
QuikCourse F.. AS/400 & iSeries DB Concepts and DDS Coding

1

Dear Reader: Thank you for downloading this free book from

Brian W. Kelly’s finished book catalog. I finished the book titled

AS/400 Database Concepts & DDS Coding

https://letsgopublish.com/technology/as400db.pdf in October

2016. Database Concepts, Coding Examples, & Exercises.

Most of my books had previously been published on

Amazon.

Click below if you would like to donate to help the free

book cause:

https://www.letsgopublish.com/books/donate.pdf

Enjoy!

https://letsgopublish.com/technology/as400db.pdf
https://www.letsgopublish.com/books/donate.pdf

QuikCourse F.. AS/400 & iSeries DB Concepts and DDS Coding

3

QuikCourse F.. AS/400 & iSeries DB Concepts and DDS Coding

5

QuikCourse F.

AS/400 and iSeries

Database Concepts and

DDS Coding

Chapter 1: What is a Database? 7

Chapter 1.

What is a Database?

The Database Concept

Before we get into the AS/400 database specifically, let’s

examine the notion of a database and relational database, in

particular.

Data can be defined simply as a group of unorganized facts.

For emphasis, many use the redundant term “raw data” to refer

to “data” to accentuate the unorganized nature of the facts.

Information, a term often misused in place of data, is data,

organized for decision making. Through computer processes

and database structures, data becomes information.

A database then is an organized collection of data (information)

that is necessary to perform a task or application. Related data

fields are grouped together into a format called a record.

Similar records are grouped together into a file. One or more

related data files can be grouped to make up a data base.

What is Data Base

Management?

Data Base Management is the process of managing data. It is

the underlying software which enables the database to function.

Some of the basic capabilities may be provided through the

native data management portion of the operating system, upon

which the database software is built. The rest is provided by the

database software itself. Data Management is needed to

provide organization, access, and control of the data that is

stored on a computer system.

Besides being a necessary component of a database, database

management provides benefits by providing and maintaining

structures, enabling data actions and enforcing data rules. It is

substantially more productive for a given computer to perform

functions with the database rather than to code the same

functions in every program that uses the database.

Data Organization

Data organization facilities in a database must provide for a

flexible data structure which meets today's application needs,

yet can adapt to changing business requirements. Additionally,

a database should be able to handle ad hoc requests for

information as a by-product.

Data Access

Data access facilities in a database determine how you get at

the data. They provide the ability to retrieve data, format data,

and sequence data. It is through this software that the database

Chapter 1: What is a Database? 9

is able to provide its data services to other constituent parts of

the computer system as well as to user programs.

Data Control

Data control facilities in a database are also very important.

They provide data independence from programs and assure the

maintenance of data integrity such that, among other things, all

database fields contain the correct data type

Life Without a Database

Without a Data Base, there is no flexible data structure and

data access is done by application programs. Security and

control are provided by programmers through their individual

programming efforts (very costly and time consuming,

inconsistent, and not very secure). Additionally, without a

database, many more programs need to be written.

For example, a new data selection needs new programs.

Therefore, without a database, each reordering and each new

selection increases the programming backlog. Another

common example is a change to a file’s record layout. Without

database, input and output definitions must be hard coded in

every program which needs to access the file. Thus, even a

simple change to a record layout, such as a field addition or

deletion, or even a change in a field length or an attribute

means that each dependent program must be changed.

In summary, programs written without the help of a database,

must do more work, and thus they contain more lines of code,

are more expensive to build, are slower to develop, and are

more difficult to maintain. Overall, they are not a long term

good deal.

Types of DBMS Software

There are three popular types of database management systems

(DBMS):

1. Hierarchical

2. Network

3. Relational

Hierarchical Database

Hierarchical databases create relationships in a hierarchical tree

shape structure. Various files are linked together to form

meaningful parent/child relationships using pointers that are

imbedded in each database record. A customer record, for

example, would have a disk pointer that would contain the

order file address of the first order record for that customer.

The first order record would point to the second; the second

would point to the third, and so on. Programmers wanting to

access the record chain would have to code for all of the

navigation contingencies in their programs. Data access was

not automatic. Moreover, data queries were difficult to achieve,

unless the database administrator had previously created a path

which simplified the task. Ad hoc queries were very difficult to

achieve.

Network DB

Network databases create relationships by maintaining

imbedded pointers in separate join records. The relationships

do not have to be hierarchical but, just as the hierarchical

database, they must be predefined. Again, programmers must

navigate through the database to achieve data access.

Chapter 1: What is a Database? 11

Additionally, queries are difficult to achieve because of the

pointer oriented data structure.

In many ways a Network Database looks like a

hierarchical Database. You can certainly visualize it as a

type of tree, though misshapen compared to a purely

hierarchical structure. In fact, a Network Database, can be

said to look more like several trees which share branches

than one big tree.

Thus, in the Network structure, children can have multiple

parents and parents can have multiple children. Despite

this potential for confusion, because it addressed the

inherent inflexibility of the purely hierarchical structure, it

was looked on as a dramatic improvement, though far

from perfect. One could not escape the reality that

networking-based databases were difficult to implement

and maintain. In fact, most successful implementations

were of and for computer professionals, rather than real

users. What was clearly needed was a simple model

which could be used by real end users to solve real

problems. From this came, the relational model.

Relational DB

The idea of a relational database was conceived and published

by Tedd Codd of IBM’s Santa Theresa Labs in the ACM

Journal in the 1970 time frame. His work was titled: A

Relational Model of Data for Large Shared Data Banks.

Codd’s idea was to create a database system, simple in concept,

yet founded in sound mathematical principles. He knew with a

proven mathematical theory as the basis for the database

system, he could avoid the limitations, pitfalls, and anomalies

inherent in hierarchical, networking, and other pointer oriented

database implementations.

As an aside, while IBM was taking its time in the 1970's with

its System “R” internal relational database project, a group of

crafty technicians and entrepreneurs, led by Larry Ellison, who

would later form a company which became Oracle

Corporation, read Tedd Codd’s article defining relational

database. They then set out expeditiously to build a software

product based on Codd’s theory. The “to-be” Oracle company

beat IBM to the punch, using IBM’s original research work,

and announced the first relational database software in 1978, a

year or so before IBM was ready.

Relational database software has been a godsend to the

industry. It combines the ease-of-use and ease-of-

implementation characteristics of record oriented file systems

with the structural and productivity features of existing

database technology. There are no imbedded pointers. Files are

brought together (joined) in structured views, external to the

files themselves, based on relationships among the data

elements (fields). Programmers need not know the

implementation details in order to access the data. There is no

complex navigation required for access.

For example, a customer record can be “joined” or linked to an

order record using the respective customer number fields in

both files. The files are “combined” when the join fields have

an equal “relationship.” The database software uses this

relationship to create a virtual link between the two files. In

essence, they are logically united. When accessed, the database

presents a new “joined” record view of the projected fields in

Chapter 1: What is a Database? 13

the files that is different from the record layouts of any of the

based-on files.

Benefits of a Database

Management System (DBMS)

Database management systems of all three varieties provide

certain benefits to their users. The generic benefits of all

database software are as follows:

Data Sharing Many simultaneous users of

the same data

Data Currency Changes to data reflected immediately

in all sequences

Data Security Data guarded by the DBMS

Data Backup/Recovery Facilities built into DBMS

Programmer Productivity Standardization of data

definitions

 Data base does record

selection /ordering. Less

duplicate work

 Chapter 3: AS/400 and iSeries Database Concepts 15

Chapter 2.

AS/400, iSeries, and

Relational Database

What’s It All About?

AS/400 has an integrated relational database. A relational

database consists of tables that are perceived to be stored in flat

files or tables, regardless of their true underlying structure.

Unlike the complicated structures of the 1970's, records are

linked by data, not by imbedded pointers. The database is

conceptually easy to understand, thus making it usable by folks

like us, who prefer to let the rocket science to the rocket

scientists. With a relational database, for example if you have a

set of data in physical structures, you can create new

relationships simply by making a new table (view) and relating

it to existing structures. The database supports all of the

powerful data relationships, one to one, one to many, and many

to many.

A relational file or table, called a physical file on the AS/400,

is composed of rows, which are made up of columns. In

relational database terminology, rows are called tuples;

columns are called attributes; and tables are called relations.

Tuples (records or rows) are logically linked together by the

data in the attributes (fields or columns.) Each record in a

relation (file, table) has a unique key which is called the

primary key.

Renaming simple notions in IT for special purposes is not

unique to the database realms. Long before database

terminology, for example, there was file system terminology. In

file system terminology, rows are called records, columns are

called fields, and tables are called files. Now you know the big

dark secrets of database and file terminology. However, it still

may be a safe bet that you won’t use the term “tuple” again in

your AS/400 or iSeries career.

Database Operators

When Tedd CODD devised his theory for a database structure

founded in mathematical principles, his research was not

intended for only the math inclined. In fact, Codd’s wish was to

hide the internal complexity from users while assuring logical

simplicity and correctness within the database itself. He hoped

to have a management facility and a language based on proven

mathematical principals. In fact, Codd’s wish was that users

could access information from the tables he envisioned using

simple English-like commands, as opposed to writing code. He

found the following matrix algebraic operations quite helpful in

building the data language which became SQL:

 UNION

 INTERSECTION

 DIFFERENCE

 DIVISION

 PRODUCT

 SELECT

 Chapter 3: AS/400 and iSeries Database Concepts 17

 PROJECT

 JOIN
We find the most commonly used operations to be Union,

Projection, Selection, and Join. These are supported on the

AS/400 in SQL (DB language invented by CODD) and DDS

(DB Language invented by IBM originally for the System/38.)

The other four operators are functions that are (1) somewhat

more difficult to understand, (2) not as valuable, and (3) not

supported by the AS/400 and iSeries. We will not cover these

operators in this QuikCourse. If you would like a better

appreciation of these algebraic relational operators, you may

enjoy this Web article at:

http://www.codelearn.com/rdb/rdbd_rd1.html#operations

There is another relational operator which is very useful, but it

is not listed as algebraic. The Order operation is most helpful

in arranging data in sequences.

The Language which Tedd CODD defined as the standard data

manipulation language (DML) was called Structured Query

Language or SQL. In this DML, Codd defined the operators,

the structure, the syntax, and all the rules for manipulating a

relational database.

Looking Closer at DB Operators

A more complete explanation of each of the five operators is as

follows:

Order

As you can see in Figure F-1, ORDER sequences rows of a

table without making a second copy

http://www.codelearn.com/rdb/rdbd_rd1.html#operations

Figure F-1 Ordered and unordered records
 Unordered Ordered

 |--------------------- |------------------

 | Smith | | Adams

|

 | | |

|

 | Jones | == | Brown

|

 | | == |

|

 | Brown | =========== | Jones

|

 | | == |

|

 | Adams | == | Smith

|

 | | |

|

 | Thompson | | Thompson

|

 | | |

|

 *-------------------- *------------------

--

Union

As you can see from Figure F-2, Union takes two similarly

shaped files and creates one complete file from the two.

 Chapter 3: AS/400 and iSeries Database Concepts 19

Figure F-2 Relational Union Operation

 ORDER MASTER1 ORDER MASTER2

 |-----------|--------|-------| |-------- |----------|----

---|

 |Order No |Part No |Date | |Order No |Part No |Date

|

 |-----------|--------|-------| |---------|----------|----

---|

 |159244 |55511 |7/1/94 | |187654 |34567

|4/21/94|

 | | | | | | |

|

 |263255 |29999 |7/7/94 | |322456 |23456

|4/24/94|

 | | | | | | |

|

 |978121 |64444 |6/9/94 | |457676 |44567

|4/30/94|

 | | | | | | |

|

 |. . . |. . . |. . . | |. . . |. . . |. .

. |

 *-----------!--------!------- *---------!----------!----

 V V

 V V

 V V

 UNIONED FILE

 |-----------|---------|------------------|

 |Order No |Part No |Date |

 |--------------------------------------|

 |159244 |55511 |7/1/94 |

 |187654 |34567 |4/21/94 |

 |263255 |29999 |7/7/94 |

 |322456 |23456 |4/24/94 |

 |978121 |64444 |6/9/94 |

 |457676 |44567 |4/30/94 |

 |. . . |. . . |. . . |

 *-----------!---------!------------------

Projection

Projection allows you to logically rearrange the columns in a

table and also create subsets of the columns or fields in a table.

As an example, in Figure F-3, you have a new view of the

Payroll Master file, which does not include the salary. This

view of the real data can be given to employees through

relational projection. It is a projected image of a file which

limits and/or rearranges the columns which are included in the

view.

Figure F-3, Relational Projection Operation

 NAME EXT SALARY EXT NAME

 |-------|-------|-------| |-------|-------|

 | | | | | | |

 | Jones | 3677 | 16000 | | 3677 | Jones |

 | | | | | | |

 | Smith | 3605 | 14000 | == | 3605 | Smith |

 | | | | == | | |

 | Adams | 3939 | 17000 | ============ | 3939 | Adams |

 | | | | == | | |

 | Brown | 4200 | 35000 | == | 4200 | Brown |

 | | | | | | |

 | ... | ... | ... | | | |

 | | | | | | |

 *-------!-------!------- *-------!-------

Selection

Just as projection provides a subset of the columns in a table,

selection provides a subset of the rows. If, for example, you

wanted a view of all salaried employees who made more than

$100,000 per year, more than likely, you would receive a

subset of the payroll records . . . those which met that selection

criterion. In the selection example in Figure F-4, (Just those

customers from Michigan), you can see that the image after

selection does not include A B Distributors.

 Chapter 3: AS/400 and iSeries Database Concepts 21

Figure F-4 Relational Selection Operation
 |----------------------------| |---------------------------
-|
 | ABC Inc Detroit MI | | ABC Inc Detroit MI
|
 | | == |
|
 | A B Distrib Lima OH | == | 123 Trucking Alma MI
|
 | | ========== |
|
 | 123 Trucking Alma MI | == | Allied Ent Detroit MI
|
 | | == |
|
 | Jones Inc Akron OH | *---------------------------
-
 | |
 | Allied Ent Detroit MI |
 | |
 | Sun Ind Tucson AZ |
 | |
 *----------------------------

In this process, the data base does the record selection. The

program receives records which have been selected by the

database. Since the database can fetch and test records

substantially faster than a program, in addition to saving coding

and the associated programmer time, using the database

operators for selection also enhances performance.

Both projection and selection can be used for many purposes,

including security. For example, a user could be authorized to a

desired view of the payroll data instead of the entire file.

Join

With the JOIN operator, data in primary records (first file

defined) gets joined with data from secondary records creating

new “virtual” records with both sets of fields. Of course, more

than two files can be joined. In fact, up to 32 files can be joined

using the DB2/400 database.

To continue a join to a third file and to subsequent files, you

would join the data in the 1st secondary file to that in the

second secondary (tertiary – third) file. You would continue

joining from file n to file n + 1 (where n = the sequence # of

the last file joined and n + 1 = the sequence # of the next file to

be joined.). You would be able to repeat this until you had no

more joins to specify or you had reached thirty-one joins using

thirty-two physical files.

There is no reason to include a particular file in a join logical

view unless one or more fields from that file was going to be in

the view provided by the file. We coined the term “virtual

record” to describe the resulting record format after all of the

files are joined and the fields from those files are picked and

placed in the new record format of the new logical file. Thus, if

a Join view consists of thirty-two files, it is safe to say that the

record layout for that view contains at least thirty-two fields - a

minimum of one from each of the joined files.

The JOIN operator plays upon the relationship of related fields

- equal, greater than, or less than. In the example in Figure F-

5, you can see that the Order Master file is joined (equal) with

the Parts Master file so that the parts within an order can

logically contain the parts description, which exists only in the

Parts Master file.

 Chapter 3: AS/400 and iSeries Database Concepts 23

Figure F-5 Relational Join Operation
 ORDER MASTER PARTS MASTER

 |-----------|--------|-------| |--------|-------------|--

---|

 |Order No |Part No |Date | |Part No |Description

|Loc |

 |-----------|--------|-------| |------------------------

--|

 |159244 |55511 |7/1/88 | |66342 |Size 7 Seal

|Whs 1|

 | | | | | | |

|

 |263255 |29999 |7/7/88 | |18818 |No 12 ring

|Whs 3|

 | | | | | | |

|

 |978121 |64444 |6/9/88 | |97676 |Brass plate

|Whs 1|

 | | | | | | |

|

 |. . . |. . . |. . . | |. . . |. . . |.

. .|

 *-----------!--------!------- *--------!-------------!--

 V V

 V V

 V V

 JOINED FILE

 |-----------|---------|------------------|

 |Order No |Part No |Description |

 |--------------------------------------|

 |159244 |55511 |CKK Valve |

 | | | |

 |263255 |29999 |Left bracket |

 | | | |

 |978121 |64444 |No 8 washer |

 | | | |

 |. . . |. . . |. . . |

 *-----------!---------!------------------

As shown in Figure F-5, one or more data files can be joined

together to create a view or “virtual image.” The view is very

powerful and presents a record image to a program or query as

if all the data fields were gathered from one file. With such

work being performed by the database itself, application

programs can become much simpler to design and code.

Overall it is much easier for a programmer or for a Query user

to work with a single, joined file instead of dealing with the

complexity of multiple files. As previously noted, the AS/400

supports up to 32 physical files for a JOIN and the result is the

formation of one new “joined” view of the data.

More on the AS/400 and

iSeries Data Base

The AS/400 (iSeries) database is relational and has been since

1978. Not only did IBM select the relational model for the

immediate predecessor of the AS/400 and iSeries machines, but

the company also built the data base functions right into the

heart of the machine.

Integrated Data Base

The System/38, in 1978 was the first computer ever built with a

relational database integrated within the hardware and the

framework of the system. The integrated relational database

was and continues to be a hallmark of the AS/400 and the

iSeries. There is no other machine in existence, even today,

which comes with a built-in database. Can you imagine how far

ahead of the competition the System/38 was in 1978 when

DB2, IBM’s mainframe relational database product had yet to

be announced? And with a System/38, it was just there . . . and

it was shipped with every box!

Relational databases by definition are flexible, natural, and

simple to use. Yet there is a high level of sophistication in the

capabilities and the low level implementation. Consider that

one of the most frequently used operations in a relational

 Chapter 3: AS/400 and iSeries Database Concepts 25

database is index creation. The AS/400 has implemented this

function as a hardware instruction. There is no argument that

the AS/400 is a database machine since its inherent capabilities

come from implementations that are not pert of add-on

products but, in fact are built into the hardware and the internal

code of the system.

AS/400 and iSeries Break DB Rules

Most relational databases use set theory and set oriented

operations. Simple features such as the ability to link a

compiler read and write operation to the database are not part

of the deal. In fact, “compiler reads and writes to a database”

are anathemas to the spirit of a relational database. Not only

does it read and write naturally to the database, the compilers

were written knowing the integrated database would be there.

The AS/400 breaks this big DB rule that data must be

processed in a set. Not only does the AS/400 provide high-level

SQL facilities and set operations with the data manipulation

language, as you would expect any database to deliver, it also

provides and in fact optimizes “natural read, write and update

record-at-a-time oriented operations” to the database. You do

not have to use SQL if you want to use an HLL compiler such

as RPG or COBOL with your database. You don’t have to

define input and output for your RPG and COBOL programs

because the compilers know about the database and copy the

definitions in from the database at compiling time in much the

same fashion as copy books.

