By 2001, Intel got it
right but for awhile longer could not figure out how to get
applications running in 64-bits. It is still sketchy. As noted
previously in this chapter, Windows was not even able to use all 64-
bits and still has trouble. Windows is still saddled in most instances
to using 32 of the 64 bits. Windows 2000 will never be 64-bit;
though it is still possible that Microsoft will eventually get its 2003
offering working with 64 bits. By then, it may be Windows 2010 or
2012 or 2014 or maybe Vista, the most unpopular OS ever offered
by MS or perhaps WIndows 7. Only Microsoft knows for sure..

244 The All-Everything Operating System

As a point of note, IBM’s mainframe division finally got its 64-bit
processors out in late 2001. So, even IBM’s premiere computing
division was behind the all-everything operating system by six
years.

TIMI Saves Users and IBM Lots of Time

All of the time it took other companies to try to get to 64-bits was
saved by IBM in the CISC to RISC conversion because of the TIMI.
Though all of the technology changed, the interface to the existing
operating system did not have to be rewritten. That is a significant
advancement and will be the same as IBM moves toward 128-bit
hardware implementations in the future. The TIMI gives the IBM
Power System with IBM i a big, big technological edge. And, though
the Unix and Linux environments may not need all that it has to
offer, over time, on IBM platforms at least, you can expect that
these two OSs will run better because of IBM's work with IBM i and
its predecessors.

Therefore, in addition to making everything on the system easier to
work with, the high-level machine interface protects the
programming investments of software companies and IT shops by
enabling existing programs to take advantage of technology and run
in full-speed mode on new hardware without having to be rewritten.
Try that with Windows or Unix or the next OS du jour!!

Why Should Programmers Like TIMI?

The TIMI means a lot to a programmer. The fact of the matter is
that in the TIMI architecture, the language compilers, unlike other
machines, do not really generate executable machine code. They
generate an intermediate but very efficient pseudo machine code
stored as a "template" in the program object. Program objecs
contain the low level executable code and the high level template.

The first time the program is run, TIMI compiles the template and
generates the actual machine code and stores it in the program

Chapter 12 High Level Machine Interface 245

object. That's really why AS/400 shops did not have to find their
source code to switch to RISC and 64-bit technology.

This comes in real handy when the operating system environment
or the hardware changes as it often does. The TIMI looks at the
object and detects that it is not compatible with the new
environment. Rather than punting, as would happen in Windows or
Unix environments, the TIMI regenerates the machine code.

This is one of the key points about TIMI that provides programmers
a big plus, compared to all other systems. Moreover, investment
protection is assured since program code works almost forever in
this environment.

It is the template and abstraction between the logical representation
of language code and the physical implementation on the machine
that enabled IBM to move from 32 bit to 64 bit CISC to RISC without
requiring a programmer in an AS/400 shop to have to change a line
of code.

Rather than take a shot just at Unix or Windows / Intel, or Linux,
though they deserve to get their shots, I will use an IBM mainframe
as the focal point for this next example. Please note that much of
what I say also applies to the other three OS environments. I
happen to be friends with a mainframe guy who had to make a
transition in the 1980s from IBM’s MVS/ESA OS. At the time, the
System/370 hardware architecture was being upgraded from a
16/24-bit architecture to a 31-bit architecture.

At the time, on the old System/370 machines, the addressable
space on the system was just 16 megabytes of memory. When IBM
moved to a 31-bit architecture they expanded the size of the
programs and the address spaces to over 2 gigabytes of memory.
 IBM worked very hard to prevent mainframe programmers from
having to modify or recompile their programs, but just as with
Windows, there was this notion of above the line and below the line.
Programs could not access memory "above the line". The 16-bit
code would run fine, just as Microsoft’s 32-bit code works fine on
64-bit machines.

However, if the programs really needed memory, (memory
constrained) programmers had to modify the mainframe code and

246 The All-Everything Operating System

recompile programs using the 31-bit compilers and linkage editors
of the day. This was as much as ten to twenty or even fifty times
greater than the effort for an IBM AS/400 customer to move from
48-bit to 64-bit technology and from CISC to RISC. As many
already know, among other things, in the Windows world, not
having a TIMI was a big reason for the delay in Longhorn (Vista et
al.)

Hewlett Packard faced this same situation. They actually shipped a
64 bit machine (DEC Alpha) long before IBM did with the AS/400
and iSeries. To this day most HP customers still cannot leverage
64-bit applications. A huge percentage of their customer base is
running old 32 bit applications. Since a majority of the HP code is
written in C++, they must manually rewrite the code.

The growth for the iSeries, because of TIMI is virtually unlimited.
Let’s say that IBM moves to 128-bit hardware and ships the 128 bit
beast tomorrow. What needs to happen? Every object program to
be migrated to the new 128-bit machine would need its templates
automatically regenerated into new executable machine code and
the old programs, without rewrite or even a human touch would
need to be immediately be usable to leverage the full power of the
hardware. And just like the 64-bit RSC conversion in 1995, the
conversions of the future will be just as simple, thanks tothe TIMI.

This fact alone make IBM i (for Business) a killer platform. But,
since we are not looking to kill anything in this book, we continue to
call this powerful inanimate animal, merely, an all-everything
operating system, or just simply, IBM i.

Chapter 13 Single Level Store 247

Chapter 13

Advanced Computer Science
Concepts: Single-Level Store

More than Virtual Storage

Many readers may already understand the concept of virtual
storage. It has been used in computer systems since the very early
1970s. Virtual storage permits computers to run programs that are
far bigger than the memory of the machine itself. It does this by
permitting memory to be over-committed, running many different
programs. It uses the disks on the system to store pages of
programs that are not being used at a particular point in program
operation. This has many advantages, including not being shut
down when the system has inadequate real memory resources.

What is Single Level Storage?

Single-level store is an advanced computer science notion that is
not available on any other commercial system other than IBM i. It
takes the idea of virtual storage one big step beyond.

Single-level store, was first introduced with the IBM System/38.
With single-level store, a System/38, through the TIMI, believed that
all of its objects existed in a 281-trillion-byte memory continuum,
based on just a 48-bit hardware address at S/38 time. That’s
awfully big for 1978, as well as today!

248 The All-Everything Operating System

Single-level storage is a revolutionary storage management
architecture that not only gives IBM i outstanding disk I/O
performance, but greatly reduces the amount of administration
required. So, again one of these advanced computer science
concepts, single level storage, adds value by reducing the IT
workload.

There a number of features that IBM i users gain with single-level
storagee:

Single Storage Pool

Regardless of whether your system uses a two-level or single-level
storage notion, there are still physical disk drives that do the data
and program storing. The management of these physical disk
drives is implemented in IBM i in its low-level partner called
Licensed Internal Code (LIC) LIC is similar in concept to the BIOS
on a PC.
By default, the operating system and applications see only a single
large pool of virtual storage (called the System Auxiliary Storage
Pool or system ASP) rather than the actual physical drives.
Therefore, the management of physical storage is hidden from the
user.

To increase the size of the storage pool, the remedy is to add disk
drives to the IBM i system and the OS automatically recognizes
them as part of the System ASP. For very large systems, in one
IBM i system, users can create additional storage pools. These are
called User ASPs and cane be independent or tied tothe system
ASP.

Scattering of Data

IBM i stores everything as a type of object. When you create an
object with IBM i, Instead of worrying about where it is stored, the
system worries about that and handles it for you. When an object is
to be stored, IBM i's single-level storage puts parts on one drive and
parts on another and it remembers which parts are where. It
scatters objects across all physical drives. Users have no idea in
which drive their data is stored. And, this is actually a good thing.

Chapter 13 Single Level Store 249

IBM i disk management also supports a notion called fully parallel
disk I/O. This provides additional benefits. IBM i recognizes that
performance is important and so it provides outstanding disk
performance because each object on the system is accessible by
multiple disk arms concurrently.

Unlike Windows C Drive and D drive and on down the alphabet,
there is no need to be concerned about any particular disk drive
filling up, or having to move data from one disk to another to
improve performance. All data management is handled by IBM i.
Therefore, IBM i does not require a human being with the title
Database Administrator nor does it require a Data Management
Administrator for file systems. Since not paying salaries adds
business value, you can start adding up the savings. IBM i also
assures that there is no disk fragmentation so there are no
CONDENSE and COMPRESS operations required as in Windows
systems and other operating systems.

Single Address Space

Memory and disk on iSeries form a single 64-bit address space. A
single address space enables objects to be accessed by name
rather than hardware address, which provides additional integrity
and reliability.

250 The All-Everything Operating System

Figire 10-2 Virtual Storage Address Space -- Single Level Storage

Can IBM Actually Have the Best
Technology?

There is a lot of irony in IBM actually having the best technology.
IBM is the most slammed company of all time for supposedly
holding back its innovations, keeping them locked-up tight for
marketing purposes. Yet, the IBM i operating system, when
unleashed to run on Big Blue's most powerful processor, the Power
6, is actually the most unplugged product of all time. Adding IBM i
to Power takes you to a point unsurpassed in human history. The
all-everything operating system is unmatched today and from the
rate of advancement activity in competing operating systems, it will
probably continue leading for the next 50 years. Once somebody
decides to catch up, it will take them a lot of years to produce even
a working prototype. Then, come the bugs.

Chapter 13 Single Level Store 251

IBM i is so good that if IBM were hiding its best technology, this
product would never have been released to its customers.
Nonetheless, IBM i does get minimal press. Only a few honest
industry reporters have taken the time to suggest that it might be a
good deal. It's as if nobody in the press believes that a machine
can be built with single level store. Yet, for over thirty years, IBM
has sold a commercial product with this capability. It's not only a
good deal, it is phenomenal. Nothing else in the industry, Windows,
Unix, Linux, or even any of IBM's mainframe operating systems,
have anything close to single level storage and to be fair, IBM's
large customers pay for this omission every day in the datacenter.

Single level store provides one big storage space in which all
objects reside. It does not matter whether the program objects or
the business data actually reside on disk, bubble memory, or bubble
gum. It is a fact; however, that today the storage devices continue
to be limited to disk technology. Nevertheless, if bio-storage or
chem-storage, or other secondary storage innovations are
implemented in the future, single level storage will just go ahead
and use this underlying technology with IBM i. Therefore, the
programs from 1978 and 2010 and onward will continue to run
unchanged.

All The Disk Drives Ever Built

In 1980, I recall giving my first presentation about the System/38
when I was a Systems Engineer with IBM. The presentation guide
suggested that the 281 trillion bytes of addressable memory
represented the sum total of all of the disk drives that had ever been
built at that time. I was impressed, for sure. It took mainframes 20
more years longer to reach this level of addressability, and funding
in IBM for mainframe systems has always been generous.

252 The All-Everything Operating System

Another Look At Single Level Store

Besides addressability and all of the implementation advantages of
virtual storage, IBM achieved even more by taking virtual storage to
just one level. This is difficult to fully comprehend without tuning
into the natural way that computers handle memory and file
systems. The original idea behind virtual storage was to have a big
page / swap pool so that programs had to be loaded from disk
devices into memory and then the portions of each file when
requested needed to be loaded into program memory when
requested. When the program closed the file, the file parts in
memory might really be from program buffers or they might be in
the virtual swap file. These then had to be copied from the swap file
to the file system, in which they were permanently stored.

When the program itself ended / closed, the same thing had to
occur for the program's executable code so there was a lot of
moving around of data, even on virtual storage systems, just to do
normal processing. Though it clearly permitted memory to be
overcommitted and in the 1970's memory was very expensive, all of
this work took away from the performance of the system.

Having live data in one user's program buffers in memory in the
virtual design would not really help data sharing in those
applications, such as inventory control and accounts receivable and
order entry in which sharing of data records is key to providing the
application function. It was not helpful as, in the time sharing days,
to have the memory space of one user fully isolated from the
memory space of another user. For sure, time sharing protection
kept one user from interfering with another but, it did nothing to
enhance data sharing.

When many programs in virtual storage paging files concerrently
tried to execute while memory was overcommitted, a pehenomenon
called thrashing occurred. Intriniscally, you can surmise that
thrashing is not good. The term denotes excessive overhead and
severe performance degradation or collapse caused by too much
paging. That which begins as a shortage of memory turns into a hit
on the processor. Managing pages in thrased systems takes more
processor time than executing the programs themselves.

Chapter 13 Single Level Store 253

Consequently without thrashing minimization controls, two-level
virtual storage also creates performance problems.

Two Level Storage Solves Data Sharing
Problem

Systems designers and systems analysts and programmers by
design are big-time problem solvers. Because there was a big
difference between time sharing systems of yore, in which users
had nothing in common, and office systems in which users hope to
share the business applications and the data, problem solvers had
to solve the memory / data sharing problem. To enable sharing of
common data between users, the designers originally chose to keep
the file system, where the data was stored, outside of the virtual
memory file. In essence, they created two levels of storage, one for
data and one for programs. These were known simply as virtual
memory and the file system.

So, on System/3's, System/34's, System/36's, big mainframes, Unix
systems, Linux systems, and now with Windows systems, this
approach allows sharing of the data in the file system. But, as noted
previously, the two-level nature of the storage brings with it
additional processing and overall system overhead. The other
design point in virtual systems is that data and program code can
be used and/ or changed only when they are in virtual memory.
Since virtual memory is nothing more than a huge file on the system
with address pointers keeping track of the page contents, this
means that anything in the normal file system must first be moved
into virtual memory before it can be used or changed. The
performance implications are that disk operations are needed
before items can be used in real memory. Think of the word
"overhead."

This creates big inefficiencies. Copying programs and data into
virtual storage creates overhead and then copying them back when
changed creates additional overhead. All of this disk activity is
inherent in this design. Though the problem solvers definitely
solved the problem of data sharing, they introduced an element of
inefficiency that does not exist in non virtual-memory systems.

254 The All-Everything Operating System

However, since memory still is not really cheap, and since
multiprogramming systems inherently over commit memory to
support an indefinite number of multiple users, virtual memory is an
absolutely necessity. But, it comes with a cost. Think about those
times when you are sitting at your client desktop PC with a number
of tasks open. On the desktop you can hear the disk clicking and
on the laptop you can feel it. Part of the price of virtual memory is
that systems run at disk speed instead of memory speed.

Two Minus One is One

Enter the notion of single level store in which the machine itself
believes that everything exists in a continuum of memory and each
object has a memory address whether it is on disk or in memory.
With this approach, the entire file system becomes part of virtual
memory. The file manager still has its index of where everything is
located, but in single level store, the directory relates the file or
other object name to the virtual memory location where it is stored.
If the object is a file, this location is where the file data is stored.

Unfortunately, once the problem solvers on every other operating
system solved the data sharing problem, they were not given the
license to go ahead and solve it the best way that it could be solved.
When IBM i was originally built, the designers already knew from
the frustration of the problem solvers how to create a solution that
was best for the system. The problem solvers, unfortunately, were
never able to revisit their solution on other platforms and that is
another reason why all platforms are less efficient than IBM i in
getting real work done.

In the single-level store solution, starting a program no longer
involves all the work of creating swap file copies and then updating
the file system. Opens and closes no longer copy entire files from
their permanent locations on the disk just to use them. Instead, the
system provides access to just the records that are needed. These
are copied into memory and their live address pointer in the system
tables is automatically changed from disk to memory. Thus, when
another user wants to use those records, they can share them while
they are in memory as the system has just one set of live address
pointers to the object.

Chapter 13 Single Level Store 255

Single-level store must use memory and it must use disk. Disk is
the only high speed storage technology currently available and
memory still is the only place from which code runs and data initially
gets updated. In its single level storage design, IBM actually
developed inherent caching of the system, as all of memory is a
cache for all the disk storage. For those of you schooled in cache,
the hardware cache associated with the disk drives themselves is
not affected by single level storage. The clear benefit of the cache
nature of single level storage is that when one user makes a
change to a file in memory, the change is instantly available from its
memory location to any other user sharing the file. Swap files need
not apply.

No other system uses this phenomenally efficient way of handling
objects and data and thus none are as efficient in their virtualization
techniques. All other systems use a derivative of the two-level
system described earlier in this chapter. Now, it is a bit easier to
understand why IBM and the computer science community have
labeled this advanced technique for a one-level storage model as
"single-level store." It is hardly new but, it is difficult to implement
and this difficulty prevents other vendors, such as Microsoft from
making it part of any of their operating systems. That's why it is
unique to the IBM i all-everything operating system. Nobody else
has invested the resources to get it done.

Auto Managed Disk Pool

As noted in the chapter introduction, there is a notion within IBM i
single-level store of an auto-managed disk pool. The fact is that the
System/38 and every successor system and operating system of
the System/38 right on up to IBM i, actually does use disk drives for
hardware. There is no other type of mass storage available. If you
are looking for a good reason why disk is still used, it is all that there
is. It's that simple.

IBM i has integrated every one of the advanced concepts we have
discussed thus far and some that we have yet to discuss. Single-
level store started out as the idea of some bright people in IBM and
in the computer science community. Then, IBM engineers and

256 The All-Everything Operating System

scientists developed the concept and designed an implementation.
The idea was to deliver an image to a user or a program that the
storage hardware resident on the system had very high level
characteristics. All storage was to be viewed as main memory.

To help implement such a notion, the OS designers first had to
create the notion of system managed disk pools, introduced above.
At an OS level, this has had its own set of advantages independent
of single level storage. In the System/38, there was just one disk
pool available on the system. Every single disk was in this one
pool. On today's largest IBM Power Systems, up to 2,700 internal
disks can be directly addressed by IBM. With SANS, IBM i can
address even more. At the system level, IBM i is written to treat all
disk drives as one big disk. You can think of it as one big set of
disks in a huge disk pool, all working together and presenting to the
user the illusion of just one disk drive.

That's what makes it so easy for programmers. They don't have to
worry about C and D and E and F to Z drives, as is prevalent with
all other systems. Through the single level storage abstraction, the
system itself carves out space and places objects on the disk
platters in a manner that automatically optimizes system storage
and performance. To some parts of IBM i, it looks like everything is
in memory and to other parts, for the high level developers, it looks
like there is one huge disk drive managed completely by the
system.

So, the user is shielded from having to assign files to drive letters
and drives never run out of disk space. This makes the system
much easier to utilize than anything else you have ever touched.
Anybody who has been working on larger systems for any length of
time knows that when a disk is full and an application needs to write
to that particular disk, even if other disks on the system are bare,
most systems shut down the application and give the operator a
nasty message. You get to spend a lot of time reclaiming disk
space, changing the disk definitions in your code and then running
the job again. Since IBM I, out of the box, thinks that it has one big
wad of disk appearing as one big disk drive, out of disk disk drive
space messages never happen.

As noted, at a very high level, IBM i thinks it has no disk and that all
memory is managed in a flat memory model. This saves

Chapter 13 Single Level Store 257

implementers substantial amounts of time. There is no denying that
whether the platform base is an IBM mainframe, Unix/Linux, or
Windows, managing disk and memory is an arduous task for a
systems implementer. Not so for IBM i since it is all managed by
the operating system.

Large Systems Shops Have Their Special
Issues

On larger IBM i systems, to facilitate backup strategies, IBM added
the notion of user defined auxiliary disk pools. For those IT shops
that do not want all storage drives managed in just one disk pool,
IBM i provides an option for users to create a number of separate
disk pools. Hardware drives can be assigned to the pools by the
operator. This comes in handy as the storage requirement on IBM i
systems reaches a very large amount. In these instances, IBM has
provided system administrators the option of segregating journals
(logs), archives, transactional data, programs, online hot backup,
virtual drives for other operating systems or even applications.
Some shops are more comfortable with multiple pools than with just
one and over the last ten years, IBM has perfected the notion of
multiple disk pools with IBM i.

Managing disk storage is a huge issue on other systems and it
steals away much time from a systems programmer. On non-IBM i
systems, you do not just set it and forget it. Thus, something as
simple as analyzing disk allocations and storage utilization can be a
big technical issue. In the mainframe and large server farm or
multi-heterogeneous system world, this function alone justifies
hiring at least one full time person and quite often more than one.

Detailed Disk Management - OS Function
or Not?

To get performance, the systems programmer on other platforms
sometimes works at a very detailed level and needs to allocate
tracks on a disk to position high use sections of a file to minimize
disk and arm movement. If you are not using IBM i then, managing

258 The All-Everything Operating System

all the disk drives is manual. Every single track of disk space must
be manually allocated. If there is a sudden shift in usage patterns
or a major increase in business activity, all the prior balancing work
may need to be scrapped and the systems programmer gets to start
over using performance reports and brute force analysis. That's
why they get paid so much.

Even if you are one of the very best system performance people in
the mainframe world, it can take what seems like forever to recover
a system that fails and it seems like forever just to keep things right.
 The IBM i box does it all; from managing disk allocations to
spreading out files, so that they are optimized for performance with
automatic allocations across multiple drives. Additionally, IBM i
continually rebalances all of the disk segments automatically.

In the Windows arena, Windows, just like the IBM i box, manages a
disk pool, but Windows is not so good at it. It has one pool per disk.
Even on an individual disk, there are problems that are obvious. If
you have high activity adds and deletes, for example, you can lose
much disk space until you run a defrag on your system. Of course,
you must do the defrag when all users are off the server, including
those coming in from the Web. So, there is lost access time, and it
normally comes when people need the system the most.
Additionally, depending on the volume of adds to multiple files, your
files can be fragmented all over one disk causing far greater
physical seek times. There are no compresses and no defrags with
IBM i. The system manages it all.

Yes, the IBM i box has a few manual disk management facilities
such as file “reorgs” and reclaim storage and in theory, operations
personnel do run these periodically; but, these are one command
operations. And, if operations does not choose to execute the
commands, the system still runs fine. You can run an IBM i system
for months and months with no measurable degradation in
performance caused by disk fragmentation. Try that on other
systems.

Single Level Store with High Level
Interface - Another Look

Chapter 13 Single Level Store 259

At the high-level interface, the single-level store mechanism delivers
an image that is unaware it even has disk drives. Memory is viewed
as one big continuum, with objects addressed by name. All objects
get an address in the continuum. The microcode worries about
where the objects and object pieces actually reside on the disk.
This saves programmers and systems managers (in larger
installations) tons of time managing system resources.

The Car Analogy

To help gain an appreciation and form a proper perspective for the
hugeness of single-level store, this next example uses the analogy
of a car and miles per gallon, or better yet, inches per address.

If a car could go one inch per address, then mathematically a car
with a 24-bit address space would be able to go 264 miles. Say the
address width is doubled to 48-bits. Without doing much work, you
might conclude that you should just double the number of miles to
528. But that would be wrong. A car with a 48-bit address space
could in fact go 4.5 billion miles. You don’t double it once, you
double the cumulative value 24 times to get the 4.5 billion value. In
other words, the car could go to the Sun and back about 24 times.

Can you imagine where an original AS/400 RISC system with its 64-
bit hardware address would take you? How about a 96 or 128-bit
address? This would cumulatively double the 64-bit address, 32 to
64 additional times. We can all agree that the result would be a
very big number. Anything more would be nothing less than extra
very big.

The software address for the IBM i OS in total is 128-bits. Each
address portion of a software machine instruction is 128-bits.
Thirty-two of those bits on System/38 are used for capability based
addressing. See Chapter 14. On IBM i, at the system level, they
are still used for security. The other 32 bits (difference of 64-bit
hardware and 96-bit software address) are used again to
cumulatively double the pointer range to something even larger than
humongous.

Additionally, the 128-bit IBM i address was 128-bits back in 1978
with CPF and the System/38. Other than IBM i, nobody in the

260 The All-Everything Operating System

industry runs with a 128-bit pointer. Yet, this is not a new
phenomenon. Many of us who engineered the migrations from 16-
bit addressability in System/3 to 128-bit software addressability in
System/38 had a hard time understanding why each program grew
about 10X. A good part of that was the 128-bit addresses that got
carried around in each virtual single level storage instruction. One
thing is for sure. If IBM could up the virtual software addressability
to 128-bits back in 1978 with 48-bit hardware, IBM and only IBM
knows how to make it 256, 512, or 1024 bits. With single level
storage, the sky is really the limit. Watch out for the Eggplants!

Chapter Summary

There are a number of major operational advantages of the single
level store as implemented on IBM i besides the obvious. We
discussed many ideas in this chapter including system and user
disk pools, single disk image for secondary storage, never running
out of disk space on an individual disk, as well as not having to
dedicate operations time or database administrator time in the
management of files and disk/ database spaces. This is besides the
inherent benefits of single level storage which were also a big part
of this chapter.

As noted, with a single-level store, the entire storage of a computer,
memory and disk, is thought of as a single two-dimensional plane of
addresses that if brought up on a screen would look like the largest
spread sheet ever built. Imagine each cell containing an address
pointing to a virtual page. The program or data pages themselves
may be in primary storage (main memory) or in secondary storage
(disk) but programs or processes that work against those pages are
shielded from caring whether the pages are in memory or on disk.

So, this says that the current location of an address is unimportant
to a process. IBM i takes the responsibility of locating pages and it
makes them available for all processes. If a page happens to be in
primary storage, it is immediately available and is used in place. If
a page is on disk, IBM i uses the virtual storage notion of a page
fault to fire up a link to the IBM i paging routine. The paging routine
brings the page into memory where it can be worked on directly by
the process.

Chapter 13 Single Level Store 261

With single level store, no program does an explicit input or output
operation to secondary storage. Instead, the actual reads that occur
in secondary storage occur when the page fault fires. The writes to
secondary storage occur when IBM i "believes" that modified
memory pages need to be written back to their location in
secondary storage.

With the IBM i implementation of single-level store, there are two
categories of page faults, database faults and non-database faults.
A database fault occurs when a page associated with a relational
database object like a table, view, or index (within the library / file /
member structure) is not currently in memory and it is needed for a
process. A non-database fault occurs when any other type of non-
data object is not currently in memory. For example, if a program
branches to an address that is of a page not in real memory, this
causes a non-database page fault to be fired.

System administrators monitoring IBM i system faults think of many
of the non-db faults as program faults. On hardware constrained
systems this can be a performance issue at a certain level of
faulting. There are faulting ratios to help in this effort and there are
standard prescriptions for managing workloads to avoid faulting.
Almost all of this work is performed by IBM i itself though the
administrator has the opportunity to override settings for specific job
tuning.

IBM i can treat all secondary storage as a single pool of data, rather
than as a collection of disk drives, as is usually done on Unix and
systems like Linux, Solaris, and Microsoft Windows. System
administrators in shops, which have very large quantities (over
100) of disk drives do have the option of defining user pools of data
and assigning a number of specific drives to specific disk storage
pools.

In the system pool approach, using one pool as is the IBM i default,
the operating system intentionally scatters the pages of all objects
across all disks so that the objects can be stored and retrieved
much more rapidly. In other words, IBM i pays attention to the
location of disk pages so that it places pages on disks in places that
improve performance. As a result, an IBM i system rarely becomes
disk bound.

262 The All-Everything Operating System

IBM’s design of the single-level store was originally conceived in the
late 1970s as a way to build a transitional implementation to
computers with 100% solid state memory. The thinking, at the time,
was that disk drives would become obsolete, and would be replaced
entirely with some form of solid state memory such as Bubble
Memory. IBM i was designed to be independent of the form of
hardware memory used for secondary storage and it still is. IBM i
users have been reaping the benefits of this implementation since
its first use on System/38 in 1978.

Chapter 14 Object-Based Architecture 263

Chapter 14

Advanced Computer Science
Concepts: Object-Based Architecture

Object Based or Object Oriented?

In 1978, IBM Systems Engineers spoke of the System/38 as having
an "object-oriented" architecture, though technically at the time the
term that better described the internal structure for storing things
was "object-based." Only in the late 1980s and the 1990s did the
term object-oriented take on real meaning on the system with the
use of new programming languages such as Smalltalk, C++, and
Java. These use what is known as the object-oriented
programming model. As hard as it may be to believe, even the
1978 model System/38 was an object-based system. A good part
of what everyone has learned about object orientation over the
years is contained within the notion of an object-based system,
though there are clearly differences.

The experts’ comments on the volatile body of work in the object
programming area indicate that people in the know have varying
opinions on things. Though the 1995 implementation of the IBM i
operating system flavor at the time, known as OS/400, was object-
based, as are all IBM i implementations, the tools that IBM used
were object oriented. Some experts believe that object orientation
transcends languages and goes further to items such as analysis
and design methodologies.

All experts seem to agree that there is a hierarchy of "inheritance" in
the object-oriented model used in programming languages such
that sub-versions of higher level objects inherit the properties of the

264 The All-Everything Operating System

parent in the hierarchy. Since IBM i objects, when created across
the system, do not universally inherit anything from a parent, IBM
does not claim that its IBM i operating system is object oriented.
However, it is definitely object based.

With all the bold assertions I have made in this book, you know that
somebody will callenge me on something. But, as of right now, I
have been around so long, I think I am right on all points, including
the inherent sloppiness of Microsoft code.

When you take a hard look at the overall design of the operating
system, you can see the IBM i unique features. IBM i surely is
object based as was the System/38 that preceded it. OS entities
are encapsulated as objects. Thus, only operations defined for a
specific object are permitted (e.g., program object code cannot be
modified via a text editor, etc.). Additionally, objects all possess an
attribute called atomicity in that they cannot be split or separated or
otherwise manipulated except in part. If you want to work on an IBM
i object, you must operate on it as an entire object, and all of its
object rules apply.