Database Is a Given

In fact, the compiler writers, knowing that the very fabric of the

AS/400 was its integrated database, used the natural APIs in

the database so that normal HLL reads, writes, and updates to

the database occur in the same way that other compilers access

flat file systems. In other words, you get the power of the

integrated database in program development built-in at the

compiler level without having the pay the development burden

of an add-on, unnatural facility that the compiler knows

nothing about.

Moreover, the operating system provides major database

recovery facilities that are just as built-in as the database. High

performance journaling, and commitment control are built-ins

– not afterthoughts, for advanced recovery scenarios. Many

companies have used this support to deploy cross system

journaling in which all of the updates on a given computer are

mirrored via journaling on a computer in the next room or in

the next city.

No Name Database -DB2/400?

In the early 1990's IBM did a survey of its AS/400 customers.

It is a fact that many AS/400 customers have no or little

professional staff keeping their systems running. The company

asked AS/400 customers if the AS/400 had a database.

Reportedly half of the AS/400 users did not know their

machine had an integrated database. That’s when IBM decided

to use the IBM relational DB brand DB2 for the AS/400. IBM

speakers often joked about this fact at conferences believing

that their audiences would see the slam as a put-down to the

less smart AS/400 programmers than the ones in the room!

After all, they were not at the conference.

If It Has a Name, It Can’t Be Integrated?

Of course that ruined one of my favorite pitch lines that I

always felt put the AS/400 DB in perspective. Once I was able

 Chapter 3: AS/400 and iSeries Database Concepts 27

to say: “If it has a name, the machine knows nothing about it . .

. If it has a name, it is not built-in, it is an add-on.” Consider

the plethora of databases which fit this mold: DB2 for all other

platforms, Sybase, Informix, Oracle, etc. No compilers are

aware of any of the hooks in these named databases. IBM

wanted to make sure its customers knew that the company

supplied a free database and a no-name version was not cutting

it. Now, the AS/400 database has a name and it has the power

of the best that IBM knows about a database. Corporate IBM’s

Santa Theresa Labs, where the relational database theory was

invented, are now a big part of this new database for the future.

And, it is still integrated with the machine.

To SQL or Not to SQL?

Despite its availability, and its acceptance as the industry

standard, IBM chose not to use SQL as a native data

manipulation language (DML), when the company introduced

the AS/400 in 1988 and again when it introduced the iSeries in

2001. Instead the company used the same and only database

model native to the System/38 – DDS.

DDS Was and Is Good!

That model was specifically built to help make it easier for

IBM’s small business computer customers to migrate to the

System/38 platform and to use it without being burdened by

even a modicum large system complexity. Changing compilers

to use SQL and eliminating native “read and write” operations

in favor of SQL were not in IBM’s interests with either the

AS/400 or iSeries announcements. However, the SQL data

manipulation language should have become a standard system

feature on a computer system whose claim to fame includes an

integrated relational database.

It would not have been a good idea then, nor would it be a good

idea now for IBM to eliminate DDS. Why would a programmer

want to convert existing long-time-running code just to use

SQL? They would not. IBM Rochester and Toronto, made the

right decision to stay with what works - DDS!

The Official AS/400 and iSeries DML?

However, they purposely forgot to include SQL and should not

have. Considering that IBM has been adding functions to the

native database over the last few years which have just SQL

support and no DDS support, it actually seems silly. How can

an optional product be the gate for a native, integrated

database? To not build the new function in DDS is also silly.

We keep telling IBM to listen . . . maybe one day when we all

start speaking to them.

Ask Big Blue this question: “What is the official AS/400

DML?” DDS is incomplete and SQL is optional. I guess there

can’t be an official DML for this integrated function. Sorry

IBM. That is silly!

SQL is Optional

Shortly after the AS/400 was announced in 1988, IBM made

SQL available as an optional database language for the system.

In my opinion, the optional nature of the product was a

mistake. It created SQL “have”s and “have nots” for no better

reason than IBM could account for its database revenue more

accurately.

There was a runtime environment shipped with the operating

system. Theoretically, with the runtime, package builders did

not have to depend on SQL being purchased for their products

to run. However, just like all COBOL package suppliers want

COBOL on the user’s machine, at a minimum for emergency

 Chapter 3: AS/400 and iSeries Database Concepts 29

fixes, so also do SQL developers want SQL on their users’

machines.

It’s Not in There!

SQL should have been built into the operating framework of

the AS/400 so that all forms of database solutions could be

maintained on every AS/400 - not just those machines whose

users bought the SQL product. When Rochester IBM chose not

to include SQL, the Lab added a “Mickey Mouse”

characteristic to an otherwise elegant implementation.

From my perspective, the lack of integrated SQL has

weakened, and continues to weaken the AS/400 and iSeries

total development picture. Toronto fixed most of the other

iSeries development anomalies in 2001 with the brilliant all-

inclusive tool packaging of the WebSphere Development

Studio for iSeries, 5722-WDS. With the Toronto Lab coming

clean with application development in a big way as they have,

either Rochester chooses not to see the light or Mother IBM is

in control of the picture. Either of these scenarios is not good

for the AS/400 and iSeries.

Chapter 3.

AS/400 and iSeries

Database Concepts

The AS/400 and iSeries

Database

Now that we have made it through a few introductory chapters,

let’s take a closer look at what IBM built in 1978 as the native

database.

AS/400 Basic Nomenclature

The mechanism IBM invented in 1978 for defining tables and

views is still called data description specifications or simply,

DDS. Relational tables and views built with DDS are

implemented using what IBM calls physical and logical files.

 Chapter 3: AS/400 and iSeries Database Concepts 31

Physical files are regular old data files with data as you would

expect them to be, though internally they have a few extra bells

and whistles to accommodate record and field information as

well s object information.

Logical Files are also called Logical Views, or just Views. A

logical file is really just a view of one or more physical files. It

has a similar object structure as a physical file but there is no

physical data within the logical file object. It enables data

access via a bunch of presentation rules which come into play

when the logical file is used in a program or Query. These rules

govern how the data in the “based-on” physical files, is to be

presented when accessed via the logical view. Again, the

logical file itself contains no data. Its access paths and / or

indices point to data in up to 32 separate physical files.

That is our first set of specifics on the AS/400 relational

database. No other relational database uses terms such as

physical and logical files. Then again, since no other system

has an integrated relational database, no other system could

have compilers and utilities that are fully database-aware.

Are Physical and Logical Files Good?

A clever Windows implementer, wanting to win an argument –

about which system is better, might suggest that, because no

other system has physical and logical files, they must be bad.

They must be a disadvantage to the AS/400 developer. This is

far from the truth. In fact, because a database file - logical or

physical presents itself to a compiler or a DFU utility or a

Query utility as nothing more than a file, all of the database

navigation is prearranged when you include a physical file or

logical file in your program. You can do it all without a single

Select statement.

Now, let us examine some more AS/400 specifics. First of all,

in the integrated database, data items are stored in base tables.

On the AS/400, again, these are known as physical files.

Views of the data in the base tables are created using the

relational operators which we have already discussed. The

AS/400 native database calls these views logical files, and they

are implemented using DDS specifications.

Of course, any database created with DDS (physical and

logical files) is usable with SQL - both interactively and within

high level language programs. The vice versa is also true. In

other words, database tables and views created with SQL

present the same file image to programs and utilities.

Therefore, standard AS/400 programming (reads and writes)

without SQL, can be used to access databases created with

SQL.

Data Currency

The implementation of the database is done to accommodate

data currency and immediacy. For example, any change to data

is immediately reflected in all views. Moreover, there are no

imbedded pointers or linkage records used to order the records,

so there is not a big chain of events necessary when key data is

updated or entered. All links are done based on the

relationships of data, not by external, unnatural means.

Physical Files

Let’s take a closer look at what makes up a physical file object

on the machine. A physical file contains a definition of the

fields in the file (a description of the data a.k.a. a format or

database structure). It also contains an access path so the data

 Chapter 3: AS/400 and iSeries Database Concepts 33

can be stored either in arrival sequence (plus one access path)

or in keyed sequence, such as customer number. The actual

data in a physical file is contained in a sub-object called a

member which is “contained” or “pointed to” from the file

object.

Members

There can be many members in a physical file. Each member

segregates a portion of the data from all other members. In

normal database processing one member is accessed at a time.

However, a file can be overridden to provide data from all

members, one at a time. This helps in transaction-based

systems. For example, it helps when data may be segregated

by transaction date, and it helps at month end when the data is

easily merged for reporting. Thus, we can envision that as part

of every file, there is an “index” of members so that members

can be accessed specifically by name. In AS/400 parlance, this

is called a member list.

DDS Is Not Always Needed

Data description specifications (DDS) are typically used to

create a native database. Using these forms, a developer can

define a data record within a database. The record is known as

a record format and it consists of all the fields which make up a

physical record. Upon creation with DDS, a description of the

format and the associated fields are stored withing the database

file object itself. Let’s just say they are stored somewhere

before record one of the data file.

Though this is the norm for formal database files, an AS/400

physical file can actually be created with no DDS at all. It is

built with the “CREATE Physical File” command (CRTPF).

The command permits a record length to be specified which

structurally becomes the equivalent of one big field in the

physical file database. Much like traditional programs using

files, programs using such files would have to split the record

into fields within the program. Logical files, however require

DDS, since there is no other way using the Create Logical File

(CRTLF) command to define the logical file selection criteria.

After data is defined to the database through source members,

and the database is compiled with field names included,

programs still do not have to bother with these descriptions.

There is a switch for all high level languages (HLL) (column

19 in RPG/400 file description). The program says whether it

will access data via records or use the field definitions.

To access the data into separate fields, programs can be written

to (1) use the field descriptions in the database or (2) ignore the

database descriptions and use input/output specifications within

the program to distribute data from various “from” and “to”

record locations into specific program fields. If option 1 is

taken, HLL programs can also be written with no input and no

output specifications, and the field names will actually be

copied into the program from the database files at compilation

time. That’s what we mean when we say that the compilers and

the utility programs are database aware.

Logical Files

 Chapter 3: AS/400 and iSeries Database Concepts 35

AS/400 logical files are structured just like physical file objects

and they behave in the same way as described above. But, they

contain no data. Well, then what do they contain? They contain

nothing more than a definition, or view, or set of rules as to

how to retrieve records from a physical file or files and how to

format fields when the file is used. Through the logical file, the

AS/400 database is able to implement the relational operators,

and send a view of the results of those operations to the

requesting program.

A single logical file can be built over from one to 32 physical

files. Any number of logical files can specify the same physical

file as its source of data. Besides containing a possible,

projected and/or selected view (field or record selection), a

logical file is implemented with an access path. Therefore, just

as a physical file, it has an efficient means of getting at the

data in the physical file. The access path contains an index of

key values and locations as to where the actual data record

resides in the physical file. When a logical file is used, the

logical file access path governs how data is presented or

successfully retrieved from random operations.

Just as physical files can be used with either internally

described data or externally described data, logical files work

the same way. In fact, a logical file, with all fields defined can

often be substituted in a program for its underlying physical

file and the program would produce the same results as with

the physical file. Of course, because data would be retrieved

via a separate index, the program timings may be a bit slower.

Logical files are used to make new relationships in the data

base from the existing database. As noted earlier, they support

order, union, selection, projection, and join. Records can

therefore be referenced, and/or selected based on data content,

and/or subdivided (projected) based on data fields desired.

Data and Index Currency

Changes to an AS/400 database can be immediately reflected

or can be deferred. When new records are added or when key

values are updated in records, the access path must be

maintained to reflect the changes. The system automatically

updates the access path in all logical views either (1)

immediately one at a time, (2) delayed, after the job is over, or

(3) on a rebuild basis - the database rebuilds the index before

every use. Based upon file usage, one of these approaches

typically fits the database.

When you create your physical file or logical file or when you

change the file object using either a Change Physical File

(CHGPF) command or the Change Logical File command

(CHGLF), you can specify your choice for access path

maintenance. The parameter is used to govern all members of

the file.

The possible values are:

*IMMED The access path is updated each time a record

is changed, added, or deleted from a member.

*IMMED must be specified for files that

require unique keys.

*REBLD The access path is completely rebuilt each time

a file member is opened. The access path is

maintained until the member is closed, then the

access path is deleted. *REBLD cannot be

specified for files that require unique keys.

*DLY The maintenance of the access path is delayed

until the logical file member is opened. Then

 Chapter 3: AS/400 and iSeries Database Concepts 37

the access path is changed only for records that

have been added, deleted, or changed since the

file was last opened. While the file is open, all

changes made to based-on file members are

immediately reflected in the access paths of the

opened file's own members, no matter what is

specified for this parameter.

. To prevent a long rebuilding time when the file

is opened, *DLY should be specified only

when the number of changes to the access path

between successive open operations is small;

that is, when the file is opened frequently or

when the key fields in records for this access

path change infrequently. *DLY is not valid

for access paths that require unique key values.

If the number of changes between a close

operation and the next open operation reaches

approximately 10 percent of the access path

size, the system stops saving changes and the

access path is completely rebuilt the next time

the file is opened. The access path is updated

when the member is opened with records that

have been added, deleted, or changed from the

member since the last time the member was

opened.

 Chapter 3: AS/400 and iSeries Database Concepts 39

Chapter 4.

Creating Physical and

Logical Files

IDDU, SQL & DDS

How do you create physical and logical files? We have already

briefly discussed two ways. There is a third method on the

AS/400 and iSeries which was more or less imported from the

System/36 to make migrations from that platform even easier.

The three ways to create physical files are as follows:

IDDU Interactive Data Definition Utility (used in S/36

environment)

SQL Structured Query Language - optional

DDS Data Description Specifications - AS/400 native

interface to the database.

Interactive Data Definition Utility

(IDDU)

Physical files can be described using IDDU. However, you will

have to use DDS or SQL in order to build views of your data or

to build logical files. You would choose to use IDDU if you are

looking for a menu-driven, interactive method of describing

data. You might also choose IDDU if you are already familiar

with describing data using IDDU on a System/36.

In addition, unlike both SQL and DDS, IDDU allows you to

describe multiple-format physical files which you can use with

Query, Client Access, and DFU. Multiple physical record types

are not supported via any relational database. All real physical

database files have just one record format. These are created

with SQL, DDS, and IDDU.

When IDDU creates a multiple record physical file, the

database file itself remains unaware of multiple records since

they are not supported. Query, Client access, and DFU,

however, are application programs which can gain their record

and field awareness by examining the IDDU dictionary in

addition to the database information. These programs are

written to support IDDU to make the migration to AS/400 from

S/36 much easier than would otherwise be possible.

You can also use RPGII, RPG/400 or other HLL programs

against these multi-format files but you must provide the record

separation code as well as the input and output specifications

within your program. The compilers are unaware of IDDU data

 Chapter 5. Data Management Attributes 41

definitions and get all of their database information from the

database itself. When you use IDDU to describe your files, the

file definition becomes part of the OS/400 data dictionary.

Because DDS has the most options for defining data for the

programmer, this guide focuses on describing database files

using DDS. If you would like to learn more about IDDU or you

would like a better understanding of files, records, and files,

IBM has a very nice book on its Web site titled IDDU use, #

SC41-5704-00. It is very nicely done. Please check the

Appendix in this book if you are unfamiliar as to how to find

IBM’s manuals.

SQL Structured Query Language

Of course SQL is the way everybody else does a relational

database. Unfortunately, it is an optional, separately orderable,

separately licensed program on AS/400. It uses the ANSI data

definition, data manipulation, and data control language. SQL

is characterized by its simplicity and lack of verbosity. You tell

the system what you want. You do not tell the system how to

get it. One of the precepts of Tedd Codd’s relational design

was that the implementation details are unnecessary to the use

of the database.

SQL is certainly a fee-based alternative to DDS on the AS/400

and iSeries, but it has not had that much luck with old time

AS/400 programmers. It has been well-adopted by the newer

breed, who often come from other platforms such as Unix and

Windows. On every other platform, you either take relational

database the way Codd envisioned it, and that means SQL is

the standard . . . or you don’t take the database.

The following is an example of a CREATE TABLE command

which is the equivalent of building and compiling DDS into a

database file.

CREATE TABLE STUDENT

 (STUDENT_NO DECIMAL(10) NOT NULL,

 STUD_NAME CHAR(30) NOT NULL,

 STUD_ADDR CHAR(30) NOT NULL)

This SQL command creates an arrival sequence physical file

named STUDENT with no key in the user’s current library.

Data Description Specifications

DDS is the most frequently used method for describing the

database on the AS/400 and iSeries. The term data description

specifications actually defines DDS. There is one specification

form, which is identified by having an A in column 6. It is

known as the DDS form and it is used to describe data. The

form type of “A” differentiates it from all of IBM’s other form-

based languages, such as RPG, which also uses column 6 as its

form type designator.

At one time, database designers would actually use pencils and

their DDS forms to design the database. They would then

keypunch the forms or use the Source Entry Utility to get the

specs into the system’s source files. Now, designers use SEU

directly and there is no longer a paper DDS trail. SEU is now

used to directly create the record design or directly modify the

record design within the source files. The pencil was voted out

years ago.

The Six Levels of DDS

 Chapter 5. Data Management Attributes 43

When you describe a database file using DDS, you provide

information at one of seven levels:

1. File

2. Record format

3. Join format

4. Field

5. Key

6. Select/omit levels

Let’s look at each of these levels in just a little more detail.

File level DDS gives the system information about the entire

file. For example, you can specify whether all the key field

values in the file must be unique.

Record format level DDS gives the system information about

a specific record format in the file. For example, when you

describe a logical file record format, you can specify the

physical file that it is based on.

Join level DDS give the system information about physical

files used in a join logical file. For example, you can specify

how to join a number of physical files.

Field level DDS gives the system information about the

individual fields which comprise a record format. For example,

you can specify the name and attributes (length, data type etc.)

of each field in the format.

Key field level DDS gives the system information about the

key fields for the file. For example, you can specify which

fields in the record format are to be used as key fields.

Select/omit field level DDS gives the system information

about which records are to be returned to the program when

processing (attempting to read) the file. Select/omit

specifications apply to logical files only.

Creating Physical Files

Physical Files are defined to the system as fields comprising

physical records of data and access to data. The definition of a

physical file is file by name, record format by name, and fields

by name and access by arrival sequence or keyed sequence.

IDDU Dictionary Support

Because of the existence of IDDU, I can no longer say there is

no data dictionary on the AS/400 and iSeries. A data dictionary

is supposed to naturally know about all files, records, and fields

in the database system. Unfortunately, IDDU does not fit the

bill. There is no data dictionary on the system. IBM had a shot

at having one with IDDU but chose to make it a mimic of the

IDDU on the System/36.

However, DB2/400 does come with reference database

capability as a standard feature. Though this does not provide

what the purists would call “active dictionary” support, it does

permit system-wide or application-wide field dictionaries to be

built.

Field Reference File - Data Dictionary

 Chapter 5. Data Management Attributes 45

It happens that every normal physical data file on AS/400 and

iSeries can also serve as a data dictionary. The term field

reference file is typically used as the name for this function.

The notion is implemented with nothing more than a standard

physical file that contains database format definitions with field

descriptions. By IT shop convention, the reference or

dictionary file should not contain data. It certainly can contain

data but the data layout would make no sense. The field

reference file therefore is used as a reference for DB creation,

as shown in the physical file compile diagram in

Figure F-6.

Figure F-6 PF File Compile Diagram With Field Reference

File
 ------------------, -----------------------

 |ARMAST | | |

 | | | FLDREFFILE |

 | ARMASTR | |---------------------|

 | R CUSTP | | |

 | CUST R <...|.....|CUST 5N0 'CUST NO'|

 | NAME R <...|.....|NAME 20A 'NAME' |

 | STREET R <...|.....|STREET 20A 'STREET' |

 | CITY R <...|.....|CITY 20A 'CITY' |

 ------------------- |... ----------------Physical Files

 |... |

As you can see in the diagram in Figure F-6, at compile time,

which is also known as physical file creation time, the DDS

compiler visits the field reference file object to obtain the field

attributes and descriptions. These “more complete” field

definitions are built once in the dictionary and therefore do not

have to be built in each specific file object.

In the diagram, on the left, you can see an inexact mockup of

the DDS specifications as stored in a source file. More than

likely, the name of the source file is IBM’s convention –

QDDSSRC. This incomplete DDS is in the process of being

compiled.

On the right, you see another inexact mockup. This time it

represents the field reference file. However, the field reference

file as shown is not a source file. It has been compiled into a

database object from its set of DDS which contained full

attributes and descriptions. To the immediate right of each field

name in the DDS (left side of Figure F-6), you can see an “R..”

This “R” tells the DDS compiler to use the field reference file

to obtain the length, field type, column headings, text, and any

other attributes that were coded for each field in the field

reference file. Of course, as you would expect, if a particular

field with an “R” code is not found in the “dictionary”

(reference file), the DDS compiler will give an error message

and not create the new physical database file.

The database implementation savings are obvious. You do not

have to painstakingly define each field, such as customer

number, in excruciating detail each time you want to create a

database which uses the customer number field. Instead, you

define it once correctly in the reference file. For each file that

needs customer number, the “R” for reference code tells the

compiler to copy the customer number attributes from the

already-compiled reference object at object creation time. This

saves saving lots of keying and it removes a major opportunity

for error.

The CRTPF Command

When DDS is used to create any database file in a particular

library, such as HELLO, a member is created at the same time.

The member will actually “hold” the data when it arrives.

Whether the DDS points to a reference file or not, the resulting

file is built with a description of all the data elements (fields) –

contained within the file object itself. To put this in

perspective, any newly created physical file with its field

definitions, can be used as the field reference file for another

 Chapter 5. Data Management Attributes 47

physical file creation. Moreover, this typically occurs long

before any data is placed into the file

The CRTPF command to create a physical file is shown below

with many of its default parameters. Following this command,

we will briefly examine some of these parameters so that you

can get a good feel about the information you must provide,

and that which the system provides as defaults for the file

creation process. Please note that this command will work

regardless of whether the DDS uses a reference file or not. If a

reference file is used, however, the file must be either available

through the library list, or you must specify the reference

library in the DDS. Otherwise, the compiler will not find the

reference file. Now, let’s take a closer look at the CRTPF

command as follows:

CRTPF FILE(HELLO/ARMAST)
SRCFILE(HELLO/QDDSSRC)
SRCMBR(ARMAST) GENLVL(20)
FLAG(0) FILETYPE(*DATA) MBR(*FILE)
TEXT(*SRCMBRTXT)
MAXMBRS(1) MAINT(*IMMED)
FRCACCPTH(*NO) SIZE(10000 1000 3)
ALLOCATE(*NO) CONTIG(*NO)
UNIT(*ANY) FRCRATIO(*NONE)
WAITFILE(*IMMED) WAITRCD(60)
SHARE(*NO) DLTPCT(*NONE)
REUSEDLT(*NO) LVLCHK(*YES)

To better see all of the parameters involved in the CRTPF

command with the English vs. keyword prompts, check out

Figure F-6A below. If you were to hit CF11 with the panel in

Figure F-6A displayed, you would see the keyword prompts as

in the CRTPF command above.

There are two ways to get this prompt. You can type CRTPF

at a command line and hit F4 for prompting or you can invoke

PDM, select the DDS member to compile, place a 14 by it, and

then you can hit F4 for prompting. The latter method will result

in less keying since PDM supplies the name of the file object

and the DDS information to the prompter.

Figure F-6A Create Physical File
 Create Physical File (CRTPF)

Type choices, press Enter.

File > ARMAST Name
 Library > HELLO Name, *CURLIB

Source file > QDDSSRC Name

 Library > HELLO Name, *LIBL, *CURLIB

Source member > LANGUAGE Name, *FILE
Record length, if no DDS Number

Generation severity level . . . > 20 0-30

Flagging severity level > 0 0-30

File type > *DATA *DATA, *SRC
Member, if desired > *FILE Name, *FILE, *NONE

Text 'description' > *SRCMBRTXT

 Additional Parameters

Maximum members > 1 Number, *NOMAX
Access path maintenance > *IMMED *IMMED, *DLY, *REBLD

Force keyed access path > *NO *NO, *YES

Member size:

 Initial number of records . . > 10000 1-2147483646, *NOMAX
 Increment number of records . > 1000 Number

 Maximum increments > 3 Number

Allocate storage > *NO *NO, *YES

Contiguous storage > *NO *NO, *YES
Preferred storage unit > *ANY 1-255, *ANY

Records to force a write > *NONE Number, *NONE

Maximum file wait time > *IMMED Seconds, *IMMED, *CLS

Maximum record wait time > 60 Seconds, *NOMAX, *IMMED
Share open data path > *NO *NO, *YES

Max % deleted records allowed . > *NONE 1-100, *NONE

Reuse deleted records > *NO *YES, *NO

Record format level check . . . > *YES *YES, *NO

Dissecting CRTPF Parameters

Now, let’s dissect this command just a bit so we have a better

understanding of what we are telling the compiler when we

create a physical file.

File > ARMAST

 Library > HELLO

Source file > QDDSSRC

 Chapter 5. Data Management Attributes 49

 Library > HELLO

Source member > ARLINQ

Record length, if no DDS . >

In the section above, you tell the compiler to create a file object

named ARMAST and that it should be built in the HELLO

library. You then tell it the DDS is in the QDDSSRC source

file which is in the HELLO library. In the second last line, you

tell the compiler that the specific DDS for this file is located in

the ARMAST member of the QDDSSRC source file. The last

line shows on the prompt but is not used. If no DDS were used

for the file, this is where you would specify the record length.

Generation severity level . . . > 20

This parameter specifies the severity level at which the create

operation fails. If errors occur that have a severity level greater

than or equal to this value, the command ends.

Flagging severity level > 0

This parameter specifies the minimum severity level of

messages to be listed.

File type > *DATA

This parameter specifies the file as a data file rather than a

source file

Member, if desired > *FILE

If you chose to use a set of DDS for your physical description

which was stored in a different member in the source file, you

would specify that member name here. In this case, we said use

the same DDS member name as the file object to be created.

Text 'description' >

*SRCMBRTXT

In this parameter you supply a text description for the new file

object. The *SRCMBRTXT parameter is the default and it

means that the text used to describe the source DDS should

also be used to describe the file object.

Maximum members > 1

A member is a named, identifiable set of data within a file.

Each file object can contain up to 32,767 members. However,

almost all files, other than source files are built with a one

member maximum. This better equates to the notion of a file

on all other systems. In these, a file is just one set of data. The

notion of multiple members in regular files (not source files)

best plays when you want to segregate all data in a file by a

specific transaction date.

As an example, let’s say that you might have an invoice file

with all data in one member of the file. You can create a

separate member for the transactions representing each

individual day of the week, month, or year if you choose. In

many applications this has big-time value. Think of a file

named Invoice and members named Monday, Tuesday,

Wednesday, etc. When you see this, you’ve got the picture.

Access path maintenance > *IMMED

This parameter is fully explained in Chapter 3 under the

heading Data and Index Currency.

Force keyed access path > *NO

In this parameter, you specify, for files with key fields, whether

access path changes (index) are forced to disk along with the

associated records in the file as governed by the FRCRATIO

 Chapter 5. Data Management Attributes 51

parameter described below. If you specify *YES, you minimize

the possibility that an abnormal job end may cause damage to

the access path that requires it to be rebuilt.

Member size:

 Initial number of records . . > 10000

 Increment number of records . > 1000

 Maximum increments > 3

Allocate storage > *NO

Contiguous storage > *NO

Preferred storage unit > *ANY

The above parameters pertain to the size allocation and disk

location for the file which is being created. The default file

allocation is used. This says that there will be 10,000 records in

the file and when it is full, it can be expanded with no

messages or complaints up to three times for one thousand

records each. When the file reaches 13,000 records, for

subsequent file additions, the operator will be asked if it is Ok

to expand further. Jobs do not bomb as on many other systems

when a file has been outgrown.

The AS/400 file allocation routine is very smart and it quickly

learns about the behavioral aspects of new files. It does not

give 10,000 records initially. It gives a few hundred and then

watches the growth rate to determine how much is given next.

Thus, by definition, the system conserves disk space by not

allocating all the storage for all the files unless it thinks it is

needed.

Of course, you can override this with the fourth parameter

above and tell the system to allocate all the storage at file

creation time. This is rarely a good idea. Moreover, the same

amount of storage gets allocated for each member so if you

chose *NOMAX for the number of members, the system would

try to allocate 32,767 times 13,000 records for this file. You

would quickly run out of disk storage.

You may have certain instances in which you want all of the

allocated storage to be contiguous on disk to avoid making the

system fetch pieces of the file from all of the disk drives. This

too is typically not a good idea since it interferes with the

equitable distribution algorithms of the system. You may

optimize one file while creating major sub-optimization on the

system.

The last allocation parameter above, gives the opportunity to

designate a specific disk drive, for a file. Again, this is

generally not recommended because it interferes with the

natural allocation algorithms and may cause more issues than

any benefits which you may derive. The single level storage

disk smoothing algorithms do a nice job of keeping your disk

drives managed well. Taking on this burden yourself, would be

mostly unproductive

Records to force a write > *NONE

Maximum file wait time > *IMMED

Maximum record wait time > 60

Share open data path > *NO
Record format level check . . . > *YES

The five parameters listed above are covered in detail in

Chapter 5 so we will defer that discussion until then. These

attributes can be specified on the CRTPF command, the

CHGPF command or the OVRDBF command as you will see

in Chapter 5.

Max % deleted records allowed . > *NONE

Reuse deleted records > *NO

 Chapter 5. Data Management Attributes 53

These last two parameters let you specify some rules for

deleted records. The AS/400 and iSeries database has the

notion of hard delete. When you delete a record from the

database, it is gone. However, by default, its former living

quarters continue to exist. Over time, if your applications

perform hard deletes, there will be more and more space in

your file being occupied by the entrails of these formerly live

data records. These two parameters help understand and

manage this space.

You can specify the maximum percentage of file size that you

will permit to have deleted records. You may set that to 10%,

for example. At the time you reach 10% deletes, the system

will complain to you and you can then use the reorganize

physical file (RGZPFM) command in the off-hours to strip out

the deleted spaces.

The percentage check is actually made when the member is

closed so as to not create an error condition for any running

jobs. If the percentage of deleted records is greater than the

value specified on this parameter, a message is sent to the

system history log (QHST) to inform the user.

You can also choose to reuse deleted records and fill them up

with newly added records. Unfortunately, there are two caveats

with this approach which may affect your ability to use this

nice capability. These are:

1. If *YES is specified on this parameter, the key

ordering attribute for the physical file in the Data

Description Specifications (DDS) source cannot be

"FIFO" or "LIFO." The FIFO and LIFO DDS

keywords will be covered in the DDS examples later in

this QuikCourse.

2. If a *YES value is specified for this parameter, the

arrival order becomes meaningless for a file that reuses

deleted record space. Records might not be added at

the end of the file.

Though there are a few more parameters for the CRTPF which

we could cover, they are somewhat obtuse, and require more

knowledge than is appropriate at this time. For now, we’d

recommend your taking the defaults for any parameters that are

not clear to you.

Our friend, Mr. Logical file would get upset if we spent so

much time and paper on helping you understand physical files

if we did not take a nice stop over to the logical file station.

Let’s go there now.

Creating Logical Files

Logical files are defined to the system as a bunch of rules in

much the same fashion as physical files. In addition to the

create logical file parameters, the rules in logical file DDS

cause record selection, projection, and other relational

operations upon records from a physical file. In addition to the

rules for access, the logical file also contains the means to

accessing the data.

Defined with DDS

 Chapter 5. Data Management Attributes 55

The definition of a logical file is provided in DDS in much the

same fashion as a physical file. In other words, you specify file

by name, record by name, and fields by name(optional). Fields

are optional because if you choose to have all of the fields from

the physical exist in the logical file, you don’t specify any

logical fields. If you specify any fields – that is all you get.

When you specify fields in a logical file, you re performing

relational projection since you are projecting a smaller image

(of fields) of the physical file than actually Access in a logical

file is provided in arrival sequence or keyed sequence . . . with

or without select/omit criteria. You make the call. Figure F-7

shows the components involved in a logical file creation.

Figure F-7 LF Compile Diagram with PF and FieldREF
 |------------------, ----------|
 | ARLINQ DDS | | HELLO LIB|
 | | | |
 | * All Fields of | >>>>>>>| The |
 | ..ARMAST | | Logical |
			File
	* Key on CUST		Object
	* Select/ Project		ARLINQ
*-----#------------	----------		
/------------------, /----------------			
ARMAST			
		FLDREFFILE	
ARMASTR		----------------	
R CUSTP			
CUST R>		
NAME R>		
STREET R>		
CITY R>		
 -----#------------ | |----------------|
 Physical File Physical File
 With data records With no data records

 Reference purposes only

Collecting the Attributes

As you can see in the diagram, at compile time, which is also

known as logical file creation time, the DDS compiler uses the

physical file (ARMAST in this instance) to obtain the record

and field attributes for use in the logical file build. The

“dictionary” on the bottom right has no real role at logical file

creation time. The diagram merely demonstrates that the

physical file originally got its descriptions from the reference

file. During the logical file compilation process as shown in

Figure F-7, the logical file receives all of its information from

the physical file ARMAST, upon which it is based.

Reference Notation from the Physical

File Object

On the bottom left you can see a mockup of what appears to be

the physical file DDS as used to create the physical file object.

The caption on the left, however, suggests this is not the case.

It represents the physical file — not the DDS. Since this is just

a mock-up, the box on the left is designated as the physical file.

A logical file is based on the physical file, not the DDS which

was used to build the physical file. The R’s in the mockup are

there to remind us that this file originally got its field

definitions from a field reference file.

Inside this physical file object on the bottom left, but not

shown in the picture, you would also find a record format

consisting of a detailed description and the full attributes, of

each of the fields. These would be listed just as they were

originally provided by the field reference file. There is, in fact,

a notation in each physical file field, which identifies the

original reference file used to define a field. Moreover, if the

field name happens to be different from the reference field,

this information also reveals the specific field in the reference

file which was used to provide the created field’s attributes

The Logical Is Based on the Physical

Having said that – it should be clear that the logical file is not

based on the field reference file. It is based on the physical file

object, ARMAST. However, just as within the ARMAST

 Chapter 5. Data Management Attributes 57

physical file object, there is a designation within the logical file

that a reference file named fieldref was used for field

definitions. This information is propagated into ARLINQ and

any other logical files that are based on ARMAST. Thus, the

logical file object contains the same field reference information

as the physical file itself. In a nutshell, if you use a reference

file, it’s like a bad penny. It won’t go away too soon, and it

seems to have a life of its own.

On the top of this three-box diagram, the third box, of course,

is a mockup of the logical file DDS used to create the file

object. The DDS would show any specified fields for

projection, and any key fields for ordering, and any select/omit

fields for selection. Not shown is the indication of the name of

the physical file(s) upon which this logical file will be built. Of

course by the arrows in the mockup diagram, you know that the

view is to be based solely on ARMAST.

In a full set of DDS for the logical file, the name of the

physical file would be specified in the PFILE DDS keyword.

Just as with a physical file, the DDS for the ARLINQ logical

file is stored in a source file such as QDDSSRC in the HELLO

library. On the top right of the diagram, you can also see that

the object is being created in the HELLO library

This incomplete DDS, as shown, is depicted as in the process

of file object creation. The output of the compilation process is

the file object. The Create Logical File system command is

implied but not shown in the figure. However, it is shown and

dissected below. Its input is the logical file DDS in the top part

of Figure F-7 (ARLINQ). Its output will be a logical file object

on the right which will be built and stored in the HELLO

library. AS/400 and iSeries Objects are always created from

scratch using Create commands which always start with the

letters C-R-T.

The CRTLF Command

Just as with a physical file, When DDS is used to create a

logical file in a particular library, such as HELLO, a member

is created at the same time. The member in the logical file does

not “hold” the data as we can visualize in a physical file.

However, the logical member does access its data by pointing

to the member component in the based-on physical file.

Whether the based-on physical file used a reference file or not,

the logical file is built with a description of all the requested

data elements (fields) – contained within the file object itself.

It gets it from the physical file. If no fields are specified in the

logical file, DDS, all physical file fields in the record format

are part of the logical file field descriptions. If a subset of the

fields is included in the logical file DDS, then that subset is

included in the logical file object. Unlike a physical file,

however, no logical file, whether existing or newly created, can

be used as a field reference file.

The CRTLF command to create a logical file is shown below

with many of its default parameters. Following this command,

we will briefly examine some of these parameters so that you

can get a good feel about the information you must provide,

and that which the system provides as defaults for the file

creation process. Now, let’s take a closer look at the CRTPF

command as follows:

CRTLF FILE(HELLO/ARLINQ)

SRCFILE(HELLO/QDDSSRC)

SRCMBR(ARLINQ)

GENLVL(20) FLAG(0) FILETYPE(*DATA)

MBR(*FILE) MAXMBRS(1) MAINT(*IMMED)

FRCACCPTH(*NO) UNIT(*ANY)

 Chapter 5. Data Management Attributes 59

WAITFILE(*IMMED) WAITRCD(60)

SHARE(*NO) LVLCHK(*YES)

To better see all of the parameters involved in the CRTLF

command with the English vs. keyword prompts, check out

Figure F-7A below. If you were to hit CF11, with the panel in

Figure F-7A displayed, you would see the keyword prompts as

in the CRTLF command above.

There are two ways to get this prompt. You can type CRTLF

at a command line and hit F4 for prompting or you can invoke

PDM, select the DDS member to compile, place a 14 by it, and

then you can hit F4 for prompting. The latter method will result

in less keying since PDM supplies the name of the file object

and the DDS information to the prompter.

Figure F-7A Create Logical File
 Create Logical File (CRTLF)

Type choices, press Enter.