Believe me, I do not hate Unix or Windows or Mainframes. They just
happen to be far more difficult for me to use than IBM i. Object
based systems, such as IBM i, however, are in radical opposition to
the UNIX model, and if I may add, the Windows model also, which
Bill Gates admits is based on Unix. In the Unix model, all objects
are regarded as files. Therefore, a file operation is permitted
against any Unix system object (e.g., executable code, devices,
etc.)

As much as I would like to say that IBM i is everything and can do
everything, only half of that is true. IBM i, technically speaking,
cannot be regarded as an object oriented operating system. There
is more of this to come in this chapter. The reason is that Its model,
“object based, ” lacks some of the basic characteristics of a fully
object-oriented m,del. I identified a few above but adding to the
can't do list are subclass creation, and polymorphism. To learn
more about these topics that are not part of this book just type in the
subject into your favorite search engine and you can surely get your
fill.

Chapter 14 Object-Based Architecture 265

Just as with every other advanced computer science concept that is
inherent in IBM i, there are no commercial object-based or object-
oriented servers available today from any computer vendor in the
hardware or software realm. Only the IBM Power System with IBM i
fits the bill. All other servers are thus, legacy, or highly traditional, in
their design.

IBM i Provides Many Object Types

Call them classes if you wish but the number of object types
supported in the IBM i operating system is huge. IBM has assigned
a three to six character mnemonic for each object type. When this
object type is written in “English,” the mnemonic language of choice
for object names, it is always preceded by an asterisk. To give you
a brief snapshot of the vast list of object types implemented in IBM i,
take a look at Table 13-!. It shows a list of the most commonly used
objects, their mnemonics, and a short description:

 Table 13-1 Object Types Found on IBM i box
Object Type Object Description
*LIB Library (where objects are stored. Libraries

cannot exist within other libraries)
*PGM Program (for compiled languages: CL, RPG-IV,

COBOL, C, C++, COBOL No interface
restrictions)

*MODULE Module (linkable into a program from a compiled
language)

*SRVPGM: Service program (dynamic set of one or more
modules, like a DLL file in Microsoft’s world).

*BNDDIR Binding directory (holds a list of modules and
service programs and is used when creating
programs).

*CMD Command (an object used for calling programs –
used extensively in the operating system
interface)

*MENU Menu (List of options, accessed with the GO
command)

*FILE File (for both devices, data, and program source;
de-scribed with DDS; files can also be created
with SQL)

*STMF Stream file (traditional file that would be familiar
to most Unix and Microsoft users and stored only
in directories, not libraries.)

266 The All-Everything Operating System

*DIR Directory (part of the Integrated File System that
is equivalent to Unix and Microsoft)

*JRN
*JRNRCV

JRN & *JRNRCV: Journal and journal receiver
(used to journal changes to files, data areas, and
stream files)

*USRPRF USRPRF: User profile (allows users to sign-on to
the system)

*JOBD Job description (used when submitting/starting
jobs)

*JOBQ Job queue (used to queue up batch jobs to run in
a subsystem).

*LIND LIND: Line description (communications line:
Ethernet, token ring, etc).

*DTAQ DTAQ: Data queue (used to queue up data
entries for fast retrieval by other jobs).

*MSGQ MSGQ: Message queue (used to send message
to users, can also be used as a data queue)

*OUTQ Output queue (used to queue up output to a
printer or diskette writer).

Metadata and Function Forms an Object

Looking at an IBM i object, you will find two parts, (1) a descriptive
part and (2) a functional part. The functional part determines what
an object is and what it can do and what it can be used to do and it
also provides the object its ability to do it. The greatest trick the
hacker has on non-IBM i machines of the Unix or Unix derivative
flavors -- Linux and Windows, is their ability to sneak an "object"
onto the system as a file and then later change it into an
executable. Nothing in either OS stops hackers. They have had a
great time with these operating systems from their inception and the
tough part to believe is that they still do. IBM i knows the intended
function of an object and when hackers try to use a data file as a
program. IBM i shuts the door in their face.

With IBM i, everything, and I mean everything is an object. You
saw an incomplete list of objects in Figure 13-1. For our purposes
in this chapter, let us consider that database files, programs, job
queues, message queues, and a host of other items with unique
purposes are what IBM i knows simply as "objects." We learned
above that an object within IBM i has two parts. The first part is

Chapter 14 Object-Based Architecture 267

referred to as the “descriptive part.” We already discussed the
second part as it is what gives an object its intended function. The
descriptive part contains text in the form of metadata about the
object. Between the text description and the functional description
an object is documented as being able to perform certain functions
and / or to be used in certain operations.

Enforcable Object Rules

Let's look at an example. On IBM i, a program object goes through
a lengthy process to be created. Its descriptive part contains
information about what it is and its functional part has more rules
that are in programming code form affirm that the second part
contents are executable, read-only, compiled code. As such, the
only operations permitted by IBM i on this object are those that you
would expect to be enabled for a program. You can’t add records to
it. You can’t read it in as input to a program. But, if you have the
proper authority, you can execute it.

If it were a database object, of course, its rules would permit you to
write directly into the middle of the file if you chose, but it were a
program, you would not be able to write into the middle of the
executable code. The system's program object rules just won't let
that happen. Thus, the notion of a two-part object design ensures
data integrity for all objects in the system. And, so, again, viruses
and other malware cannot hide out in IBM i objects waiting to attack
your system. The all-everything OS is designed to swat them down
before they have a chance to execute even once. Spawning is a
virtual impossibility.

With this simple example of what you can do with a database file
and a program, you can see that an object-based design has very
important security implications. On a Windows or even a Unix
system, as an example, there are no notions of rules for files or
programs. Bill Gates was a big fan of Unix so Windows, under it all,
looks a lot like Unix. One mechanism by which computer viruses
enter an operating environment is by masquerading as data. Since
programs are just files in Windows, it is easy for a bad program to
be carried around innocently on such systems as if it had some data
merit.

268 The All-Everything Operating System

Once a bad hunk of malware gets inside a Windows system, and it
becomes part of the file structure, the hackers have other methods
by which they can flip the name to make it a dot exe and voila, it is
executable code. Nothing in the Windows OS checks for that.
Once it becomes executable code, it then goes ahead and wreaks
havoc on your system and it may even propagate itself to other
systems in your network. Such a change of characteristics from
data to program is not possible with IBM i. If the system lets a
package enter as data, it must retain the characteristics of a
database file forever. It cannot change its mind and become an exe
type file as in Windows and take you for an unwanted ride to
McAfee or Norton or Kaspersy.

Speaking of McAfee or Norton or Kaspersy, it says a lot about IBM i
and its impregnable objects that none of these companies have
been compelled to write a virus detection or correction program for
IBM i. Object based systems do not lend themselves to viruses or
to virus propagation.

IBM i OS Rewritten Using Object Oriented
Tools

Though the IBM i box system has always been object based, in
1995, IBM’s Rochester Lab rewrote the rules of how far object-
oriented programming could be taken. In a major redesign and
reprogramming effort, Rochester rewrote the under layer
(microcode, low-level code below the TIMI -- sometimes called
firmware) of the OS/400 operating system (licensed internal code)
as an object-oriented project. The 95 percent of OS/400 that ran
above the TIMI continued to work just as before, after some
cosmetic changes. Even more importantly, all of the user code
(RPG and COBOL programs) that had been compiled more than 17
years prior, continued to work.

IBM used an object-oriented methodology and object programming
tools. No other commercial system had ever been written in this
fashion. It was a first with new hardware and a new orientation.
Somehow, like many IBM i firsts, this groundbreaking computer
science event did not make the national news. It didn't even make
the local news. The IT press were asleep waiting for Bill Gates or

Chapter 14 Object-Based Architecture 269

somebody else to discover America and then they were
disappointed that it was Columbus, or whomever historians have
agreed upon. Most agree that it was not Columbo though Peter Flak
in that role could probably unearth many of the continual mysteries
of informaton technology.

The AS/400 in-crowd certainly knew about the rewrite. From a
historical perspective, this was a major achievement. The press
came back from their slumber six or more years later when
Windows was modified (with a little help from AMD) to be able to
run on a 64-bit Intel / AMD platform. Yet, 5% of IBM I, under the
hardware covers, was completely rewritten in 1995 to achieve the
same facility and nobody seemed to care. IBM i accomplished 64-
bits so long ago that most IBM i shops now think it's really not such
a big deal. They think everybody has been there since 1995.

Can this lack of interest by the press and IBM's unwillingness to pay
for the publicity be the reason why the reader of this chapter may be
unaware of this capability? Today, the AS/400, iSeries, and the
IBM i box are the only object-based commercial systems in
existence anywhere. IBM i provides even greater business value
through objects because its integrity never gets compromised and it
permits all organizations in which it is deployed to work on business
problems rather than fighting the virus du jour.

Chapter 15 Integrated Security 271

Chapter 15

Advanced Computer Science
Concepts: Integrated Security

What is Security?

Security is the process of controlling access, preventing access,
limiting access, granting access, and revoking access. A computer
science advanced concept known as capability-based addressing,
implemented in the System/38 and CPF in 1978, for years has been
acknowledged by computer scientists as the best way to achieve
system security.

With the AS/400 family, in the form of today’s IBM i operating
system, security continues to be built in. The methodology has
changed a bit and, it is even better today than just capability based
addressing. The most prestigious security clearance for a system
and operating system today is given by the Federal government of
the US, and IBM i carries that clearance for its built-in security.

Only IBM with its System/38 CPF implementation has ever
achieved capability based status in a commercial project. IBM has
a number of informal rules that it uses for follow-on products. One
of them is that each new product or version must be better than the
prior product or version that it replaces. No product is permitted to
ever regress to something inferior to its original implementation.
So, it would be natural to assume that the AS/400 and IBM i
systems, just like the IBM System/38, have continued with capability
based addressing and have taken it closer to perfection.

272 The All-Everything Operating System

The fact is that with the System/38 as its main product for over eight
years, Rochester's IBM lab had done a pretty good job of perfected
the use of capabilities within the System/38 architecture. Nobody
had ever implemented capabilities on any commercial machine until
the System/38 and it was at the top of the "capability" charts until
the AS/400 was announced in 1988. Then things had to change
because Uncle Sam did not like all the capabilities of capabilities.
In this chapter, I will explain why.

Uncle Sam and Capabilities

Of course, you are not going to buy a computer just because it has
capability-based addressing or for that matter because it has
"integrated security." But once you have an idea of what integrated
security using capabilities or what Dr. Frank Soltis refers to as
adoption of authority, brings to the business, you’ll want your
computer to have it. You will then see all other systems that do not
have this function as inferior. If they do not have integrated
security, they are minimized. Having once achieved capability
based addressing, the highest level of security devised by the top
minds in the field, IBM was surprised when it could not get the
government's highest security clearance at the time for the future
AS/400 because, as noted above, Uncle Sam just did not like
capability based addressing. The US government had decided that
capability based addressing was not secure.

I am not ready to get into a philosophical discussion about this
notion but, the essence of their objection was that once a user or a
process or anything on the system had received a capability key for
even a temporary act, it could never be revoked.

From my discussions with Dr. Soltis, though he would prefer to
move on rather than reflect on what might have been, I got a pretty
solid feeling that IBM Rochester could have handled the
government's objection within the context of capability based
addressing. Uncle Sam held all the cards and IBM was looking for
its C2 security clearance for the AS/400 so, it created a different,
yet still advanced way of handling security through the object
structures on the system. IBM created an impregnable internal
security implementation using adoption of authority for its AS/400

Chapter 15 Integrated Security 273

and IBM i systems that do not have capability based addressing as
the cornerstone for user authority.

It would serve no productive purpose for me to offer commentary
about the government's role in what is good and what is bad
security. Let me just say that to get Federal C2 level security, IBM
had to abandon the beliefs’ of the best computer scientists in the
world. If you want to stay in business and achieve new markets,
there are battles that you must choose not to fight. IBM chose to
win the C2 security clearance rather than solve the temporary
authority problem with capabilities.

As an interesting side note, when IBM was seeking certification for
C2 security (level 50), the team from the Department of Defense
acknowledged that they had never seen a system with capability-
based addressing that could pass their certification. No matter how
much IBM argued our case, the DoD would not budge. IBM had a
mechanism to allow temporary adoption of authority, and this
method was acceptable to the DoD team. So, Big Blue moved on
and implemented this method, along with internal security-auditing,
another DoD requirement when the Company introduced level 50
security in December, 1993 with Version 2 Release 3.

Five Security levels from Which to Select

IBM i has created a security environment that is as tight as it can
possibly be. However, not all of IBM's clients want security at the
ultimate level and so, IBM built IBM i with five different levels of
security. IBM i shops decide which of these levels they are going to
turn on. The five levels of security are as follows

• Level 10 -- No Security -- Everybody is the security officer

• Level 20 -- User profile and password security -- Need
password to get on

• Level 30 -- Resource Security -- Need authority to access
objects

• Level 40 -- Operating System Security -- access to non
standard interfaces is blocked

• Level 50 -- C2 Level Security Department of Defense
classification --

274 The All-Everything Operating System

IBM ships every new IBM i system at level 40. Security level 10 is
no longer supported but, if a shop has been using level 10 it
continues to be honored. If an IBM i shops changes from security
level 10 to 20, 30, 40 or 50, you will not be able to change it back to
level 10. IBM strongly recommends that you leave the security level
set to 40. At security level 50, no system internal control blocks can
be modified. In comparison some, but not many, system internal
control blocks can be modified at security level 40.

IBM i security is so good that even IBM does not recommend that
you run at level 50, the C2 level. A big part of the reason is that
Level 50 changes the way i5/OS operates to meet the requirements
for a C2 certified system. Running Level 50 security has been found
to adversely affect performance, so unless you need a C2 certified
system for business, IBM recommends that you do not use Level
50. The performance hit is estimated at between 5-15 percent CPU
impact.

Computer Science Loved "Capabilities"

Way back in the 1960s and 1970s, computer scientists were
planning the future of computing. One of the first advanced
capability-based system designs from Carnegie Mellon was called
the Hydra operating system. Interestingly enough, Hydra also was
object-oriented, and was built with a primitive machine abstraction
layer (high-level machine interface), along with a single-level store
and a number of integrated functions.

Unlike the IBM i box, however Hydra, and all of the other advanced
computer science research projects noted below were / are
software-only models. None have ever been implemented
commercially and in the labs they were research-only projects.
None have had to endure the rigorous hardware and software
testing that a commercial product requires. The best that anybody
at 10,000 feet can say is that all of the projects achieved some of
the advanced computer science notions introduced in Chapter 10
but, none achieved all and more accurately, none achieved more
than half.

Chapter 15 Integrated Security 275

Thus, no machine ever has been built from the ground up with the
advanced facilities nor the unprecedented levels of functional
integration as found in the System/38, AS/400, iSeries or IBM i
running on the IBM Power System platform.

Security / Advanced Computing Research Projects

The KeyKOS micro-kernel operating system emerged in the mid
1980s and was an improvement over the earlier Hydra. In the mid
1990s, yet another improvement operating system arrived with the
help of the University of Pennsylvania’s Extremely Reliable
Operating System (EROS) project. EROS releases sound much
like the story of Linux. Now on Release 0.6.0, with prerelease 0.8.3
already shipped, the EROS project, spearheaded by Jonathan
Shapiro, took the concept of capability-based systems yet another
step toward the ideal. Yet, even Shapiro, as bright as he was could
not sell his idea commercially and he gave up and he has since
moved on to commercial ventures.

Before anybody starts thinking that the System/38 copied any of
these projects, please know it was not the case but, there could
have been some theory testing from the other side. After all,
System/38 was a commercially available product that contained all
of these notions and it was commercially available before any of
these ideas got off the ground.

More importantly, none of these implementations--Hydra, KeyKOS,
EROS or Coyotos, which has become CapROS meaning
"Capability-based Reliable Operating System," were implemented
on a system that you could buy anywhere. For thirty years, the IBM
i family of machines have been the sole commercial embodiment of
how successful the notions in capability-based systems and the
notion of adoption of authority could increase the security
capabilities of business machines.

The Hydra, the KeyKOS, and the EROS efforts and the later
Coyotos / CapROS project, which took over from EROS, are
computer science research projects at their best. They may very
well be the wave of the distant future for all other machines, but
they are not out there today. From my personal observations, the
speed in which these projects move along, and the propensity for

276 The All-Everything Operating System

today’s OS vendors to change to better ways, the distant future is
way, way out there.

The System/38 was introduced as a capability-based system way
back in 1978 when the notion of capabilities was first being kicked
around computer science circles. Due to IBM's desire to achieve
the necessary government clearances to market the AS/400 and
follow-on units to the government, only system state functions today
use permanent capabilities that are similar to those used in the
System/38. For the AS/400 to IBM i, IBM had to rework its
integrated security model to make it even tighter than that provided
by raw "capabilities" alone.

Do "Capabilities" Still Have Value?

Capabilities pertain to objects on System/38 and the notion, though
not the full notion, carries on to processes running in the system
state on the IBM i platform. System/38 proved that you do not really
need a Hydra, KeyKOS, or EROS OS running on DEC, Motorola,
IBM S/370 or Intel hardware to be successful with capabilities.

No other operating system tried to use the best from EROS or
Coyotos / CapROS to achieve the unparalleled performance and
scalability advantages of hardware and software integration and
abstraction as done in the 1978 IBM System/38. Today's IBM i
system using the phenomenally capable Power 6 processors could
surely implement a perfected capability based addressing for user
and system state computing. IBM could handle temporary authority
as well as permanent authority within the system pointer in the user
state, similar to its work on the IBM System/38. However, as noted
previously, it would have been put in a position in which it would
have to re-gain the C2 security clearance and this is an effort IBM
chose not to pursue. The DoD may not have given clearance,
regardless of the proof. Instead, the Company focused on what Dr.
Frank Soltis calls adoption of authority in order to achieve the same
security objectives in the user state.

For IBM i, since capabilities are still used in the system state, they
have value but, the value overall to IBM has been diminished due to
the DoD's C2 requirements.

Chapter 15 Integrated Security 277

In addition to helping the reader understand the innate security that
is built into the IBM i operating system at the object level, I felt that it
was important to note that IBM had built a fully functional
capabilities based machine that was doing quite well and would
have continued to do quite well if IBM did not have to change its
course to comply with C2 certification. IBM was honored for this
acheivement. No other operating system from no other vendor ever
received such an honor. IBM builds the best operating systems and
IBM i is the best that IBM has.

Jonathan Shapiro v. Linus Torvalds

Most everybody in computing circles knows the story of Linus
Torvalds and how he brought Linux to the state that it exists today,
as a viable operating system for real IT projects. Jonathan Shapiro
is in many ways to security notions as Torvalds is to operating
systems. Torvalds had a number of issues getting access to
technology in this younger days and one of his "distant mentors"
was Andy Tanenbaum, one of the most well known professors of
computer science in the world. Linus Torvalds had many issues with
Andy Tanenbaum, regarding operating system kernel design, and
these high spirited discussions are documented all over the Internet
for the reading. They are quite interesting.

Back in 2006 Jonathan Shapiro got riled up about Tanenbaum and
Torvalds taking issue with the security projects that we have lightly
discussed in this chapter. Obviously, Shapiro backs these projects
implicitly. Baited by the exchange on security by these two gurus,
Shapiro steepped into the foray with a post that began like this:

"Well, it appears to be 1992 all over again. Andy
Tanenbaum is once again advocating microkernels, and
Linus Torvalds is once again saying what an ignorant fool
Andy is. It probably won't surprise you much that I got a
bunch of emails asking for my thoughts on the exchange. I
should probably keep my mouth shut, but here they are.
Linus, as usual, is strong on opinons and short on facts. "

278 The All-Everything Operating System

You might enjoy a trip to http://www.coyotos.org/docs/misc/linus-
rebuttal.html for a look at Shapiro's rebuttal. Clearly these thre
gurus have had a major influence on today's computing paradigm.
For those who had never heard of Jonathan Shapiro until you read
this chapter, you now know the level of computer science thought in
which he operates.

Additional Information on Capabilities

While Jonathan Shapiro is one of the foremost advocates of
integrated security and reliability on computer systems, IBM
Rochester can get a major sense of pride from knowing that its
groundbreaking System/38 for eight years as a prime commercial
product proved that capabilities can be very effective for business
systems.

On the System/38 and the IBM i systems, IBM implemented 128-bit
pointers which are very similar to high level soft addresses. The
system pointers are big enough that besides large addresses, they
can also contain information about the types of operations that can
be performed on a particular object. The information that would be
held would be the object's authority. Dr. Frank Soltis, in his book
Fortress Rochester, examines system pointers and capabilities as
used in the IBM System/38 and the IBM i. He notes that "A pointer
that contains the object address and object authority is called a
capability. The S/38 had capability-based addressing because all
system pointers contained both the address and the authority. This
changed in the AS/400 and was carried forward to the iSeries."

If you are as intrigued by the notion of capabilities as I am, consider
reading What a Capability Is! by Jonathan Shapiro, available on the
EROS Web site at http://www.eros-os.org/essays/capintro.html.

After taking an informal survey, Shapiro concluded that none of his
friends, not even the technically savvy, who worked in the computer
field, understood what he did for a living. So, he decided to help
folks like you and I understand the notion of capabilities by starting
from scratch. His article is well written, light in spirit, and assumes
little knowledge. It takes the reader on a journey toward a real
understanding of the concept of capability-based systems.

http://www.coyotos.org/docs/misc/linus-rebuttal.html
http://www.coyotos.org/docs/misc/linus-rebuttal.html
http://www.eros-os.org/essays/capintro.html

Chapter 15 Integrated Security 279

Because Jonathan Shapiro has already done a great job in defining
the notion of capability, I have chosen not to paraphrase, but to
include three paragraphs from his work. I repeat them below, for
the technically inclined. If you have no concern for the technical
aspects, feel free to skip these.

“Dennis and Van Horn introduced the term capability in
1966, in a paper entitled 'Programming Semantics for
Multiprogrammed Computations.' The basic idea is this:
suppose we design a computer system so that in order to
access an object, a program must have a special token.
This token designates an object and gives the program the
authority to perform a specific set of actions (such as
reading or writing) on that object. Such a token is known as
a capability.

"A capability is a lot like the keys on your key ring. As an
example, consider your car key. It works on a specific car (it
designates a particular object), and anyone holding the key
can perform certain actions (locking or unlocking the car,
starting the car, opening the glove compartment). You can
hand your car key to me, after which I can open, lock, or
start the car, but only on your car. Holding your car key
won't let me test drive my neighbor's Lamborghini (which is
just as well--I would undoubtedly wrap it around a tree
somewhere). Note that the car key doesn't know that it's me
starting the car; it's sufficient that I possess the key. In the
same way, capabilities do not care who uses them.

"Car keys sometimes come in several variations. Two
common ones are the valet key (starts, locks, and unlocks
the car, but not the glove compartment) or the door key
(locks/unlocks the car, but won't start it). In exactly this way,
two capabilities can designate the same object (such as the
car) but authorize different sets of actions. One program
might hold a read-only capability to a file while another holds
a read-write capability to the same file.

'As with keys, you can give me a capability to a box full of
other capabilities…”

280 The All-Everything Operating System

IBM i / System/38 Developers
Acknowledged

IBM i security is implemented at a system-wide level via code that
runs at two different levels of the machine. One layer is under the
Machine Interface and the other is above in IBM i proper. All
security is object based from the get-go. IBM i uses an
authorization scheme to protect objects from unauthorized access
and more importantly, unauthorized modification.

Capability-based addressing is a notion that uses the address
pointer to provide the capability that permits or denies access to an
object. IBM i uses this advanced computer science notion as its
object-level security implementation when operating in the system
state and it uses the code partners above and below the machine
interface for user authorization to objects.

IBM was rightfully so proud of its System/38 implementation that in
1981, at the International Conference for Computer Architecture,
Frank G. Soltis, a well known IBM scientist and the main architect of
the System/38, along with Merle Houdek and Roy L. Hoffman,
presented the notion of capability-based addressing as
implemented in the IBM System/38 to the Association for
Computing Machinery (ACM) Special Interest Group on Computer
Architecture. Their paper described how support is divided among
architectural definition, microcode, and hardware to minimize
overhead for this function.

Great plaudits to the innovative IBM System/38 and its designers
and implementers for in 1978, it was the first commercial machine
that ever used a capability-based model enforced by capability-
based properties. On the System/38, the addressability pointers
were built to be 128-bits wide, of which 96 bits are the address, and
the remainder represented the authority (capability). The
System/38 used an architecture known as “tagged,” which makes it
virtually impossible to counterfeit a system pointer.

Chapter 15 Integrated Security 281

The IBM i box therefore, handles system state security by object
through its capability-based addressing. User security is via
authorization or as Dr. Soltis told me he has always called this,
"adoption of authority." Everything on the system is an object.
Everything can be secured very easily at this base level, using
either the capability-based architecture or the adoption of authority.

You may ask how much integrated fail-safe security is worth to your
organization. To answer that, you would have to know your security
exposures and how much you were paying at the server level or on
internal and external firewalls, including the technical expertise.
You might find the cost staggering. IBM i's integrated security does
not solve every problem that you can think of but, it is the only
machine-based security mechanism available on any computer
today, and it helps businesses protect the business value provided
by their IBM i servers by keeping them secure.

If you are adding up the business value of IBM i, don't forget to
throw a few more tributes into the plus column.

Chapter 16 Integrated Relational Database 283

Chapter 16

Advanced Computer Science
Concepts:
Integrated Relational Database

Integration Is a Common Theme

The System/38, in 1978, was the first computer ever built with a
relational database that was integrated within the hardware and the
very framework of the system and operating system. Integration is
a common theme in the AS/400-iSeries-IBM i architecture. The
integrated relational database was and continues to be a hallmark
of the IBM Power System with IBM i. There is no other commercial
machine in existence, even today, thirty plus years after the IBM
System/38, which comes with its own built-in relational database.

Can you imagine how far ahead of the competition the System/38
was in 1978, when DB2, IBM’s leading mainframe relational
database product had yet to be announced? And with a System/38,
it was just there! You got relational database with every machine.
With IBM i of course, you still do.

Moreover, since the notion of relational database was part and
parcel of the architecture of the original System/38, it continues to
be so with IBM i. In fact, a number of often-used relational DB
facilities are built right into the hardware instructions set in the
Power 6 chip. Consider that one of the most frequently used
operations in a relational database is index creation. The IBM i
family has implemented this function as one hardware instruction.

284 The All-Everything Operating System

That is why from way-back, the System/38 would outperform all
competing systems of its size in the relational DB area.

In fact, to run as well as a System/38, the competition had to
execute its benchmark with sequential and indexed file processing
to avoid the overhead of an add-on database management system
software package. The System/38 had just one performance
number, as does IBM i. Both can run database as well as non-
database applications with no degradation.

IBM Power System with IBM i Breaks DB
Rules

Most relational databases use mathematical set theory and only set
oriented operations, implemented through the Structured Query
Language (SQL). IBM i can do all this but it actually does even
more. Simple features such as the ability to link a compiler read
and write operation to the database are not part of the deal on any
other machine. Language compilers on other machines are
database agnostic. Not only do they not have database function
built-in, they have no idea if a database is even going to be used
and if it is, which one it might be - MySQL, Ingress, Oracle, etc…
So, nobody else's compilers know anything about databases. In
fact, “compiler reads and writes to a database” are anathemas to
the spirit of the original relational database model.

Before compilers and utilities such as COPY can be written to use
all of the underlying power of any system, those base capabilities
need to be defined. IBM built a few new new object types with the
System/38 and these carry over to IBM i. These object types are as
follows:

• Physical Database File Object

• Logical Database File Object

No business system can exist without a strong file system in which
to store data. The designers of the System/38, an object based
system from the get-go, chose not to create a simple file object that

Chapter 16 Integrated Relational Database 285

would require an add-on database to give it more business value.
Instead, the designers built all the rules necessary for relational
database processing into the two object types listed above, and
from that moment on, poof, the IBM i heritage operating system had
an integrated database.

Since SQL had not fully been perfected at the time, the System/38
designers aloso built a definition language and a manipulation
language into the system. It has a non-descript name called DDS,
which is reflective of the fact that it is based on a form type clled a
data description specification (DDS).

Along with the normal attributes that one would expect in a Physical
Database File Object, IBM added support for what has been called
a partitioned data set in computer science terminology. Developers
for years have been "partitioning" single data files so that they could
use one file for multiple sets of simlar transactions. For example, for
many years application designers for companies with several
hundred order takers would define one file and then partiton it into
several hundred parts. There would be one file part for each order
taker, thereby keeping each order taker's space unique to that order
taker. The record shape (format) was the same for all but each
had their own space definition.

Object Based Notions Made it Easier

Sometimes operating systems had minimal support for partitioned
data sets; other times application designers would take a regular file
and divide it themselves to make the application work. Rochester
therefore saw the notion of a parttioned data set as a requirement of
the database physical file object. And, so they built it into the
object. Each section of a physcial database file object is called a
member and it is of unlimited size and there are unlimited members
in a physical database file object. You can't do things like that if you
do not have an object-based system to begin with.