File > ARLINQ Name
 Library > HELLO Name, *CURLIB

Source file > QDDSSRC Name

 Library > HELLO Name, *LIBL, *CURLIB

Source member > ARLINQ Name, *FILE
Generation severity level . . . > 20 0-30

Flagging severity level > 0 0-30

File type > *DATA *DATA, *SRC

Member, if desired > *FILE Name, *FILE, *NONE
Physical file data members:

 Physical file *ALL Name, *ALL

 Library Name, *CURRENT

 Members Name, *NONE
 + for more values

 + for more values

 Text 'description' > *SRCMBRTXT

 Additional Parameters

 Maximum members > 1 Number, *NOMAX
 Access path maintenance > *IMMED *IMMED, *DLY, *REBLD

 Force keyed access path > *NO *NO, *YES

 Preferred storage unit > *ANY 1-255, *ANY
 Records to force a write > *NONE Number, *NONE

 Maximum file wait time > *IMMED Seconds, *IMMED, *CLS

 Maximum record wait time > 60 Seconds, *NOMAX, *IMMED

 Share open data path > *NO *NO, *YES
 Record format level check . . . > *YES *YES, *NO

Bottom

 F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

Dissecting CRTLF Parameters

Now, let’s dissect this command just a bit so we have a better

understanding of what we are telling the compiler when we

create a physical file.

File > ARLINQ

 Library > HELLO

Source file > QDDSSRC

 Library > HELLO

Source member > ARLINQ

In this section above, you tell the compiler to create a logical

file object named ARLINQ and that it should be built in the

HELLO library. You then tell it the DDS is in the QDDSSRC

 Chapter 5. Data Management Attributes 61

source file which is in the HELLO library. In the second last

line, you tell the compiler that the specific DDS for this file are

located in the ARLINQ member of the QDDSSRC source file.

Generation severity level . . . > 20

This parameter specifies the severity level at which the create

operation fails. If errors occur that have a severity level greater

than or equal to this value, the command ends.

Flagging severity level > 0

This parameter specifies the minimum severity level of

messages to be listed.

File type > *DATA

This parameter specifies the file as a data file rather than a

source file

Member, if desired > *FILE

You must choose DDS for your logical file description, unlike

a physical file which can be built with no DDS. If your source

is stored in a different member in the source file, than

ARLINQ, the file object, you would specify that member name

here. In this case, we said use the same DDS member name as

the file object to be created.

Physical file data members:

 Physical file *ALL

 Library

 Members

+ for more values

 + for more values

This set of parameters specifies the names of the physical files

and members that contain the data associated with the logical

file member being added by this command. A logical file

member can be based on all of the physical files and members

on which the logical file itself is based, specified by

DTAMBRS(*ALL), or the member can be based on a subset of

the total files and members, specified by:

Most logical files do not need anything specified here. This

needs to be specified only if your logical file is being built over

a physical with multiple members. Since most physical files are

one member files, the file information can be specified in the

PFILE keyword in DDS. We will cover logical file DDS later

in this book.
Text 'description' >

*SRCMBRTXT

In this parameter you supply a text description for the new

logical file object. The *SRCMBRTXT parameter is the default

and it means that the text used to describe the source DDS

should also be used to describe the file object.

Maximum members > 1

A member is a named, identifiable set of data within a file.

Each logical file object can contain up to 32,767 members.

However, almost all logical files, are built with 1 member

maximums to be in synch with the underlying physical file(s).

Just as with a physical file, one member logicals better equate

to the notion of a file on all other systems in which a file is just

one set of data.

Access path maintenance > *IMMED

This parameter is fully explained in Chapter 3 under the

heading Data and Index Currency.

 Chapter 5. Data Management Attributes 63

Force keyed access path > *NO

In this parameter, you specify, for files with key fields, whether

access path changes (index) are forced to disk along with the

associated records in the file as governed by the FRCRATIO

parameter described below. If you specify *YES, you minimize

the

possibility that an abnormal job end may cause damage to the

access path that requires it to be rebuilt.

Preferred storage unit > *ANY

The above parameter pertains to a particular storage unit to

onto which to load the logical file. This permits you to

designate a specific disk drive for the file. Just as with a

physical file, this is generally not recommended because it

interferes with the natural allocation algorithms and may cause

more management issues than any benefits that you may

derive. The single level storage disk smoothing algorithms do a

nice job of keeping your disk drives managed well. Taking on

this burden yourself, would be mostly unproductive
Records to force a write > *NONE

Maximum file wait time > *IMMED

Maximum record wait time > 60

Share open data path > *NO
Record format level check . . . > *YES

The five parameters listed above are covered in detail in

Chapter 5 so we will defer that discussion until then. These

attributes can be specified on the CRTLF command, the

CHGLF command or the OVRDBF command as you will see

in Chapter 5.

Though there are a few more parameters for the CRTLF

command, which we could cover, they are somewhat obtuse,

and require more knowledge than is appropriate at this time.

For now, we’d recommend your taking the defaults for any

parameters that are not clear to you.

Now, before we get into DDS and some “live” examples, let’s

look at some of the other characteristics of the AS/400 and

iSeries database, DB2/400.

DB2/400 Database

Characteristics

The AS/400 database accommodates data sharing by multiple

users – concurrent access to physical files and/or logical files.

The system maintains data integrity and provides data

Independence.

What is Data Independence?

Data is defined to the database independently of programs and

devices such as workstations. Each field is completely

described through DDS to the database, and is not affected via

input/output specifications or data divisions within programs.

This has major programming advantages including

dramatically minimizing the impact of change and reducing

redundancy & storage requirements. The fact that data is

described externally to programs provides many advantages to

programmers. These include:

1. Simplicity in writing programs

2. Less program maintenance activity

3. Less redundant coding

4. Improved documentation

 Chapter 5. Data Management Attributes 65

5. Consistent record / field names

6. Improved integrity

Just as in the Hertz advertisement, it’s time for a “not exactly.”

You can certainly make everything be “exactly” as described

above or data independence. However, as discussed in the

section in this chapter, DDS is Not Always Needed, you can

also create database files without using DDS by using the

CREATE PHYSICAL File (CRTPF) command and specifying

a record length as below:

CRTPF FILE(HELLO/NODDS)

RCDLEN(200)

TEXT('Physical File-- No

DDS!')

When you “cheat” an AS/400 and iSeries physical file from

having its field descriptions, you also eliminate most of the

possibilities for data independence. I know of no other database

that allows you to skip the part about giving the database

knowledge of fields. Because the System/38, the father of

AS/400, and grandfather of iSeries, was designed to replace

systems with no database, the ability to bypass the database

was as important to the creators as the ability to use the

database. The phenomenon of having a “record” defined in a

database with no fields was accommodated by pretending that

the whole record was one big database field. In the early days it

was given the name Program-Described Files, to distinguish it

from the other, and more expected DB data methodology

which was called Externally Described Files.

Program-Described Files

Program-described files are database files that do not have the

data descriptions stored with the file. This means that some

programs, such as Query/400, cannot use these files without a

method of determining the format of the file. (IDDU can serve

as a method for Query.) Application programs written in a

"high-level" programming language, such as RPG or COBOL,

can use program statements (input / output, or data division) to

describe the files and data they use.

When the program chops up the data, these files are called

program-described files. A database file and its data

descriptions, as chopped up by programs, are known only to

the programs in which the descriptions are contained. These

descriptions cannot be used by any other program on the

system. Each program that refers to a database file and elects to

provide its own input and output statements must contain its

own set of data descriptions.

Impact on Conversions

When I managed conversions of System/3's and System/34's

and System36's to System/38 and AS/400, I tried to make the

most of the database’s capabilities, without interfering with the

simplicity of the migration. I would create my own version of

program-described files. Rather than use the create command

with no DDS, I would build which matched the fields used for

files in some of the major programs in the application software

being migrated.

Technically, I had created externally described files but

because none of the migrated programs were written to use the

database, the programs were happy to continue to use their

input / output or data division statements to manage the

chopping of the records at execution time. However, because I

had created internal data descriptions inside the file objects,

 Chapter 5. Data Management Attributes 67

new work, such as Query/40, DFU, and new program

development, and DFU’s, was optimized.

Logical File Fields

As you will learn when you study logical files, the remapping

and reworking of field names can be most helpful in

accommodating migrations. The more names for a field that are

given in a logical database file, the more likely a program,

using this file, with field names involved in calculations, will

be able to have those field names found in the external

database. This makes cutting over to external descriptions

easier than it would be if the fields were not defined and/or lots

of field names were not used to assure HLL compilations.

Limitations of Program Described Files

There are certain considerations which limit the overall

usefulness of program-described files. These include:

 Query can not use a program described file as it fits

this description. Query and similar programs can only

work with a database file that has data descriptions

either within the file (externally described), or if they

are linked to a file definition in a data dictionary.

 High-level languages (such as RPG III) supporting

externally described files can not easily support

program-described files.

 Descriptions of program-described files are not saved

when the files are saved.

Externally Described Files

Externally described files have their data descriptions stored

with the file. This means that some applications, such as

control language (CL) programs, RPG programs, COBOL

programs, DFu’s or queries, only have to name the file they

want to use; the system finds the related data descriptions.

These are called externally described files because they are

described outside of the application program. In contrast to

program-described files, externally described files can be used

by any application (query, document, CL program) that accepts

data described as a natural natural database object with field

descriptions. Files crafted from DDS, SQL or IDDU

descriptions are typically externally described. Exceptions are

the no-DDS CRTPF option and the multi-format IDDU

created physical file.

 Chapter 5. Data Management Attributes 69

Chapter 5.

Data Management

Attributes

Defining Behavioral Rules

There are a number of unique data base characteristics which

are contained as attributes of a physical file. In essence they

define the rules of behavior for the DB file. One might call

these data management rules, since they are implementation

oriented, not definition oriented. In other words, Tedd Codd

would not care about them because they are implementation

details and are not part of relational theory.

Despite the efforts of the great master Tedd Codd, who’s

database ideal was for developers and users to have no concern

for the underlying system implementation and attributes of any

computer system deploying a relational database, the fact is

that every database runs on a computer with its own

personality. When you deploy your database on any type of

 Chapter 5. Data Management Attributes 71

hardware, or operating system, you will find some different

knobs to turn. There will be some different bells to ring. And,

there will be some different whistles to blow in order for you to

get everything the way you want – and still have a fine

performing machine. It is simply unavoidable, though you can,

in most cases ignore the underlying AS/400 and iSeries system

and just take the defaults.

Most of the file attributes we are about to examine are

originally placed in the file as a result of the Create Physical

File command – CRTPF command. After the physical file is

created, most of these attributes can be changed permanently

by the Change Physical File Command – CHGPF. Changes to

the file made with this command are permanent until changed

again.

A smaller number of attributes can also be changed temporarily

during execution using the Override with Database File

command - OVRDBF. There are also some attributes which

are invisible in the object but affect the file object only during

execution. These attributes are given in the form of overrides

with the OVRDBD command.

Database attributes most often pertain to your physical

database files, although some attributes such as index

characteristics / maintenance are part of a logical file. The

number of attributes in the file object is always the same,

however, regardless of how the file is built - SQL, IDDU, or

DDS.

Let’s start taking a look at these very powerful attributes, one

at a time. It helps to remember that these database attributes

collectively form the rules for a database file, and are in fact

stored within the object itself.

Records to Force a Write

(FRCRATIO)

The AS/400 and iSeries are boxes which use the notion of

Single Level Storage. Inherent in this implementation is the

concept that virtual memory and virtual disk are one and the

same and present the image of a single level storage to the

system. Everything therefore is addressed with its single level

storage address and ultimately resolved to real memory or disk.

Neither the user nor the implementer controls what may be in

memory and what may not be in memory at any given moment.

Virtual Programs and Data

By default, on your AS/400 or iSeries, both programs and data

are virtualized. Long after a program thinks that it has updated

or written a new disk record, depending on system and file

characteristics, the record may still be hanging around in

memory. To developers who have chosen to implement without

journaling, commitment control, and perhaps without RAID5

disks, the idea that an order record, as an example, may not

actually be “really” updated on disk, causes some level of

consternation. And it should!

If the system were to crash . . . Yes, the probability is low that

the disk will crash tomorrow, However, it is very high that one

or more disks will crash during the life of your system. If you

use RAID5 or mirroring, you are in reasonably good shape for

preserving records that have been written.

But, what about those records that have not yet been written to

disk? Well, without journaling, you may not get the more

recently written records back. If the system powers off without

a UPS available for you to do an orderly shutdown, un-

 Chapter 5. Data Management Attributes 73

journaled records in memory disappear with the rest of

memory’s contents as soon as the system is deprived of power.

If your journals are on disk drives that are managed

independently of your main disk storage pool, (separate

auxiliary storage pool - ASP) you can get your data back up to

date as well as withstand a disk crash.

This course does not teach you sophisticated techniques such as

commitment control and journaling, nor does it deal with other

implementation topics such as RAID Disk protection, or

auxiliary storage pools (ASPs). Most non AS/400 relational

databases use journaling and commitment control because,

quite frankly, their systems do not have the same reliability as

an AS/400 or iSeries. Please note that it is best, even with

AS/400 and iSeries to use journaling and commitment control

in your applications. Regardless of how your system is set up,

however, you need to be familiar with the Records To Force a

Write (FRCRATIO) attribute of the physical file.

Protecting Data

This attribute determines the number of insert, delete, or update

operations that can occur on records before those records are

forced into auxiliary (permanent) storage. If the physical file is

being journaled, IBM suggests a very large number or the use

of the value *NONE. There is a caveat with *NONE in that it

may cause long synchronization of the journal and physical

files. More detailed IBM information on this topic is available

in the CL Reference information in the AS/400 Information

Center. You can use the Appendix in this book to help you find

the right information on IBM’s site. Additional information on

journal management for your system implementer is available

in IBM’s Backup and Recovery book, SC41-5304. All of this

information is available to you on IBM’s web site.

The value *NONE is the default. If you specify nothing or if

you specify *NONE with the CRTPF, CHGPF, or OVRDBF

commands, there is no force write ratios. The system

determines when the updated or added records are written to

auxiliary storage, based on the activity of the system at a given

time. In essence the AS/400 and iSeries use volatile memory as

a cache mechanism as other systems use expensive cache

memory. Thus, the AS/400 and iSeries gain in performance

when *NONE or a large number is specified for the force write

ratio. Unless you are protected by journaling, however, it is

risky business.

You can also specify a number for the number-of-write-

operations- before-force parameter. When you specify a

number, you are telling the system the number of record

updates or adds to collect before it forces them to disk. If you

have no journal and no other means of protection, especially

for a transaction file such as order entry, you get some measure

of protection against a sudden power problem or system shut

down by making the force write ratio equal to one record.

Maximum File Wait Time

(WAITFILE)

Since the AS/400 is an object-oriented system, there is code

within the object itself to give information about the object,

even when the object otherwise cannot be used. One such

attribute which delivers a response to a program is the

WAITFILE parameter. This attribute determines the number of

seconds that a requesting program will wait for the file

resources to be allocated when the program attempts to open

the file.

 Chapter 5. Data Management Attributes 75

The file is aware at open time that the program is attempting to

acquire it as a resource. If the file resources cannot be allocated

in the specified wait time, the file object sends an error

message to the program, in order to inform it that the wait time

is up and the program is not going to get the resource. The

program can either go away or attempt to open the file again. It

can also be written to send an error message to the system

operator complaining that the file is locked by another process,

perhaps suggesting in the message that the operator quiesce the

process in conflict.

This attribute has major value when resources are being

unnecessarily locked, for it helps the system programmer

determine how resources need to be allocated. On most other

systems, when a resource cannot be obtained the program

crashes or waits until the resource is available. Neither of these

alternatives is typically desirable.

Possible Values

The possible values for this parameter have an impact on

operations. If *IMMED is specified, for example, the

requesting program does not wait. When the file is opened, an

immediate allocation of the file resources is attempted. If it

fails, the program gets the message

If *CLS is the value, the default wait time specified in the class

description is used as the wait time for the allocation of the file

resources. More information about the class object can be

gained from system help text by doing a DSPCLS (classname -

such as QINTER), and then pressing F1 or the HELP key. You

can also search IBM’s work management guide or you can use

the iSeries Pocket Developers Guide which offers a detailed

section about the class parameter.

You can also specify the number-of-seconds to wait via the

CRTPF, CHGPF or OVRDBF commands. This value provides

the number of seconds that the program waits for the allocation

of the file resources. The valid values range from one through

32767 seconds, and the value is specified in seconds. If you

have a job, for example, which is bombing after getting

knocked off at night, because it cannot get a required file, while

you are trying to fix the problem correctly, you can set this

parameter to 32767. This gives the program about nine hours to

acquire the resource and is most often preferable to bombing in

the middle of a batch update run. More than likely the resource

will free in this time period. Meanwhile you will not be as

“under the gun” to find the real culprit and to solve the problem

properly.

Maximum Record Wait Time

(WAITRCD)

There is another WAIT attribute which is also very helpful in

finding problems and in terms of providing work-arounds

while the problems are being investigated. This attribute has to

do with how long a file will wait, after being requested by a

program to fetch a record before it gives up and sends an error

message. This is what will happen if the record is locked by

another process.

Wait, Don’t Crash!

This parameter permits you to specify the number of seconds

that any program is going to wait for a record to be updated or

deleted, or for a record read in the commitment control

environment with LCKLVL(*ALL) specified. If the record is

 Chapter 5. Data Management Attributes 77

not allocated in the specified wait time, the file complains by

sending an error message to the program.

If you are setting this parameter with an OVRDBF, it overrides

the record wait time specified in the database file, specified in

the program, and in any previously issued OVRDBF

commands. If you have remote files, such as DDM files

(distributed data management) which access databases on other

systems, the minimum delay time for these is 60 seconds so

this value may need to be longer than the wait you would

specify for local database files.

Wait Record Values

If you choose the *NOMAX parameter, the program waits

indefinitely for a record lock. This is lots more than nine hours

so be careful with this. If you specify *IMMED, the program

does not wait at all. The file attempts to get an immediate lock

of the record when the record is read. If it cannot get the lock,

it complains by sending the program an error message.

Of course, you can also specify some number-of-seconds. The

value provides the number of seconds that the program waits

for the record lock. It gets you all the way from one through

32767 seconds (about 9 hrs.)

Records Retrieved at Once

(NBRRCDS)

In this land of web programming and client server code, we

sometimes forget about all of the batch processes which are

designed and must be designed into systems. Along with batch

processes comes sequential processing. Along with sequential

processing comes the AS/400 and iSeries sort program as

invoked via the Format Data command (FMTDTA). Yes, even

with an integrated database, there is ample need to sort records

into a particular sequence before running a program

OVRDBF NBRRCDS

The Records Retrieved at Once (NBRRCDS) attribute is not

specified in the file itself and thus cannot be changed. It is

invoked only via the OVRDBF and lasts until the job has ended

or the override is deleted.

It does pertain mostly to batch and sequential operations, but

NBRRCDS is not limited to sequential operations. With this

value, you define the number of records the system will read

from auxiliary storage as a unit, for both random reads and

sequential reads, and will write to main storage as a unit. The

amount of data actually read is equal to the number of records

times the physical record length, not the logical record length.

Since the valid values range from one through 32767, as you

can see, this parameter has the ability to affect performance in

a very positive or very negative way.

It is valid for both sequential or random processing and should

be specified only when the data records, which are fetched as a

block, are physically located on disk in the sequence in which

they are typically processed. If you guess wrong on this

parameter, such as specifying a large number of records, say a

thousand, with random processing, for a file that is not well

sequenced, each random physical disk read will bring in 1000

records, though only one record in the block is needed for

processing. That’s a lot of wasted power.

On the other hand, if you are randomly processing (RPG

CHAIN for example) by relative record number in record

 Chapter 5. Data Management Attributes 79

sequence, you will save 999 physical reads by setting this

parameter as 1000. The first time your program requests

records, a physical read is performed of 1000 records – in one

fell swoop. If the next read your program makes (logical read)

within the block is satisfied, no physical disk I/O is performed.

If all 1000 records are retrieved within the block then the one

physical block read accounts for 1000 logical record reads.

When the program requests record 1001, the next physical

block is retrieved.

As a final caveat with this approach, you must consider how

much memory you have available. If, for example, you lug

1000 big records into memory, and the system needs this space

for programs or other, higher priority data, your block will be

paged out, and the system will fault and, your data will have yo

be retrieved from the page data set on disk when the program

does its next logical read.

EOF Retry Delay in Sec (EOFDLY)

Another processing setting carried by the file object and

triggered only by an OVRDBF command, is the EOF – end-of-

file – retry delay in seconds or (EOFDLY) attribute. With this

parameter, you specify the number of seconds of delay before

the system will try to read additional records when an end of

file condition is reached in a program reading the overridden

file. The typical happening for a program when it fetches a

record after the end of file is reached is that the request is

denied. No more records can be read from the file until the

program either closes and reopens the file, or the program ends

and restarts. In both of these cases, however, in order to get to

newly added records while processing sequentially, the

program must read through all of the beginning records, one at

a time, and it must have information about where the new

records begin.

No EOF Message

EOFDLY does not trigger the typical file close logic in

programs. The file does not send an EOF message to the

program. The program is disconnected from the file, and the

program then sleeps for a period of time. The database physical

file object wakes up periodically (1 second to 99999 seconds)

as set by the EOFDLY parameter and it checks to see if there

are more records to process. If there are more records, it starts

shipping the newly retrieved records to the program for

processing.

When you choose to use this technique, the delay time is used

to allow other jobs in the system an opportunity to add records

to the file, and have the new records processed without having

to start the job again. When the delay time ends, the job is

made active, and data management determines whether any

new records were added. If no new records were added, the

job waits for another time delay without informing the

application program. When a number of seconds is given, no

end of file occurs on the given database file until an End Job

(ENDJOB) command or forced end of data (FEOD) occurs

How Does the Program End?

There are several ways to end a job that is waiting for records

due to an EOFDLY wait. They are as follows:

 You can write a record to the specified file which is

recognized by the application program as a last record.

For example the key field can say END or be filled

with Z’s or 9's. The application program may then do a

force end of data (FEOD) to start the end-of-file

processing or close the file.

 Chapter 5. Data Management Attributes 81

 You can end the job using the controlled value

(ENDJOB OPTION(*CNTRLD)) with a delay time

greater than the time specified on the EOFDLY time.

The DELAY parameter time specified would then

allow for the EOFDLY time to run out, plus have

enough time left to process any new records that may

have been added to the file, as well as any end-of-file

processing that is to be done in the program. The end-

of-file is set by database, and a normal end-of-file

condition occurs after new records are retrieved.

 You can end the job immediately (ENDJOB

OPTION(*IMMED)). If the job is interactive, just start

a system request and end the previous request.

If you choose *NONE as the value then it is like you have

chosen not to use the EOFDLY. Normal end-of-file processing

is done. If you specify a number-of-seconds, then the program

waits that long between attempts to get a record when the file

object senses an end of file condition. No end of file is signaled

until force end of data occurs, or until the job is ended with the

*CNTRLD option. Valid values range from 1 through 99999

seconds. That’s about 30 hours at max.

Record Format Level Check

(LVLCHK)

We’ve looked at performance attributes and program facility

attributes and now we are going to look at an integrity attribute.

The Record format level check (LVLCHK)attribute specifies

whether the level identifiers for the record formats of the

database file should be checked when the file is opened by a

program. For this check, which is done while the member is

opened, the system compares the record format identifiers of

each record format used by the program with the corresponding

identifiers in the database member. Level checking cannot be

done unless the program contains the record format identifiers.

You cannot use an override to change level checking from

*NO to *YES, but you can turn it off with an override.

An Indelible Mark

When a database file is created (logical or physical), the

compiler prints some identifying information within the created

file object. A unique stream of data is associated with each of

the different formats in the file during the process. It is known

as “level information” or more formally as record format

identifiers.

When a program is compiled that uses a database file, the

compiler copies this unique “level information” into the created

program object. In this way, the program “knows” the shape of

the file as it was on the day the program was compiled. The

object program is built to accommodate that shape. If you go

ahead and change that database file, the system will reward you

by building a new set of “level information” into the file object.

This will make your program bomb. It will bomb with a level

check error at file open time, since the file signature is not the

same as when the program was compiled. If the program is

based on one shape of data and you change the shape, you want

the program to bomb before it messes something up. This is

exactly what happens. It serves to protect program and

database integrity.

How Do You Get the Levels in Synch?

 Chapter 5. Data Management Attributes 83

So, this is good overall. But it may be bad temporarily. Let’s

say, for argument purposes, that you added a field to the end of

a record and you recreated the database. Let’s also say that the

program you are working with, does not need the additional

field or fields you added. If you do nothing extra, your program

will bomb. However, if you compile the database with

LVLCHK(*NO) or you override it at execution time, you can

avoid the costly level check and your program will run fine.

The down side is that you will have degraded the value of the

level mechanism and you will have lost a valuable means of

protecting program and database integrity. The right thing to

do, for integrity purposes, after a major database change, is to

recompile all affected programs. This recaptures the level

information and gives the compiler the opportunity to assure

that all is OK before building the new program object.

Share Open Data Path (SHARE)

Now, we come to an attribute that helps us control file sharing.

Again, not exactly! The Share Open Data Path (SHARE)

attribute determines whether the open data path (ODP) is

shared with other programs in the same routing step. When an

ODP is shared, the programs accessing the file share facilities

such as the file status information and the data buffer.

What is an ODP?

You can think of an ODP as the information in a job about a

file. For example, one of the things a job knows about a file it

is processing is the address of the current record, and, if

processing is consecutive, it knows which record will be

processed next. When an ODP is shared, more than one

program in a job stream is aware of the processing information

such as the file cursor (the “which record” pointer).

Suppose program A opens up a file with a shared ODP. Let’s

say it then reads two records and calls program B. Program B

in turn, opens the same file with a shared ODP. When program

B reads the file, it is presented with record 3 of the file, not

record 1, since it has elected to share the open data path with

program A.

There are a few choices when specifying whether you want the

ODP shared or not. If the value is *NO, then the ODP is not

shared with other programs in the routing step (job). A new

ODP for the file is both created and used every time a program

opens the file. On the other hand, if you select *YES for the

attribute, the same ODP is shared with each program in the job.

Limit to Sequential Only (SEQONLY)

The Limit to Sequential Only (SEQONLY) is another

processing-only attribute. It has some similarities to the number

of records (NBRRCDS) parameter discussed above, but it is

not the same. In fact, it takes over after the NBRRCDS

parameter finishes doing its thing. Moreover, as you will soon

see, the SEQONLY parameter has its own number of records

sub-parameter. Its job, when specified in the OVRDBF

command is to stage the physical file for sequential - only

processing. In other words, it specifies, for database files

whose records are processed in sequential order only, whether

sequential only processing should be used with this file. It will

help avoid confusion if I show you how this thing looks in a

prompted override (OVRDBF) as follows:

Limit to sequential only: SEQONLY

Sequential only > *YES

 Number of records > 100

 Chapter 5. Data Management Attributes 85

From Disk to Virtual Memory and Back

This parameter also specifies the number of records transferred

as a group to or from the database (virtual memory) if

sequential only processing is used. If a number is not

specified, a default number is handily determined by the

system. You are better off specifying your own number. This

parameter is used to improve the performance of programs that

process database files in a sequential manner. It overrides any

blocking value specified in the program or in any other

previously issued OVRDBF commands.

The SEQONLY parameter also specifies the number of records

(NBRRCDS) transferred from database pages (in virtual

memory) to the application program's data management buffer.

This is not the same as and is not to be confused with the

NBRRCDS parameter which we discussed earlier. This

standalone NBRRCDS parameter has to do with how many

records are fetched into virtual memory from the disk drives.

The SEQONLY NBRRCDS parameter has to do with how

many records are fetched at a time from virtual memory (may

be real memory) and are placed into the data management

buffer within the program.

When records are in virtual memory, they are visible to all

applications, and in fact, can be updated by other applications

as long as they are not locked exclusively. On the other hand,

when records are in a program’s buffer, they are only available

to that program or other programs in that job is ODP sharing is

enabled.

(Hint: If you would like to study this topic even

further, you can go to The "SEQONLY and

NBRRCDS Parameters" topic in the "DB2 UDB

for iSeries Database Programming V5R1"

manual on IBM’s web site. The specific entry at

the time of this writing is as follows:

http://publib.boulder.ibm.com/pubs/html/as400/

v5r1/ic2924/info/dbp/rbafomst193.htm#IDX3795

.

If you are not on V5R1 or otherwise have a

problem with this URL and you can’t get there

from here, feel free to use the Appendix in the

back of this book to help you find this manual or

any other IBM manual in the IBM Information

Center.

 Chapter 5. Data Management Attributes 87

Chapter 6.

The Database File

Object & DB Theory

DDS By Example

We are closing in on the “learn-by-example” part of the book.

In the next few chapters, after we painstakingly analyze the file

object and the DDS form, you will rapidly go through a

number of very valuable and highly usable coding examples.

First, however, we set the stage about DDS created databases.

Next, we’ll get you started coding simple physical database file

DDS, then more complex, then simple logical files, then union

and multi-format logical files, and then we take a big hit at join

logical files. Before you know it, you will be on your way, to

being a database guru.

(Hint: We know that you have done a lot of

reading up until now and there is more to go

before we hit the examples. It is good to read all

of these chapters before the examples so that you

have a better appreciation for what is in the

examples. We would also recommend reading

this material again after you have studied the

examples. We expect that you will find that this

material can serve you both as a means of

learning more about the iSeries and AS/400

database and a quick and handy database

reference tool.

Let’s first take a look at what might be inside a payroll

earnings master physical database file object. See Figure F-8.

 Figure F-8 Earnings Physical File

Format

R EARNMSTR

LENGTH DEC

EMPNAM 25 0

EMPINL 2

ACCT# 6 0

PAYCOD 1

RATE 6 2

EMPNO 6 0

 ...

Access Path

Key is EMPNO

Data

 Data

 Member 1

 Record1

Record2

 Etc.

 Member 2

 . . .

The Makeup of a File Object

As you can see in Figure F-8, a database file object consists of

a number of different parts. The three key elements of a

database file object are the record format, the access path and

the data.

Record Format Information

The first part is the format information. In this section of the

database object, the system maintains the format name and the

field names. The sum total of all the fields is referred to as the

format. Though at first it does not seem necessary to have a

name for a database format, the more you study DDS for

physical, logical, display, and printer fields, the more the

format name notion makes sense.

Physical File - One Format

Why not just use the file name as the format name? That would

work for physical files since a physical file is permitted just

one format. The data in a physical file can be shaped just one

way. That is a precept in relational database theory. You cannot

have two different record types in a physical file. If you need

two different record types, then you must define the different

record types as separate physical files since the rules for

physical files say that you can only have one format. The rules

also say that one format must have a name which is different

from the name of the file.

Display & Printer Files - One or More Formats

Logical files, display files, and printer files are also built with

DDS. All three of these file object types can have more than

one format. For display files, a format is used for each display

panel within the display file. For printer files, a format is used

for each different shaped area of a report - report headings,

column headings, detail lines, and totals.

Logical Files - One Format

When a simple logical file is built on one physical file, it

consists of just one format. Logical files can also be built over

multiple physical files. You may say: “Of course! After all, that

is how you perform a join.” However, just as a physical file or

a simple logical file is limited to one format, so also is a join

logical file. It has just one format. It is a new format, created

within the logical file from fields which exist in formats from

different physical files.

Though a join logical file can be built from one or many

physical file formats, it does not preserve the named physical

file formats within the logical file. Instead it rearranges the

fields from all the formats into a unique shape for its own

purposes. The result of the rearrangement is one new named

join record format that consists of fields from the one or more

physical files that are participating in the join logical file.

Logical Files - Multiple Formats

If simple logical files and join logical files consist of just one

record format, how would a logical file ever use more than one

physical file format? Good question! There is a type of non-

join logical file which can be built over multiple physical files.

It is called a multiple format logical file. Through the multiple-

format logical view, the formats from multiple physical files

can be included in tact and fully complete. However, if data re-

arrangement or field sub-setting within one, any, or all record

formats is needed, projected record views of the physical file

formats can also be built.

This is a unique capability for the AS/400 database. No other

relational database offers support for multiple formats in a data

view. By constructing a multiple format logical view, the

AS/400 can project a pointer-less hierarchical image of data,

even though the real data is kept in simple relational tables

(physical files)

In addition to providing a hierarchical view of data, this

mechanism also enables systems designers to simulate the flat

file notion of multiple record formats in a physical file. Let’s

look at a simple example of four physical files with each file

consisting of a differently shaped record format.:

1. Customer Order File

2. Order Miscellaneous File

3. Order Detail File

4. Order Total File

If the AS/400 and iSeries were not using database files, of

course all of these record types could be included in one

physical file in there are no field definitions. As discussed in

earlier chapters, such a file could be built with the CRTPF

command by specifying a record length large enough for the

largest record format. The file could also be created with IDDU

so that it could be used in Query/400 reports. In both of these

scenarios, however, any RPG or other HLL program which

processed the file would have to describe the fields internally

to the program.

If the four physical files were created, a multiple format logical

file could be built on top of the four files. By using DDS to

specify a key for each format, the system would create an index

as if the files had ben sorted by order number and order line

number. In this way, the logically “sorted” order records would

be presented to a processing program, such as a pick list

program, one order at a time. The view would intermingle the

records from the four files in the sequence specified above -

customer order record, miscellaneous record, detail records,

and the total record to produce pick lists, acknowledgments,

registers, and invoices as if the order records were together in

the same file.

(Hint: Good news. There is more descriptive

information about multiple format logical files

in Chapter 13 under the heading – Multiple

Formats - One Set of DDS. Ther is also an

example of how to code a multpile format logical

file. Feel free to take a peak now, but please

return so that you can assure yourself of the full

value of this book.

The EARNMSTR Record Format

The peek we took of the EARNMAST file as shown in Figure

F-8 was a simple physical file with no field reference file

definitions shown. The format name in this file object is:

EARNMSTR

Since a format is not much more than a named record layout,

the rest of the format as shown in Figure F-8 consists of the

following fields and their associated lengths and attributes:

 LENGTH DEC

EMPNAM 25 0

EMPINL 2

ACCT# 6 0

PAYCOD 1

RATE 6 2

STATUS 1

EMPNO 6 0

MGRNO 6 0

Though we show only the length, type, and decimals in the

above field list, fields can possess a number of attributes. Many

of the attributes are defined in the database so that they can be

used in programs. For example, a field can have an alias of up

to 30 characters so that it can be used in an existing COBOL

program in its full size. The record format named EARNMSTR

also contains some text and some column headings as record

and field attributes. You can see these in the DDS which was

used to build the file object - Figure F-9.

Access Path

The access path is a vital part of every physical and logical file.

Considering that physical and logical files are similar in their

object organization, both have a component for access path. So,

Just what is an access path?

The most simple definition of an access path is as follows: An

access path is a file object component that describes the order

in which records are to be retrieved. Records in a physical or

logical file can be retrieved using an arrival sequence access

path or a keyed sequence access path. Logical files can get a

little more fancy. In addition to ordering records via the access

path, they provide a means to perform record selection or

omission. This permits you to select and omit records based on

the value of one or more fields in each record. If a record is

selected by the access path rules, it can be selected for

processing.

Arrival Sequence Access Path

What is arrival sequence? Another great question! When a key

field is not used to arrange the records of a particular type

within a file member, an arrival sequence access path is used.

This type of access path is based on the order in which the

records arrive and are stored in the file. For reading or updating

a data file object, records with an arrival access path can be

accessed in two different ways:

Sequentially In sequential processing, each record is taken

from the next sequential physical position in

the file.

Directly In direct processing by relative record number,

a record is identified by its position from the

start of the file.

For the reader who is already coding this stuff in her or his

head, an externally described file is given an arrival sequence

access path when the database designer provides no key fields

for the file.

Keyed Sequence Access Path

A keyed sequence access path is based on the contents of

the key fields as defined in DDS. This type of access path

is updated whenever records are added or deleted, or

when records are updated and the contents of a key field,

is changed.

(Hint: For more information as to how to

manage when the access path gets updated, see

Chapter 3 under the heading, Data and Index

Currency.

The keyed sequence access path is valid for both physical

and logical files. You define the sequence of the records

in the file using the key level in DDS when the file is

created. The access path sequence is maintained

automatically by the system. As you would expect, the

system creates an internal index by key which points to

the relative record number of the associated data record.

Sharing Access Paths

AS/400 and iSeries data management is very efficient. If you

create a logical file with a keyed access path, and a keyed

access path or a super-set of the keyed access path that you

want already exists on the file, OS/400 will point your access

path to the access path which satisfies the rules you have

provided without building a new index.

There is also a little tool which you can use yourself to assure

that the attributes of a particular access path is used by the

logical file you may be creating. You can use the DDS

keyword REFACCPTH (reference access path) to use another

file's access path specifications. When your file is created, the

system always determines which access path to share. The file

you are creating with the REFACCPTH keyword does not

necessarily share the access path of the file specified in the

REFACCPTH keyword. This would fool the greatest of

assuming minds. Though I too had always assumed that the

REFACCPTH file would be the path that my file would share,

I eventually learned this was a false assumption.

The REFACCPTH keyword is used to simply reduce the

number of DDS statements that must be specified. That is,

rather than code the key field specifications for the file, you

can specify the REFACCPTH keyword at the file level in your

DDS (shown below). When the file is created, the system

copies the key field and select/omit specifications from the file

specified on the REFACCPTH keyword to the file being

created.

Though we are not really working the examples en masse yet,

it would help for you to see how this is specified in DDS.

00010A* EARNLMS2 Earnings Logical File

00020A

 REFACCPTH(HELLO/

EARNLMS1)

00030A R EARNMSTR PFILE(EARNMAST)

Notice above that these DDS statements create a logical view

against a physical file called EARNMAST (shown in statement

00030). The new logical file will have the name EARNLMS2

as shown in the comment statement in statement 00010. The

REFACCPTH keyword tells the compiler to go into the logical

file EARNLMS1 and copy any key level and select omit level

attributes into the EARNLMS2 logical file which is being

created, even though there are no DDS statements for the key

field or the select omit fields in the sample shown above.

Processing by Relative Record Number

Through a program written in a high-level language (HLL),

such as RPG, or via the Display Physical File Member

(DSPPFM) command, or the Copy File (CPYF) command, you

can process a keyed sequence file in arrival sequence. You can

use this function for a physical file, a simple logical file based

on one physical file member, or a join logical file.

In essence though some files have only an arrival sequence

access path, even keyed files have an arrival sequence access

path, in addition to the keyed access path. It does not take up

any additional storage and it is always saved or restored with

the file.

(Hint: You may have already guessed the secret.

The arrival sequence access path is nothing

more than the physical order of the data as it

was stored, when you save the data you save the

arrival sequence access path.