Since IBM had designed this nice mechanism for multiple members
in database files, the developers decided that they could use this to
store source statements for RPG, COBOL, BASIC, and other
languages. Additionally, it could be used to store the DDS needed
to build the physical file or logical file objects needed for the

286 The All-Everything Operating System

database. For these special circumstances, IBM Rochester devised
a standard file definition with three parts, sequence number, date
last changed, and source statement. The three parts were really
three defined fields in a database file and this file was used with the
Source Editor to store code produced by developers. So, a source
physical database file object called RPG could store RPG code and
one called DDS could store DDS statements and so forth. Because
each file and each program that was created needed a name, to
store the source for the program or for the database, IBM Rochester
standardized on the notion of using one member in the source
physcial database file object for each named program or database
file object that would be created.

When the AS/400 came out and SQL became available for the first
time in 1988, IBM used the existing physical file and logical file
objects to store the database tables and views that are created via
SQL. For SQL indexes, the logical database file object already
provided the necessary structure so IBM merely mapped the SQL
Create Index facility to the native create logical file function. SQL
created files and DDS created files use the same structure and
another object called a library was called upon to fill the need for a
database schema.

Once the underlying database object structure was defined on the
IBM System/38, it made sense that the utility programs and the
compilers were database aware. This provides the ultimate in
integrated services for developers and quite frankly is one of the big
reasons why developers who are interested in being productive are
annoyed when they must work with other platforms.

IBM Chose the Practical in 1978 Rather than the
Theoretical

Rather than worry about upsetting the late Tedd Codd, who at the
time was perfecting his invention of relational database, the
pioneers in the Rochester Labs chose to create a relational
database that could do more than work with sets of data. They
knew they needed to support set theory but, more importantly, they
wanted their database facility to work naturally with the problem and
procedural programming languages of the day, using record at a

Chapter 16 Integrated Relational Database 287

time processing. As a point of fact, most programming is record at
a time.

Back then, IBM Rochester did not care if it was different than the
theoretical model that Codd had was perfecting. IBM Rochester
was happy being better than the standard. Therefore, the
System/38 developers built a relational database that could not only
read and write naturally to the database, but also the language
compilers were made database-aware. Programmers were
therefore able to use the database object's metadata rather than
having to key input and output specifications for their programs.

Yes, I did say that word "object," again. IBM's integrated database
for the System/38, which is now known as DB2 for i, is built on the
object notion of IBM i. Every database table, view or index is an
IBM i object.

Since the one and only System/38 relational database would always
be present on every System/38, as it is on the IBM i box, the
compiler writers and the utility writers did not ignore the opportunity
to enhance the productivity of the integrated database within their
own software offerings. In fact, they built their products to take
advantage of the presence of the database, and to make their
compilers and utilities, as well as the database, easier to use.

Oh, sure, the Tedd Codd database purists hammered the notion
that SET theory was not used for all functions and they pointed out
that this was not being true to the relational model. Record-level
access was never part of Codd’s plan; but, programmers needed
record level access since there were many record at a time needs
in programming, such as looking up a single customer to process
an order.

Ironically, this "purist deficiency" is a major advantage of the
System/38 and IBM i implementations. Other relational database
implementations continue to be plagued with jury-rigged, unnatural
facilities within their high-level language (HLL) compilers because
their implementers chose not to aid the programming effort with
their designs. For example, to read a record with a traditional
system, instead of just issuing a READ command in the natural
compiler language, the programmer would have to call a program
and pass it parameters. Moreover, the programmer would have to

288 The All-Everything Operating System

fully describe the input and output in the program and pass it on the
program call, rather than have the compiler bring in such metadata
from the database itself.

Integrated Database Makes Programmers
Productive

System/38 COBOL and RPG programmers by comparison had life
easy from day one. IBM i programmers continue to have life easy
today. Since all DB products have different ways to call their
respective database functions, compiler writers could not include
natural links to these databases in their COBOL, BASIC, RPG, or
other compilers. So, instead of the compiler writer doing the tough
part and leaving the programmer with the easy part, programmers
on other platforms need to know the special APIs (application
programming interfaces) that are available for each different DB
product that can be used on a given system's compiler.

For example, in the Windows client server applications,
programmers need something like ODBC and its APIs to gain
access to server data. If programs are written in Java going to a
servlet server then JDBC APIs are needed. These named APIs
mean that the access to data is not natural and thus it is a lot more
work than merely telling the compiler to go ahead and get the
customer record. That means that for most businesses,
programmers are not very productive.

Moreover, a READ using these APIs is not just a READ, it is a
specific call to the API with a bunch of parameters including the
names of the data fields and the data. Additionally, since there is
no guarantee that the reads or updates will actually take place once
the request leaves the client or the browser, the programmer also
needs to code in some error recovery. All of this is taken care of
with an integrated database. The bottom line is that all
programmers, other than those working on IBM i nowadays, have
lots of work to do for simple everyday database functions.

This was never the case on the IBM System/38 and is not the case
on the Power System with IBM i. Since the compiler writers from
the System/38 to IBM i all knew about the database ahead of time,

Chapter 16 Integrated Relational Database 289

since one and only one database was integrated into the system,
they were able to devise natural operations within the languages to
support database functions at a very high level. Thus, the compiler
and the OS does the work, rather than the programmer.

READs and WRITEs to the database are integrated operations just
as READs and WRITEs to disk files and tape had been in previous
file oriented compilers. Programmers use simple operation codes
to access the database with no need for special APIs.
Programmers, therefore, do not have to code unnaturally to get their
jobs done, so they get many more jobs done than on non-integrated
database systems.

Metadata Saves Developer Keystrokes

Besides the pleasure of ease-of-use programming at the device and
operation level, the compilers pulled in all of the data descriptions
directly from the integrated database object's metadata.
Regardless of whether the operations were input, update, or output,
the compilers would fetch the data descriptors that previously had to
be hand coded at a detail level, and they would pop the input specs
and/ or output specs right into the programs at compile time. They
would even show the specs on the program listings as if the
programmer had typed them in. When programmers do not have to
define input or output in their programs or describe the data fields,
they can do lots more productive work. This facility saves
development shops an additional ton of tedious I-O coding time.

The traditional Tedd Codd databases were often very difficult
implementations, requiring high-priced database administrators to
manage the systems. Moreover, at the time, databases were either
all or nothing. All programs had to use the database if a major file
were converted. This created major implementation difficulties.
The System/38 database worked first time, every time, with no
database administration required. IBM i continues that tradition.

Database Supports File Structures for Other
Environments

Besides all the benefits described above, if a file were defined to the
database, programs still could use internal descriptions within their

290 The All-Everything Operating System

programs. Thus, programs could be migrated from System/3 or
System/34 or System/36 or Mainframe systems 370 or 390 or z/OS
using internal RPG or COBOL data descriptions and the
programmer would not have to convert them to use the new
database field descriptors. So, if you called the customer number
field “custno” in the program and “customer-number” in the
database, your program code could run without caring what the DB
field name was. This was a major innovation, but not necessarily
Codd-approved.

What this has meant to programmers over the years is that
conversions to IBM i are a snap compared to all other systems,
mainframes, PCs, or Unix boxes. It will continue to be a snap as
IBM keeps making it better. Adding database files is still not an
issue on IBM i. All of this facility permits programmers to build
systems and mission critical applications much faster. It also
enables them to bring them online faster than ever before in
computer history.

Set Theory Operations Not Always Most Productive

Rather than making it more difficult for programmers, by forcing
them to use set theory in their program logic, IBM created the easy
to learn data description specifications (DDS) language to
accommodate the way programmers actually worked. This helped
the programmers who used the database to be even more
productive than those who chose to continue to use auto report,
copy books, or hard-coded input/ output program specifications.

In its product-excellence slide presentations that I often presented
to System/38 and AS/400 prospects over the years, IBM suggested
a five-to-10-fold increase in programmer productivity would be
achieved over traditional methods. Using these powerful, integrated
tools, I saw my clients over the years achieve such results. This
improvement still holds with the new IBM Power System with IBM i.

All programs written for OS/400 or IBM i in high level languages,
even today, continue to take advantage of the productivity facilities
of full database integration. In other words, programmers still write
code 5 to 10 times faster than on other platforms. IBM just doesn’t
highlight that part of the machine anymore since the advances are

Chapter 16 Integrated Relational Database 291

almost thirty years old Yet, IBM i developers have been enjoying
this level of productivity since the System/38 was announced in
1978, over thirty years ago. One would think that by now, the
competition would have caught up. Nevertheless, they have not.
IBM still has a big advantage in the database area.

No Name Database

This story is funny. In the early 1990's, IBM did a survey of its
AS/400 customers to see if they even knew they had a database on
their system. It is a fact that many IBM i users even now feel they
need no IT staff or they need just a small staff to keep their systems
running. In some cases, there is no in-house expertise at all. When
IBM polled its AS/400 accounts back then to see if they knew that
there was a database on the system, the Company learned more
than they wanted to know.

After investing in an integrated database on their premiere
midrange machine for years, IBM reported that half of the AS/400
users surveyed did not even know their machine had an integrated
database or any database of any kind. Yet, they were using it! IBM
thought about it and came to the conclusion that it had to name the
database something. That’s when the company dusted off its
popular DB2 brand and selected it as the moniker for the AS/400
integrated database. It is now known as DB2 for i.

Of course, that marketing move ruined one of my favorite pitch lines
that I always felt put the AS/400 integrated database idea in
perspective. At one time before IBM named its database, I was
able to say, “If it has a name, the machine knows nothing about it.
If it has a name, it is not built in; it is an add-on software package.”
That once was true.

Consider the plethora of databases that fit this mold. The list
includes DB2 for all other platforms. Sybase, Informix, Oracle, MS-
SQL Server, Ingress, Postgress, and MySQL are also examples.
They all have names. With these databases, no language
compilers can have any built-in DB hooks. There is no READ or
WRITE interface from a compiler to any other database on any
other system. Now, the IBM Power System with IBM i database

292 The All-Everything Operating System

has a name, DB2 for IBM i, but even though it has a name, it is still
integrated, and though it is much more capable than the original
System/38 database, it is still as easy to use as ever.

Future System Today

When the System/38 was developed in 1978, and deployed in
1980, it was dubbed the “future system today.” An honest appraisal
by the Windows-loving trade press of the underpinnings of IBM i,
which still uses the advanced technology first deployed in
System/38, would render a far more complimentary identifier than
their current label, “legacy" for IBM i technology.

The facts show that Windows, Unix, Linux, Solaris, and even the
IBM Mainframe operating systems are all built using the traditional /
legacy approach. I might suggest that in practice this is a patch and
add methodology. Fixes and patches are always being made to
code that goes back many years. These are the legacy systems of
today, not IBM i. We have demonstrated clearly in this chapter and
all of the prior chapters to this point that the IBM Power System with
IBM i is built with the most advanced architecture in the industry.
IBM i has nine exclusive advanced computer science notions found
on no other operating system of today. We looked at the complete
list of these in Chapter 10 and we have been discussing them one
by one, including this chapter on the integrated database.

Admittedly, IBM i is a bit over thirty years old. If it were human it
would be approaching middle age. Listening to the trade press talk
about Windows and Unix, you'd think that these offerings are kids or
teenagers. Windows roots go back to 1983. It is over 25-years old.
Unix is in its 40's and mainframe operating systems are even older
than that. Now, all of these operating systems are legacy from a
time perspective. Considering that all of these operating systems,
other than IBM i are based on the traditional, non-integrated
piecemeal approach to technology, I would ask their proponents to
tell me again about this legacy label that has been slapped on IBM i
and somehow withheld from all other operating systems. If you
really want a modern, take no prisoners, advanced and complete
operating system, there is only one -- IBM i.

Chapter 16 Integrated Relational Database 293

MySQL Support

MySQL is one of the most popular open source database pakcages
available today. There are tens of thousands of open source
applications which use PHP and MySQL available for download and
free to use. PHP is one of the many supported environments on
IBM i as is SQL. These were added in 2005 to the system's full
capabilities. In 2007, IBM announced that it was going to do more
to integrate mySQL into the overall system by supplying what was
then called a DB2 Storage Engine.

Those who have worked with MySQL know that it is a two-piece
database. PHP applications use the MySQL verbs and the MySQL
syntax to request and update databases. However, MySQL uses at
least ten different storage engines from simple to very powerful
transaction engines. DB2 for i is one of the most robust databases
in the industry and thus the 2009 availability of MySQL using the
DB2 for i storage engine takes IBM i database integration one step
further.

This new pluggable storage engine has been developed specifically
for MySQL running in IBM i at the V5R4 and V6R1 levels. This
storage engine has a name, IBMDB2I Storage Engine for MySQL
on IBM i. The IBMDB2I engine works with MySQL version 5.1.
Basically, this storage engine allows users to run open source
applications on IBM i using the standard DB2 for i backend.

The Best of the Best

It helps to repeat that the IBM i architecture represents everything
IBM knows about computers and probably wishes it could have
placed into mainframes over the years. At the risk of summarizing
with too many superlatives, I am convinced that the IBM i box is the
most technologically elegant machine within IBM, and in the entire
computer marketplace. Having an integrated database that even
integrates MySQL into the picture, makes it all the better.

294 The All-Everything Operating System

Summary: Develop Applications Five to
Ten Times Faster

Because of the six principles we have discussed so far and those
that we will be discussing in the next several chapters, application
development using IBM i is still five to ten times more productive
than on any other platform. This is the innate capability that made
the AS/400 of 1988 the DEC killer. Digital Equipment Corporation
and Data General and Wang do not exist today because of the
power of the IBM AS/400 as introduced in 1988 and carried forth in
IBM i, the all-everything operating system.

Programmer productivity and easy-to-build applications brought the
AS/400 and now IBM i to their renowned position in the industry. In
1988, AS/400 programmer productivity not only killed DEC as a
company, but there was also some friendly fire. IBM's own 9370
platform and the company's 8100 system, both small mainframe
computers, also suffered from the success of the AS/400's immense
capabilities and popularity. IBM stopped making them.

IBM i Makes the Power System a Special Mainframe

In a company traditionally managed by mainframe heritage
executives, with all products over the years seemingly examined for
their mainframe affinity and friendliness, and their abilities to
generate revenue, IBM i has not only survived, it has gotten better
and now it carries the IBM name. Ironically, the IBM i platform
today is a bona fide mainframe, but it is completely unlike the
mainframe that IBM builds in its mainframe plants. After all, when
teamed with the Power System hardware including the Power 6
chip, it is today's all-everything machine.

IBM acknowledges that it is tough competing against the Microsoft
marketing juggernaut. Yet, there is nothing else like this all-
everything, “Swiss-army knife” operating system to defeat Microsoft
in its own game -- operating systems. It is clearly the best computer
technology available and if IBM is ever ready to take on Microsoft,
there should be a lot of fun and the world can decide which OS
brings the best technology to business. Though Microsoft makes

Chapter 16 Integrated Relational Database 295

one of the most popular database packages, it chooses to market it
separately using a piece parts approach. Though it may be easier
and more profitable for Microsoft to market its database and
operating system in that fashion, as you have learned in this
chapter it is not good for Microsoft customers and developers.
Integration is the key to productivity.

The IBM i database and all of its facility make it the best platform on
which to run any business. IBM masquerades the innate complexity
of the machine by integrating all of the parts, including the
database, into one rock solid system that does not go down.

That’s one of the reasons why I wrote this book. I want the best
technology to win. The more everybody knows about the all-
everything operating system, the better its prospects are to one day
rule the world. And a fine and capable ruler it would be.

Chapter 17 Integrated Business Language Compilers 297

Chapter 17

Advanced Computer Science
Concepts: Integrated Business
Language Compilers

It Does Not Have To Be Extra Hard to
Program

Integration is the Key Element in Advanced Computer Design. In
this chapter, we examine another of the key elements of IBM i
integration, Business Language Compilers.

In Chapter 16, we discussed the integrated database provided by
every IBM i operating system. The DB2 for i relational database
development is now directed from San Jose and Santa Theresa
California, where all of IBM's DB2 development work for all
platforms is done. IBM changed the focus of the Rochester-
designed relational database so that the IBM i community could
benefit from all that IBM knows about relational database
management systems (RDBMS). Since RDBMS was invented by
IBM's Tedd Codd back in the 1970's, IBM's storehouse of
implementation goodies for DB2 is quite immense and the IBM
corporation is assuring that DB2 for i is as capable as an integrated
database as DB2 is for all other platforms.

The inherent object structure of the DB2 for i database make it
unique in the industry and it can never be exactly the same as DB2
for platforms that do not have the basic object structure as IBM i.
However, function for function the DB2 for i database is just about

298 The All-Everything Operating System

there with mainframe DB2 and its object structure actually offers
more facility and manageability than does any other system.

Among other things that make this possible, there are system
commands (CL language) that can dip into the database file
objects, physical files and logical files and gain immense metadata
about the objects and their usage. Additionally, there is a schema
wide catalog as well as a system wide catalog that takes database
information and makes it available as it would on any other DB2
system. Even those databases built by the original data definition
language called DDS for IBM i have their metadata held in both
forms on the system -- in the object and in the catalog. On top of
that, IBM has built routines to go into database files and from the
internal metadata, create the SQL commands to build those
databases. In many ways this is like the export facilities on other
systems without the Insert commands.

My reason for reminding you of the DB2 for i database facilities is
that the notion of integrated business language compilers has
already been introduced in Chapter 16. In this chapter, we will
explore this idea a bit further but we will concentrate on compiler
function more than database.

A la Carte Software

A la carte system software has been a mainstay of the mainframe
and most OS platforms for many years and the IBM Company has
made lots and lots of revenue on a la carte middleware such as
VSAM, CICS, MQSeries, WebSphere, and DB2 for platforms other
than IBM i. The same a la carte model works for Unix and Windows
platforms.

In the 1970’s and 1980’s, when transaction processing and
database features were invented, they were sold as software
products to customers with installed systems. To be sold as
products, they were given intriguing names. Their function was to
sit in the middle (middleware) between customer programming and
the operating system.

Chapter 17 Integrated Business Language Compilers 299

In the mainframe area, for example, there have always been
features that besides the operating system, customer IT shops
needed to purchase in order to have a complete operating system.
In the Windows and Unix arena, there continue to be the same
plethora of add-on products including numerous database offerings
such as Oracle, Sybase, and SQL Server and terminal transaction
processors such as Tuxedo.

Additionally, compilers began to serve as piece parts at the most
common denominator level. As special devices and functions, such
as terminals and databases, were developed over time, the
compilers were not given built-in device capabilities. Instead, the
compiler writers created special interfaces so that programs could
be written to control absolutely any device using a generic interface.
The interfaces were quite simple however; so, the application
program took on the bulk of the work in talking to the devices or the
database.

So, programmers could write code in many programming languages
to talk to devices but, none of it was easy. There was no language
compiler support for any special device or notion that was not basic.
Consequently, compilers were built to serve only the simple read /
write needs of disk file systems and tape systems. Application
developers, however, were no longer writing programs to use
simple disk files or tape files. Data was being stored in databases.
Additionally, more programming was written for interactive functions
than batch. The terminal devices and the databases, unfortunately
for programmer productivity, needed special routines that
programmers would either write from scratch or call using complex
programming structures. Why companies gave their compiler
writers the night off is a puzzle for anybody struggling with the
missing pieces in the compiler code.

Windows Is Really Not Multi-User

Windows servers do not foster a multiuser environment. In fact,
Windows is really not a multi-user operating system. Client server
languages such as C and Visual Basic are used by developers to
write programs for the client. To access the server from the client,
developers needed to write specific code with facilities such as

300 The All-Everything Operating System

ODBC (Open Database Connectivity) or JDBC (Java Database
Connectivity) for Java programs to be able to retrieve and maintain
server databases. Not only is this not very efficient on machine
resources but, the fact that it is not built into the Windows compilers
cost programmers a lot of unnecessary effort.

Even if they are free or almost free, these products are all
separately orderable, separately chargeable, separately installable,
and separately maintainable as optional pieces of operating
systems that can only be described as shipping incomplete. While
we are on the separate theme here, in most cases, the separate
products themselves come from separate vendors.

Not to let IBM entirely off the hook, the a la carte system approach
is championed by the IBM mainframe division; however, it is also
the Unix Way, and the Windows way. These three platforms
continue to be ideal spots for piece parts software vendors to sell
their wares. With IBM being mostly a services company today, the
company makes an awful lot of money assembling these piece
parts for its huge customers. Does IBM like Windows? IBM the
service company loves Windows and it makes a lot of money when
its service customers choose to have Big Blue do the work to
assemble a Windows environment for their business.

Does IBM like the IBM Power System with IBM i? Well, it depends
on who you ask. Surely the services division and the software
division have no reason to especially like anything they do not sell.
When you are one of the assembly divisions, a product that needs
no assembly cannot be on the top of your list. When you make most
of your revenue (over 50% for IBM) on assembly and services vs.
the product itself, there is little reason to want an integrated
platform. Who can blame IBM or any vendor that sells parts of
solutions. The good news is that IBM's Power Systems Division
people do want to sell their products and they are healthy as a
business and they are pleased when the operating system is IBM i
since it inevitably means another happy customer.

As we have been demonstrating throughout this book, the all-
everything operating system is integrated with its component
pieces, as well as the IBM Power System hardware and the Power
6 chip itself. The opposite of integration, of course, is the notion of
piece parts. In an integrated environment, essential elements are

Chapter 17 Integrated Business Language Compilers 301

included within the hardware and operating system and are part and
parcel of the overall computer system experience. With piece parts,
well, anybody ever giving a handsomely wrapped box complete with
a popular toy to a child knows well those nasty three words, "some
assembly required."

The Role of Programming Languages

In today’s world, computer science languages such as C, C++, and
Java rule the day; however, just about every company has an ERP
system or some type of business software package. When those
packages run on IBM i or on mainframes and many other systems,
you would find that the package is most often written in one of the
two best business languages ever created, either RPG or COBOL.
A good part of mainframe Y2K work was in COBOL programs,
attesting to the language’s long-time popularity.

The reason for this is simple. Though a computer science type
programmer feels better when he or she has full control of all
aspects of the machine – even those aspects that could cause the
machine to crash, the business programmer is interested in
producing positive results for the company. The business
programmer builds business software and wants a business
programming language on his or her team to get that job done most
efficiently.

There are just two languages, both with origins dating back to the
1950’s, that were designed from the ground up for business use.
Though computer scientists and academics shudder at the mention
of their names, the fact is that almost all back room business
software on major computing systems are written in RPG or
COBOL.

Business Languages for Business Jobs

Years ago, trying to demonstrate the efficiency of the RPG
language compared with COBOL, I defined and wrote a database
and simple terminal inquiry processing program. I call it Advanced
Hello World. All computer programmers at one time have
programmed the simpler basic Hello World program in one or more

302 The All-Everything Operating System

languages as an entrée to learning the language. Advanced Hello
World is a rudimentary, but slightly more complex, program that
provides both database and screen panel transaction functions.

It is not much more than a program that uses an inquiry panel for a
database access as there is no update required in the program. In
many languages, simple "terminal" display inquiry is a lot of work
and requires as many as one hundred and often more program
statements. There is much "systems" coding in these programs as
the programmer must form the special device arguments, call the
APIs, and after the operation test, that the process completed
properly.

The results of this "Hello World" inquiry is brought back to the
bottom of the same inquiry panel. The panel itself must be perfectly
formatted for full screen processing rather than using a command
line interpreter (standard input or stdin) in Unix or an emulated PC
DOS session. Besides not taking input from the command line, it is
not to present the results using the standard output mechanism or
stdout. Instead, this simple application uses a bona fide display
format such as that used in Tuxedo or CICS.

The panel is formatted so the program does not need to deal with
any of that. For non-IBM i platforms, the routines for this program
would have to be written to talk directly to the terminal device
sending not only data commands but, also commands to instruct
the terminal what to do. For Unix or Windows programs, what
happens in between input and output is also an issue as the input
data needs to be parsed and the database access itself is not very
simple. ODBC or JDBC does not lend itself to straight-forward
operations. As you can see, none of this adds up to programmer
productivity on other platforms. On IBM I, it is a snap in RPG and
COBOL, and I will prove that to you.

Just as in Tuxedo or CICS, the display format for these programs
has been created with a generator so we are not comparing ease of
use on the generated panel, just the means of writing the code that
works with it.

Chapter 17 Integrated Business Language Compilers 303

Figure 17-1 The Advanced Hello World Panel Requesting Input

304 The All-Everything Operating System

Figure 17-2 The Advanced Hello World Panel Output for GERMAN

Before we discuss how to write the program, please examine Figure
17-1 and then Figure 17-2. As you can see, after calling the
program with the CL call command, the program launches and
sends out a request for input shown in Figure 17-1. The user, in
this case, types in GERMAN, one of several key fields in the
database file called LANGUAGE. The program gets a hit on
GERMAN and puts out the contents of a field that very simply says,
"This is "Hello, World" in German."

On IBM i, this program is very simple to write in both RPG and
COBOL. Mainframe COBOL and Mainframe RPG, though better
than C or C++ are very primitive compared to the IBM i version of
the compilers. They too require an awful lot of work dealing with
databases and terminal devices. But, again, there is even more
coding with C, C++, Java, and even Visual BASIC because these
are not really business languages.

RPG and COBOL are very programmer efficient languages when
running on IBM i. That is why programmers absolutely love working

Chapter 17 Integrated Business Language Compilers 305

with the system. Again, to make my point, they are business
languages designed to do business tasks. Reading data and
updating business files are natural business computer tasks. This
Advanced Hello World program in RPG and COBOL are very
simple on IBM i and they have to perform nothing more than basic
tasks; nevertheless, even with just basic function, this code
demonstrates both database access and interactive access in both
languages are straight forward and natural. See Figure 17-3 for
the RPG code and Figure 17-4 for the COBOL code for Advanced
Hello World and you will see what I mean. If you are non-technical,
don;t study it too long, but take a peak.

Figure 17-3 RPGIV Version of Advanced Hello World Program
1 FPANEL CF E WORKSTN

2 FLANGUAGE IF E K DISK

3 D ERRMSG C CONST('HELLO WORLD TRANSLAT-

4 D ION NOT FOUND, TRY A-

5 D GAIN')

6 C *IN99 DOWEQ *OFF

7 C EXFMT SCREEN1

8 C LANGUA IFEQ 'END'

9 C LEAVE

10 C ENDIF

11 C LANGUA CHAIN LANGUAGE 90

12 C *IN90 IFEQ *ON

13 C MOVEL ERRMSG MESSAG

14 C ITER

15 C ENDIF

16 C ENDDO

17 C MOVE *ON *INLR

306 The All-Everything Operating System

Figure 17-4 COBOL Version of Advanced Hello World Program
.......-A+++B+++

0001.00 PROCESS

0002.00 IDENTIFICATION DIVISION.
0003.00 PROGRAM-ID. HELLOACUPD.

0004.00 ENVIRONMENT DIVISION.

0005.00 INPUT-OUTPUT SECTION.

0006.00 FILE-CONTROL.
0007.00 SELECT DB-LANGUAGE

0008.00 ASSIGN TO DATABASE-LANGUAGE

0009.00 ORGANIZATION IS INDEXED
0010.00 ACCESS MODE IS RANDOM

0011.00 RECORD KEY EXTERNALLY-DESCRIBED-KEY

0012.00 FILE STATUS IS MF-STATUS.

0013.00 SELECT DISPLAYPANEL
0014.00 ASSIGN TO WORKSTATION-PANEL

0015.00 ORGANIZATION IS TRANSACTION

0016.00 ACCESS MODE IS SEQUENTIAL

0017.00 FILE STATUS IS WS-STATUS.

0018.00 DATA DIVISION.

0019.00 FILE SECTION.

0020.00 FD DB-LANGUAGE.
0021.00 01 LANGUA-RECORD.

0022.00 COPY DDS-REFFMT OF LANGUAGE.

0023.00 FD DISPLAYPANEL.

0024.00 01 PANEL-RECORD PIC X(150).
0025.00 WORKING-STORAGE SECTION.

0026.00 01 PNL-INPUT.

0027.00 COPY DDS-SCREEN1-I OF PANEL.
0028.00 01 PNL-OUTPUT.

0029.00 COPY DDS-SCREEN1-O OF PANEL.

0030.00 01 WS-STATUS PIC XX.

0031.00 01 MF-STATUS PIC XX.
0032.00 PROCEDURE DIVISION.