The example shown in Figure F-8 shows that the EARNMAST

physical file object has been built with a key, and the key is

EMPNO.

Data

The ability to carry data comes to the physical file through the

notion of members. It is actually the member in a database file

(physical or logical) which point to the data components in a

physical file. If the member is part of the physical file, the data

component is part of the same file object. If the data is part of a

physical file, and you are creating a logical file, the data sub-

object in the logical file (the logical file member) points to the

data in the based-on physical file(s).

Create a Physical File

The most simple way to have a data bearing file (physical) on

the AS/400 is to use the Create Physical File command. This is

the command we use below to build the EARNMAST file with

the DDS as supplied in Figure F-9. The command to create

EARNMAST would look very similar to the command shown

below:

CRTPF

FILE(HELLO/EARNMAST)

SRCFILE(HELLO/QDDSSRC)

SRCMBR(EARNMAST)

GENLVL(20)

FLAG(0)

FILETYPE(*DATA)

MBR(*FILE)

TEXT(*SRCMBRTXT)

MAXMBRS(1)

(Hint: In Chapter 4, under the heading The

CRTPF Command, we provided a first look at a

full Create Physical File command. You may

want to review this information before

proceeding.

The last three of the four above parameters tell the system that

this will be a data file – FILETYPE(*DATA), and it will

have 1 member – MAXMBRS(1), and that member will be

named the same as the file name – MBR(*FILE).

Create a Logical File

To balance our coverage of the file types, the command to

create the EARNLMS2 file described above is as follows:

CRTLF

FILE(HELLO/EARNLMS2)

SRCFILE(HELLO/QDDSSRC)

SRCMBR(EARNLMS2)

GENLVL(20)

FLAG(0)

FILETYPE(*DATA)

MBR(*FILE)

DTAMBRS(*ALL)

MAXMBRS(1)

MAINT(*IMMED)

(Hint: In Chapter 4, under the heading The

CRTLF Command, we provided a first look at a

full Create Logical File command. You may

want to review this information before

proceeding.

You may be able to immediately observe the one major

parameter difference for the logical file. The last five

parameters above have a major role in the behavior of the

logical file. Just like in a CRTPF, these parameters tell the

system that this will be a data file – FILETYPE(*DATA),

and it will have one member – MAXMBRS(1), and that

member will be named the same as the file name –

MBR(*FILE). These are the same as when creating a physical

file.

The third last parameter – DTAMBRS(*ALL) is unique to

the CRTPF command. It tells the system that this logical file

is to be based on all of the members of the referenced physical

file. Since there is only one member in the physical, the logical

will be created with just one member.

The next parameter – MAINT(*IMMED) is also available as

a parameter on the CRTPF command for keyed access physical

files. Because a logical file has no real data, the access path

maintenance parameter is always something which you should

think about and decide, based on the application.

Members Provide Data Access

You cannot create a physical or logical file that does not point

to at least one data bearing member. Of course when you create

the physical file, the member contains no data but it has the

ability to contain data. A logical file member never points to

data in a logical file object since a logical file object has no

room for data. However, a logical file member is structured

very similarly to a physical file member. Just as a physical file

member provides access to data by pointing to the data

component of the physical file object, so also does the logical

file member provide access by pointing to the physical file

member. This is the way data access is achieved for the logical

file.

It would be of little value to have a record format with fields

and attributes defined in a file object, along with an access

path, if there were no data. Yet, it is perfectly legitimate to do

so with your AS/400 or iSeries.

Adding & Removing Members

From your experience in designing systems, you may have

maintained batch job streams. These exist on all systems.

During such job streams files are often created and deleted.

 Chapter 7. DDS Levels a.k.a. the DDS Hierarchy 103

Because the AS/400 is a database machine, and running the

CRTPF command is the equivalent of a program compilation,

there are two other ways to remove the data from a file without

destroying the file itself.

The first is the Clear Physical File (CLRPFM) command. This

command clears the referenced physical file member of all its

data. If the file has but one member, then all data that was in

the file, is gone. If you clear the data from a one member file,

the data in the file is all cleared.

The other way of removing data from a member of a file is

with the Remove Member (RMVM)command. This command

removes the data component from the file. For a physical file,

this means that the pointer to the data object is removed and the

data space is reclaimed by the system. For a logical file, the

pointer to the member in the physical file is removed and thus,

the logical file cannot be used any longer to access the data in

the physical file.

In batch streams where the RMVM technique is deployed,

instead of the Delete File and Create File commands or the

CLRPFM command, in order to fill the file with data again

through the file object, you must add a member to the file. As

you may expect, there are two Add Member commands

available for your use. One is the Add Physical File Member

(ADDPFM) command and the other is the Add Logical File

Member (ADDLFM) command.

DDS to Build File Object

The DDS specifications for this physical database file are

shown in Figure F-9. Before we study the DDS for this file,

let’s go over the format of the DDS specification form itself

and also discuss the levels of keywords which are used to

define various entities with the specifications.

Figure F-9 EARNMAST File With Headers (repeated)

type of DDS. All DDS statements have an A in columne 6
|
|"*" means comment. anything after * is treated as
comment
||
|| "R" means that this is a Record Format; “K” means key
field
|| |
|| | Names of Fields or Record Formats
|| | |
|| | | Reference
|| | | |
|| | | | Data type and length
|| | | | ||
|| | | | || Number of decimal positions
|| | | | || |
|| | | | || | Keywords
|| | | | || | |
VV V V V VV V V
A* Payroll Master
A* REF(HELLO/FIELDREF)
A R EARNMSTR TEXT('Earnings Master')
 EMPNAM 25 COLHDG(‘Emp Name’)
 EMPINL 2 COLHDG(‘Emp Initial’)
 ACCT# 6 0 COLHDG(‘Account #’)
 PAYCOD 1 COLHDG(‘Pay Code’)
 RATE 6S 2
 STATUS 1 COLHDG(‘Pay Status’)
 EMPNO 6 0
 MGRNO 6 0 COLHDG(‘Manager #’)

A* SAMPLE R REFFLD(FMT/SAMP
HELLO/FIELDREF)

 K EMPNO

 ...

Formal Diversion - Limited

Database Theory

 Chapter 7. DDS Levels a.k.a. the DDS Hierarchy 105

There is a notion in formal relational database design theory

called Entity Relationship Diagraming E-R. Without getting

into its detailed theory let me say that it has great value in

helping design databases without anomalies. We’ll get back to

E-R shortly. Most all of us have heard of the notion of data

base normalization. E-R and Data Normalization are

complimentary theories and methodologies.

Data Base Normalization

Data base normalization can be summarized by this one cute

phrase:

“Every field in a record design must depend

on the key, the whole key and nothing but the

key.”

If you have a design which mirrors this statement then your

data is probably, at least, in third normal form. When a field in

a record does not depend on the primary key, then

normalization rules dictate that the field and other fields that

depend on the same field should be moved to a new file. That

is one way in which files come into being – in formal data

base design

Removing Repeating Groups

Another way files come into being is by removing repeating

groups. When all repeating groups are removed, you have

achieved first normal form. How do you remove repeating

groups? First, you have to recognize the fields as repeating

fields and secondly, you take them and move them to a new

file. You create a new file for the repeating group.

So, how then do you think the Address Master and the

Earnings Master and the Deduction Master came to being? If

formal database design were used, they would come to being

because of Database Normalization and Entity Relationship

Diagraming.

Entities

Now, let’s get a little technical for a little while. I will try to

make this as painless as possible. Though we have not defined

too much yet regarding Entity-Relationship (E-R) diagraming,

and we won’t be doing a lot of definition, we have been

discussing some ways in which E-R can help us design

databases and determine what goes into which file. Let’s define

a few things now that we have a general notion.

An entity can be defined as an object (not necessarily an iSeries

object) that exists and is distinguishable from other objects. For

instance, John Smith with Social Security Number (SSN) 490-

11-2368 is an entity, as he can be uniquely identified by his

social security number as one particular person in the universe.

The notion of an entity is bigger than this, however. For

example, an entity has various properties. An entity may be

concrete such as a person or a car, or a magazine, for example

or it can be abstract, such as a holiday or a concept, or an event.

 Chapter 7. DDS Levels a.k.a. the DDS Hierarchy 107

An entity is represented by a set of attributes. An attribute can

be thought of as a defining property. Attributes of a person

include a name, a social security number, an employee number,

etc. Attributes of a customer include a customer number, a

street, a city, a credit limit, an amount owed, etc. You may

recall at the beginning of chapter 2 that we acknowledged

another name for a field or a column in a data base table. That

name was none other than attribute. So the word has relevance

in our study. Thus, a database attribute is a field in a database

file. If entities are represented by attributes, then, it follows that

the entities in a database are files, which some call tables and

others call relations.

Entity Relationships

In E-R diagraming, as you would expect, the relationships

among entities are diagramed, in an attempt to make sense of

their various relationships in a relational database. The E-R

diagram then, can be used as both a design tool and a map that

shows how to use the data. Many designers believe that the

construction of an Entity Relationship Diagram is essential for

the design of tables, of extracts and even metadata (data about

data). This book is intended to be a practical example-oriented

tool for you to be able to learn and to work well with relational

databases using DDS. E-R diagraming is beyond the scope of

this book but it helps to know that in formal IT shops, such

diagrams are the rule, not the exception.

Cardinality Relationships

E-R diagrams represent database files and the relationships

among files. By having to diagram your database relationships

before your design is complete, especially their cardinality

relationships (one to one, one to many, etc.) you quickly get a

perspective as to the shape your files should take.

Parent & Child Example

Whenever you have a one to one relationship of an attribute

with an entity, you can expect that the attribute belongs with

that particular entity. We can use a person entity (say a child)

again as an example. A person has one first name. Therefore

there is a one to one relationship of a person to a name. In

database terms now, if we substitute the primary key (unique

identifier) for a personnel record such as social security

number, then we can say that the name has a one to one

relationship with the primary key of social security number.

For each SSN, you will have just one name.

Which Parent?

OK, now let’s take a look at another attribute. How about

parent’s first name. Uh oh? Which parent? See the problem?

There is a one to many relationship between the primary key

(SSN) and the parent’s first name. You may not like this

example. You may say that at worse there is a one to two

relationship - one child SSN to two parent sets of information.

That’s still one too many!

Am I Wrong?

You may challenge me by saying that there would be a one to

one relationship if we had used mother’s first name and

father’s first name instead of parent’s first name. If we have a

one to one relationship in database design, then the attribute

belongs in the same record format as the primary key. If, on the

other hand, we have a one to many relationship, then our data

 Chapter 7. DDS Levels a.k.a. the DDS Hierarchy 109

relationship modeling tells us we need to create a new file for

the new entity which we have discovered — which is Parents.

In database design, we devise a primary key for the parents

(perhaps SSN again) and we move all of the associated

information about the parents such as address information to

the parent’s file.

But, you may say, for a maximum of a one to two relationship,

maybe we are better off keeping the parent’s information in the

child file. So maybe there are ten new fields we need to

describe each parent which adds twenty fields to our database

record. Maybe this is OK? But it is not relationally correct.

Parents Must Go!

Using the cardinality relationships of a one to many variety

should be split into their own files. Now we see how files are

called relations in relational database theory. Based on

cardinality, the parents must go.

First Normal Form

How about the idea of first normal form, which says that there

should be no repeating groups? Isn’t two sets of ten fields a

repeating group? According to first normal form, the Parent’s

gotta go!

Second and Third Normal Form

Second and third normal form (data normalization) start

looking at each field, one by one, to be assured that each

depends on the primary key. If we were walking through the

parent’s attributes in the child record (doesn’t even sound right

- does it?) , we might find a parent social security number and a

parent street address.

Is the street address for the parent an attribute of the child?. No,

it is not! It depends on the social security number (primary key

- unique identifier) of the parent, not the social security number

of the child. It does not depend on the primary key of the child

entity, the whole key, and nothing but the key. Therefore, the

second and/or third normal form test says that each of the

parents fields should be moved to a separate file so they can

depend on the proper primary key for the proper entity.

Three For Three – Gotta Go!

So far, we are three for three against stuffing parent

information in the child’s file. Let’s say you don’t want a lot of

files cluttering up your application and you go ahead and

implement with the design as is. You do not create a Parent’s

file. Will it work? Well . . . maybe! But, it won’t work well for

parent things since parents remain a nonentity.

What About Divorce?

Now. Let us move the file into the twentieth century - the

century where divorce became almost as common as marriage.

Now what? You have designed two parent slots into your child

record. What about mommy’s new husband? Do you add ten

more fields? What about daddy’s new wife? Do you add

another ten more fields? How many divorces are you going to

permit each parent in your child database design? Can database

design be the next big inhibitor to divorce? If it can, you may

soon be on the Oprah Winfrey show!

Give Parents Own File

 Chapter 7. DDS Levels a.k.a. the DDS Hierarchy 111

Of course, maybe it wasn’t supposed to be there in the first

place. Maybe you had a one to many relationship all along and

maybe you should have designed for it – from the start! Give

the parents their own file. Make sure that the primary key of

the child is in each parent record. That way the data can be

accessed from child or from parent. It’s relational, right?

Many to Many Relationship

Is this really a many to many relationship? Whoah Nelly!

That’s one step up from a one to one relationship. Might a

particular parent have more than one child? (That’s any of the

fifteen parents, to which you might have limited the child

record in the prior design.) If this were a doctor’s office or a

hospital or a school or a church database application, would

you expect that a parent might have more than one child

involved. That’s a many to many relationship. A parent may

have many children and a child may have many parents. If we

split the parents into their own file, this works both ways.

Doesn’t it? The many to many relationship is satisfied! Right?

Nope! It is not and it does not. The design works from child to

parent since the common chord is child SSN. We are sticking it

in each parent’s record - regardless of how many parents.

Unfortunately, it does not work the other way around — from

parent to child. If there is a second child, it messes it up. The

second child number cannot be rammed into the one child SSN

slot in the parent record. Oh! Just add another child number to

the parent record! That’s a convenient solution. Whoops – the

repeating group rule applies - No can do! Then what?

Just Make Some Rules?

Well! You could make rules such that the parents and the

children have to use different doctors or go to different schools

or hospitals but you know this would not work. If you could

this, it might make a bad design last longer. You could use

dummy social security numbers for a seconds set of records for

the same parents - as many parents as there may be. You could

relate the second child to the second set of parents through the

new number. But, then you have data redundancy and you

don’t know that the second child and the first child are related.

Wow! This gets complicated!

What Is the Solution?

How would you solve it? You could create a link file between

the parents and the children. Its key would be a composite of

the parents and the children’s SSN. Each parent would have a

field in the link record with his or her SSN and a child’s SSN.

The parent’s number points to the parent information record.

The child # points to the child information record. If a parent

has four children that parent would have four records in the

file. Each record in the link file would have the same parent

SSN and the SSN of a different child. The beauty of this

scenario is that you never run out of room. Another kid brings

in another record in the link file. Another parent brings in

another link.

What About the Kids?

What about the kids? If all the parent link records are

completed, then all the kids’ records are automatically

completed! Right? “Yes, Indeedy!”. If you were to sort the link

file on the kids’ SSN, most of them would probably have two

records in the link file provided, one each, from each parent.

Some may have one, some three, etc. depending on how many

 Chapter 7. DDS Levels a.k.a. the DDS Hierarchy 113

parents. This solves the parent child link! But does it do it

well?

How do we link child to child? This starts to hurt my head at

this point. Can you use the parent/child link file for this?

Theoretically you can! You could join sibling records with

parent records. The view of the join could have a child’s SSN,

parents SSN, and a record in the file for each of the siblings of

each parent. For each child in a join like this, there would be

enough records to handle each parent and all of the siblings of

each parent. Since, by definition, there would be duplicates in

the view in that a brother would show up under both parents, as

would his sister, there would be some additional tuning

necessary. But, the deed is theoretically accomplishable. Don’t

ask me to code the DDS for this now. But, it would be fun! By

the way, there is an example coming up which shows how to

join a file with itself, which, in essence we would be doing in

this situation.

Since it hurts all of our heads to go there, we will stop here and

say that — if you read all this, you have an appreciation for

database design and how important it is – even if you don’t

know it all . . . yet!

Different Methods Can Be Used

Just a few more comments now before the pain is over

completely. There are many ways to skin a briefcase. Being

bits and bytes efficient is not always the right approach. For

example, a child - child file might be the best bet in addition to

the parent-child file. All the machinations to join a file to itself

and then to other records may not be worth the pain and the

performance. In this file, you could have the SSN of each child

on the left and right side of a table. SS#1 may have four

records with SS#1 and SS#2, SS#1 and SS#3,

One final note regarding the parent information file and the

child information file. Theoretically, they can be one file. If

SSN is the key, remember that a file can be joined to itself and

the link file could be joined twice to the same parent/child file.

As long as all the records are the same. If we did this, of

course, we would no longer have a parent entity, we would

have a person entity instead and we would have to classify

people as child or parent or both. It would become so much fun

that you might even say, “two files are better. That idea doesn’t

hurt my head.”

Many of the design situations you get into can hurt your head.

It is always best to keep the design simple and understandable.

The next time you look at your own DB work, if it is complex,

it may take you a long time to come up to speed to understand

your own design. The other possibility, of course is that you

won’t necessarily see anomalies right away and if you

implement with unseen data anomalies, you will get big time

headaches0

 Chapter 7. DDS Levels a.k.a. the DDS Hierarchy 115

Chapter 7.

DDS Levels a.k.a. the

DDS Hierarchy

Using DDS for Describing

Databases

DDS is a method of describing data base files, communications

files, display formats, and printer files to the system. The user

enters DDS in source code format (typically with SEU into

QDDSSRC) to describe the file, then compiles the source code

to produce a database file that can be used by the system.

The database DDS source statements describe the length of

each field, field attributes (character or numeric), the name of

the field, etc. Once the DDS source is entered, the user invokes

the file creation process (CRTPF or CRTLF), which uses the

DDS to build the database file object.

 Chapter 7. DDS Levels a.k.a. the DDS Hierarchy 117

In this sense, you can think of files as being "compiled" on the

AS/400, just the way programs are compiled. Source

statements are entered into the system, transformed into a file

object that can be used in a program. Unlike normal compiler

operations, the compiler derives the description of the file from

DDS, not from COBOL or RPG specifications. When the file

descriptions are used in programs, they are referred to as

"externally described" files.

The DDS Hierarchy

We will review the DDS specification form layout in detail

below, but first, let us again examine the structure of how DDS

is built within the context of the DDS form. As we previously

discussed in general terms in Chapter 4, under the heading The

Six Levels of DDS, it helps to remember that DDS

organization is by field, by record format, and by file. What

does this mean? It means simply that there are certain things

that you can prescribe for the file itself. You can prescribe

other rules for the record formats, and you can select still other

rules for the fields. When used in this context, these rules are

called file level, record level, and field level attributes. There

are also three other levels used when defining keys or selection

criteria. These are aptly called: Key-Field Level, Select/Omit

level, and Join Record Level.

At the file level, sometimes the attributes pertain just for the

file. However, sometimes their placement at the file level in

DDS means that they apply to all of the formats and fields

within the file. Thus lower levels inherit from higher levels.

The same applies to formats. Some attributes may pertain just

to the format itself, while other attributes, though prescribed at

the record format level, may pertain also to the data fields.