0033.00 BEGIN.

0034.00 OPEN I-O DISPLAYPANEL.
0035.00 OPEN INPUT DB-LANGUAGE.

0036.00 PERFORM SCREEN-IO THRU EXIT-SCREEN-IO.

0037.00 CLOSE-ALL.

0038.00 CLOSE DB-LANGUAGE DISPLAYPANEL.
0039.00 STOP RUN.

0040.00 SCREEN-IO.

0041.00 WRITE PANEL-RECORD FROM PNL-OUTPUT
0042.00 FORMAT IS 'SCREEN1'.

0043.00 READ DISPLAYPANEL INTO PNL-INPUT

0044.00 FORMAT IS 'SCREEN1'.

0045.00 IF IN99 OF PNL-INPUT IS EQUAL TO B'1'
0046.00 GO TO EXIT-SCREEN-IO.

0047.00 MOVE LANGUA OF PNL-INPUT TO

0048.00 LANGUA OF LANGUA-RECORD

0049.00 READ DB-LANGUAGE
0050.00 INVALID KEY PERFORM LANGUA-NOT-FOUND

0051.00 NOT INVALID KEY PERFORM LANGUA-FOUND.

0052.00 EXIT-SCREEN-IO.
0053.00 EXIT.

0054.00 LANGUA-FOUND.

0055.00 MOVE CORRESPONDING REFFMT TO SCREEN1-O OF

0056.00 PNL-OUTPUT.
0057.00 LANGUA-NOT-FOUND.

0058.00 MOVE 'HELLO WORLD TRANSLATION NOT FOUND, TRY

AGAIN'
0059.00 TO MESSAG OF PNL-OUTPUT.

****************** End of data **********************************

Chapter 17 Integrated Business Language Compilers 307

RPG and COBOL Are Lots Different

One of the first things that you may notice is that the RPG program
is substantially smaller than the COBOL program (17 statements vs.
59). That’s one of the reasons why COBOL has always been
referred to as a verbose language. Java experts tell me that the
same program, written in Java, would more than double the number
of COBOL statements. In all fairness to COBOL, once you get
through the standard lines that must be in each program, COBOL
coding efficiency does get lots better.

What is an Integrated Business Language
Compiler?

When the IBM i OS was first being designed, the theme of
integration permeated the whole project. Even the compiler writers
were involved. In Chapter 16, we described what it means to have
an integrated database and how having programs that are database
aware makes programmers far more productive. We will not repeat
that in this chapter because there is enough to discuss about how
the compilers were built from the ground up to integrate into the
advanced database notions being built into the IBM i platform from
back when it was the IBM System/38.

The compiler writers for the business languages, COBOL and RPG,
were not sitting in other offices when the operating system was
designed. They were part of the design team. Consequently, the
advanced structures and devices of the IBM i operating system
have facilities right inside the compilers to access them. IBM's
compiler writers did the work of writing the input and output control
subroutines (the device drivers or APIs as some might call them).
During compilation, the compiler injects the necessary code rather
than having the programmer write it each time. Therefore, on IBM i,
the application developer can operate at a substantially higher level
with no concern for the device, the structure, or the database. .

In fact, IBM's compilers took advantage of a feature in IBM i known
as device independent data management to enable common

308 The All-Everything Operating System

routines to behave in a similar / same fashion regardless of the
device that was being used. If you look for these features in
Microsoft or HP or Sun or IBM mainframe compilers, you won’t find
them.

So, what are some of the advanced object types and features that
are built into the COBOL and RPG languages?

• Database Device

• Workstation Device

• External Data Area Object

Database Device

A Picture is worth a thousand words. The RPG coding to link to the
Language Database is shown in Figure 17-6. The COBOL Coding,
naturally more verbose is shown in Figure 17-5. The coding to
incorporate a database on every other system would include
substantially more code and more complex code. For example if
there were five files with fifty fields each, and the RPG program is
17 statements and the COBOL program is 59 statements to start,
the programmer would have to type in at least 250 more statements
to define the data in the program. With IBM i, the metadata in the
database would type those statements for the programmer. That's
what you call compiler integration and a major productivity boost for
programmers.

Figure 17-5-COBOL File Definition
0007.00 SELECT DB-LANGUAGE

0008.00 ASSIGN TO DATABASE-LANGUAGE

0009.00 ORGANIZATION IS INDEXED

0010.00 ACCESS MODE IS RANDOM

0011.00 RECORD KEY EXTERNALLY-DESCRIBED-KEY

0012.00 FILE STATUS IS MF-STATUS.

0020.00 FD DB-LANGUAGE.

0021.00 01 LANGUA-RECORD.

0022.00 COPY DDS-REFFMT OF LANGUAGE.

Chapter 17 Integrated Business Language Compilers 309

Let's look at the COBOL Code first. This makes the link to the
database using the DATABASE prefix to the language file in
statement 8. The other thing of note is that there is a COPY DDS in
statement 22. This tells COBOL to go inside the database object at
compile time and bring in the full description of the file so the
programmer does not have to code input or output specifications.
Think about what a time saver this is. In COBOL, the field names
are immediately available to all functions in the Procedure Division
which in Figure 17-4 you can see begins at statement # 32.

Figure 17-6 RPG Database File Definition
2 FLANGUAGE IF E K DISK

So, now, let's look at RPG in Figure 17-3. Actually the code is
written in RPGIV but, it is written in RPG style so to the RPG coder
it would look the same. Now, ask yourself, is that all there is? The
answer is yes, all of the COBOL code equates to the one simple
RPG file description statement at line 2 of the program shown in
Figure 17-5. This makes the link to the database using the DISK
device name and the name LANGUAGE after the F on the left side
of the statement.

Just as in COBOL, there are other things of note. There is no
COPY DDS like COBOL statement 22 but, there is a little E in
position 22 of statement 2. The E says to use the external
description of the data and to not expect the programmer to supply
input or output specs. This tells the RPG compiler to go inside the
database object at compile time and bring in the full description of
the file metadata including all the field descriptions so the
programmer does not have to code input or output specifications.
Since this all happens in one statement in RPG, it is even a greater
time saver than in COBOL. The field names are immediately
available to all functions in the RPG calculations section beginning
on line 6 in Figure 17-3.

310 The All-Everything Operating System

Workstation Device

The RPG coding to link to the Display PANEL WORKSTN (terminal)
type file is shown in Figure 17-8. The COBOL Coding, naturally
more verbose, is shown in Figure 17-7. To incorporate a
workstation or terminal file either directly or via a monitor such as
CICS or Tuxedo in any other system requires substantially more
code and the code is very complex. Moreover, the process is not
as efficient because it is not the compiler or the OS doing the work,
it is a third party package working as middleware.

Figure 17-7 COBOL WORKSTATION File Definition
0013.00 SELECT DISPLAYPANEL

0014.00 ASSIGN TO WORKSTATION-PANEL

0015.00 ORGANIZATION IS TRANSACTION

0016.00 ACCESS MODE IS SEQUENTIAL

0017.00 FILE STATUS IS WS-STATUS.

0023.00 FD DISPLAYPANEL.

0024.00 01 PANEL-RECORD PIC X(150).

0040.00 SCREEN-IO.

0041.00 WRITE PANEL-RECORD FROM PNL-OUTPUT

0042.00 FORMAT IS 'SCREEN1'.

0043.00 READ DISPLAYPANEL INTO PNL-INPUT

0044.00 FORMAT IS 'SCREEN1'.

Just as we did with database, let's look at the COBOL code first.
Statement 14 makes the link to the display file named PANEL using
the WORKSTATION prefix to the PANEL device file. The other
thing of note is that there is a no COPY DDS required -- even for
COBOL. The WORKSTATION file automatically goes inside the
display file object at compile time and brings in the full description of
the file, so the programmer does not have to code input or output
specifications for the display panels. Think about what a time saver
this is. In COBOL, the field names are immediately available to all
functions in the Procedure Division which, in Figure 17-4, you can
see begins at statement # 32.

From Statement 40 to statement 44 in Figure 17-7, you can see the
small amount of COBOL code required to send out (WRITE) the
screen panel and then read (READ) it back in. This code not only

Chapter 17 Integrated Business Language Compilers 311

sends out the panel and reads it back in, it also waits for the reply
from the terminal device while the user is typing input. Yet, there is
no code required for this as it is handled by the tight integration of
the IBM i OS and the generated compiler code.

Additionally, what you do not see in the code is the fact that each
and every COBOL and RPG program on IBM i is automatically
multithreaded. This too is because of the design cooperation of the
compiler writers and the OS writers. Either the RPG or COBOL or
both of these programs can be called by thousands of users
simultaneously. Through this one program, (RPG or COBOL) many
users can interact with their specific terminal device or emulated PC
as if they were the only user working with that program. Though
IBM i programmers even think this is amazing, they use this
advanced capability every single day in their coding -- by not having
to for code it.

Figure 17-8 RPG WORKSTN File Definition
1 FPANEL CF E WORKSTN

7 C EXFMT SCREEN1

So, now, let's look at the RPGIV code again to do the same thing.
Ask yourself again, just as in the DB example, is that all there is?
The answer is yes, for IBM i.

Of course in other systems that support this type of transaction
processing, there would be all the trappings of a middleware (not
native) CICS and/ or a Tuxedo or other TP monitor to enable the
compiler to communicate with the device. There would be no
WORKSTATION device in any other compiler, there would be
special APIs with many special arguments and lots of rigorous
coding required to pull this off.

Again, if you look at the COBOL example in Figure 17-7, through
statement 24, all of the COBOL code equates to the one simple
RPG file description statement at line 1 (Figure 17-8) of the
program. In RPG, statement 1 makes the link to the display file

312 The All-Everything Operating System

using the WORKSTN device and the name PANEL on the left side
of the statement.

Just as in COBOL, there is also another point of note. The E in
position 22 of statement 1 (Figure 17-8) says to use the external
description of the data and to not expect the programmer to supply
input or output specs. This tells the RPG compiler to go inside the
database object at compile time and bring in the full description of
the file metadata, including all the field descriptions, so the
programmer does not have to code input or output specifications for
the display file. Since this all happens in one statement in RPG, it is
even a greater time saver than in COBOL. The field names are
immediately available to all functions in the RPG calculations
section beginning on line 6 in Figure 17-3.

On Statement 7 in Figure 17-8, you can see the small amount of
RPG code required to send out (write) the screen panel and then
read (READ) it back in. This operation is called EXFMT and it not
only sends out the panel and reads it back in, in one operation, it
also waits for the reply from the terminal device while the user is
typing input. Yet, there is no additional code required for this as it is
handled by the tight integration of the IBM i OS and the generated
compiler code for the EXFMT operation.

With all due respect to Aflac, as you can see, coding for database
and multithreaded terminal applications in the all-everything
operating system's best business languages is as easy as duck
soup. And even the duck would tell you that is no exaggeration.

IBMi Data Areas

Ted Holt is an IBM i Guru who runs a column for Timothy Prickett
Morgan, President of IT Jungle, called "Four Hundred Guru." The
Guru gives tips that only a Guru can provide. Holt suggests that
"Data areas are as handy as pockets. Maybe that's because they
are like pockets in that you can stuff things into them."

What makes these little pockets (the moral equivalent of one record
files) very powerful is that they are naturally readable in IBM's
business languages, RPG and COBOL. RPG is especially

Chapter 17 Integrated Business Language Compilers 313

designed again in conjunction with the OS developers to be able to
read and manipulate Ted Holt's little stuffed pockets. I can't say the
pockets are hot or I'd be in trouble with the Hot Pockets people but
they are very handy and very usable in RPG.

Data areas are often used to hold system counter information or
one record control files for applications. For RPG to read and/ or
change a data area, the compiler writers provide two options. You
can let the RPG cycle handle the input and output operations, or
you can control the I/O using special "IN" and "OUT" and "*LOCK"
RPG operations. By far, the easier method is to let the RPG cycle
do all the work. I will show you the code for both from one of Ted
Holt's works in IT Jungle. His whole article for those who are
interested in data areas is shown at the following IT Jungle URL:

http://www.itjungle.com/fhg/fhg012506-story01.html

Figure 17-9, shows the RPGIV free-form code snippet that uses the
RPG cycle to do its work. RPG has advanced itself in the past few
years with the introduction of a non-columnar oriented syntax that is
known as free-form RPG. Figure 17-10 shows the same function
using the IN, OUT, and *LOCK facilities built into RPG in free-form
fashion to work specifically with data area objects. To read in an
external data area object in RPGIV, you code using a named data
structure with the U option in the definition specs shown in line 1 in
Figure 17-9. Note the name of the structure from line 1 is Status.

Figure 17-9 Free Form RPG Data Area DS Snippet Using RPG Cycle
0001 D Status uds
0002 D Stat 1 8
0003 /free
0004 Stat = 'BR-549';
0005 /End-free

Figure 17-10 Free Form RPG Data Area DS Snippet Using IN, OUT Ops
0001 D Status ds 8 dtaara('STATUS')
0002 /free
0003 in *lock Status;
0004 Status = 'BR-549';
0005 out Status;
0006 /End-free

http://www.itjungle.com/fhg/fhg012506-story01.html

314 The All-Everything Operating System

When the program in 17-9 begins to run, it allocates the data area
with a lock (U option) shown in lower case in line 1 and brings its
contents into storage. When the program ends, it updates the data
area and releases the lock. It's about as easy as one could make it.
In fact, it's so easy, even a caveman can do it.
.
The other method shown in Figure 17-10 does not use the RPG
cycle. In programming parlance it uses the procedural method. IBM
has created three operation codes, IN, OUT, and UNLOCK to
control data area I/O in procedural RPG programs. The example in
Figure 17-10 does not have a U in the data definition in line 1 and
thus the code is controlled within operations.

It retrieves the current value of a data area (IN operation), locks the
data area (*LOCK option of the IN operation) assigns a new value,
and writes the changed value (out operation) back to the data area
object. The Unlock operator is not needed as an unqualified OUT
operation to the data area unlocks it after its new contents are
written.

The purpose of showing this code in this chapter is not so that you
can compete with me for programming contracts in Northeastern PA
or so that you can be proficient in RPG. It is to show that the RPG
compiler as well as the COBOL compiler not only has natural links
to database and workstations but also to other external objects,
such as data areas. Both RPG and COBOL have facilities
integrated within their respective compilers that mesh perfectly with
the operating system for working with data areas, databases, and
terminal devices. Integration at the business compiler level is a
grand thing indeed.

Chapter 18 Consistent, Intuitive Control Language 315

Chapter 18

Advanced Computer Science
Concepts: Consistent, Intuitive
Control Language

Advanced Systems Architecture

Integration is the Key Element in Advanced Computer Design. In
this chapter we examine another of the key elements of IBM i
integration, a consistent, intuitive control language.

IBM i Control Language is the visible implementation of the IBM i
advanced architecture, which we have been discussing in the last
several chapters. One of its inherent characteristics is that it allows
applications to be built today that will last long into the future. Along
with all the advantages cited in previous chapters, it provides a
platform for flexibility, ease-of-use, productivity, and growth.

As noted in Chapters 10 and 12, the interface point in the IBM i
system is at a high level. Because of this, neither programmers nor
users have to learn cryptic machine code for normal functions, since
the high level instructions are more English-like. As an example,
one high level instruction can be used to get a database record,
perform multiprogramming, handle storage management or even
query a data base file. In traditional systems, such functions are
handled by multiple software programs. The IBM i all-everything
operating system is "smarter" than every other platform, so it does
its thing without the need for fancy middleware. Its high level
language is known as Control Language.

316 The All-Everything Operating System

Operating System Control

Looking at this a bit differently, we can say that machine instructions
handle traditional software functions. Control Language is the user
interface to the entire machine through IBM i. One of the major
advantages, demonstrated in Chapter 12, of the high level interface
is that new technology does not affect existing application
programs. Having CL at the point of the interface means, among
other things, that fewer programming interfaces overall are needed
to work the machine. Through this one simple interface, IBM i CL
provides the following functions:

• Supervisor and control

• Language / compiler

• Symbolic interactive debug

• Data base management

• Data communications

CL Can Be Used in Programs

With CL programming and in fact, all programming using IBM i, the
programmer has a greater potential for unrestricted growth since
the underlying hardware technology does not get in the way. The
visual interface to the system through CL means that both you and
your programs can move easily into the future. You can take
advantage of both new hardware technology and new software
technology without worrying about changing your control programs.

Development Software is Hardware Agnostic

Software for IBM i is not written for 16, 32 or 64-bit standards. It is
written at an abstraction level that does not care about the
underlying bit configuration of the hardware. Thus, when hardware
is upgraded, nobody cares because it does not matter to the
functioning of the programs. Of course, the owner of the business
whose old CL and other programming now run faster on the new
technology -- with no additional work -- he or she cares.

Chapter 18 Consistent, Intuitive Control Language 317

At the machine interface, if you were able to take a snapshot, you
would find the point in which CL, the IBM i control language, meets
IBM i. IBM i with CL provides a simple and consistent interface to
help users and developers alike to learn the system easily while
reducing the support staff and costs associated with systems
implementation and operations.

CL is the gateway to integrated functions. Overall, CL as a system
interface point improves the productivity of programmers. It also
increases system performance, and it adds to the system's ease of
use. For the business, this translates to programming investments
being protected for the long haul. Unlike the Windows environment,
when you write a program, with IBM i and CL, you can expect as
much as thirty or more years before it needs to change for
technology reasons. IBM i does not tie you to any of today's
hardware or software technology so even the future is protected.

With an expandable and adaptable interface, IBM i allows you to
take advantage of new developments quickly and easily, and it
provides a solid foundation upon which to build the future of your
business. CL is fully ware of all of the system's features, including
the object-based architecture and the built-in integrity and security
facilities. Throughout time, CL programs have continued to work to
control systems operations and there is no reason on the horizon
indicating that the future will in any way impede this capability.

So, now we know how CL is not an afterthought. Just as RPG and
COBOL, it has been built to enhance the business value of the IBM
i operating system. So, now let's go ahead and learn a little bit more
about why it is so special.

CL Objects / Building Blocks

The basic "storage" object on the native IBM i system is called a
library. A library is very much like a directory in that it is an entity
unto itself that merely is used to locate other objects. However,
unlike a directory, the library object is unique as it can hold objects
that are not files serving other purposes. In other words, a library
does not have the ability to store an executable (exe) file or a .wmf
file or pdf file, and for that matter, it can't store even a "boho" file. A

318 The All-Everything Operating System

library can store only file objects that are real files. Unlike a
directory, a library can also store programs and other object types
that are not data files at all. They are special objects. Files
masquerading as programs need not apply on IBM i.

Every system starts someplace. Every system's storage has a
genesis. Most systems have a primary disk with a boot sector and
what might be called a VTOC (volume table of contents). This lets
the system start the OS and then be aware of the files on the
system. IBM i treats all files as single level storage and it groups
them into libraries. However, if a file is not really a file but instead is
executable code, it cannot be stored as a file in a library. The object
type rules prevent an object from morphing into another object.

Only program objects, specially tailored to meet the rigorous
standards of the IBM i, can be stored as programs. Only the CL
compiler or other special IBM i compilers know how to create real
program objects. At startup, the IBM i operating system knows all
about its objects types and the objects stored on the system.

There is a library on the system in which IBM puts a good portion of
the IBM i operating system. Every operating system needs a home.
On IBM i this home is called the system library and its official name
is the QSYS Library. This is the beginning of the genesis of the
actual system table of contents. QSYS happens to be the only
"library" on the system which can "contain" other libraries.

How Are Objects Created?

The CL command, CRTLIB PAYROLL, when executed, creates a
library. Remember, a library looks an awful lot and functions an
awful lot like a PC directory but it has much more facility. The
library that CRTLIB PAYROLL creates is named PAYROLL. Where
was that library created?

All libraries are created in the QSYS library and so I call it the
genesis of the system. The letters "CRT" as the first part of the
create library command have big-time meaning for CL. CL looks at
the beginning of every command as a verb or action word. The

Chapter 18 Consistent, Intuitive Control Language 319

three character "verb" that causes all objects to be created on IBM i
begins with the letters CRT, for create.

The three letters "LIB" that follows the "CRT" is always the short CL
name for library. Thus, CRTLIB makes a lot of sense if you read
the verb and noun abbreviations as if they were full words. In CL-
speak, the CRTLIB command says, “Create a library.” Likewise, the
command CRTCLPGM means "Create" "CL" "Program." Just like
CRT is always short for create and LIB is always short for library,
CL is always short for Control Language, and PGM is always short
for program. As you can see, CL is consistent, it is unique, and it is
certainly intuitive once you get the hang of it. And then when that
happens, it is also, hard to forget.

Library Talk

Unlike other systems; however, when objects are "placed" in a
library, such as the PAYROLL library that we would create with the
"CRTLIB PAYROLL" command, they are merely located (pointed
to) via the library. On mainframes, libraries are physical structures
occupying amounts of space on the disk in very specific areas.
Moreover, on mainframes, only program forms such as source,
routines, and object code cane be in what mainframers like to call a
library. The point is no data and actually nothing other than
program types can be placed in a mainframe library space. Picture
a little corralled off area on the disk, separated from all the data
files. To the system managing the disk files on a mainframe, it is
very aware that the big file allocation on its disk is really a library for
developer type material. It is not used for data or any other notions,
including job queues or print queues.

IBM i Libraries Are Special Objects

Structurally, IBM i libraries are far more inclusive than mainframe
libraries and are thus completely dissimilar. They are more like PC
directories except for two big things:

1. They span disk drives. A library for example can occupy every
disk drive on the system if need be.
2. They reference objects, not files.

320 The All-Everything Operating System

Since a file is an object in IBM i and it consists of metadata
(descriptive) and functional parts, and since objects are not just files
to the system, libraries can and do reference files. However, every
object stored "in" a library is not viewed at the system level as a file,
as is the case on PC servers and Unix boxes. The operating
system can differentiate a file from a program, and from any of
many object types.

Where Are Libraries?

PAYROLL, like all libraries, when it gets created via the CRTLIB
PAYROLL command, links back to QSYS so that it can be located
by name through the QSYS library. PAYROLL, when created, is
empty. In other words, it points to no objects. When objects are
created, the CRT command wants the developer to specify the
library to which the object is to be associated. Any library created
on the system can physically be placed anywhere on any of the
disks by IBM i, however, that does not matter at an operational
level.

Nobody, whether they are a user or a system operator or a system
implementer or a programmer, cares where anything is physically
located. Instead, they depend on IBM i to find whatever they need,
and IBM i is up to the task. Of course, if a lower level developer
insisted on knowing where all of his or her objects were located
physically on the disk drives, it could be done, but I wouldn't hold
dinner on it.

IBM i has an innate means of locating any library by name without
knowing where (which disk) it is located. Likewise, IBM i can find
any object inside of any library merely by knowing its name. As you
can see, human beings do not have to manage this system. It takes
care of itself; but, the CL language gives the system administrator
the tools needed to let IBM i know what to do.

Libraries are Pointer Objects

Lets go back to learn some more about libraries. When you
consider that a library actually is an IBM i object created by a CL
command, the amount of space, which a library (*LIB object)

Chapter 18 Consistent, Intuitive Control Language 321

occupies, compared to all other object types on the system, is
minimal. Each referenced object within a library structure consists
of not much more than a name and a pointer. So, in many ways a
library is analogous to the Index at the back of a book. If that is the
same sense that you get regarding directories, then think of the
structure of the library itself as a directory, but the means of dealing
with its objects and its multiple object types is completely different
and far more intelligent from that of the PC directory scheme.

Creating Objects in Libraries

Once we create our library, say PAYROLL, for review, a library-type
object is created in QSYS. CL provides a number of "create"
commands that all begin with CRT. When these commands, such
as CRTPF for Create Physical File, and CRTOUTQ, Create Output
Queue, are executed, they will create their objects "in" a user library
such as the PAYROLL library referenced in this section. The CRT
command has an option within its command parameters to specify
the library. If the developer does not specify the library name for an
object being created, the system very nicely places the created
object into the current library associated with the user who creates
it.

The defaults provided by IBM i permit the unenlightened IT
professional to be able to work with the system and perform
whatever functions they need to perform unimpeded. As long as
they have high enough security they will be unimpeded. If they
make a mistake from using the command defaults, they would see
the results of the mistake. They would be able to see the results of
the mistake and gain guidance for how to execute the command
correctly.

On other machines, it is actually difficult to be able to make your
first mistake. It is so difficult on a mainframe, for example that when
you provide the wrong parameters for a job and you get blown off
for syntactical reasons, you typically have no idea why. There are
no logical defaults as on IBM i. You have to figure out which
comma is missing or which parm is in the wrong place. So, when
you get something through without syntax errors on a mainframe,
even if it is three weeks from ever being right, you may feel good.
But, you are still three weeks away from implementation. With IBM's

322 The All-Everything Operating System

CL, it takes so little time to engage the system productively, that
mistakes are easily identified and corrected.

Control Language

Now that we have set up the idea for a full command language, or
really a Control Language, as it is properly called, from now on, we
can refer to it as plain old "CL." CL is a derivative of JCL from the
mainframe era and it is a derivative of System/3, System/32,
System/34, and System/36 implementations when the word OCL
was the term du jour. Since in all of these nomenclatures, the CL
part referred to the words Control Language, when System/38 was
introduced, and the same language was used for all functions, IBM
removed the modifier from CL. The IBM i version carries this
through and is known simply as Control Language. Though it is
called Control Language, because it is command-driven, it is often,
though mistakenly referred to as Command Language.

There are a number of things about Control Language that do not
appear as meaningful for 2010 as they did in 1970; but, the
language still is impressive. The following list includes many of
these factors:

• Requires no system generation

• All functions available at installation

• All functions available on all sized models

• May change default command values

• Configuration changes are Immediately effective without a
"reboot"

CL is not an add-on product to IBM i. It is a big part of the IBM i
experience. As such, it is the focal point of the premiere operating
system of the IBM Power System and it is poised to expand if IBM
chooses to let it loose as a full-featured programming language.
IBM i, of course is the OS that brings CL to the developer and user
community. For its part, IBM i requires no special generation or
installation steps. Consequently, CL requires no such steps either.
It's in there on the first IPL. In most cases, IBM i is pre-loaded at

Chapter 18 Consistent, Intuitive Control Language 323

the plant and requires no tape or CD or DVD installation time at all.
In most shipments of single unit models of the Power System with
IBM i, when the plug hits the wall, and the button is pushed, this
powerful operating system and its powerful Control Language are
ready to go.

All functions of the operating system are available at installation
time through a very crisp, concise and HARD TO FORGET Control
Language (CL). Some may recall the notion of what was once
called a SysGen. This was when all the media from IBM was
collected on tapes and/ or disk packs, and the system on the
specific piece of hardware was configured and loaded at the
datacenter, rather than the IBM plant. During the SysGen, the
customer's exact specifications would be the input for the process
that would generate a custom operating system, as required by the
IT shop. It was often a multi-day event.

Every functional mainframe operating system was tailored at the
code level by what was, in essence, the compiling of the operating
system on the customer premises. Since the language that read in
the parms was very low level, the compiling of the customer’s
customized OS was actually called assembling, and it used an
internal assembly language that could be used only for SysGen
functions and not for customer work.

System Values vs. System Generation

The IBM i OS, dubbed the all-everything operating system in this
book, broke the SysGen paradigm in 1978. Since that time, IBM i
users have not had to work with system macros to include or
exclude system function. The previous methodology included a
shipment of a sleletal operating system that could not be used to
run your business. A set of macros had to be assembled and then
used in a "no-mistakes-tolerated" weekend work session. The result
of the process when successful was a generated system. If you got
any of the parameters worng for that business, you got to do it
again the next weekend. From the day the System/38 hit the field,
IBM i heritage operating systems did not require compilation/
assembly on the datacenter floor. IBM i from its inception has been
table-driven.

324 The All-Everything Operating System

Operating system functions for IBM i are enabled or disabled or
selected or deselected at the system level through a series of
options known as "System Values." These values can be
changed through CL commands and the impact on the system is
either immediate or in rare cases, requires an initial program load or
IPL. IPL is the mainframe and IBM i term for "boot." This means
that from the first moment of live operation, the IBM i operating
system is functional and CL is its guiding light.

My friend, Al Barsa, (Al passed away at COMMON in Spring 2008)
was in many ways as intrigued by the power of System Values as I.
He gave many COMMON presentations about System Values and
he would point out how the knowledge of them could help an
installation. Al had a major passion for System Values and what
they could provide for the user community. COMMON attendees
learned everything they ever wanted to know about System Values
from Al Barsa from time immemorial. And, I might add, they learned
them well.

As a side note, just because they had learned about System Values
in an Al Barsa session, does not mean that they did not go back to
the very same session at the next COMMON conference just to
hear Al speak again.

When the System/38 was introduced, even the most convinced of
us, expected that a system generation would be required for such a
powerfully capable software machine. Because there was great
thought in how a system should be designed, no SYSGEN has ever
been required for a System/38, an AS/400, a System i, or any IBM i
predecessor OS. IBM Rochester had devised a table driven OS and
it works well to this day.

Nobody can present Al Barsa's Powerpoints from COMMON as he
can but, I can show you the first page of the WRKSYSVAL CL
command so that you can get a sense of all the things these values
control. Rather than the OS being built with hard values, the IBM i
OS looks to the System Value Table each time it is powered on to
set the personality it is to render to a user. Check out Figure 18-1
for the first page of WRKSYSVAL command output and check out
Figure 18-2 for a full list of all system values.