Though the cascading notion of levels does apply to physical

and logical files, it is most visible in display files.

Let’s define our terms before proceeding any further:

Level Description

Fields: A Field is a column in a table such as NAME,

ADDRESS, PHONE, etc. Use DDS to specify

the type and length. Examples of keywords

specified at the field level:

 RANGE -- Data entered must be within ranges

 VALUES -- Data entered must be in list

Record

Format: A record format is a logical grouping of fields

which can be referenced by the name of the

record format. Examples of keywords

specified at the record format level:

 FORMAT --Record format is to share the field

specs (record layout / names etc.) of a

previously defined record format.

 PFILE – For logical files, the "underlying"

physical file.

Join Record

Format: A Join Record Format gives the system

information about the shape of the record. The

record comprises fields from multiple physical

files when used in a join logical file. This is the

DDS level in which you would how to join a

number of physical files.

 Chapter 7. DDS Levels a.k.a. the DDS Hierarchy 119

File: Files are composed of one or more record

formats. Keywords at the file level are

optional. Examples of the keywords specified

at the file level:

 PRINT – "Print" key allowed on this display

 UNIQUE – Data base keys must be unique

 INDARA – Print File Indicator Area used

Key

Field: Key field entries are specified at the key-field

level. These entries reference fields previously

defined in the DDS member and designate

those fields as key fields by having a “K” in

column 17. Examples of the keywords

specified at the Key-field level:

 DESCEND--Records are arranged in

descending sequence)

 LIFO -- Records are presented in LIFO

sequence

Select/

Omit: Select/Omit level entries are specified at the

select/omit level. These entries reference fields

previously defined in the DDS member and

designate those fields by having an “S” for

select, or an “O” for omit. Through these

entries logical files are given their ability to

select records (or omit). Examples of the

keywords specified at the select/omit level are:

 COMP--Records which compare to the value

specified in this keyword are selected or

omitted.

 RANGE-- Records which are within the range

specified are selected or omitted.

Additional DDS Insights

Looking at this in hierarchical form, there are three distinct

major levels. Two of the levels even have sub-levels. Thee

three different levels of information in the hierarchy and the

associated sub-levels are as follows

 1. Field Field, key field, S/O field

 2. Record Record format, Join record

format

 3. File File

For special functions, there are two additional field sublevels

levels known as the key-field level, and the select/omit level.

These both use fields to change the selection and order of

records.

Fields are grouped together to form record formats. Fields in a

join view are grouped together to form a join record format.

One or more record formats can be grouped to form a file. This

is an important concept. Once you’ve got that down, it is much

easier to understand that different DDS keywords apply at the

different levels in the hierarchy. In fact, some keywords can

actually be used at more than one level. A simple example of

this is the TEXT keyword.

How Do You Specify the Level of a

Keyword?

 Chapter 7. DDS Levels a.k.a. the DDS Hierarchy 121

It’s actually easier than trying to explain it. Keywords that are

specified before the first record format name (“R” in 17) in

DDS are file level keywords. Keywords specified from the

record format to the first field of the format are record-level

keywords. Keywords specified from one field, to before the

next field, a.k.a. between fields are field level keywords for

that field. Keywords between the last field and the end of DDS

or until the first key field or select/omit field are also field level

keywords. Keywords that have a “K” in column 17 and are

specified after all fields in a record format are known as key-

field level keywords. If, instead of a “K,” they happen to have

an “S” or an “O” or a blank, they are known as select/omit

keywords.

The following is a brief list of some popular keywords along

with a short description of the keyword and an indication of the

level(s) at which it can be specified. These keywords are

frequently used in DDS to describe both database files and

display files.

TEXT: Enter text of your choice to describe your file,

record format, or field (all levels, all file

types)

COLHDG: Column heading. The words you enter here

will be shown as the default column headings

when you use Query or other AS/400 utilities

(field-level keyword in physical files)

ALIAS: For COBOL programmers, DDS allows you to enter

10 byte names. If you would like to use longer

names, ALIAS provides a means. (field-level,

physical file)

REF: Reference. Specify the name of another file

containing the type and length for this field.

This allows you to standardize your field

definitions. (file-level, all types)

COMP: Compare. For data base files, this keyword allows you

to select or omit certain records. For example,

COMP(EQ 'MI') might be used to select those

records where the state is Michigan. (field

level for display file, select/omit-level for a

logical file)

EDTCDE: Edit Code. Use this keyword to edit your

numeric output by including dollar signs,

decimal points, commas, etc. (field level)

PFILE: The “based-on” physical file. Use this keyword

at the record level of a logical file to designate

the based on physical file (record level)

There are literally tons of database DDS keywords available to

provide you with a wide variety of functions for your database

files. In just a few pages, as you are being introduced to

columnar nature of the DDS form, you will see that the DDS

keywords are specified beginning in column 45 of the form as

shown in Figure F-9. In this section all of the DDS keywords

are listed.

(Hint: Figure F-9 is first shown in Chapter 6

and is repeated in Chapter 8 for your

convenience.

(Hint: IBM’s DDS manual DDS Reference:

Physical and Logical Files has excellent

explanations and examples for all of the

 Chapter 7. DDS Levels a.k.a. the DDS Hierarchy 123

keywords shown. You can use the appendix in

this book to help you locate and download this

and other valuable iSeries manuals from the

IBM Web site.

You need not master them all at once to be effective in using

the system's data base and device capabilities. A keyword a day

. . . will help. The above list represents just a few keywords that

you will master early in your AS/400 experience . . . perhaps

even later on today . . . but surely soon . . .

 Chapter 7. DDS Levels a.k.a. the DDS Hierarchy 125

Chapter 8.

The DDS Specification

for Database Files

The Data Description

Specification (DDS) Form

Now, let us explore the DDS form from top to bottom and from

column to column – without skipping any columns.

DDS Column 6 - Form Designator

As you can see in Figure F-9, repeated below for your

convenience, the DDS specification is designed with an “A” in

column six for the form type. This fits into the same general

model as used in the RPG language specification forms. They

too use column six as the defining form ID.

Figure F-9 EARNMAST File With Headers (repeated)

type of DDS. All DDS statements have an A in columne 6
|
|"*" means comment. anything after * is treated as
comment
||
|| "R" means that this is a Record Format; “K” means key
field
|| |
|| | Names of Fields or Record Formats
|| | |
|| | | Reference
|| | | |
|| | | | Data type and length
|| | | | ||
|| | | | || Number of decimal positions
|| | | | || |
|| | | | || | Keywords
|| | | | || | |
VV V V V VV V V
A* Payroll Master
A* REF(HELLO/FIELDREF)
A R EARNMSTR TEXT('Earnings Master')
 EMPNAM 25 COLHDG(‘Emp Name’)
 EMPINL 2 COLHDG(‘Emp Initial’)
 ACCT# 6 0 COLHDG(‘Account #’)
 PAYCOD 1 COLHDG(‘Pay Code’)
 RATE 6S 2
 STATUS 1 COLHDG(‘Pay Status’)
 EMPNO 6 0
 MGRNO 6 0 COLHDG(‘Manager #’)

A* SAMPLE R REFFLD(FMT/SAMP
HELLO/FIELDREF)

 K EMPNO
 ...

From all I have studied about DDS, I have found no apparent

rhyme or reason for IBM’s selection of an “A.” for the DDS

form type. RPG/400 for example, uses “F” for file description,

“I” for input, “C” for calculations, etc. These make sense. An

“A” for DDS does not make sense. It would be more logical for

the DDS form type designator to be a “D.” Unfortunately, this

will never happen since, some fifteen years after designing the

DDS form, IBM used the “D” designation in its definition of

ILE RPG (a.k.a. RPGIV). It is the RPG IV data definition

specification. Regardless of its origin, all DDS specifications

can be differentiated from other IBM specifications by the

presence of an “A” in column six.

As a point of note, you may have already noticed that a number

of the DDS statements in Figure F-9 do not have an “A” in

column six. When the DDS database compilers (CRTPF or

CRTLF) are used, they assume that all statements have an A in

column six. If you do not put an “A” in column six, the

compiler forgives you.

DDS Column 7 - Comments

Column seven is used for denoting a particular statement as a

comment. Comments are used in DDS for readability and for

documentation. If there is an “*” in column seven, instead of a

DDS specification, the statement is considered a comment line

and thus, it does not provide any input to the file creation

process.

DDS Columns 8 to 16 - Unused

Columns 8 through 16 are very easy to explain. You can put

your brain to sleep since these columns are not used for

describing database files.

DDS Column 17 - Type of Name or

Specification for Physical and Logical

Files

If you took my advice, it’s already time to wake up. You must

be careful as to what you place in column 17. It will take some

study to understand what all the options actually do. In this

column, you place the type of name or specification for

physical and logical files. Keep in mind that different types of

statements mean different kinds of things. Since all DDS uses

an A in column six as the DDS designator, IBM chose column

17 to serve as a means of differentiating various types of DDS

specifications.

The best way to describe what this all means is to list the

various codes which can be placed in column 17 and their

meanings. If the specification refers to a name, such as a format

name or a field name, the name is entered in positions 19

through 28.

The valid entries in column 17 for physical files are as follows:

Entry Meaning

R Record format name

Blank Field name

K Key field name

You can specify just one “R” for a physical file since a

physical file has but one format.

The valid column 17 entries for logical files are:

Entry Meaning

R Record format name

J Join specification

Blank Field name or select/omit AND condition

K Key field name

S Select field name

O Omit field name

Logical files can have more than one “R” designation since a

logical file can be built over multiple physical files. Each of the

“R” record formats from the underlying physical files can exist

in the logical file. We will discuss this topic in greater detail in

the Join DDS examples beginning in Chapter 16.

The DDS examples also demonstrate how and when to use the

“J” for joining physical files, K for sequencing (ORDERING)

files, as well as the “S” for selecting records and the “O” for

omitting records in a logical view.

DDS Column 18 - Unused

IBM did not forget position 18 in the form. However, it

remains unused for all file types created with DDS.

DDS Columns 19 to 28 - Name for

Physical and Logical Files

Positions 19 through 28, as noted above, are used to name the

item you have designated in column 17. For example, if you

specify an “R” in 17, you will specify the name of the record

format in columns 19 through 28. If you specify a blank, the

name represents a field name within the record. If you specify a

“J,” it is the name you are giving to a join record format. If you

specify a “K,” you put the name of the key field in these

positions. If you specify an “S” or an “O,” the name represents

the field you are testing for record selection or omission.

Column 17 and columns 19 through 28 are closely related. In

columns 19 through 28, you enter the name for elements in

physical and logical files such as fields and record formats.

Column 17 says what type of name you are specifying. In

summary, you will use these positions to specify names for the

following:

1. Record Format The record format (‘R’ in 17)

for this physical file or formats

for this logical file

2. Join Record Format: The record format name in a

logical file which joins records

from one or more physical

files.

3. Field: The field name or field names

that make up the record format

(unless you specify the

FORMAT or PFILE keyword

at the record level – Format

and PFILE are described later

in his book)

4. Key Field: The field or fields used as key

fields

5. Select / Omit: For logical files, the field or

fields to be used for

select/omit specifications

DDS Column 29 - Reference for

Physical and Logical Files

Position 29 is the spot in the form where you specify the

reference file information for physical files. For a logical file,

you would leave this position blank. All logical files

automatically provide the reference capability for all specified

fields. In other words, any attributes that are not specified

explicitly in the logical file are furnished from the

corresponding field in the physical file record format with no

additional work.

(Hint: Field Reference Files are described in

Chapter 4 under the heading: Field Reference

File – Data Dictionary.

For a physical file, as you will see in the coding examples, you

must specify an “R” for “reference” in position 29 if you want

the DDS compiler to use the attributes of a previously defined

field (called the referenced field). You must also specify the

REF keyword at the file level or the REFFLD keyword at the

field level to tell the compiler the file and/or field which you

are using as a reference. The field can come from a reference

file (REF keyword) or from a field within the set of DDS being

entered (REFFLD) or from a field in a file as specified on the

REFFLD keyword.

DDS Columns 39 to 34 - Field Length

for Physical and Logical Files

Positions 30 through 34 are used to specify the field length for

physical and logical files. For a physical file, you use these

positions to specify the field length for each named field which

does not get its length and attributes from a reference file. In

this column space, you specify the number of digits for a

numeric type field or the number of characters for a character

type field.

For a logical file, you could use these positions to specify the

length of a logical field as seen through the view. You would

specify the length in logical file DDS only if you wished to

override or change the length of the corresponding field in the

physical file on which this logical file is based.

DDS Column 35 - Data type for

Physical and Logical Files

For a physical file, you use this position to specify the data type

of the field within the database. For a logical file, specify the

data type only to override or change the data type of the

corresponding field in the physical file on which the logical file

is based.

If you leave this position blank, the field you are defining has

the same data type as the corresponding field in the physical

file(s) upon which the logical file is based.

Valid data type entries are as follows:

Entry Meaning

P Packed decimal

S Zoned decimal

B Binary

F Floating-point

A Character

H Hexadecimal

L Date

T Time

Z Timestamp

The default data type (blank) is alphabetic (character). For

numeric data types, if the S or P designation is not selected, a

length and decimal positions entry for the field will default to

packed decimal.

(Hint: Packed decimal is an internal data

representation for numeric data. The AS/400

and iSeries are optimized for performing

internal operations with packed decimal fields.

Thus, data stored in the data base is converted

to packed decimal before numeric operations

are applied. Packed decimal also saves space on

disk.

The formula for disk space savings is as follows:

Divide the number of digits required to store a

value by two, then add one and round up. For

example, if 10 digits were required to store a

value, if we were to divide the number 10 by 2

we would get five. If we add one to five, we get

six. Thus, using packed decimal format, we

could store a ten-digit number in only six

memory positions.

Even though there is a definite savings in disk

storage, and there is less processor overhead

with packed decimal, today most database

designers choose not to use it. Why? Computers

are faster than ever. Disk space is less expensive

than ever. More importantly, packed values are

not as easy to deal within debugging data errors

as full signed numeric. Additionally, Query

users do not relate well to packed decimal data

in database files. Since the human time spent in

any phase of a project is far more costly than

machine time, packed decimal has fallen out of

favor. But, that does not mean you will not find

it in home grown code and/or packages in your

shops.

DDS Columns 36 to 37 - # of Decimal

Places for Physical and Logical Files

Positions 36 and 37. Specify the number of decimal positions

for physical and logical files in columns 36 and 37. For a

physical file, use these positions to specify the decimal

placement within a packed decimal, zoned decimal, binary, or

floating-point field. Specify a decimal number from 0 through

31 for the number of decimal positions to the right of the

decimal point. For logical files, specify decimal positions only

to override or change the decimal positions of the

corresponding field in the physical file upon which the logical

file is based.

 Chapter 9. Example DDS - Physical File Coding 135

DDS Column 38 - Unused

Position 38 does not have to be filled in.

DDS Columns 39 to 44 - Unused

Positions 39 through 44 do not apply to Physical or logical

files. Leave them blank.

DDS Columns 45 to 80 - Keyords

Positions 45 through 80. This is the area of the DDS form in

which keyword entries for physical and logical files are

specified. This section is the area in which you put the keyword

entries which are valid for describing physical and logical files.

Keywords

DDS is keyword driven. Though the specification for which we

just described does accommodate certain attributes of fields

and records such as length and decimal positions, the real

action comes about through the use of the keywords which are

specified from column 45 to 80 in the DDS form.

Since certain keywords are valid for just physical files and

certain keywords are valid for just logical files, and other

keywords are valid for both physical and logical files, for better

understanding, have split out the keywords along these

groupings.

Keywords for Both Physical and

Logical Files

The following keywords are valid for both physical and logical

files (except where noted):

ABSVAL ALIAS

ALL (logical files only) ALTSEQ

ALWNULL (physical only) CCSID (physical only)

CHECK CHKMSGID

CMP COLHDG

COMP CONCAT (logical only)

DATFMT DATSEP

DESCEND DFT (physical only)

DIGIT DYNSLT (logical only)

EDTCDE EDTWRD

FCFO FIFO

FLTPCN FORMAT

LIFO NOALTSEQ

RANGE REF (physical only)

REFFLD (physical only) REFSHIFT

RENAME (logical only) SIGNED

SST (logical only) TEXT

TIMFMT TIMSEP

TRNTBL (logical only) UNIQUE

 Chapter 9. Example DDS - Physical File Coding 137

UNSIGNED VALUES

VARLEN ZONE

Keywords for Logical Files

Beginning in Chapter 12, we discuss the notion of simple,

multiple format, and join logical files. We have separated the

logical file keywords into two groupings since that is how the

keywords line up

Keywords for Simple and Multiple Format

Logical Files

The following keywords are valid only for simple and multiple

format logical files:

PFILE REFACCPTH

Keywords for Join Logical Files

The following keywords are valid only for join logical files:

JDFTVAL JDUPSEQ

JFILE JFLD

JOIN JREF

Exceptions for Source Files

Because of the inherent nature of source programs and the

tricks built into the Source Entry Utility (SEU) editor to assure

that source is handled in the fashion intended by the

programmer, there are restrictions in the use of various

keywords when used to create source files. Though the Create

Source Physical File (CRTSRCPF) command is typically used

to create source files, you can build your own source files

without using this IBM convention.

Building Source Files with DDS

When you create a source file with no DDS using the above

command, you specify the record length for the source file. The

value must include 6 bytes for the source sequence number

and 6 bytes for the date. If no value is specified, 92 (6 + 6 + 80)

is used as the default. The system builds you a three field

externally described physical file with a *NOMAX number of

members and other source-file-appropriate database values.

Though the file is intended for source programs, you can store

data in the file if you wish, since all source files are database

files. Valid record length values range from 13 through 32766

bytes.

If you were to use the command Display File Field Description

(DSPFFD) against a default source file, you would find the

following three field definitions:

 Data Field Buffer Buffer

Field Type Length Length Position

SRCSEQ ZONED 6 2 6 1

SRCDAT ZONED 6 0 6 7

SRCDTA CHAR 80 80 13

You can create your own source file using the Create Physical

File command if you specify three fields in DDS. As long as

 Chapter 9. Example DDS - Physical File Coding 139

they are named exactly as above, and as they all have the same

attributes, and as long as the first two fields (SRCSEQ and

SRCDAT) are defined with exactly the same length and

decimal positions as shown above. The SRCDTA field can be

as big as 32, 766 minus 12.

You can create a source file with DDS since that is basically

what IBM does under the covers anyway. However, there are

keyword restrictions for source files since SEU cannot

guarantee that the file will behave as a source file if you

specify DDS keywords which would cause the source

programs to lose track of the proper order of the statements. If

keywords caused the beginning to be the end and there was no

integrity to the sequencing of the source statements, this would

not prove to be productive for your shop.

When you use DDS to describe a source file (usually created

without DDS, using the CRTSRCPF command) or even when a

logical file is based on a physical file which is to be used as a

source file, you cannot use the following keywords because the

integrity of the source cannot be guaranteed, and in some cases

is assured of being incorrect.

ABSVAL ALTSEQ

DESCEND FCFO

FIFO LIFO

NOALTSEQ SIGNED

UNIQUE VARLEN

ZONE

Why are Certain Keywords Excluded?