Chapter 18 Consistent, Intuitive Control Language 325

Figure 18-1 First Page of System Values Display
 5738SS1 V2R3M0 931217 RSM 01/05/95 12:56:23

 *...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

 **

01 * Work with System Values *

01

02 * System: RSM *

02

03 * Position to ___________ Starting characters of system value *

03

04 * Subset by Type *ALL_______ F4 for list *

04

05 * *

05

06 * Type options, press Enter. *

06

07 * 2=Change 5=Display *

07

08 * *

08

09 * System *

09

10 * Option Value Type Description *

10

11 * __ QABNORMSW *SYSCTL Previous end of system indicator *

11

12 * __ QACGLVL *MSG Accounting level *

12

13 * __ QACTJOB *ALC Initial number of active jobs *

13

14 * __ QADLACTJ *ALC Additional number of active jobs *

14

15 * __ QADLSPLA *ALC Spooling control block additional storage *

15

16 * __ QADLTOTJ *ALC Additional number of total jobs *

16

17 * __ QALWUSRDMN *SEC Allow user domain objects in libraries *

17

18 * __ QASTLVL *SYSCTL User assistance level *

18

19 * More... *

19

20 * Command ___ *

20

21 * ===> __ *

21

22 * F3=Exit F4=Prompt F5=Refresh F9=Retrieve F11=Display names only *

22

23 * F12=Cancel *

23

24 * *

24

 **

 *...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

Because System Values are actually as major advanced notion in
computing, just like many of the other ideas we have been studying,
please take a look at Figure 18-3. In this Figure, you can see all of
the system values that can be defaulted or tweaked on an IBM i
system to give it the personality that is needed for any IBM i IT
shop.

326 The All-Everything Operating System

Figure 18-2 IBM i Comprehensive System Value List
 QABNORMSW 0 0 Previous end of system ind

 QACGLVL *NONE *NONE Accounting level

 QACTJOB 20 20 Initial number of active jobs

 QADLACTJ 10 10 Additional number active jobs

 QADLSPLA 2048 2048 Spooling control block addl stg

 QADLTOTJ 10 10 Additional number of total jobs

 QALWUSRDMN *ALL *ALL Allow user domain objects in lib

 QASTLVL *BASIC *BASIC User assistance level

 QATNPGM *ASSIST *ASSIST Attention program

 QAUDCTL *NONE *NONE Auditing control

 QAUDENDACN *NOTIFY *NOTIFY Auditing end action

 QAUDFRCLVL *SYS *SYS Force auditing data

 QAUDLVL *NONE *NONE Security auditing level

 QAUTOCFG 1 1 Autoconfigure devices

 QAUTOVRT 0 0 Autoconfigure virtual devices

 QBASACTLVL 6 6 Base storage pool activ. lvl.

 QBASPOOL > 518 500 Base storage pool minimum size

 QCCSID 65535 65535 Coded character set identifier

 QCHRID 697 37 697 37 Graphic character set and code

 QCOMRCVY 0 0 Communications recvy limits

 QCNTRYID US US Country identifier

 QCONSOLE > DSP01 QCONSOLE Console name

 QCRTAUT *CHANGE *CHANGE Create default public authority

 QCRTOBJAUD *NONE *NONE Create object auditing

 QCTLSBSD > QSYS/QCTL QSYS/QBASE Controlling subsystem

 QCURSYM $ $ Currency symbol

 QDATE 01/05/95 ' ' System date

 QDATFMT MDY MDY Date format

 QDATSEP / / Date separator

 QDAY 5 ' ' Day

 QDBRCVYWT 0 0 Database recovery wait ind.

 QDECFMT ' ' ' ' Decimal format

 QDEVNAMI *NORMAL Device naming conventions

 QDEVRCYA *MSG Device I/O error action

 QDSCJOBI 240 Time interval before disc jobend

 QDSPSGNINF 0 0 Sign-on display info control

 QHOUR 12 ' ' Hour of the day

 QHSTLOGSIZ 5000 5000 Maximum history log records

 QIGC 0 0 DBCS version installed ind

 QIGCCDEFNT *NONE *NONE Double byte code font

 QINACTITV > 120 *NONE Inactive job time-out

 QINACTMSGQ > *DSCJOB *ENDJOB Inactive job message queue

 QIPLDATTIM > 01/06/95 04:00:00*NONE Date/time to automatically IPL

 QIPLSTS > 3 0 IPL status indicator

 QIPLTYPE 0 0 Type of IPL to perform

 QJOBMSGQFL *NOWRAP *NOWRAP Job message queue full option

 QJOBMSGQMX 16 16 Max size of job message queue

 QJOBMSGINS 16 16 Job message queue initial size

 QJOBMSGQTL 24 24 Job message queue max inl size

 QJOBSPLA > 4096 1536 Spooling control block inl size

 QKBDBUF *TYPEAHEAD *TYPEAHEAD Type ahead and/or attention key

 QKBDTYPE USB USB Keyboard language character set

 QLANGID ENU ENU Language identifier

 QLEAPADJ 0 0 Leap year adjustment

 QLMTDEVSSN 0 0 Limit device sessions

 QLMTSECOFR > 0 1 Limit security officer dev acc

 QMAXACTLVL *NOMAX *NOMAX Maximum sys 0activity level

 QMAXSGNACN 3 3 Action to take for faild signon

 QMAXSIGN > 25 15 Maximum sign-on attempts allow

 QMCHPOOL > 6161 1500 Machine storage pool size

 QMINUTE 57 ' ' Minute of the hour

 QMODEL D10 ' ' System model number

 QMONTH 1 ' ' Month of the year

 QPFRADJ > 3 2 Performance adjustment

 QPRBFTR > SVCDRCTR/SDFILTER*NONE Problem log filter

 QPRBHLDITV 30 30 Problem log hold interval

 QPRTDEV PRT01 PRT01 Printer device description

 QPRTKEYFMT > *PRTBDR *PRTHDR Print header and/or border info

 QPRTTXT ' ' Print text

 QPWDEXPITV *NOMAX *NOMAX Password expiration interval

 QPWDLMTAJC 0 0 Limit adjacent password digits

Chapter 18 Consistent, Intuitive Control Language 327

 QPWDLMTCHR *NONE *NONE Limit characters in password

 QPWDLMTREP 0 0 Limit repeating chars in pword

 QPWDMAXLEN > 6 10 Maximum password length

 QPWDMINLEN > 4 1 Minimum password length

 QPWDPOSDIF 0 0 Limit password character posns.

 QPWDRQDDGT 0 0 Require digit in password

 QPWDRQDDIF > 1 0 Duplicate password control

 QPWDVLDPGM *NONE *NONE Password validation program

 QPWRDWNLMT 600 600 Maximum time - PWRDWNSYS *IMMED

 QPWRRSTIPL 0 0 Auto IPL after power restored

 QRCLSPLSTG 8 8 Reclaim spool storage

 QRMTIPL 0 0 Remote power on and IPL

 QRMTSIGN > *SAMEPRF *FRCSIGNON Remote sign-on control

 QSCPFCONS 1 1 IPL action with console problem

 QSECOND 23 ' ' Second of the minute

 QSECURITY > 30 10 System security level

 QSFWERRLOG *LOG *LOG Software error logging

 QSPCENV *NONE *NONE Special environment

 QSRLNBR 1034338 ' ' System serial number

 QSRTSEQ *HEX *HEX Sort sequence

 QSRVDMP *DMPUSRJOB *DMPUSRJOB Service dump control

 QSTRPRTWTR 1 1 Start print writers at IPL

 QSTRUPPGM > RSMSYS/QSTRUP QSYS/QSTRUP Startup program

 QSTSMSG *NORMAL *NORMAL Display status messages

 QSYSLIBL > RSMSYS QSYS System part of the library list

 QSYS QSYS2

 QSYS2 QHLPSYS

 QHLPSYS QUSRSYS

 QUSRSYS ' '

 QTIME 12:57:23 ' ' Time of day

 QTIMSEP : : Time separator

 QTOTJOB 30 30 Initial total number of jobs

 QTSEPOOL *NONE *NONE Time slice end pool

 QUPSDLYTIM > 1800 1800 *CALC UPS delay time

 QUPSMSGQ QSYS/QSYSOPR QSYS/QSYSOPR UPS message queue

 QUSRLIBL > QGPL QGPL User part of the library list

 QTEMP QTEMP

 GENERAL ' '

 QUTCOFFSET +0000 +0000 Coord. universal time offset

 QYEAR 95 ' ' Year

 Note: > means current value is different from the shipped value

Cl and all other IBM programming functions work on IBM i object
structures. The CL command to show the list of all objects on the
system is WRKOBJ. The format of this command that permits all
object types to be listed is shown in the Print Key output in Figure
18-4 as follows:

328 The All-Everything Operating System

Figure 18-4 WRKOBJ COmmand in Action

 5738SS1 V2R3M0 931217 MYMACHINE 01/05/2009 12:57:46
 *...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
 **
01 * Work with Objects (WRKOBJ) *
01
02 * *
02
03 * Type choices, press Enter. *
03
04 * *
04
05 * Object *All Name, generic*, *ALL *
05
06 * Library *LIBL Name, *LIBL, *CURLIB... *
06
07 * Object type ? *ALL, *ALRTBL, *AUTL... *
07
08 * *
08
20 * *
20
21 * Bottom *
21
22 * F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display *
22
23 * F24=More keys *
23
24 * *
24
 **

 *...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

The specifics of this CL command in Figure 18-4 show that it is not
filled in. The object name should be whatever you are looking for or
*ALL. The library name can also be *ALL if you want to search all
libraries. To get a list of all object types as an example of what this
CL command can do as well as to see the plethora of object types
on the system, place a question mark for object type as shown in
Figure 18-4 and press Enter. Note in Figure 18-5, that I combined
the output of two panels to make it easier for us to read. Each of
these object types has a unique purpose on the system. I would bet
that there is no IBM i implementer who knows or even cares to
know all of these object types. Objects such as *FILE for file and
*PGM, and *JOBD for job description and *TBL for table get a lot
more play than those unique to lesser used functions.

Figure 18-5 List of abbreviations- all object types on System
 5738SS1 V2R3M0 931217 MYMACHINE 01/05/2009 12:58:44

 *...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8

 **

01 * Specify Value for Parameter OBJTYPE *

01

06 * Object type *ALL *

06

07 * *

07

08 * *ALL *CSPTBL *

08

09 * *ALRTBL *CTLD *

09

10 * *AUTL *DEVD *

10

11 * *BNDDIR *DOC *

11

Chapter 18 Consistent, Intuitive Control Language 329

12 * *CFGL *DTAARA *

12

13 * *CHTFMT *DTADCT *

13

14 * *CLD *DTAQ *

14

15 * *CLS *EDTD *

15

16 * *CMD *FCT *

16

17 * *CNNL *FILE *

17

18 * *COSD *FLR *

18

19 * *CSI *FNTRSC *

19

20 * *CSPMAP *FORMDF + *

20

08 * *FTR *MSGQ *

08

09 * *GSS *NODL *
09

10 * *JOBD *NWID *

10

11 * *JOBQ *OUTQ *

11

12 * *JOBSCD *OVL *

12

13 * *JRN *PAGDFN *

13

14 * *JRNRCV *PAGSEG *

14

15 * *LIB *PDG *

15

16 * *LIND *PGM *

16

17 * *MENU *PNLGRP *

17

18 * *MODD *PRDDFN *

18

19 * *MODULE *PRDLOD *

19

20 * *MSGF *QMFORM + *

20

08 * *QMQRY *USRQ *

08

09 * *QRYDFN *USRSPC *

09

10 * *RCT *WSCST *

10

11 * *SBSD *

11

12 * *SCHIDX *

12

13 * *SPADCT *

13

14 * *SQLPKG *

14

15 * *SRVPGM *

15

16 * *SSND *

16

17 * *S36 *
17

18 * *TBL *

18

19 * *USRIDX *

19

20 * *USRPRF *

20

Traditional CL Command Functions

CL is used to operate the system as well as a procedural and
compilable programming language for job control. The types of

330 The All-Everything Operating System

functions that can be controlled or manipulated on IBM i with CL are
as follows:

• Librarian functions

• Utility Program

• Procedures

• Operator Commands

• File and disk space management

The traditional command structure of other systems with heritage
from the 1980 time frame, (System/3, System./34, System/36, and
System/370 family machines) consisted of many different types of
functions, as well as different formats for major functions. This is
one area of life in which variety is not preferred over consistency.

Programmers and operators needed to deal with librarian functions
for their program source and object utility programs for certain other
tasks, such as copying data. On these systems, procedures have a
different format and structure from other command functions and
none of the above systems permit grouping of commands, so that
an operator or a developer can find the right command when
needed. For example, the operator commands for spooling, file
and disk management were completely different, in format, from
other commands that a system operator would use on these
systems.

In fact, on IBM System/34 and System/36, there were operator
control commands (OCC) for operation functions such as looking at
the spool queue and there were operation control language (OCL)
statements for controlling program loads and execution, and then,
there were procedures to permit more than one set of OCL to be
called at once. If it were not confusing in concept, it would have
been confusing in practice.

On top of the different command/ procedure structures, though
both System/34 and System/36 were known for exceptional ease of
use, there was also an independent special manner in which to use
the OCC called Console Mode. The Console was hidden in normal
mode but, when needed, one could always invoke the special key

Chapter 18 Consistent, Intuitive Control Language 331

sequence to get there. With all of the different formats for
controlling the system and the notion of regular mode and console
mode, System/34 and System/36 may have been easier than most
systems to use, but they were far from intuitive.

This mess was cleaned up with the System/38 and its one format
Control Language. CL now is one of the hallmarks of the IBM i
operating system. Control Language is a single interface to all IBM
i functions. IBM i Control Language is made up of many commands
that replace the functions of separate commands for programming
purposes and for operations on other IBM systems. IBM i
commands are consistent in form and they are quite intuitive.

Define Control Language

So, if I was to take a stab at defining Control Language, I would say
it is a single consistent interface to all system functions. That is a
period back there in case you missed it.

CL can operate in interactive or batch mode. When operating in
interactive mode, CL has a consistent prompt facility (Press F4 for
Prompt). This feature helps the user avoid many look-ups into
reference manuals. Interactive CL also has the ability to list
commands in groupings of subject and / or beginning verb. This
function is called command grouping menus and is a big aid in
programmer/ operator productivity as no command is hard to find.
Moreover, once you find a command, all parms are explained within
help text and all options are shown by placing a question mark in
the parm and pressing Enter.

When operating in batch mode, CL can be pre-translated
(compiled.) It is the only system procedure and operator control
language, on any system, that can be compiled. Thus, it is very fast,
when executing. In compiled mode, CL is designed for controlling
application flow and it has powerful arithmetic and logic capabilities,
as well as variable interchange and other elements of a full
programming language, including direct database manipulation.
Additionally, it can interface to the user directly by reading and
writing display file panels using IBM i workstation facilities.

332 The All-Everything Operating System

CL has one additional facility that is fairly unique for compiled code.
Via the question mark facility, as already described for interactive
(non-compiled) use, a compiled program with question marks in
commands will stop and invoke the prompter so that the operator
can select the proper parm at execution time.

Intuitive Command Composition

Our last area of emphasis about the highly consistent and intuitive
command interface is its ability to make implementers and
operators appear to be smarter than we really are. CL command
names are very intuitive. In fact, they are structured like mini
English language sentences. Each CL command begins with a
verb, followed by one or several adjectives that are also called
modifiers, followed by the modified noun or the literal object of the
verb. A full command is composed of a command name and from 0
to 50 parameters. Within the command structure, blanks serve as
separators between parameters and there can be as many blanks
as the developer wants.

The simplest way to demonstrate the consistent command structure
is to list the verb, adjective, and noun components of a number of
commands. Check out the following list:

VERB:

3 Character Abbreviation Meaning
 CRT create
 WRK work with
 DSP display
 DLT delete
 STR start
 CHG change

Chapter 18 Consistent, Intuitive Control Language 333

ADJECTVE (MODIFIER):

1, 2, or 3 Char. Abbreviation Meaning

 P physical
 Q queue
 MSG message
 JOB job
 DTA data

NOUN (OBJECT OF VERB):

1 to 3 Char. Abbreviation Meaning
 D description
 E entry
 F file
 LIB library
 ARA area

To review the charts above, the IBM i command structure is made
up of a 3 character verb which denotes the action to be taken. For
example, use CRT for the create action whether you are creating a
physical file, a program, or an output queue.

The second part of each command name consists of one or more
adjectives. This modifier can be 1 to 3 characters. The modifier
distinguishes the type action to be taken. Sometimes, this has to do
with the actual type of object to be worked upon and / or created.
For example, the modifier can determine whether the action is on a
physical file or logical file, or perhaps a COBOL program or an RPG
program.

The third part of a command is the noun serving as the object of the
verb upon which the action is to be taken. This part delineates that
the action is to be taken on a file, library, description, etc… The
noun (object of the verb) can be 1 to 3 characters.

334 The All-Everything Operating System

Thus, a CL command consists of 1 verb, 0-2 modifiers, and one 1
object. Try to complete the following simple exercise on command
names in your head, based on the short lesson we just took.

 VERB MODIFIER OBJECT
create RPG program _crt _rpg______ _pgm__
create physical file ____ _________ ______
display library ____ __________ ______
start print writer ____ __________ ______

The command to Create an RPG Program is CRTRPGPGM as
shown as the first response. If you would like to check your work on
the other three exercises above, here are the answers for cases, 2,
3, and 4.

Command Function Three Parts Full Command
Create Physical File CRT P F CRTPF
Display Library - DSP LIB DSPLIB
Start Print Writer - STR PRT WTR STRPRTWTR

If I were to list all the commands on the system in two columns in 8
point type, there would be over ten full pages of commands in the
printout. The fact that the command itself is intuitive makes this
plethora of consistent commands quite easy to remember and if I
might suggest, something even better, hard to forget.

Command Parameters

It would be nice if CL commands could divine the developers’
thoughts and not require parameters. Even IBM i cannot do that,
yet! Every command has one or several objects that it operates
against and it does things in a certain way, based upon the will of
the user / developer. So, there must be human input to help a
command know exactly where to find named objects and then,
sometimes, where to put them at the end of the process.

Chapter 18 Consistent, Intuitive Control Language 335

Job Control Language on a mainframe and OCC commands on IBM
System/3x are positional in nature, meaning that if you miss a
comma the whole command is off and the best that can happen is
that it detects the error rather than doing something you did not
want done.

IBM i command parameters are mostly keyword oriented, though
they can be used in a positional fashion if desired or keywords and
positional parms can be mixed. Here is the rule on that. Once you
begin to use keywords in a prompt, everything after that must be
keyword, even if you are positionally correct. So, you can begin
with positional parms and switch to keyword parms but, not vice
versa. Let's look at a few examples:

All Keyword Command Parameter Structure

CRTLIB LIB(liba) TYPE(*prod)

AUT(*none) TEXT(*blank)

This says create a library called liba as a production type with no
special authority granted and no text used as a descriptor.

Positional then Keyword Command Parameter
Structure:

CRTLIB liba AUT(*none)

This says create a library called liba with no special authority
granted.

336 The All-Everything Operating System

Quick Look at S/36 OCL - Comparative
Purposes

System/36 OCL was always recognized as being one of the easiest
to use in the industry. The following short code snippets first show
how a program gets loaded and executed using System/36 OCL
and then the code is rewritten to use IBM i CL.

S/36 OCL -- Loading a Program Using Three Files

 // LOAD PGM1

 // FILE NAME-APLVND1

 // FILE -------------------

 // FILE -------------------

 // RUN

IBM i CL -- Loading a Program Using Three Files

 CALL PGM1

It's night and day. That's how much easier it is to control the action
on an IBM i than it ever was on System/3X.

System/3 Copy Program

System/3 was always recognized as an easy to use system, other
than in the terminal support area with CCP. One of its hallmarks
was that it had a very nice and very flexible copy file program. IBM i
has a phenomenally powerful database aware copy file command
called CPYF. Let's compare the two for similarities and differences.
It's been awhile for me with System/3 OCL but, I remember it pretty
well. There are no System/3 Reference Manuals around that I can
find so, you can take my word that this is pretty accurate. First I

Chapter 18 Consistent, Intuitive Control Language 337

show the System/3 version of copy file and then the IBM i version to
make a point on IBM i simplicity and consistency.

System/3 $COPY Utility -- Popular and Powerful for
Its Time

// LOAD $COPY,F1
// FILE NAME-COPYIN,LABEL-APPVEND,
 UNIT-D1,PACK-ABCDEF
// FILE NAME-COPYO,LABEL-APPVEND1,
 UNIT-D2,PACK-GHIJKL,RECORDS-500
// RUN
// COPYFILE OUTPUT-DISK
// END

AS/400 CPYF-- Copies with One Command and
Lots of Options

 CPYF APPVEND APPVEND1 MBROPT(*ADD)

On other traditional systems such as the System/3, as shown
above, if you wanted to copy a file you would had to give pack, unit,
and file name as well as issue other copy file specific commands for
options. On IBM i only the from and to files are required in addition
to a parameter in which you specify whether you want the incoming
records to be added to the existing file or you want all the records in
the file to be replaced. IBM i CL is much easier and simpler to use
than any other control language.

Before we close out this chapter on CL, let's show a few other CL
commands so you can get a better perspective on the consistency
and simplicity of CL for IBM i. Remember the verb/ modifier/ noun
format notion as you look at these:

338 The All-Everything Operating System

Other IBM i CL Commands

Command Function

CRTLIB MYLIB Create library named MYLIB

CHGLIB MYLIB
TEXT('MYLIB TEXT'),

Add text to MYLIB

DLTLIB LIB(MYLIB) Delete Library MYLIB

?CRTLIB Prompt for CRTLIB keyed
interactively or in a program calls the
system command prompter

WRKSYSSTS Work With System Status WRK is a
prefix (verb) which provides a vehicle
for working with an object (display,
change, delete, etc.)

WRKACTJOB Work with Active Jobs displays the
status of all active jobs in the system
and allows them to be changed.

CRTDUPOBJ Create Duplicate Object creates
duplicates of objects.

RNMOBJ Rename Object renames objects

GRTOBJAUT Grant Object Authority Grants a
user authority to an object.

WRKSYSVAL Work with System Values displays a
list of the system values and allows
the user to select a value for display
or change purposes.

*DO, *DATA, *IF, *GOTO, ..
etc.

Some CL program operations CL
Programs provide additional
commands which only make sense
in a programming environment. They
cannot be used interactively

CL Summary

The bottom line is that this simple and intuitive scripting language
for AS/400 heritage systems from System/38 to IBM i has endured
the erosion of time and has emerged as even more powerful than

Chapter 18 Consistent, Intuitive Control Language 339

when it was developed initially. Only in its functions does CL bear a
resemblance to mainframe JCL and System/3X OCL. Neither of
these systems perfected the language necessary to direct the heart
of the system's function. CL is far more elegant and consistent than
either JCL or OCL.

CL has had to evolve over the years, since it is the language that
best understands how to work with all objects on the system. As
such as objects have been added to support the ever enhanced role
of the IBM i operating system, CL has been enhanced to keep pace.

The vast majority of IBM i commands were written by IBM internal
developers to perform system level tasks like compiling programs,
backing up data, changing system configurations, displaying system
object details, or deleting them. Commands are not limited to
systems level concerns; however, and the number of commands
can be increased by in-house developers.

For example, when a developer finds that IBM has not created the
right command yet for a function that the IT shop needs to perform
regularly, IBM has provided tooling to give mere mortals the ability
to build their own commands. This makes CL even more powerful
and even more customizable for the needs of businesses
everywhere.

Additionally, all of IBM's commands can be tailored with a command
that I just love talking about. It is the “change command” command,
CHGCMD. With the collection of IBM's existing commands, the
CHGCMD command, and the ability to create commands that do
not exist, CL is by far the most powerful and the easiest Control
Language to ever grace a computer panel.

Chapter 19 Integrated Transaction Processing 341

Chapter 19

Advanced Computer Science
Concepts: Integrated Transaction
Processing

Programmer Productivity Is Still Important

In the 1950's through the mid 1970's, most data processing was
done in batch. There were no relational databases and there were
no fully integrated systems of any kind. All systems were built from
the hardware out. Each new piece of hardware that was
announced required its own operating system. Since each new
piece of hardware required its own OS, all application programs had
to be rewritten to mesh with the new operating system.

In the above sentence, I use the term OS. Even the term OS was
new in the 1970's. IBM's 1960's operating system was called DOS
(disk operating system). When I went to my IBM training in 1969,
the DOS operating system, itself, on the IBM System/360 model 30,
an expensive system for its day, took just 6 K. That's not 6 Meg,
and it is certainly not 6 Gig. The Disk Operating System was just
6,000 bytes. The one before it that got scrapped (IBM 1401) took
even less space. Moreover, application code was mostly written in
Assembly Language and each batch program did just a little work.
COBOL and RPG had yet to permeate the IT landscape in a big
way.

The 1970's ushered in the second decade of programming. As
much of an art as we think programming may be today, back then, it
was pure art and little science. There were brainiacs in my day who

342 The All-Everything Operating System

could actually sit at a keypunch and bang out assembler code that
worked the first time. In all fairness to the rest of us, they were few
and far between and they were clearly geniuses. Few people were
talking about programmer productivity. However, by the time IBM
introduced the System/360 in the early 1960's, Big Blue Knew it
could not support a build and junk strategy for application code
whenever it introduced new hardware.

Preserving IT Shop Programming Investments

There were no hard and fast rules per se. Any rules that might
have been followed were ad hoc and built on the fly. So, the idea of
programmer productivity was still to come because machines were
still far more expensive than people. Still, IBM knew that its
customers were getting fed up with starting from scratch every time
a new machine came out. More importantly, IBM wanted to create
machines that were compatible and thus, their operating systems
could be compatible and thus applications programs could be long-
lasting. This made logical sense.

Once System/360 came out with its "architecture," it spelled out the
new way of working with computers. Build and junk would no
longer make it as a computer strategy. Yet, the 24-bit design of
System/360, though huge for 1965, would not sustain the line for
the long haul. So, IBM mainframes began a trek of incremental
improvement with each leap forward in technology having to be
tempered by the inventory of older code that had to be compatible
and had to be able to use any new technology.

IBM's investment and its customer's investments in mainframe
technology, at least according to IBM, could not be compromised.
The retrofitting was painful and IBM's mainframe customers paid
dearly if they chose to stay in the past by not being able to take
advantage of rapid advances in computing. Or, they paid dearly by
moving forward with monumental software conversions.

When database technology arrived, first hierarchical and then
relational, they were designed by IBM and other companies as
add-ons to a base operating system. There were two reasons for
this. 1. IBM did not want to change all of its operating systems to
incorporate the new technology and 2. IBM did not want to force its

Chapter 19 Integrated Transaction Processing 343

customers to move tothe new software technology when clearly it
would be an effort to make the transition.

So, companies choosing datbase software, as an example, could
theoretically move ane application at a time to the new way and not
have to start from scratch. No operating system vendor ever
scrapped a whole operating system so that a better way could be
developed by starting over. Consequently on all systems, other than
IBM i, database software is still a piece parts solution, available
from a number of piece parts software vendors. Moreover, just like
database, the new way is piece parts, not integration, because it is
easier and more profitable for the vendors to sell one product at a
time, than a huge, all-inclusive operating system.

Then again, programmer productivity was not as much of an issue
back then; but, soon it would become an issue as the accountants
got into the act. It was too late for a complete redesign for the
mainframe division but, it was clear what the mission would be if a
redesign were ever possible.

Programming Became More Productive

Prior to the Isystem/3 operating system, first introduced in 1969,
large IT shops had to be content with running COBOL and PL/1.
IBM took a stab at creating a new cycle oriented programming
language witht its 1401 system and this was brough forward with
System/360 with slight improvemnts. The original RPG language
was designed to pretend to have the same characteristics as a big
electromechanical 402 or 403, or perhaps even an IBM 407 punch
card Accounting Machine. Besides COBOL and PL/1 and this
primitive RPG, in the 1960's, there were few other options and large
computer customers were OK with that. See Figure 19-1 for a look
at an IBM 403 Accounting Machine.

344 The All-Everything Operating System

Figure 19-1 IBM 403 Accounting Machine

Once programming fully replaced the wired boards of yore, as in the
IBM 403 Accounting Machine shown above in Figure 19-1,
programmer productivity began to have real meaning. The
measurements were crude but, the idea was very right-on. With the
1969 System/3, IBM introduced a substantially more productive
language called RPG II and this was the beginning of RPG as a
bonafide busness language.

Accountants began to measure the number of lines of code
produced by a programmer in a days work. Programming
languages that required more lines of code by definition were
therefore less productive than ones requiring less lines. But,
programmers got credit for more lines of code with inefficient
languages. It was a double edge sword; so, lines of code was a
meaningful metric only when using the same programming
language.

Chapter 19 Integrated Transaction Processing 345

Early Programmers Did not Like Early
RPG

COBOL and PL/1 were both very verbose languages and needed
many lines of code just to get a full, but basic, program. RPG was
always very efficient in terms of lines of code but, many old time
programmers rejected it because early RPG was not procedural
enough. Instead of the programmers painstakingly mapping out the
input > process > output cycle in a program, RPG provided its own
cycle. Programmers did not need to spend lines of code on the
basic cycle.

Instead of controlling the cycle, RPG programmers had to learn how
to make the RPG cycle work for them in order to make the business
more productive. The brainiacs never liked RPG because it made
programming simple. Most of the gurus of the day liked knowing
the internals of computers and using this knowledge to write great
algorithms for systems. They really did not like writing business
programs in the first place.

With the System/3, RPG had become a very good batch
programming language. The language style known as RPG II was
much easier than the mainframe version of RPG, which even today
looks a lot like the original IBM 1401 version than the IBM i version.
By the time IBM in Rochester, Minnesota introduced the System/38,
it had perfected the RPG language even further so that it warranted
another new moniker, RPG III.

This language was phenomenal and we've got a lot more to say
about it. Not only were the operations enhanced but, it was written
to take advantage of the advances in OS technology, such as the
integrated database and integrated transaction processing facilities.
With the integrated transaction capabilities that we are discussing in
this chapter, IBM i's RPG at the RPG III and RPG IV level are the
most comprehensive, and easiest, to use in a business
programming language. Anybody who tells you differently has
never worked with RPG. COBOL is the next productive business
language. When using an IBM i box, both of these languages
benefit substantially from the principle of Integrated Transaction
Processing.

346 The All-Everything Operating System

Bill Gates Hates RPG

As an aside, it may help to better understand why the RPG
language is pooh poohed by the academicians and the computer
scientists. Being a Business / IT professor, myself, at Marywood
University gives me a unique perspective on this dilemma. In a
word, RPG is practical. In other words it is not theoretical. It is
purposeful for business, though not totally multi-purpose in nature.

That is to say, you would not use RPG or COBOL to draw dancing
bears or create spinning globes on a display panel or a Web page.
I miss the point of why a business person would want a programmer
doing that type of nonsense anyway. Just as many academicians
want academic freedom over many aspects of reality-- even those
that do not apply, computer scientists in academia and outside
academia want computer freedom. It’s that simple. Languages
written to support business productivity do not fit this model of free
thought. Bill Gates is not a business programmer now and he never
was. He absolutely hates RPG.

A Bill Gates Story

One of the greatest hybrid computer scientists and marketing
geniuses of all time is Bill Gates. He is quite a guy. I bought him a
"ginger ale" in a 12 oz. brown bottle one evening in Florida years
ago, when he was 31-years old, and I learned a lot about how he
thinks.

When OS/2, an IBM OS originally written by Microsoft for IBM was
introduced in 1986, there was a strong rumor that IBM was about to
bring out an RPG compiler for its new OS. It never arrived. My
perspective is that if it had arrived, perhaps even OS/2 would be a
successful operating system in small businesses today.

Back in the late 1980's, Bill Gates, Microsoft’s current Chairman and
founder of the company, told me over that "ginger ale" that I would
never see a Microsoft-built RPG compiler. He kept his word. He
said he hated RPG. “It’s that language with those… indicators,” he
told me. As a true computer scientist, he just hated the language.

Chapter 19 Integrated Transaction Processing 347

Hating RPG was in his blood. The C language and the C++
language and the Microsoft developed Visual Basic language have
all been pushed by Gates because they were “more functional” than
RPG. The fact is that RPG was at too high a level and his
languages operated at levels closer to the machine. Bill Gates did
not have to worry about rules. Again, computer scientists like
languages in which they can do everything unimpeded – even crash
the machine if need be.

None can deny that Bill Gates’ Windows wares have more than
their fair share of crashes. None would deny that Bill Gates is also
the master marketer. He outsmarted IBM in PCs and emerged a
super billionaire in the software marketplace. It is ironic though, that
as much as Gates hated RPG, for many years, Microsoft used
AS/400s with RPG to run its business.

Through his superior marketing, most new computer scientists
coming from colleges today believe in the Gates notion of
computing – via C, C++, C#, and Visual BASIC. Most also even
believe that it’s OK for computers to crash as often as PCs do. It is
not only OK, it is expected. Having worked for IBM for many years,
I know that Big Blue never thought it was OK for hardware or
software to crash and the IBM Company worked hard to prevent it
across all its platforms.

Never being a business programmer himself, Bill Gates either does
not understand or does not want to understand that the two most
used business languages of all time, RPG and COBOL, are well
used in business because they are easy to use, stable, and they are
far better suited for the job than computer science style languages.
From my own conversation with Mr. Gates, I don’t think that would
matter. He rejected RPG simply because he does not like it.

Many in the IT industry know that for years Microsoft used AS/400
vintage machines to run its business. At the time of the "ginger ale,"
that we shared Mr. Gates did not need all14 of the largest AS/400s
to run his business, though eventually, Microsoft got so big that they
needed 14 AS/400s to keep it all going. Those 14 AS/400s were
not running Microsoft software. They were running ERP application
software that was written in RPG and/or COBOL to assure that
order fulfillment and the rest of their ERP never failed for Microsoft.
The old phrase, "do as I say and not as I do," comes to mind.

348 The All-Everything Operating System

Transaction Processing Software

Regardless of how good RPG and COBOL were in the early 1970’s
for batch processing, the new wave of video terminals that found
their way to business desktops in the mid to late 1970’s demanded
even more than these business languages could naturally provide.
IBM answered the call for terminal support early on for mainframes
with its Customer Information Control System (CICS).

CICS is a large transaction processing monitor that companies can
purchase for mainframe computers. It is a separate add-on to the
operating system that enables interactive transaction processing
and multi-user terminal support on mainframes.

On small System/3s at roughly the same time, IBM developed the
Communication Control Program (CCP), another transaction
processing monitor, which brought a lower level of transaction
processing than CICS to the System/3. As a small business facility,
this package was available as an add-on for free from IBM. But, the
company normally sold a lot more System/3 hardware if a customer
chose to implement System/3 applications using CCP.

The major transaction processing program for non-IBM platforms
today is clearly Tuxedo, which came to life in 1983 at Bell labs and
was perfected by 1989. It is now marketed by BEA Systems and it
does a good job. It is just not as easy to use as the grated
transaction processing on IBM i

Programmers writing for CICS, CCP or for Tuxedo have many more
jobs to do in a given program than merely sending and receiving
screen panels to and from terminals or PCs pretending to be
terminals. For example, the programs must check to make sure
that the screens reach the users' terminals and also that the data
that is returned is valid.

Such error checking and correction adds many lines of code to
transaction processing programs. Terminals are foreign to all other
system compilers so, unlike normal disk or tape support in the file
section supported by business languages, there is no support for

Chapter 19 Integrated Transaction Processing 349

terminals. Thus, non-IBM i programming languages are written to
be completely unaware of terminals. With IBM i, it is much easier to
write interactive transaction programs, since the terminal is
supported as a natural device, and thus it is as easy to work with as
disk or tape or even a printer device.

To talk to CICS or CCP or Tuxedo, a programmer must invoke a
call to the TP monitor and pass to it arguments directing it to
perform a specific operation such as “send a panel” or “receive a
panel.” Compilers do not support CICS or CCP or Tuxedo or any
terminal monitor. In the case of Tuxedo for example, the compiler
writers and the TP monitor are written by different companies. So,
compilers do not support Tuxedo naturally but through the same
mechanism that all foreign programs are supported -- external calls
to APIs. Thus, in this environment, it takes lots more than simple
Reads and Writes to display a simple panel or to manage an
interactive conversation with a user terminal.

The Beginning of Integrated Transaction
Processing

During the development of the System/38, the notion of a
workstation (WORKSTN) as a device was brought forth in
Rochester, Minnesota. Even before the System/38 was ready to
go, in 1977 IBM used the in-process work for the System/38 as the
basis for System/34 and its natural way of handling terminal
workstations. The company announced and delivered a
"WORKSTN" device capability in the RPG compliler that changed
the nature of interactive computing forever on IBM small business
systems. The IBM mainframe world was consumed with CICS at
the time and thus, it never adopted the integrated approach. There
still is time...

Programmers from System/3 who had been toiling with the rigors of
CCP (or even CICS and later Tuxedo) were amazed at how simple
it was to work with the integrated compilers on this new IBM
System/34. In 1978, when IBM announced the System/38, the
notion of a WORKSTN device was perfected with the introduction of
the display file object.

350 The All-Everything Operating System

Workstation as a Natural Compiler Device

Just as a tape monitor is not needed or a card monitor or a printer
monitor or a disk monitor is not needed in compiler theory, since
every compiler is built to talk to those batch devices natively, the
IBM Rochester Software Engineering team chose to eliminate the
need for a terminal monitor in their operating system and compiler
design. In other words, there would be no need for CICS, CCP, or
Tuxedo type packages on IBM's new small business machines.

To accomplish this technologically groundbreaking achievement,
they wrote the operating system and the compilers to treat a
database as a natural disk device, and they used the same
medicine to treat a terminal / wrokstation as a natural device.
Anybody in the press paying real attention to what was going on
would have inducted these people immediately into the Computer
Architecture / Design Hall of Fame.

The IBM Rochester team chose to treat a terminal as a real device
that should not and did not require a complex monitor package. It
had never been done before and other than the IBM System/38,
AS/400 and IBM i lineage machines, it has never been done again.
One might say that they integrated the TP monitor such as CICS or
CCP or Tuxedo, within the system itself, rendering the monitor
invisible. By rendering the monitor invisible, they rendered the
systems programmers needed to keep those monitors alive invisible
and so companies saved money on people resources.

Workstation as a Natural System Device

Actually as powerful a statement that the last paragraph makes, it is
an understatement. IBM did a lot more starting with the System/34
and the Company continues these capabilities with IBM i. IBM
Rochester first built the operating system so that it could work with
non standard devices such as terminals/ workstations and
databases. Then the compiler writers simply used the operating
support built for those devices / facilities, to reach them naturally
through the OS. Today, for example, a user can start an IBM i
session from any PC or workstation device attached to the system

Chapter 19 Integrated Transaction Processing 351

either locally, over communication lines, or even over the Internet.
The operating system speaks to the device naturally.

Since the operating system was built to support terminal
workstations, no special monitor was needed and the compiler
writers were able to provide natural links to the operating system to
support these devices directly within the compiler. It literally made
programming for interactive display terminals a piece of cake. It
was so easy to write programs for this capability that IBM i shops
have been using terminal workstation devices and PCs effectively
with IBM Rochester products since 1977.

One has to ask why after 30 years no other system, not even the
mainframe, has been retrofitted to permit workstations as natural
devices to the system and to the compilers. It sure made life lots
easier for IBM i developers and that's why the loyalty factor is so
high in the IBM i community.

There are many rumors that IBM is about to do the same thing for
Web Browsers and it would have the same historic and marketing
impact. Can you imagine not having to deal with the "fifty ways to
leave your lover" as found in the Web Development tools of today?

WORKSTN Display File Genius

Unlike the System/34 WORKSTN device, the upgrading of the
WORKSTN device as a display file with the System/38 brought
along support for multiple users as an innate operating system
feature. In other words, when coding for interactive users with a
System/34, a programmer had to know how many users, at one
time, would be working with the same interactive program. When a
program was coded for the System/34 and later the System/36, the
programmer needed to designate it as a multiple requester terminal
(MRT) program or a single requester terminal program (SRT).

Each SRT request caused a program to be loaded. Program loads
cause system performance overhead on all systems. The MRT
minimized the program load hit since just the first MRT request
caused the program to be loaded. Subsequent requests permitted
the new terminal user to be attached to the same user program

352 The All-Everything Operating System

already executing in memory. In the System/34 MRT environment,
the programmer was responsible for keeping track of the data of the
various users who were using the program at any point in time.
Yes, this caused work, but not as much work as on those systems
(Tuxedo and CICS) in which it took lots of work just to talk to the
device.

With the display files and the further tailoring of the notion of a "job
structure" on the System/38, all programs had the benefits of being
MRTs without programmers having to code for multiple users. All
IBM i programs are multi-thread by nature. The operating system
keeps one copy of a program in memory to be used by all, and it
also provides a set of working storage called a process access
group for each user who signs on to that program.

All variables and unique processes are in the user's job structure
and thus, it does not matter how many users call a particular
program, each gets his or her own unique environment, while using
the same re-entrant code copy of the program in memory. For
something so advanced internally, programmers and users are
oblivious to it happening. The management of thousands of users
all connected to the same program is something that IBM i does
and nobody needs to worry about.

If WORKSTN files made System/34 a cake walk, and to tell the
truth, they did, the innate multi user facility of display files in each
compiled program added a thick glob of whip cream icing to the
cake. There is no easier way to code for interactive transaction
processing than to use the integrated transaction processing built
into the all-everything operating system. There will be no easier
way of sending out and receiving Web pages when IBM chooses to
release this often requested facility.

Chapter 19 Integrated Transaction Processing 353

Figure 19-2 RPGIV Version of Advanced Hello World Program
1 FPANEL CF E WORKSTN

2 FLANGUAGE IF E K DISK

3 D ERRMSG C CONST('HELLO WORLD TRANSLAT-

4 D ION NOT FOUND, TRY A-

5 D GAIN')

6 C *IN99 DOWEQ *OFF

7 C EXFMT SCREEN1

8 C LANGUA IFEQ 'END'

9 C LEAVE

10 C ENDIF

11 C LANGUA CHAIN LANGUAGE 90

12 C *IN90 IFEQ *ON

13 C MOVEL ERRMSG MESSAG

14 C ITER

15 C ENDIF

16 C ENDDO

17 C MOVE *ON *INLR

RPG Coding for Interactive Work

Take a look at the first line in Figure 17-3, repeated above as Figure
19-2, to see how simple it continues to be to code the WORKSTN
display file in an RPG program. Inside of the file named PANEL, in
line 1, is a screen panel defined as SCREEN1. This is not needed
until line 7 of the program. In line 7 of the program, you can see an
operation called EXFMT. Next to it you see the word SCREEN1.
This very powerful EXFMT (execute format) operation sends the
panel named SCREEN1 to the user, and then puts the program to
sleep.

When the user presses a function key or an ENTER key, the
program wakes up and processes the returned information from the
display screen. Because this is so easy, the life of a programmer is
such that when using IBM I, they can concentrate on the
organization's "business logic", rather than worrying about bits and
bytes.

Yes, that EXFMT operation is both a write to a workstation and a
read back. No other compiler in history has had ease of use
facilities such as this. That’s why programmers using the all-
everything operating system have always been the most productive
in the universe. They still are and that’s a fact.

354 The All-Everything Operating System

eCommerce Transaction Processing

With a simple WORKSTN file, IBM eliminated the need for a major
cost component and a major customer programming effort, as
would have been required with CICS, CCP, or Tuxedo to support
interactive terminals. Today, on all other systems to support
transaction over the Web, a Web monitor program, such as Bea’s
Weblogic, or Microsoft’s .NET, Apache’s Jakarta TomCat, or IBM’s
WebSphere, is absolutely a necessity. This is a very similar notion
to the requirement for CICS and CCP and Tuxedo as much as thirty
years ago.

There is no eCommerce transaction processing engine built into
any system today, including the all-everything operating system.
Though IBM i is staged for it to be announced, it is not here yet. For
the all-everything OS, the solutions today for Web transaction
processing are Jakarta Tomcat and WebSphere Server and PHP,
just as with every other system.

To be fair, IBM does have facilities such as Webfacing, iSeries
Access for the Web, and the Host Access Transformation Services
(HATS), which permit programs written to the workstation interface
to be usable on the Web with minimal alteration. IBM i is clearly
ready and well positioned for a major compiler and OS
enhancement when IBM is ready to bring this needed function to
the IBM i masses. Just as IBM was the first and only company to
initiate integrated display file transaction processing, with a
WEBSTN (Web station) file, the RPG and COBOL compilers that
today work with terminals can simply be retrofitted to work with Web
Pages and browsers without even touching the program logic.

Since this is the natural way for an all-everything integrated
operating system and an all-everything machine to talk to devices
through its languages, I would expect that IBM is working on this
methodology as we speak. I hope to see it within the next operating
system release or the one after that. It makes sense.

In the meantime, of course, the all-everything machine is positioned
well for the Web by being able to use the same or similar Web
transaction processing monitors as all other servers out there. Add

Chapter 19 Integrated Transaction Processing 355

HATS, iSeries Access for the Web, and WebFacing to the mix and
the future is almost here today.

The future for integrated transaction processing from workstations
and webstations on the IBM i box is bright indeed.

Chapter 20 All-Everything Operating System: Extra Ingredients 357

Chapter 20

All-Everything Operating System:
Extra Ingredients

Integration is # 1

As we have discussed the lineage of IBM i, the all-everything OS, in
this book, we examined the history of the hardware and software
and the many names, especially those which recently adorned the
finest machine and operating system ever built. IBM i is the part of
the new IBM Power System with Power 6 technology that gives the
machine its AS/400 heritage and personality. And that little "i" in
IBM i has always stood for integration. It is the linchpin that
provides IBM i its power and elegance.

IBM i Historical Review

Along the way to IBM i, in 1978, IBM first turned its Rochester Labs
internal Pacific Project into the IBM System/38, the most advanced
system of all time, and it named the operating system simply
Control Program Facility (CPF). Then, in 1988, IBM took its
Silverlake project and created the Application System/400 (AS/400)
and the operating system was re-christened as OS/400. When IBM
completely changed the hardware in 1995 from 48-bit CISC to 64-
bit RISC, Big Blue chose not to touch the names, even though the
system had completely changed.

In 2000, along with all other IBM servers that were renamed, the
AS/400 became known as the eServer iSeries 400. This was the
first time IBM had chosen the little "i" as part of the nomenclature

358 The All-Everything Operating System

signifying that the iSeries strength was its integration. In 2004,
when the Power 4 chip gave way to the Power 5 chip, IBM
introduced its IBM i5 or simply the i5 and the Company changed the
name of the operating system also, this time to i5/OS. In 2006,
across the corporation, IBM got religion about the word "system"
and got sour on the notion of "servers." During this change, the
physical box name changed to the System i and the operating
system name remained as i5/OS.

System p Historical Review

From about the year 2000 onward, IBM in Rochester built the
frames and all the physical pieces of both "i" boxes and the "p'
boxes. At about the same time, the popular IBM RS/6000 Unix
machine was renamed as the pSeries. In 2004, it became the p5
and then in 2006, along with the rest of IBM's former servers, it
became a system, the System p. The "i" in System i as previously
noted was for integration and the "p" in System "p" was for its
Power processor heritage.

Powerful RISC processors were always part of the p line from back
when it became IBM's second commercial RISC system. The Risc
Technology PC or RT PC had preceded the RS/6000 to the line a
number of years earlier. That is the lineage of the IBM System p.
In 2006, the System p was IBM's premiere system for Unix
computing as the Company promoted its own AIX operating system,
as well as Linux and an experimental version of Open Solaris. All of
these are either Unix clones or derivatives. Open Solaris is a
derivative of Sun's Unix platform known as Solaris. This is an open
source version (free) of Solaris that is still in the experimental stage
with IBM's Power System lineup.

In 2008, IBM added full support for Unix (AIX) and Linux to the
System i machine and thus IBM had in essence eliminated the
System p. Since the new System i machine could run Unix or Linux
as easily as it could run i5/OS, the name System i no longer made
any sense. It was no longer appropriate to bundle i5/OS with
universal hardware and call it System i. It would be a little
disingenuous to do so.

Chapter 20 All-Everything Operating System: Extra Ingredients 359

The IBM Power System -- IBM i, Unix,
Linux

So, IBM got its naming book out again and this time the company
came up with a hardware platform name that is operating system
agnostic. The IBM Power System is the name of the new hardware.
It took most of its new name from the name of the chip family upon
which it is based, the IBM Power 6 chip line.

Since the engine on the new hardware was no longer based on
Power 5 technology, the idea of having i5/OS as the OS name for
the "integrated" operating system also needed to be reexamined.
With the entire hardware / software line moving to the Power 6 chip,
the little "i" still made sense but the "5" for Power 5 had to go.

Rather than start over and re-name the integrated OS as the The
Business Operating System or as The Integrated Operating
System, IBM chose to change the OS name to IBM i. Though its
full logo suggests IBM i for Business, IBM has asked members of
the press to use "i" or "IBM i" as the new name for the operating
system.

It may seem that "i"-style integration slipped away when the
operating system and the hardware were separated in April, 2008.
However, this is nowhere close to the truth. The all-everything
operating system, IBM I, is no less integrated and no less effective
using the IBM Power System as a hardware base than it was using
the System i hardware. In fact, since the IBM Power System with
Power 6 is more powerful than the Power 5 in System i, the platform
actually got a big boost from the change.

The IBM Power System has all the capabilities of the System i and
even more as the Power 6 chip is substantially faster and more
capable than the Power 5. Moreover, IBM enhanced the
components and peripheral devices with its 2008 hardware offering,
and so, the Power System is more capable for IBM i and it is also
more capable for AIX and Linux. The Power System with IBM i,
overall, is actually more integrated, faster, and more functional than
the System i. And, that is good for IBM i, not bad.

360 The All-Everything Operating System

Learning IBM i and Other Operating
Systems

Gaining technical proficiency in a platform is something that takes
time. Those technically proficient in AIX / Linux on System p have
no problem moving to AIX or Linux on the Power System. The
operating system names and the hardware names were never really
connected on the "p" platform. Those technically proficient in i5/OS
have no problem moving to IBM i on the IBM Power System either.

However, there is a sense of something unsettling about the move
for the former System i / AS/400 heritage community. The
hardware and the operating system had been connected by a tight
umbilical cord for over thirty years and now; to some, it appears that
IBM has broken the cord. There are a number of stalwarts in the
IBM i heritage community who are concerned that The Power
System boxes replacing the System i boxes means that it is the
beginning of the end of AS/400-style computing. They are
concerned that the only system in IBM that was designed from the
outset for programmer and user productivity through functional
integration was being sunsetted by the company that brought it to
life.

As an IBM i heritage lifer with many side trips to other platforms, I
can say that for awhile, I too had misgivings about what IBM had
done. I am OK now because I have figured out it makes sense. Try
this on. If IBM had announced that "the i5/OS operating system
was enhanced to run on the Intel x64 and Xeon platform," in
addition to System i, I would have been elated. Most in the IBM i
community would feel the same. Removing IBM i from its hardware
dependency and onto a platform that is more universal only serves
to make the operating system more recognized. Separating the
operating system from the hardware, as IBM did in its 2008 platform
changes, is the first step in making this happen. So, overall, I think
this is a very good move.

Cream rises to the top. IBM i now is an operating system among
operating systems and it can be compared as such. It now has its
own opportunity to rise to the top rather than be homogenized,
along with all of the other same-ole same-ole operating systems.

Chapter 20 All-Everything Operating System: Extra Ingredients 361

Point by point, it is the best of the best. It is the all-everything
operating system. If the trade press takes another look at IBM i
when it compares operating systems, it should fare quite well.

With just a little more tweaking, such as a native browser based
GUI interface, which I have been told is in the works, as the song
goes, "who could ask for anything more." Right now, IBM i is staged
for great things. The all-everything operating system is free at last.
And, it still is integrated.

Who Could Ask for Anything More?

IBM was once a hardware company with other businesses. Today
it is a highly successful services and software company with many
other businesses. In fact, it is IBM's new business makeup that has
enabled it to survive in a down economy while its hardware /
software competitors are flailing.

Hardware happens to be one of IBM's other businesses today as it
represents just about 25% of the Company's revenue. So, when
IBM's AS/400 heritage clients plead to IBM to make their OS more
known to the masses, IBM cannot do that. It is against its
successful business model, no matter how much platform zealots
want IBM to market IBM i. IBM cannot favor IBM i over its other
offerings because it would be bad for business. IBM is a business
serving many constituencies and it has chosen to serve them all
equally, for the benefit of the corporation.

Big Blue does not highlight one set of IBM products against another
set to prop up sales. By now, IBM knows, or certainly should know,
that it has the best operating system in the world in IBM i. I
certainly did not have to write a book to tell IBM that. IBM knows it.
As a business, the fact that the Company makes lots more money
with z/OS than IBM i is a good reason not to suggest mainframe
clients move to IBM i. IBM has been this way forever and we all
must remember that the IBM Company, even in these tough
economic straits, continues to be very successful. I would expect
IBM to do nothing less than what is best for the Company.

362 The All-Everything Operating System

Competing Products Is an IBM Way of Life

IBM history is replete with examples of the best never being
permitted to take over the whole banana. For example, Big Blue
almost always had two or more competing mainframe operating
systems. For the longest time, it also had two or more competing
mainframe hardware lines.

IBM's first big operating system was a derivative of the 1964-
introduced IBM System/360. Its name, at the time, was simply Disk
Operating System (DOS). The other was a derivative of the 1970-
introduced, System/370 Operating System (OS). Yes, its name was
simply OS meaning Operating System with no adjectives. IBM
viewed this as the beat-all and end-all operating system of the day.
No other operating system in the early 1970's could come close to
OS for raw system function and power. The IBM Company's forte,
from day one, was building phenomenal operating systems. Just
look at IBM i for proof of that.

Before the move to z/OS after the millennium change, the name
iterations of these two operating systems (DOS and OS) brought
forth VSE/ESA and MVS/XA. I don't profess to know much about
either anymore but I know more than I probably should. In a
nutshell, VSE came from DOS and MVS came from OS. IBM liked
having more than one of everything. It never tried to replace all of
its VSE accounts with MVS even though MVS was its best offering.

Small Mainframe, Big Mainframe

IBM Systems Engineers (SEs) in the Branch Offices in the early
1980's felt that they had gotten sandbagged, if they needed to work
with the purposefully primitive VSE mainframe OS while their peers
worked on MVS. When IBM eliminated GSD, for example, and
formed NMD for small accounts and NAD for large accounts in the
US, some former MVS SEs got to work for NMD. Unfortunately for
them, they had been permanently sandbagged as NMD could sell
only small mainframes, System/38s and System/36s.

Most very large businesses ran MVS and few very large businesses
ran VSE for this very reason. The two operating systems were like
night and day. One was rich in function and the other was always

Chapter 20 All-Everything Operating System: Extra Ingredients 363

purposely limited. One cost a ton and the other was affordable by
smaller organizations.

IBM could have promulgated its best OS, MVS to the smaller levels
of hardware and provided a one time conversion and it would have
been fine. However, Big Blue wanted two operating systems at a
minimum for its mainframe accounts and the Company had a big
aversion to conversions that started way back in 1965. As you may
recall, in the mid-1970's, IBM had blocked the introduction of its
best operating system design ever, known as FS for Future System,
so its customers could avoid a conversion.

In IBM the Best Must Win for Itself

So, it is easy to understand fully why IBM does not promote IBM i
as its beat-all and end-all OS. First of all, as a business, IBM brings
in the bulk of its money from MVS and VSE accounts, their
associated hardware, middleware, and services. So, why promote
IBM i? Most of the mainframe money comes from software and
from services. Having an operating system in the stable such as
IBM i, that requires less piece parts software and less services is a
concession that IBM makes every day to the IBM i heritage shops
by permitting IBM i to exist and then by funding it further
development.

Making the Best OS Ever

Pushing one IBM product over another is not how IBM prefers to
conduct its business. A rogue Laboratory in Rochester Minnesota
better than thirty years ago got IBM into this predicament. IBM had
never decided at the corporate level, that it was going to produce a
beat-all, end-all system with the best operating system of all time.
Computer scientists in Rochester, Minnesota however, had other
ideas.

Driven by their desire to achieve the limits of what was possible in
computer science at the time, with Dr. Frank Soltis in the lead,
Rochester's Scientists and Engineers created the IBM System/38 in
1978. Their work brought major league operating system
innovations to IBM for the first and last time in a package that was

364 The All-Everything Operating System

also easy to use. The successor operating systems from then to
now, including IBM i have enhanced the legacy. From a technology
standpoint, from 1978 until today, it is clearly the best work IBM has
ever done.

IBM never intended to permit this system from the Midwest to
become a dominant part of its computing landscape. Companies
like Costco, Nintendo of America, and Enterprise Car Rental, and of
course the Casinos would have been IBM mainframe accounts if
they were not able to find more than they needed in the system that
never should have been built. Yes, in the mid 1980's IBM tried to
kill the System/38 with its Fort Knox project and severalother times,
but it could not. It needed it to fight and win against DEC and the
other minicomputer vendors. When it did its thing by the early
1990's and DEC was gone and Wang was gone and Data General
was gone, IBM had a touch of buyer’s remorse but, it was too late.
IBM i continues on and it is bettr than ever.

IBM i never really fit well in IBM's synergy plans. Neither do Unix
and Linux and Windows for that matter. IBM is very smart,
however, and it knows well that it cannot exist today without Unix
and Linux and it also knows that its large IBM i customers, with 95%
penetration in the Fortune 500 would not stand for IBM diminishing
the Power System with IBM i in any way. So, not only does IBM
keep AIX, Linux, and IBM i as products in its collection of operating
systems, the Company continues to invest heavily in all of them.

Business, Not a Computer Science Contest

So, for its part, IBM does its best to support all of its all-everything
OS customers, but it is clearly against its business model to try to
convince the world that IBM i is the all-everything OS or even that it
might be a good choice. The fact is that IBM is not running a
computer science contest. It is running a business.

If it were running the former, the contest would already be over and
IBM i would have already won hands-down. IBM i loyalists, such as
myself, would continue being miffed if there were such a contest
and IBM i won; because, IBM as a business would be hardpressed
to publish the results. Since it is running a business and not
conducting a contest, and IBM well knows what it is doing, the

Chapter 20 All-Everything Operating System: Extra Ingredients 365

Company continues to be successful. It finds no need to maintain
its success by taking sides.

If you did not know IBM's agnostic stance regarding the members of
its system product line before you read this book, now you know.
IBM just does not make a big fuss about its outstanding technology.
As hard as it is to believe, Big Blue is concerned that taking sides
would actually be bad for business.

Having said all that and having given IBM its due for supporting IBM
i with investment dollars as it continues to do, I am thankful and so
are many other AS/400 heritage loyalists. And, yes, we know that
if Corporate IBM ever changed it stance on taking sides, the still
revolutionary IBM i all-everything operating system would be its
flagship.

The Old Stuff in Review

As we discussed in the nineteen chapters that preceded this, our
second to last chapter, IBM i developers have many reasons for
liking the operating system. Most of them revolve around the word,
productivity. They like getting things done for their respective
businesses and IBM i helps them get things done. It does not get in
the way.

Advanced Technology Has Its Advantages

IBM i developers, for example, do not write their programs thinking
that they are operating at a high level machine interface. Yet, they
are. They are not consciously aware of the 128-bit pointers in the
operating system permitting objects to be addressed in a huge,
almost never ending single level store continuum. Yet they are
there. Moreover, they pay no attention to the fact that data really is
spread out on numerous A, B, C, D, E etc… drives, since the
system handles all that. Yet, that's where the data resides.

They are also not concerned about the innate security of the
system, whether rendered by the residue of the System/38's
revolutionary "capability based addressing" or the C2 level security
inherent in the new operating systems or what Dr. Frank Soltis likes

366 The All-Everything Operating System

to call the principle of "adoption of authority." Just like everything
else, security is just in there and developers take it for granted.

There is something to say about the object-based nature of the IBM
i, all-everything OS. Yet, again developers do not have to be
schooled in object orientation to use the system effectively. You
may know from this book or elsewhere that on Unix and Windows
systems, everything is a file, even if it is a program or a Job queue
or a print queue. On IBM i, programmers are not wrapped up all
day concerned about everything being an object, even though on
IBM i this is not only good, it is lots better than the file system
implementations on all other operating systems.

The IBM i objects all have the computer science standard structure
that would cause even those with CS degrees to take notice that the
objects managed by IBM i are real. They have built-in persistence
and garbage collection and all that they need to persevere.

Developers on IBM i find a high level library structure, and another
structure as part of the base system that permits Unix applications
to run alongside IBM i applications, without the requirement for a
Unix operating system. The PASE environment is described later in
this chapter. This is another phenomenal feature of IBM i.

What about PC Files on IBM i?

In addition to supporting Unix, IBM created a storage structure that
is even more universal. They call it the Integrated File System or
simply the IFS. Programmers can use the IFS to hold Windows-like
file directories and files when they use the system as a peer file
server or they can choose to use it to store html/ xml files for Web
access. So, in addition to the more productive library structure, IBM
i can support any type of structure hat you can throw at it.

How about some Java!

Developers on IBM i are, for the most part, quite spoiled because,
whenever they want something, it seems to already be there. For
example, Java compatibility is implemented through a native port of
the Sun Java virtual machine and many suggest that the IBM i ports
at 32-bit and 64-bits are Java's best implementations.

Chapter 20 All-Everything Operating System: Extra Ingredients 367

Did you say Database?

Additionally, on IBM i, programmers need not care about other
unique integrated features of the operating system such as the
RDBMS, now known as DB2 for i. They get to use it with no strings
attached. Though the database is not open source, it is free with
the operating system. Developers also take for granted the high
level CL language; the integration of the compilers into the
database and workstation mix, and they especially do not care
about the travails of transaction processing with an external TP
monitor because all of that is a natural and built-in with IBM i.

Best Business Function in any OS

IBM i developers write their programs thinking that all operating
systems should have already advanced to the same level as IBM i.
Why would any IBM i developer think that they have not? After all,
every other operating system has had more than thirty years to
catch up.

IBM i developers are more business oriented than computer
science oriented. They write code to solve business problems.
They don't want to reinvent computer science solutions every time
they need to access a file or a workstation. They do not want to
work hard for the sake of computer science. They want to work
smart using the best that computer science has to offer, in the form
of IBM i. They love IBM i and they know anybody who gave it the
"once over" would feel as they do.

Pass the Menu Please

Besides all these notions that many IBM i developers take for
granted, IBM i also includes a natural menu-driven interface, multi-
user support and full OS support for any number of workstation
devices that you may choose to use -- either on local connections,
high speed Ethernet LANS, WANS or the Internet. And, of course,
they take for granted the support for natural displays and printers,
all wrapped up in a secure, tight package, that is just at home on
the Web as it is in the home office.

368 The All-Everything Operating System

Free Web Facilities

On top of the items needed to run a great in-house operation, IBM
provides for free with IBM i, its mainframe and AIX-class IBM
WebSphere Application Server. Though it is not integrated per se,
it is pre-installed so no SysGen is required for WebSphere and
servlet server support. The leading Web server in the industry,
Apache, also comes shipped with the base operating system. It's
ready to work without any configuration.

I have toyed a little bit with WebSphere on IBM i and I can tell you
that it works fine for those that like the Java environment. It is as
good as it gets. From 2000 to 2005, I wrote eight books on
WebSphere showing how it can be nicely integrated into anybody's
AS/400 heritage environment.

Looking deeper into the goodie bag for IBM i developers, you will
quickly see there is more than just WebSphere. There are also
tools that make WebSphere come to life and make the Web as
natural an interface as the green screen environment. WebSphere
has three major offerings for IBM i that provide natural Web
interfaces to the user depending on how they want to connect.
These are as follows:

(1) iSeries Access for the Web, a quick way of accessing the
AS/400 from your browser, using a client server tool,

(2) WebFacing, a tool that converts green screens into attractive
Web pages using cascading style sheets (CSS) templates to add
the right level of pizzazz and

(3) Host Application Transformation Services (HATS) which does
basically the same as WebFacing without the need to pre-convert
the display panels

IBM has no real reason to want the IBM i community to do anything
but use WebSphere at the Internet/ Web developer level.
WebSphere also works for AIX and Linux, and for Mainframes and
so. The IBM support for IBM i permits the "i" community to work
with the same tools and packages as the other operating systems

Chapter 20 All-Everything Operating System: Extra Ingredients 369

using the world's most powerful Java application servlet server,
WebSphere.

PHP and MySQL for Me

Despite IBM's own business desires in the WebSphere area, the
fact is that many IBM i clients are small and can benefit from the
plethora of open source Web applications available for PHP on the
Internet. Over the last several years I have worked with a number
of my clients to bring PHP and MySQL to their shops. During this
period, I have written eight books on PHP and I can attest that the
environment works well on IBM i. In fact, in early 2009, IBM
announced that it had integrated PHP with IBM i and that this
powerful scripting environment, along with MySQL, would be
shipped with every IBM i system.

IBM arranged with Zend several years ago to bring its award
winning PHP to the IBM i platform. IBM now ships this with every
IBM i 6.1 version free of charge. This is just another manifestation
of IBM doing what is best for its loyal IBM i constituents.

Check out [http://www.zend.com/en/products/core/for-i5os Zend
Core for i5/OS] to get a perspective of what is current regarding
PHP on IBM i. If you just received IBM i 6.1, like the spaghetti ad, it
is in there. You can just begin to use it. PHP uses the native port
of the Apache Web server to bring its applications to the IBM i
community. It really is neat.

Don't foret that there is now a DB2 for i storage engine for MySQL.
Wait til you see how thhat catches on.

Another Look at the Machine Interface

At a programming level it may not be something that your everyday
programmer cares about, but it does say something about the
power of integration in IBM i. Unlike some other virtual-machine
architectures in which the virtual instructions are interpreted at
runtime, costing the CPU plenty of cycles that could have been
used for more productive purposes, IBM i's machine interface

370 The All-Everything Operating System

instructions are never interpreted and that means that all code runs
better.

To the user, this appears in faster response times or batch jobs
completing sooner. To get this done consistently, IBM interjected
an intermediate compile time step in which the MI instructions get
recoded into the processor's instruction set as the final step in
compilation. In addition to metadata, IBM packs a lot of worthwhile
components into the compiled object, including both the high level
MI instructions and the low level executable machine instructions.

Perhaps you can see the trick. This is how IBM i application objects
that may be compiled on one processor family, such as the AS/400
CISC 48-bit processors, could be moved to the next generation
processor, such as a RISC based IBM Power System with a 64-bit
chip without requiring a re-compilation. In fact, in this environment,
the shop does not even have to find its source program libraries.

The trick, of course, is that the application object (in MI instructions)
is saved in the older "metadata." When that object is restored onto
the new platform, the OS discards the old machine instructions and
it re-encapsulates the TIMI instructions into those required for the
new processor.

Pointers to Excellence

As a computer science buff myself, with my very own degree in
Data Processing from King's College, in Wilkes-Barre, PA, at a time
when only King's, Penn State, and Temple were offering such
degrees in PA, I like to point out that IBM i's instruction set defines
all pointers as 128-bit. That's a pretty wide pointer. Since the
pointers are a fabrication at the MI level, they can be made to be
256 or bigger some day in the future. Some might call pointers
addresses; but, since they do not exist at the machine level,
pointers seem to be a good term for them.

The 128-bit notion was in the original IBM System/38 of 1978 and
CPF was aware of every one of those bits. It's only gotten better
over time. Moving to Power processors, there are 16 additional
hardware bits (from System/38's 48) with which to work. With
capability based addressing taking 32-bits of the System/38 pointer,

Chapter 20 All-Everything Operating System: Extra Ingredients 371

it never really had all 128-bits for addressing but then again, it did
not need them. Virtual addresses in the 64-bit range are already
humungous in size.

I no longer suggest that anything is so big that you'll never need the
large size. I learned my personal lesson years ago. I bought a 16K
PC in 1981. The max sized PC available at the time was 64K. In
my early IBM years, I had worked with 8K System/3 card systems
and 12K System/3 model 6 boxes and so 16K seemed like a lot to
me so I did not go for the 64K of memory. I wondered why anybody
would want such an oversized PC. I now know that humungous
today is not necessarily humungous tomorrow as tomorrow may
bring another need. Yet, 64-bits is an awful lot of address space for
today and tomorrow.

The Library Has All the Information

The IBM i all-everything OS includes an extensive library-based
operating system. In addition to the natural library structure, the
IBM i OS can also manage virtual partitions. These can support
additional copies of IBM i or they can run other operating systems
such as Linux and/or Unix. This is gee-whizz stuff for sure and IBM
i has had this built in support for many years. Many small IBM i
shops do not care as much about these gee-whizz facilities but,
they are glad that IBM keeps making IBM i stronger.

IBM i Does Windows

Long before 2008 and the IBM Power System with IBM i
introduction, i5/OS and even OS/400, could support multiple
instances of AIX, Linux, Lotus Domino, Microsoft Windows 2000
and Windows Server 2003. Some of this was via partitions that
could split the processor into up to ten parts and some of this was
done by using the frame of the IBM i as a Blade Server and adding
as many Wintel x64 blades as were needed for the load.

At the time, i5/OS, AIX, Linux and Lotus Domino were fully
supported on the Power processors but, Windows was supported
with either single-processor internal blade servers (IXS) as
previously noted or via an extension link. This notion, called

372 The All-Everything Operating System

"externally-linked multiple-processor servers (IXA and iSCSI),"
provided Windows PCs a way of each appearing as blades to the
i5/OS operating system. Making it even more impressive, IBM
provided virtual SAN support via i5/OS so that the Windows PCs
were able to be fully supported without using any internal disks. It
was all done within the frame of what was then the System i. All of
this works even better with today's IBM Power System.

IBM i Blade Servers are Outstanding

As part of the 2008 hardware change, IBM introduced the Blade
Servers package that can now mix Power and x64 blades (Intel and
AMD) in the same blade server package. Meanwhile, the IBM
Power Systems continued to support the SAN-like facilities noted
above enabling remote and local Windows OS "blades" to be
directly attached and controlled by IBM i.

Now, IBM Power Systems or IBM Power blade models running on
any of the supported IBM Blade Centers can be configured with
LPAR (Logical Partitioning) on IBM i. Blades controlled by IBM i
with configured partitions can run various operating systems in
those configured partitions.

When in operation, each LPAR is given a portion of system
resources (memory, hard disk space, and CPU time) depending on
the allocation formula. The LPAR technology in IBM i itself is smart
enough to find unused resources and allocate them as needed for a
given time.

Long before IBM invented the Power System for IBM i, the AS/400
heritage operating system supported i5/OS, AIX, and Linux. The
i5/OS operating system was always the boss; however, but the
other operating systems controlled their own workload as if i5/OS
was not even in the picture. IBM i provided a SAN interface tothe
other operating systems and it virutalized the I/O before
virtualization was even a buzz word. That's how well done
partitioning was done and continues to be done on the IBM i
heritage platform.

Chapter 20 All-Everything Operating System: Extra Ingredients 373

Client Server and More

Back in 1994, Lou Gerstner said that IBM was going to be a full
participant in server-centric activities. When he had learned that
only the PC Server and the RS/6000 machines supported client
server and the Internet shortly after his arrival, while saving the
entire IBM corporation, Lou Gerstner set out to change that.

Though he had come from a company (Nabisco) that, among other
things, created nourishing, non-contaminated peanut butter, Mr.
Gerstner intuitively knew that if you were into server-centric, and
client-server was the technology of the day, then your server
offerings better match the needs of that client. In this regard, Mr.
Gerstner was brilliant. He directed all server divisions to become
both server compliant (as in client-server) and he said that IBM's
servers needed to not only participate but, needed to rule the
Internet. Even with Lou Gerstner's insight, IBM's mainframe
division and the AS/400 heritage divisions entered the foray a few
years late but, they soon caught up.

Thus, the System i and now the IBM i OS supports common client-
server-based technologies such as ODBC and JDBC for accessing
the DB2 for i database from client software such as Java, Microsoft
.Net languages and others.

Before the IBM Power System existed, Unix programs could run on
a non-partitioned IBM i system. AIX (IBM's Unix) programs are
binary compatible with IBM i when using the Portable Applications
Solution Environment, nicknamed PASE by IBM. PASE is
essentially "a Unix run-time operating system within an operating
system."

When IBM Rochester began to create the hardware for IBM's only
all-Unix box, known at the time as the pSeries, it was lots easier to
do since PASE had been running on the i Series for years. The AIX
development team continues to provide the most recent and most
stable version of AIX to run under PASE using the Unix KORN
shell.

Programming

374 The All-Everything Operating System

There are a number of chapters in this book about how
programming integration helped make IBM i the all-everything
operating system. As noted, the basic languages for IBM i include
RPG and COBOL. The fact is there are many more languages on
the list below but, most are not available anymore for ordering.

• RPG

• Assembly language

• C

• C++

• Pascal

• Java

• EGL

• Perl

• Smalltalk

• COBOL

• SQL

• BASIC

• PHP

• PL/I

• Python

• REXX

• etc…

As shown in the list, support on IBM i includes the Java language,
including a 32-bit Java Virtual Machine (JVM) and a 64-bit JVM.

The CL language is not on the list but, in many ways, it is a bona
fide programming language. With CL, commands can be prompted
using the keyboard F4 function key. Moreover, as discussed in
Chapter 18, commands also provide cursor-sensitive help to make
specifying command parameters easier for the developer.

IBM i commands are constructed in a very intuitive way. As you
learned in Chapter 18, all command names are based upon a 3-
letter abbreviation standard for "verbs" and "objects." Using this
standard means of forming a command, IBM i commands are hard
to forget.

Chapter 20 All-Everything Operating System: Extra Ingredients 375

On other operating systems, OS commands are not quite so simple
or intuitive. All other operating systems use cryptic and
inconsistent command names for related functions or command
parameter switches. As an example of how bad this can get, try to
interpret the next command. If you love finding things in Unix, you
should have no issues with the grep command:

grep -v bash /etc/passwd | grep -v nologin

Another Look at Common CL Commands

But, if you are a normal human being, you will crave the built-in
ease of use of the IBM i CL command set. To review and to
highlight the power of CL for programmers in the IBM i environment,
I have included a few of the most necessary of the many CL
commands that IBM has built into the IBM i OS. When you begin to
use CL, you will see that this language makes operating system
communication better than it would be in any other OS environment:

Common CL Commands:

• CRTUSRPRF - Create user profile

• DSPUSRPRF, CHGUSRPRF, DLTUSRPRF - Display,
change, and delete user profile

• DLTLIB - Delete library

• CRTLIB, DSPLIB, CHGLIB - Create, display, and change a
library

• ADDLIBLE, CHGLIBL - Add to or change library list

• CPYF, CRTF, DSPF, CHGF, DLTF - Copy, create, display,
change, and delete file

• WRKACTJOB - Work with Active Jobs

• WRKSYSSTS - Work with System Status

• STRSST, STRPASTHR, STRSBS - Start System Service
Tools, start pass through (remote login), start subsystem

• VRYCFG - Vary configuration, bring interfaces up or down

• PWRDWNSYS - Power Down System

• WRKSPLF - Work with spool files

376 The All-Everything Operating System

Programming Languages Welcome

The Compiler writers for IBM i made all the compilers easier to use
than on other systems. Even without the non traditional add-ons for
special devices for terminals and databases, the IBM i based
compilers would still be deemed clean and highly usable. For
traditional business programming purposes, RPG and COBOL are
most often selected. Yet, because the IBM i OS is also a
sophisticated operating system for computer science types, it has a
very powerful C Language and the C++ language is also available.
These are also built to the natural device facilities within the IBM i
operating system.

The interface to the integrated database permits languages to treat
database files in much the same way as other platforms treated
ISAM or VSAM files. ISAM and VSAM are mainframe terms for file
systems but, the Windows FAT systems or other file systems can
easily be substituted to get the same meaning.

The IBM i platform has integrated security at the operating system
level. It is as good as it gets and IBM has achieved the business
compliance level C2 rating from the Federal Government. IBM's
AS/400 was the first general-purpose computer system to attain a
C2 security rating from the NSA, and in 1995 because the Power
chip changed the internals of the platform, the C2 rating was
extended to employ a 64-bit processor and operating system.

Other Goodies that Many Care About

Computer Science brings you the best that scientists and engineers
are working on. Experts operating at this level rarely are thinking
about the best way to line up an order record with a customer in a
DB transaction. That's a fact. When you get outside of prevailing
computer science for a bit, however, IT managers do things for
practical reasons, not for the pure computer science of it all.

In the late 1990s and into the new millennium, you would still find a
large number of IBM's smallest clients who had not yet made the

Chapter 20 All-Everything Operating System: Extra Ingredients 377

leap of faith to the AS/400. They were still running on the Advanced
36 model of the AS/400 that IBM introduced in 1995 with the first
batches of Power RISC chips. There are still IBM clients running on
these machines. Several years ago, for example, I had the
pleasure of moving one of these clients from one of the older model
System/36 RISC boxes to the IBM i5.

The System/36 was always IBM's most successful small business
computer; but, in the late 1980's, it had reached its architectural
limit. Many of the executives in the small businesses that ran the
System/36 did not care about the architecture as long as the
machine showed up for work everyday. And, it did, every day.

Eventually, as these machines got older, IBM's System/36 client
executives decided that they too would move to the AS/400
technology. As noted above, my client moved from the Advanced
36 RISC model to the IBM i. The new system cost just over
$20,000 and it ran the pants off the old system, supporting a
mixture of 100 users on terminal workstations, and PCs emulating
workstations.

IBM i today still has the System/36 environment as part of its
offerings and many users, including my client, have never chosen to
convert their code to native and it seems they never will have to.
This is just another example of how IBM protects its customers'
investments. In this case by continually updating an environment
that enables non-native coding to run unchanged on IBM i, my client
runs their business every day and they have an active development
environment. They just don’t want to go back and fix something
that isn't broke. With IBM I, they do not have to do so.

Many Users Admire the IBM i Operating
System

Before the departure of deposed CEO John Akers from IBM in
1993, Mr. Akers had been whittling down a lot of IBM's businesses,
either selling them off or preparing them to be sold. He was clearly
positioning IBM to become less, rather than more. During this time,
there was a lot of speculation about who should succeed John
Akers to the IBM throne. Steve Jobs the Apple and Pixar

378 The All-Everything Operating System

Entrepreneur was frequently mentioned and overtures were made
but, Jobs did not accept.

Bill Gates, then Microsoft's CEO, was noted as being on the short
list if you can believe the rumors. Another big rumor was that as
IBM was seemingly being auctioned off, Gates was asked which
part of IBM he would be interested in. His reply was the "AS/400
Division." It is my personal opinion that if Gates was permitted to
buy the AS/400 Division from IBM, IBM would be exclusively a
software and services business today. The IBM i line, free of all of
its IBM encumbrances of having to treat all systems fairly, would
have been used by Microsoft to wipe out IBM harware, Sun, HP,
and all the rest of the contestants from the large to the small. Bill
Gates would be the richest man in the world. Oh, he already is.

It does speak great volume about Gates' opinion of the IBM i line of
systems. Over the years since 1993, Microsoft struggled to move its
own business systems from the AS/400 platform to Windows
Servers. Nobody really knows if they were successful in doing this.
You may recall that in the 1990's as Microsoft was trying to move
the world's biggest players to Microsoft "Server" technology, its
biggest issue was that it was still using IBM's AS/400 systems to run
its own business.

Actually, the fact that Bill Gates expressed interest in AS/400 while,
at the same time, he was trying to beat it in the marketplace begs
the question for all time. "Why use Windows when Bill Gates would
rather have his business run on IBM i? The answer to that question
should provide all business mangers with enough information to
know the course of action they should

Chapter 21 The All-Everything Operating System in Perspective 379

Chapter 21

The All-Everything Operating
System in Perspective

The Platform to Run Your Business

Real businesses choose real computer systems with real operating
systems to support business-critical applications. The focus of this
book has been the all-everything operating system, which is about
as real as it can get. It is the best operating system ever designed
and unlike all other operating systems that are sold today, it was
designed for business.

The IBM i operating system running on IBM Power System
technology is a cut above the norm. When business value from IT
is the objective, no other OS can answer the call like IBM i. IBM i is
designed to help all businesses meet the highest service levels
defined by your business. Moreover, as an all-everything platform,
it can be readily adopted to handle every new business opportunity
that comes your way. While the competition is discussing the
problem, an IBM i programming team can be working on your
solution and have it up and running before the competition knows
the problem can be solved.

The "i" in IBM i as you know by now stands for integration. This all-
everything operating system integrates a trusted combination of
relational database, security, Web services, networking and storage
management capabilities. With its advanced functions and
integrated database, it provides the foundation for efficiently
deploying high payback business processing applications. There is
nothing like it.

380 The All-Everything Operating System

Though your aged trial balance and your critical inventory reports
won't be coming off the printer the very moment the IBM i is
installed, it will seem that fast. IBM i consists of a full complement
of business enabling facility, fully tested, and pre-loaded up front.
Unlike IBM i competing systems, this work is done before the
system is shipped complete so it does not have to be built piece
meal, software and hardware, in your company's data center. You
get the advantages of the advanced functions of IBM's largest
mainframes packaged with small system ease of use.

With IBM i, everything is more efficient and so along with its pre-
integration and testing, IBM i is built to enable your company to
develop and/ or deploy high value applications faster. Additionally,
because the components are integrated and the right tools are
supplied with the package, you can maintain your applications with
substantially fewer technicians on your staff. The bottom line is that
IBM i is built for business and using IBM i in your business will help
your bottom line.

Reviewing the Lineage

IBM i is the most functional business operating system ever
developed by IBM. It runs on IBM's best Power System platform. It
is a descendent of the most advanced computer ever built, the IBM
System/38. Way back in 1978, this system was the brainchild of Dr.
Frank Soltis, who served as IBM's Chief Midrange Computing
Scientist until he retired in December, 2008.

IBM had a future systems project underway, in the early 1970s, in
which the corporation designed, on paper, the greatest system that
could ever be built. Because IBM's large customers had developed
an aversion to machine conversions, IBM never developed this
design into a system for its largest customers. Instead, Dr. Soltis
and others in IBM's Rochester, Minnesota Lab picked up this
design, dusted it off, added their own favorite flavors and developed
the System/38 as the embodiment of all the IBM knew about
computer science at the time. But, because the System/38 was the
product of the "Small Computer" Division, until the late 1990's, it
was underpowered compared to the IBM mainframes.

Chapter 21 The All-Everything Operating System in Perspective 381

Today, no other system or operating system is as advanced as the
combination of the IBM Power System running the IBM i all-
everything operating system. Though the System/38 offered more
capacity than the previous IBM small business computer systems,
namely the System/3, System/32, System/34, it was designed to not
compete, size-wise, with IBM's large mainframes that were built in
Endicott and Poughkeepsie NY.

When the IBM System/38 came out, everybody wanted one. At the
time, IBM's General Systems Division knew how to sell computers
to new businesses and to existing IBM customers. The specs were
so good and the price was so right that orders were buzzing through
the computer systems in IBM branch offices across the world.

Unfortunately, the computer science complexities and integration
built into the original machine, the ease of use form that the
machine needed to present, and the small system frame that it was
permitted to run in, created a huge problem for the Rochester Lab
engineers and scientists. In fact, it was so sophisticated and so
unique and so powerful of an operating system with matching
sophisticated hardware that, as hard as it tried, the Rochester Lab
could not get the job done on time.

It took over a year from when the system was promised until it
began to ship regularly to IBM Branch Offices. The Regional Data
Center System/38 machines that IBM's own Systems Engineers
trained on were often buggy in the beginning. To many, such as
myself, it was a miracle that all the work was done well enough for
IBM to authorize first customer shipment.

Our IBM Office in Scranton, PA had tons of orders for the box.
However, customers got antsy because it did not come out right
away and they needed to do other things, rather than wait. Many
went with small mainframes while others tried to cram their work
into the System/34 platform. So, IBM more than likely lost about
80% of its orders as just about 20,000 System/38s were sold in the
first five years of availability.

When IBM's infamous Fort Knox project that was to eliminate the
System/38 was canceled, IBM in Rochester hustled through its
famous Silverlake project and it announced the AS/400 in June
1988. Unlike the System/38, the AS/400 was enabled to grow

382 The All-Everything Operating System

large. Eventually AS/400s became as powerful as mainframes with
today's IBM Power System model 595 being even more powerful
than the most powerful mainframe in terms of workload capacity.
The IBM i operating system of today was enhanced many times on
the road to Power Technology

All of the advanced computer science notions that were conceived
with the System/38 are still prevalent in today's IBM i operating
system. Plus, over the thirty years, many, many additional
enhancements have been added making IBM i the only all-
everything operating system in existence.

IBM I, as noted throughout this book, is IBM's greatest success
story. The operating system is widely installed in large enterprises
at the department level, in small corporations, in government
agencies, and in almost every industry segment. It is the finest
operating system in the business and it is built for

Index 383

Index
*DO, 323
.Net, 358
082 Sorter, 110
085 Collator, 111
1130, 52
128 bit addressing, 8, 9
128-bit hardware, 225
128-bit machine, 228
128-bit software, 181
129 Keypunch, 108, 109, 118
2319 disk drives, 123
24 X 7 operations, 48
281 trillion address, 230, 233
3270 Terminal, 131, 138
32-bit speed, 219
3340 Disk, 124, 125
48-bit address, 241
519 Reproducing Punch, 112
5250, 137, 138

Terminal, 137, 138, 143
5445, Disk 123
548 Interpreter, 113
5486 Card Sorter, 117, 119
5496 Data Recorder, 117, 118
604 Calculator, 113
64-bit applications, 228
64-bit chips, 154
64-bit computing, 219
64-bit hardware, 9, 241
64-bit platform, 219, 252
64-bit processor, 224, 225
64-bit RISC, 46, 62, 152, 154,

216
64-Bit Technology, 218
80-column card, 108, 113, 119
96-column card, 115, 117
A la carte software, 193
Abstract machine, 208
accounting, 21, 25, 36, 78, 98,

108, 112, 114, 119
accounting machine, 112
Accounting Machine, 119
ACM, 263
Aadd-on product, 307
Addressability, 233, 263
Administrative costs, 44
Adoption of authority, 254,

255, 258, 259, 264, 350
Advanced architecture, 158,

186
Advanced Hello World, 284,

286, 287, 288, 289, 337
Advanced Interactive

Executive, 162
Advanced Principles, 186
Advertising, 100, 179
Affordable, 22, 45, 51, 146,

156
Airbus 380, 200, 201, 202

AIX, 162, 176, 183
Akers

John
IBM Chairman, 363

All-everything application, 35
All-everything machine, 3,7, 8,

9, 16, 17, 22, 23, 35, 40,
42, 49, 51, 52, 54, 58, 60,
63, 96, 102, 103, 105, 114,
140, 142, 145, 146, 149,
150, 158, 159, 164, 165,
167, 168, 173, 180, 184,
216, 225, 278, 283, 338,
339

Anderson
Ken, 75, 91

Apache, 47, 338
Web Server, 181

Application development, 277
Application System/400, 147
Application systems, 25
AS400 management reports,

119
Assembler language, 48, 359
Atlantic City, 24, 27, 85, 93
Authorization, 48
Autocoder, 129
Automatic Transmission, 169
Autonomic computing, 46, 169

183
Availability, 8, 67, 165
Baan, 175
Backup, 34, 47, 58, 62, 73
Bains

Dick
System/38, 197

Ball-Foster Glass, 176
Bally’s Hotel/Casino, 86
Banks, 29
Barsa

Al, Jr., 69, 70, 71, 90, 91,
308, 309

Barsa Consulting Group, 69,
90

Benefits, 19, 31, 32, 36, 37, 38,
39, 40, 42, 75, 81, 146,
184, 222, 336

Best Computer, 157
Biggs

Maggie, 178
Bill Gates, 176, 330, 331
Black box, 75, 77
Blade Center, 6
Blade server, 5, 357
Bond

James, 76
Books,

Dave, 79

Branch office who had been
there when it was first
installed. The IBM, 79

Branding, 178
Breadth of knowledge, 57
Browsers, 339
Bubble

Memory, 233
Build and junk, 22, 33
Business agility, 41, 44
Business database, 57
Business growth, 45
Business languages, 284
Business logic, 338
Business opportunities, 21
Business productivity, 19
Business system, 173
Business value, 8, 16, 17, 20,

28, 29, 31, 33, 35, 36, 37,
39, 41, 44,45, 46, 56, 59,
63, 155, 168, 171, 174,
184, 193, 203, 224, 231,
252, 264, 267, 301, 365

C, C++, 61, 245, 248, 283, 331
Calculator, 119
Cancilla

Bob, 79, 92
Capabilities, 181, 254, 256,

258, 261
Capability based addressing,

47, 181, 187,242, 253, 254,
255, 259, 263, 264, 350,
356

Card processing, 115, 128
Carnegie Mellon, 256
Carpenter

Betty, IT Director, 175
Cary

Frank
Former IBM Chairman,

140, 142, 196, 197
Cash collection, 39
Cash flow, 21, 40
Casino Control Commission,

86
Casino Industry, 23, 26
Casino industry., 23, 86
Casino System, 84, 93
CCP

System/3, 132, 136
Certified, 21, 33, 35, 93
Certified Engineers, 193
Chain of rationale, 38
Change applications, 41
Chicago, 7, 13, 15
CICS, 47, 83, 131, 132, 136,

189, 280, 332, 333, 335,
338

CISC to RISC, 223

384 The All-Everything Operating System

City government, 76
CL language, 280, 305, 351,

359
CL Summary, 324
Client server, 179, 183
Client Server, 182
COBOL, 61, 83, 121, 137,

190, 192, 248, 251, 268,
270, 272, 283, 284, 285,
287, 288, 289, 290, 291,
292, 293, 294, 295, 296,
298, 301, 318, 325, 327,
329, 330, 331, 332, 339,
359, 361

Codd
Tedd, Database, 269, 270,

272
Cole

Larry
Sands, 85, 86, 87

Collator, 119
Command Language., 306
Commercial applications, 215
Common platform, 38
Comp-cards, 25
Competitors, 185
Compiler integration, 291
Compiler writers, 270, 271,

281, 290, 294, 296, 333,
335

Compilers, 48, 137, 189, 226,
227, 266, 269, 270, 275,
333, 334, 339

Complaints, 39, 56, 159
Complexity, 44, 57, 59, 60,

132
Computer server, 58
Concurrent Maintenance, 62
Console Mode, 315
Constraints

Rochester Systems, 157
Continuous operations, 47
Control Language, 129, 135,

299, 300, 303, 306, 307,
316, 320, 324

Control programming, 48
COPY, 267, 289, 292, 294,

322
Core business applications, 44
CoreMark, 177
Cost control, 39
Cost of ownership, 45, 77, 81
cost reductions, 38
Costco, 36, 177, 194, 348
CPYF, 321, 322, 361
Cray, 163
CRM, 29, 36, 41, 43
Cross System Product, 148
CRTDUPOBJ, 323
CRTLIB, 302, 303, 304, 320,

323, 361

CRTUSRPRF, 361
CSP, 148, 150, 165
CTRL-ALT-DELETE, 62
Custom Systems Corp, 67, 89
Customer responsiveness, 38
Customer satisfaction, 21, 31,

39, 44
Customer service, 36, 39
Data Areas, 296
Data definitions, 62
Data Description

Specifications, 273
Data General, 152
Data visibility, 38
Database administrator, 58
Database Device, 291
Database packages, 57
Database reorganization, 47
Database schema, 269
Database technology, 326
Datacenter, 201, 203, 204, 205,

206, 233, 307, 308
Datbase software, 327
DB2 brand, 274
DB2 for i, 170, 181, 269, 274,

276, 277, 279, 280, 351,
354, 358

DB2 Universal Database, 47,
181

DB2/400, 69, 89, 275
DB2/400 Universal Database,

275
DBA, 69, 171
DDS, 248, 267, 268, 273, 280,

289, 292, 294
DEC, 152, 259, 277
DEC Alpha, 167, 227
Decision making, 38, 39
Demand, 107
Department of Defense, 255,

256
Dependable, 22, 45
Desk-sized, 133
Desktop PCs, 18, 34
Develop applications, 41
Disk drives, 46, 121, 124, 131,

132, 135, 173, 233, 237,
241

Disk Drives, 121
Disk fragmentation, 61, 241
Disk technology, 233
Distribution, 36, 76
DLTLIB, 323, 361
Domino, 173, 175, 177
Douglas McGregor, 19
Downtime, 42, 45, 61, 78, 88
DSPUSRPRF, 361
Early RPG, 329
Ease of use, 8, 40, 45, 53, 59,

115, 135, 174, 338
Ease of Use, 170

EBusiness, 39, 41, 44, 45, 47
E-commerce, 180
Eggplant, 7, 9, 13, 15
Electric power, 18
Electrical Failure, 71
Electromechanical circuitry,

114
Endicott, 52, 115, 367

Mainframe Plant, 144
Energy-supply enterprises, 18
Engineering, 107
Enterprise Rent A Car,, 176
Entertainment, 25
EROS, 10, 11, 13, 257, 258,

259, 261
ERP, 29, 35, 36, 37, 38, 39, 40,

41, 42, 43, 44, 47, 76, 78,
83, 91, 97, 175, 283, 332

EServer, 158, 162, 163
EServer iSeries, 158, 163
Excel, 34, 62
EXFMT, 295, 338

RPG, 288, 294, 337
FAT systems, 362
Feature du jour, 21
File placement, 46
File serving, 182
File space, 46
Financial services, 18
Fixed drives, 131
Flat memory, 239
Flexibility, 8, 37, 187
Flexible, 45
Fort Knox, 144, 145, 146, 147,

348, 368
Four Hundred Guru, 296
FS, 46, 196
Fujitsu, 163
Future System, 46, 275
Gaming-table, 25
Gang punch, 112
Gates

Bill, 166, 189, 330, 331,
332
Microsoft, 12, 24, 190,

214, 246, 250, 251,
330, 331, 332, 363,
364

General Systems Division, 82,
96, 97, 197, 367

Gerstner
Lou

IBM Chairman, 358
Green screen, 137
Greenbaum

Norman, 7
Griffiths

Harry
IBM, 86

Grimes
Dennis, 43

Index 385

GRTOBJAUT, 323
GSD, 82, 85, 97, 98
GUI, 182, 184
Hack, 170
Hackers, 18, 44, 58, 59, 170
Hardware abstraction, 46, 219
Harkins Audit Software, 82, 92
Harkins,

Paul, 82, 92
Hart

Doug, 74, 91
Healthcare, 76
HELLO, 288, 337
HELLOAR001, 288, 337
Heterogeneous computing., 6
Hewlet Packard, 227
High level machine, 187
High Level Machine, 46
High-level machine, 207, 208,

210, 212, 222, 223, 226,
257

Hitachi, 163
Hoffman

Roy
IBM, 197, 263

Holt
Ted

IT Jungle, 296
Hospitals, 29
Host Access Transformation

Services, 339
Hotel, 24, 25, 28, 85, 86
Houdek

Merle
IBM, 263

Html, 261
Human resources, 36, 57
HYDRA, 258, 259
I, 49
I/O adapters, 2
i5/OS, 1, 2, 3, 9, 154, 158, 181,

256, 342, 343, 344, 345,
354, 356, 357

IBM 082 Sorter, 111
IBM 548 Interpreter, 112
IBM 604 Calculating Punch,

113
IBM 8100, 277
IBM 9370, 277
IBM eServer i5, 7, 35, 43, 149
IBM i, 49, 263
IBM i commands, 316, 324,

360
IBM i for Business, 3, 4, 160,

343
IBM i5, 11, 23, 32, 34, 35, 40,

41, 56, 60, 65, 75, 78, 81,
82, 137, 151, 154, 155,
157, 158, 161, 164, 173,
175, 176, 177, 180, 183,
184, 185, 186, 194, 198,

199, 205, 208, 216, 219,
225, 241, 247, 259, 266,
273, 275

IBM mainframes, 88, 326, 366
IBMDB2I

MySQl Storage Engine for
DB2, 276

Ignite/400, 79, 92
Implementation, 11, 20, 38, 39,

42, 44, 45, 48, 207, 227,
237, 263, 272, 336

Index creation, 266
Indexes, 26, 268
Information-oriented societies,

18
Ingress, 68
Instruction set, 2, 153, 154,

160, 166, 208, 215, 216,
223, 355

Insurance, 68, 76, 92, 174
Integrated database, 174, 270,

272, 274
Integrated platform, 4, 6, 191
Integrated system functions,

187
Integrated System Functions,

189
Integration, 10, 13, 36, 37, 44,

61, 142, 160, 179, 182,
195, 198, 257, 273

Integrity, 48, 250, 252
Intel, 34, 60, 103, 135, 146,

161, 162, 167, 173, 180,
182, 199, 218, 219, 225,
227, 259

Internet, 43, 92, 172
Inventory, 25, 28, 35, 37, 38,

40, 56, 234, 326, 366
Inventory Management, 36
IOA, 81
IOP, 2
IPL, 72
ISA, 215, 216, 218
ISAM, 362
ISeries, 46, 47, 51, 60, 67, 70,

75, 78, 80, 81, 82, 84, 87,
88, 89, 90, 91, 93, 142,
151, 154, 156, 166, 169,
174, 178, 183, 185, 198,
199, 215, 222, 228, 252,
257, 264, 265, 266, 275,
333, 339

ISeries Access for the Web,,
339, 353

IT environment, 56, 58, 59,
183

IT implementations, 31
IT infrastructure, 45, 57
IT investment, 57
IT investments, 33
IT Manager, 20

IT projects, 19, 33, 59
IT related jobs, 57
IT shops, 226
IT staff, 35, 44, 49, 57, 59, 60,

88, 274
J&L Fiber Service, 176
Java, 61, 81, 165, 173, 183,

245, 271, 282, 283, 287,
290, 351, 353, 358, 359

Java virtual machine, 351
JCL, 129, 130
JDBC, 271, 282, 285, 358
John Hopkins University, 10
Kaspersy

Anti-Virus, 250, 251
Keil

Russ
Claridge, 87

KeyKOS, 257, 258, 259
Labette Community College,

71, 72, 91
Labs

Rochester, 107, 114, 115,
117, 127, 128, 129,
132, 133, 135, 138,
139, 144, 147, 177,
223, 251, 269

Las Vegas, 23, 25, 26, 27, 84,
85, 86

Legacy, 22, 137, 161, 178,
183, 185, 190, 193, 247,
275

Legacy system, 185
Lines of code, 328, 329, 333
Linux, 2, 4, 5, 6, 12, 41, 46,

47, 49, 52, 60, 78, 80, 81,
103, 135, 149, 161, 162,
163, 164, 165, 173, 176,
183, 191, 199, 210, 218,
225, 227, 233, 235, 239,
244, 249, 257, 260, 275,
342, 343, 344, 348, 353,
356, 357

Load Balancing, 81
Logical Database File Object,

267
Logical Partitioning, 75, 175,

182, 183
Logical Solutions, 87
Logistics cost, 40
Lotus, 175
Love

AS/400, 170, 184, 185, 222
Low cost, 174
LPAR, 75

Logical Partitioning, 357
LSI, 87
Machine Interface, 47, 81, 152,

207, 208, 209, 210, 263,
354

386 The All-Everything Operating System

Mainframe, 49, 52, 53, 54, 58,
82, 88, 123, 130, 131, 144,
145, 146, 148, 154, 157,
158, 162, 163, 164, 165,
166, 168, 170, 171, 173,
175, 193, 198, 207, 224,
225, 227, 239, 240, 265,
278, 280, 282, 332

Maintenance, 45, 68, 71, 77,
178

Management, 17, 18, 36, 41,
98, 195, 231, 240

Management tools, 44
Manufacturing, 35, 36, 38, 40,

76
Manufacturing cost, 40
MAPICS, 97, 98
Marchesani

Skip, 67, 89, 171
Market conditions, 39
Marketing manager, 161
Marywood University, 104,

177, 330
McAfee

Virus Software, 250, 251
Members

Database files, 74, 86, 268,
343, 349

Memory, 120, 229, 230, 233
Metadata, 249, 272
MFCM, 116
MFCU, 116, 119, 120, 121
MI level, 215
Microcode, 223, 241, 251
Microsoft, 23, 34, 35, 56, 60,

69, 75, 103, 140, 146, 156,
162, 166, 167, 189, 199,
219, 225, 227, 248, 278,
331, 332, 338

Middleware, 8, 47, 280
Midrange servers, 173
Migrations, 47
Milan, 1, 4
MMAS, 97
Model 15D

System/3, 127
Module, 37, 124
Morici

Bob, 24, 84, 93
MQSeries, 280
Multiple drives, 46, 240
Multiprogramming, 136, 222
Multi-user, 136, 162
Multi-User, 282
MySQL, 45, 175, 182, 189,

266, 275, 276, 277, 353,
354

Natural disaster, 25
Netfinity, 162
Netware

Novell, 162

New applications, 44, 63
New computer system, 115
New hardware, 222, 226, 251
Nicholson

Jack, 145
Nintendo of America, 36, 177,

348
NJ Supreme Court, 86
Norton

Anti-virus, 250, 251
Notion of capabilities, 261
Object based systems, 246,

251
Object code, 48
Object orientation, 47
Object rules, 249
Object types, 247, 248
Object-based, 69, 209, 210,

218, 245, 247, 250, 252,
268, 301, 350

Objectives, 37, 38, 48, 103
Object-oriented, 187, 219, 245,

246, 247, 251, 257
OCL, 129, 130, 133, 135
ODBC, 62, 183, 271, 282, 285,

358
Onsite engineers, 202
Open Solaris, 342
Operating decisions, 38
Operating system, 7, 8, 9, 11,

12, 47, 59, 63, 82, 83, 120,
136, 152, 154, 156, 163,
164, 165, 166, 178, 180,
190, 198, 216, 218, 222,
223, 225, 226, 238, 247,
248, 251, 256, 257, 281,
283, 331, 335, 336, 337

Operating System/400, 180,
223

Oracle, 68, 69, 171, 189, 199,
274, 281

Order cycle time, 40
Order Entry, 36
OS/2, 162, 173, 330
OS/400, 176, 178, 180, 223,

251
Outages, 45
Pagnotti Enterprises, 174
Parsons, KS, 71
Partitioning, 48, 173, 182
Partitions, 48, 63, 81, 132, 164
PASE, 183
Patchwork quilt, 193
Patents

IBM, 198
Patton

George, General, 33
Payroll, 25, 78, 84, 130, 204
PC Network, 162
PC oriented, 170
PC server, 171

PC Server, 252
PCs, 52, 68, 96, 169, 331
Penton Media, 177
PeopleSoft, 175
Performance, 19, 44, 46, 47,

62, 74, 81, 154, 157, 166,
175, 198, 215, 238, 240,
241, 259, 266

Perl, 359
Phil Spector, 185
PHP, 45, 175, 182, 276, 339,

353, 354, 359
Physical Database File Object,

267
Picking, 40, 81
Piece parts, 171, 189, 193,

194, 200, 201, 202, 203,
204, 205, 278, 281, 282,
283, 327, 347

Placing files, 62
Pointers, 355
Police stations, 76
Polymorphism, 247
Poughkeepsie, 52, 145, 367

Mainframe Plant, 144
Power 5, 74, 148, 154, 155,

158, 342, 343, 344
Power 6, 2, 3, 5, 6, 74, 105,

149, 154, 155, 166, 218,
232, 259, 266, 278, 283,
341, 343, 344

Power 7, 154, 155, 160, 166
Power platform, 3, 168
POWER5, 154, 155, 156, 166,

181, 218
POWER6, 154, 166
Pricing, 36
Printers, 120, 126, 138, 170
Procurement cost, 40
Product mix, 164
Production, 36, 97
Production capacity, 40
Productivity, 8, 21, 32, 44, 45,

48, 60, 61, 63, 84, 92, 184,
194, 198, 208, 270, 273,
277, 328, 330

Productivity tools, 8
Programmer productivity, 277
Programming, 48, 53, 129,

193, 262, 283
PSeries

Unix box, 162, 163
Purchasing, 25, 63, 154
Purchasing, 36
PWRDWNSYS, 312, 361
QSHELL, 183
QSYS library, 303, 304
Quadrant Software, 75, 91
Quality, 21, 31, 39, 84
Query database files, 222
Recompilation, 46, 224

Index 387

Recompiles, 47
Redesign and reprogramming,

251
Redmond Washington, 34, 189
Relational database, 8, 11, 44,

170, 187, 243, 265, 266,
267, 269, 270, 279, 365

Relational databases, 266
Reliability, 8, 61, 67, 73, 76,

79, 174
Reorgs

Disk, 61, 240
Report formatting, 120
Report Program Generator,

120
Reproducer, 119
Reservations, 25
Resource balancing, 48
Resource management, 47
Responsibilities, 37
Return on equity, 40
Revolutionary, 150
RISC, 2, 62, 148, 149, 152,

153, 154, 175, 214, 216,
217, 218, 223, 224, 225,
226, 227, 341, 342, 355,
362, 363
Processing, 148, 152, 174,

181, 222, 223, 224, 241
RNMOBJ, 323
Rochester, 12, 53, 75, 83, 88,

89, 91, 96, 107, 114, 115,
117, 121, 139, 145, 146,
155, 157, 158, 177, 197,
334

Rochester Lab, 367
Rochester,, 2, 12, 108, 114,

137, 140, 141, 145, 191,
261, 329, 348, 366

ROI, 31, 32, 44, 77, 179
Room accommodations, 25
RPG, 61, 83, 84, 120, 121,

129, 137, 248, 251, 270,
272, 283, 284, 290, 329,
330, 331, 332, 338, 339

RPGII, 121
RPGIV, 288, 292, 295, 296,

337
RS/6000, 162
S/38 architects, 215
SAN, 46, 173, 357, 358
SAP, 175
Scalability, 8, 61, 259
Scattering of Data, 230
Scranton PA, 95
Search engine, 181
Security, 8, 47, 58, 74, 181,

250, 253, 264
Security levels

IBM i, 255
Self diagnosis, 8

Self management,, 8
Self optimization, 8
Self tuning, 47
Server consolidation, 48
Server Farm, 42
Service, 45, 73, 85, 248
Set Theory Operations, 273
Shapiro

Jonathan, 11, 257, 260,
261, 262

Share resources, 48
Shareholder value, 40
Shipments

System/38, 143
Shipments

System/34, 143
Silverlake

Project, 147
Single Address Space, 231
Single Level Storage, 229, 230
Single level store, 47, 181
Single server

WebSphere, 172
Single-level store, 187
Skill level, 57
Sloan, Jim, 66, 88, 89
Slots, 25
Small business computer, 53,

126
Small businesses, 115, 129,

331
Small servers, 18
Small system

Ease of use, 185
Software applications, 35, 61,

194
Software integration, 259
Software project, 40, 200
Software solutions, 45, 97
Soltis

Dr. Frank, 3, 52, 197, 215,
254, 259, 261, 263,
264, 348, 350, 366

Frank, 75, 83, 215
Sort program, 119
Speed to market, 44
Spooling, 181
SPS, 129
SQL, 62, 68, 156, 171, 189,

248, 266, 267, 268, 274,
276, 280, 281, 359

SQL Server, 68, 156, 171, 189,
275, 281

Stockouts, 40
Storage area network, 61, 173
Storage pool, 48
Storage Pool, 230
Strassman

Paul, 17, 33
Strassmann, 22, 32
STRSST, 361

Structured Query language,
266

Subclass creation, 247
Subsystems, 48
Supply chain, 37
Supply-demand, 39
Sybase, 68, 274, 281
SysGen, 307, 308, 352
System generation, 199, 306,

308
System i, 2, 3, 4, 6, 11, 17,

148, 149, 151, 159, 164,
198, 199, 309, 342, 343,
344, 345, 357, 358

System p, 3, 4, 17, 159, 342,
343, 344

System programmer, 239
System/3, 53, 85, 88, 96, 115,

116, 117, 119, 120, 121,
122, 123, 126, 127, 129,
130, 131, 132, 133, 135,
136, 138, 139, 151, 272,
332, 334

System/32, 67, 96, 97, 98, 99,
100, 101, 102, 103, 105,
133, 135, 138

System/34, 67, 72, 73, 85, 135,
136, 138, 143, 144, 151,
272, 334, 336, 337

System/36, 67, 73, 145, 147,
148, 150, 151, 152, 154,
159, 165, 272

System/360, 52, 107, 116, 140,
196, 209, 325, 326, 327,
346

System/370, 82, 83, 84, 196,
209, 227, 272, 315, 346

System/38, 138, 139, 140, 142,
143, 144, 147, 150, 152,
157, 175, 183, 185, 223,
230, 233, 245, 253, 258,
263, 265, 266, 269, 270,
272, 273, 275

System/38 compiler, 271
System/38 developers, 269
Systems Engineer, 245
Systems programmer, 193,

194, 204, 240
Systems programming, 193
TCP/IP, 182
Teddy Bears, 184
Terminals, 96, 131, 132, 135,

136, 137, 138, 192, 281,
332, 333, 335, 338, 339,
361

Terminals, 131, 333
Theory X, 19
Theory Y, 19, 20
Timely information, 39
TIMI, 47, 81, 208, 210, 211,

214, 215, 217, 219, 221,

388 The All-Everything Operating System

222, 223, 224, 225, 226,
227, 230, 251, 355

Transaction processing, 8, 11,
47, 48, 61, 156, 187, 280,
284, 329, 332, 333, 337,
339

Transaction processor, 44, 189
Tuxedo, 47, 136, 173, 189,

199, 281, 285, 293, 295,
333, 334, 335, 336, 338

TV ad, 100, 103
Uncle Sam

C2 Security, 196, 197, 254,
255

Unit record, 107, 119, 128
Unix, 2, 4, 5, 6, 12, 27, 34, 41,

46, 47, 49, 52, 53, 60, 63,
87, 103, 135, 149, 159,
160, 161, 162, 163, 164,
165, 169, 170, 173, 179,
183, 189, 190, 191, 193,
194, 199, 207, 210, 218,
224, 225, 226, 227, 233,
235, 239, 244, 246, 248,
249, 250, 252, 273,
275,鑌276, 280, 281, 282,
284, 285, 304, 342, 343,
348, 350, 351, 356, 358,
360

Unix operating system, 162
Usability, 45
Utilities, 48, 74, 270

Value of IT, 32, 55
Van Horn

Dennis, 262
Verifier, 109, 110, 120
Villa

Mark, IBM Customer, 172
Virtual environment, 2
Virtual Storage, 229, 232
Virtualization, 47, 63
Virtualization Engine, 48
Virus, 59, 62, 82, 204, 251,

252
Viruses, 44, 170, 250, 251
Vista

Windows, 21, 167, 190,
191, 219, 225, 227

Visual Basic, 190, 331
Visual BASIC, 287, 331
VSAM, 280
VSAM files, 362
Warehousing, 40
Warford

Bob, 71, 91
Web Pages, 339
Web Server

AS/400, 181
Webfacing, 339
WebSphere, 47, 80, 180, 280,

338, 339, 352, 353, 354
WebSphere Server, 180
Whitenack Consulting, 74, 91

Windows, 12, 23, 33, 34, 35,
38, 43, 47, 58, 60, 62, 63,
67, 76, 81, 87, 135, 156,
161, 162, 164, 165, 166,
167, 168, 169, 170, 171,
172, 173, 176, 179, 180,
182, 183, 185, 189, 190,
193, 194, 199, 207, 218,
219, 224, 225, 226, 227,
239, 240, 250, 252, 275,
280, 282, 331

Windows 2000, 179, 180, 225
Windows 2003, 180
Windows 64-bit, 219, 221
Windows Fix packs, 180
Windows NT, 162, 173, 179,

180
Windows systems, 170
Windows XP, 180
Wintel, 63
Work processes, 19, 39
Workload integrity, 47
Workload management, 47
Workstation Device, 291, 293
WRKACTJOB, 323, 361
WRKSPLF, 361
WRKSYSSTS, 323, 361
WRKSYSVAL, 309, 323
xSeries

PC Server, 162
zSeries

Mainframe, 163

Index 389

"The Eggplant That Ate Chicago"

by Norman Greenbaum (Dr. West's Medicine Show & Junk Band)

You'd better watch out for the eggplant that ate Chicago,
For he may eat your city soon.
You'd better watch out for the eggplant that ate Chicago,
If he's still hungry, the whole country's doomed.

He came from outer space, lookin' for somethin' to eat.
He landed in Chicago. He thought Chicago was a treat.
(It was sweet, it was just like sugar)
You'd better watch out for the eggplant that ate Chicago,
For he may eat your city soon (wacka-do, wacka-do, wacka-do)
You'd better watch out for the eggplant that ate Chicago,
If he's still hungry, the whole country's doomed.

kazoo solo

He came from outer space, lookin' for somethin' to eat.
He landed in Chicago. He thought Chicago was a treat.
(It was sweet, it was just like sugar)
You'd better watch out for the eggplant that ate Chicago,
For he may eat your city soon (wacka-do, wacka-do, wacka-do)
You'd better watch out for the eggplant that ate Chicago,
If he's still hungry, the whole country's doomed ("It's in trouble"

If he's still hungry, the whole country's doomed

390 The All-Everything Operating System

LETS GO PUBLISH! Go to www.itjungle.com & www.mcpressonline.com

The Best Damm Joomla! Tutorial Ever! -- Step 1: Hands-On Quick-
Start Guide to Learning Joomla! This book takes you from nothing to being
able to understand the Joomla! notions of Plugins, Components, Modules, and Templates,
and it walks you through exercises and gently guides you through the creation of Sections,
Categories, and Content Items (Articles) as well as Joomla! Menus, Menu items, and
Polling Facilities. Perfect tutorial for a best damm Joomla! introduction.

The Best Damm Joomla! Intranet Tutorial Ever! -- Step 2: Hands-
On Guide to Building a Corporate Intranet Using Joomla! This
book is your next step tutorial for building your own corporate intranet with Joomla!. It
assumes basic knowledge of Joomla! from Step 1. Once you have completed your Joomla!
installation with Sample Data, there is only one thing wrong. This tutorial walks you
through each step necessary to replace the Sample items from top bottom, left to right
with your own Intranet items. At the end you will have an intranet prototype.

The Best Damm Joomla Template Tutorial Ever! -- Quick-Start
Beginners Guide to Learning About Joomla! Templates The look and
feel of Joomla! is determined by its templates. This book takes you through the Joomla!
standard templates, introduces you to some comprehensive templates and goes ahead and
works with you to download and install free templates from the Internet.

The Best Damm Joomla! Installation Guide Ever! The All-platform
Guide for Installing Joomla 1.5.x If you want Joomla! to have a perspective
about what Joomla! is and after you finish this book, you want to have Joomla! fully
installed on your server platform and/or your PC desktop, this is the book for you.

The Best Damm Blueprint for Building Your Own Corporate
Intranet? Why Build a Corporate Intranet??? More and more
companies are using Web technology to create an intranet behind the firewall. This book is
your blueprint for why this is so important and how to convince management that the
intranet not only will make all employees more productive, it will also teach the IT staff
how to use behind the firewall Web technology -- with Joomla! as the ultimate installation
vehicle.
- - - - - - - - - - --
PHP & MySQL Installation & Operations Guide for IBM i
Comprehensive Guide to installing and configuring the PHP and MySQL environment for
the IBM i operating system to be able to support the Joomla CMS system.

Introduction to PHP & MySQL Programming for IBM i
Includes Direct Database Access Examples for DB2 and RPG. Comprehensive Guide to
all aspects of programming the PHP and MySQL environment with the IBM i operating
system. Extensive programming examples show all that you need to know to get started
programming for PHP on IBM i. Updated (programming-only) version of the Getting
Started with PHP for i5/OS, from late 2007.

Getting Started With PHP for i5/OS
Comprehensive Guide to installing, configuring and programming the PHP and MySQL
environment with the IBM i operating system.

Please go to www.letsgopublish.com to see the full list of LetsGoPublish creations--- including
Chip Wars!

http://www.letsgopublish.com/