Consider, if an alternate collating sequence were used and

statement four became statement seven. How about if you used

FIFO (first -in, first out) Suppose you changed a statement in

the middle of the program. The FIFO rule would permit

duplicate source statement numbers and it would arrange the

duplicates in arrival sequence regardless of intention. Think

about what DESCEND (descending order) would do to the

integrity of your program. Therefore, since SEU cannot

guarantee integrity if you use these keywords, you should not

use them. If you can, it is better to use the IBM-supplied

CRTSRCPF command since it takes all of these things into

consideration and is much easier to use than DDS.

DDS Examples

Many of the DDS examples which we are about to present -

and there are lots of them use a simple file definition which we

have labeled EARNMAST, It has a Payroll application basis

but is substantially smaller than a typical payroll master record.

This is the same file object we examined in Chapter 6.

In addition to the EARNMAST file, later on, in a different

chapter of this QuikCourse, we will be needing several other

file definitions. The record layout for the EARNMAST file,

the ADDRMAST File, the DEDMAST File and the TIMECD

file are all given as follows: follows:

 Chapter 9. Example DDS - Physical File Coding 141

EARNMAST Payroll Earnings File

Field Name Description From/To Type L/Dec
EARNMSTR Record format name NA

EMPNAM Employee Name 1 to 25 Alpha 25

EMPINL Employee Initial 26 to 27 Alpha 2
ACCT# Payroll ACCT # 28 to 31 NumP 6 / 0

*

PAYCOD Payl code (S- sal. H-hrly) 32 to 32 Alph 1
RATE Pay rate 33 to 38 NumS 6 / 2

*
*

STATUS Payroll Status (A-Act, I -IN) 39 to 39 Alph 1
EMPNO Employee Number (key) 40 to 43 NumP 6 / 0

*
MGRNO Manager Number (in EARN) 44 to 47 NumP 6 / 0

*
SALARY Employee Salary if salaried 48 to 55 NumS 8 / 2

*
*

ADDRMAST Payroll Name / Address Master
File

Field Name Description From/To Type L/Dec
ADDRMSTR Record format name NA

EMPNO Employee Number (key) 1 to 4 NumP 6 / 0

*
LINE# Address Line Number 5 to 6 NumS 2 / 0

*
*

ADLINE Address Line Data 7 to 46 Alph 40

*

DEDMAST Payroll Deduction Master File

Field Name Description From/To Type L/Dec
DEDMSTR Record format name NA

EMPNO Employee Number (key) 1 to 4 NumP 6 / 0

*
DEDTYP Deduction Type 5 to 9 Alph 5
DEDDSC Deduction Description 10 to 39 Alph 40

DEDAMT Deduction Amount 50 to 43 NumP 6 / 2

*
DEDFRQ Deduction Frequency 54 to 45 NumS 2 / 0

*
*

TIMECD Payroll Time Card Transaction File

Field Name Description From/To Type L/Dec
TIMECDR Record format name NA

EMPNO Employee Number (key) 1 to 6 numP 6 / 0

*
PAYPRD Yearly Pay Period 7 to 8 Alph 2
HOURS Hourse Worked 9 to 14 NumP 6 / 2

*

* P = packed decimal numeric
* S = Signed decimal numeric

 Chapter 9. Example DDS - Physical File Coding 143

You may have noticed that the four numeric fields in

EARNMAST – ACCT#, RATE, and EMPNO have two

different letter designations after the num. In this example

NumP means that this field is compressed using IBM’s packed

decimal format. Quite simply IBM can fit two numeric digits in

one storage position using this format. Since ½ position is

required for the sign of the field, you can calculate the number

of storage positions required to store a packed number by

dividing the length of the field by two and adding one.

EMPNO, for example is six positions long with no decimals.

Six divided by two is three – plus one is four. Thus the six

digits in EMPNO fit nicely into the four positions (39-42) of

the record layout.

The RATE field is coded as NumS. In this example, this means

that the six positions of the RATE will take six positions of

storage. Since half of each position is not being used in this

case, here is plenty of room for IBM to put the sign of the field.

When we explain the DDS below, we will go over this again in

the context of the DDS.

Creating the EARNMAST File

The DDS or this file is shown in Figure F-9. The DDS in

Figure F-9 has a ton of columnar descriptive information prior

to the actual coding. In this way, you can visualize what the

DDS looks like – all nicely typed up. For all of the other

examples in this chapter, we will abbreviate this description for

space purposes. Thank you for your understanding.

The DDS for the EARNMAST file is shown in Figure F-9.

Figure F-9 EARNMAST File With Headers

type of DDS. All DDS statements have an A in columne 6
|
|"*" means comment. anything after * is treated as
comment
||
|| "R" means that this is a Record Format; “K” means key
field
|| |
|| | Names of Fields or Record Formats
|| | |
|| | | Reference
|| | | |
|| | | | Data type and length
|| | | | ||
|| | | | || Number of decimal positions
|| | | | || |
|| | | | || | Keywords
|| | | | || | |
VV V V V VV V V
A* Payroll Master
A* REF(HELLO/FIELDREF)
A R EARNMSTR TEXT('Earnings Master')
 EMPNAM 25 COLHDG(‘Emp Name’)
 EMPINL 2 COLHDG(‘Emp Initial’)
 ACCT# 6 0 COLHDG(‘Account #’)
 PAYCOD 1 COLHDG(‘Pay Code’)
 RATE 6S 2
 STATUS 1 COLHDG(‘Pay Status’)
 EMPNO 6 0
 MGRNO 6 0 COLHDG(‘Manager #')
 SALARY 8S 2 COLHDG(‘Employee Salary’)

A* SAMPLE R REFFLD(FMT/SAMP
HELLO/FIELDREF)

 K EMPNO
 ...

You may already have noticed that we used very small field

names for DDS – 6 characters in fact. These were kept small

to fit RPG/400 coding conventions. The newer RPGIV, which

is becoming more and more accepted permits larger definitions.

There are not that many unique attributes to get all fussed up

about when creating a simple physical database file. You can

see the record format named EARNMSTR in Figure F-9.

Notice that there is a TEXT record level keyword associated

with it to help document the record.

 Chapter 9. Example DDS - Physical File Coding 145

Following the record format is the first field definition for

employee name EMPNAM which has an unspecified data type

(blank). This means that the default “character” applies so this

is a character field of length 25. Moving down the list of fields,

you can see the filed named: RATE. This is defined as “6S

2". The data type is listed as “S” meaning signed numeric, and

the number of decimal places is listed as two. This field will

take up six spaces in the record and the last two spaces will be

for the decimal positions.

If you contrast this definition with that of the field EMPNO

below it, you can see that EMPNO has no data type specified.

The default for a field with decimals specified (0 in this case)

and no data type specified is numeric. However, in the

database, default fields are stored in packed decimal format so

that a six-position field takes up only four spaces in the

database. The space formula is ((field length / 2) + 1). This is

an IBM space saving mechanism for using both halves of a

byte for numeric data. Most IBM processors actually perform

arithmetic on data in this form, so it is a very common data

form. Though RATE and EMPNUM are both six positions, the

data is shaped differently when the “S” is used as opposed to

taking the numeric default of packed decimal.

The last field in the file is called MGRNO. This is the

employee number of the employee’s manager. To find the

name of the manager, if you were writing a program, you

would read the employee record in EARNMAST, get the

MGRNO, and re-access the file with MGRNO as the search

argument. The second time you got a record from the file, the

EMPNAM field would be filled with the manager’s name. It

would be the manager’s name. We have a special join near the

end of the book which does this with a logical view. You’ll like

it.

Chapter 9.

Example DDS -

Physical File Coding

DDS Solutions

In this next set of chapters, we present specific database

solutions built with DDS. Some will be very simple. Some will

be somewhat complicated. Others may at first seem simple, but

will stretch your knowledge to understand the new notions

inherent in the examples. The examples in the next few

chapters may help you find that this little DDS guide can be a

valuable tool to keep with you as your handy pocket database

reference to developing many different database solutions.

 Chapter 9. Example DDS - Physical File Coding 147

Keyword Levels

In Chapter 7, we covered the idea of the various DDS levels

and how they work, without doing any coding in DDS. Now,

we will demonstrate the various levels while by coding various

level Physical File DDS keywords.

Take a look at Figure F-10 for another look at the keyword

levels in DDS. You will see that the DDS in Figure F-10 is a

smaller version of Figure F-9, which introduced the

EARNMAST physical file. To make it even more helpful,

Figure F-10 has all the levels marked within the DDS form

itself.

 Figure F-10 Keyword Levels for EARNMAST
 File Level
A* Payroll Master
A R EARNMSTR Record Level
 Record Level

 EMPNAM 25 0 Field Level
 Field Level
 EMPINL 2
 ACCT# 6 0
 PAYCOD 1
 RATE 6S 2
 STATUS 1
 EMPNO 6 0

 K EMPNO Key Level
 S PAYCOD ... COMP(.. Select/Omit Level
 ...

Specifying File Level PF Keywords

Now take a look at Figures F-11 and F-12. You can see there

are examples of File level keywords for physical files, in

action. In these two figures, you can see how keywords such as

ALTSEQ, FIFO, LIFO, REF, and UNIQUE are specified at

the file level.

Figure F-11, File Level Keywords in Action
A* DDS Physical File (W/ FIELD REFERENCE file)
A* PHYSICAL FILE (EARNMAST)

A*

A REF(FIELDREF)

A UNIQUE

A R EARNMSTR TEXT('Earnings

Master')

 EMPNAM R

 EMPINL R

 ACCT# R

 PAYCOD R

 RATE R

 STATUS R

 EMPNO 6 0 <- not a particularly good

 coding technique

 SALARY R

 K EMPNO

 . . .

Coding Technique

In Figure F-11, in addition to specifying the REF and UNIQUE

file level keywords, we added a note (not a valid DDS

comment) on the EMPNO field statement. The note suggests

that this is not a particularly good coding technique. It is not!

When you choose to have a field reference file serve as your

application “dictionary” for field names, it does not make

 Chapter 9. Example DDS - Physical File Coding 149

sense, in most cases, to explicitly define a field within your

DDS.

(Hint: In Chapter 4, you can get a lot more

information on AS/400 physical files as data

dictionaries and field reference files. Look under

the heading Field Reference File - Data

Dictionary

Ironically, the only DDS statement that was in the form that we

have been using is the EMPNO field. All of the other fields

have an “R” code for reference in column 29 of the DDS form.

There is no REFFLD keyword so the field name in the

reference file is the same name as the field which is being

referenced. If it is not, of course, there will be a big error. .

REF & UNIQUE

The first keyword – REF(FIELDREF)in the whole set of

DDS is specified at the file level. Thus, it pertains to all

formats in the physical file DDS as well as all fields in the

DDS. The five fields, EMPNAM, EMPINL, ACCT#,

PAYCOD, and RATE all are coded with an “R” in 29 which

tells the DDS compiler to go to the file specified with the REF

keyword (FIELDREF) to get the actual definition for the

particular field. As you can see this technique saves keying

and, though it might not be as obvious, it also helps assure field

size and attribute standardization.

The file level keywords used in the example are REF and

UNIQUE. As already noted, REF specifies the name of the

field reference file or other physical file from which field

descriptions are to be retrieved. UNIQUE specifies that there

are no duplicate employee # keys allowed for this physical

database file.

Figure F-12A Additional File Level Keywords for Physical

Files
A* PHYSICAL FILE (EARNMAST)
A*
A
ALTSEQ(TABLELIB/TABLE1)
A FIFO or LIFO or FCFO
A R EARNMSTR TEXT('Earnings
Master')
 EMPNAM R
 EMPINL R
 ACCT# R
 PAYCOD R
 RATE R
 STATUS R
 EMPNO R
 SALARY R

 K EMPNO

 ...

Catch the Error?

In Figure F-12A, you can see that we added a few extra

keywords at the file level and we corrected the poor coding

technique as outlined in Figure F-11. All fields use the “R”

code so that their definitions will come from the REF file.

Whoops! We did not specify the REF keyword. Thus, this set

of DDS would not fly. It would be DOA at the DDS compiler

stop. You would need to add the REF keyword as in Figure F-

10 for this DDS to compile cleanly.

Alternate Collating Sequence

In Figure F-12A, we also demonstrate how to specify an

alternate sequence table. To create the table, you would use the

CRTTBL command. You would create an alternate sequence if

 Chapter 9. Example DDS - Physical File Coding 151

you wanted certain characters to be “appear differently in the

collating sequence. For example, if you wanted a B to appear

before an A. You would change their positioning in the table.

The AS/400 command CRTTBL is shown below with the

proper parameters to obtain a prompt panel (Figure 12-B)

which enables the modification of the sequencing tables.

CRTTBL TBL(HELLO/TABLE1)

SRCFILE(*PROMPT)

TBLTYPE(*SRTSEQ)

When you type this command on your AS/400 command line,

you will get a panel similar to that in Figure F-12B.

Figure F-12B Create an Alternate Sequence Table
 Create Sort Sequence

Table: TABLE1 Library: HELLO

Stored in CCSID value: 37

Type sequence number (0-9999) for each character, press Enter.

(Use the same sequence number to have characters sort in

a group.)

Sequence Char Sequence Char Sequence Char Sequence Char

 0010 0110 . 0210 í 0310 
 0020 â 0120 < 0220 î 0320 -

 0030 ä 0130 (0230 ï 0330 /

 0040 à 0140 + 0240 ì 0340 Â

 0050 á 0150 | 0250 ß 0350 Ä

 0060 ã 0160 & 0260 ! 0360 À

 0070 å 0170 é 0270 $ 0370 Á

 0080 ç 0180 ê 0280 * 0380 Ã

 0090 ñ 0190 ë 0290) 0390 Å

 0100 ¢ 0200 è 0300 ; 0400 Ç

More...

F3=Exit F5=Refresh F6=Create F11=Hex characters F12=Cancel

F17=Position to F20=Renumber
From the panel in Figure 12-B, you can alter the sequence of

characters so that certain characters are collated after or before

other specified characters. If you find a need for an alternate

collating sequence for a database, this command is very helpful

and there is an ample supply of help available for nuances you

may need to add. Most folks will never find a need for this

facility.

FIFO, LIFO, FCFO

In Figure F-12A, you can also see the keywords, FIFO (First

in, first out), LIFO (Last in, first out) and FCFO (First

changed, first out). These are handy ways to tell the system

what you would like done if there are duplicate keys. You tell

the system to arrange the records in the order in which they

came in, the reverse order in which they arrived, or by when

they were changed.

Since no other relational database, of which I am aware,

supports the notion of duplicate keys (non-unique primary

keys), this is either a major plus for those who like additional

facility or it is a major minus for those who want all databases

to behave exactly the same. As you may have already

surmised, these access rules may come in very handy in an

inventory costing application where a LIFO or FIFO method is

appropriate.

Specifying Record Level PF

Keywords

Figure F-13 shows examples of two different Physical File

Record Level keywords, TEXT and FORMAT. This code will

not work because of keyword conflicts. It is shown to

demonstrate the placement of the keywords.

 Chapter 9. Example DDS - Physical File Coding 153

Figure F-13 Record Level PF Keywords
A R EARNMSTR FORMAT(PMASTER)

 TEXT('Earnings

Master')

A* EMPNAM R (Fields are not allowed with FORMAT)

A R COURSE TEXT('Course Format')

 COURS# R

TEXT

The “TEXT” keyword is very easy to explain. For any record

that you want to document, you can specify the TEXT keyword

and type a short description. The description is captured within

the object description when the database is compiled.

FORMAT

Format is a bit more difficult. You would use this record-level

keyword in both physical and logical files to specify that this

record format is to share the field specifications from a

previously defined record format in an already compiled file

object. When choosing to use this developer’s timesaving

mechanism, you must remember that the name you provide for

your record format (“R” in column 17) must be the name of the

record format which exists in the file from which you are

stealing the field names.

As you can see from the example in Figure F-13, the format of

the keyword is:

FORMAT([library-name/]database-file-name)

The database-file-name parameter is required. It is the name of

the physical or logical file from which the previously defined

record format is taken. The library-name is optional. If you do

not specify the library-name, the library list (*LIBL) in effect

at file creation time is used.

Specifying Field Level PF Keywords

Moving down the DDS hierarchy from the record level we find

another set of keywords associated with fields. As you are

defining physical files, you have a number of valuable

keywords to choose from at the field level including: ALIAS,

COLHDG, DFT, REFFLD, and of course TEXT.

In Figure F-14, all of these keywords are used to define a

Vendor Master Physical File named VNDMSTPF.

Figure F-14 Field Level Physical File Keywords
A* PHYSICAL FILE (VNDMSTPF)

A*

A REF(SAMPLE/FIELDREF)

A R VNDMSTR TEXT('VENDOR DB

FORMAT')

 VNDNBR 5 0 COLHDG('VENDOR'

'NUMBER')

 ALIAS(VENDOR_NUMBER)

 NAME R REFFLD(VNAME VNDMASP)

 ADDR1 25 COLHDG('ADRRESS LINE

1')

 CITY 20 DFT('Wilkes-Barre')

 CODE 1 TEXT('Active Recrd

Code')

 ADDR3 R +5 REFFLD(ADDR1 *SRC)

 ... (poor record layout)

You may have noticed in the example in Figure F-14 that at the

bottom we declared this a poor record layout. Again, this is

because we believe that you should use a field reference file or

not use a reference file. However, this example gives us a lot to

work with.

 Chapter 9. Example DDS - Physical File Coding 155

Working through some of the new stuff, you may have noticed

that there are no A’s on a number of the statements. This too is

OK! Though DDS is supposed to have an A in column six, the

syntax checker and the compiler don’t really care. They know

which checker to use and the checker knows you know there

should be an “A” but it does not make you put one in.

COLHDG

Our first new keyword is COLHDG. This is extremely valuable

in that it lets you specify the field headings for AS/400 Queries

and for screen design prompts, right in the database. When

using Query, these column headings will be the default

headings for your selected fields. When using SDA, rather than

typing the prompt for a field you can just reference database

fields and tell them to pop into areas of a panel you are

designing. This helps programmer productivity.

When you are typing the column heading keyword, if you want

the prompt or report heading to be on one line, after the first

parenthesis, you place a quote, then place your prompt,

followed by another quote and a closing parenthesis. It would

look like the following:

COLHDG(‘Address Line 1')

If, on the other hand you want your default prompt or report

heading to be on two or three lines rather than take up a lot of

column width, use the COLHDG keyword in the same fashion,

but instead of having just one opening and closing quote, place

quotes around each of the up-to three parts of the prompt text.

This would look like the following:

COLHDG('VENDOR' 'NUMBER')

ALIAS

The next new keyword is ALIAS. This keyword is used to put a

large fieldname into the database. Since RPGIV takes no-

larger-than ten characters for field names, we know this is not

for RPGIV. However, COBOL likes big moose field names

such as:

THE_RETAIL_CATALOG_PRICE

To define these to the database so that both RPG and COBOL

can use the field entries, you need both a short and a long of it.

The name entry in DDS handles the short fine. The long is

implemented in DDS via the ALIAS keyword. If you need a

big long field of up to 30 characters, use an ALIAS keyword to

get you there.

REFFLD

Use this field-level keyword to refer to a field under one of

these three conditions: (1.) When the name of the referenced

field is different from the name in positions 19 through 28 (2.)

When the name of the referenced field is the same as the name

in positions 19 through 28, but the record format, file, or

library of the referenced field is different from that specified

with the REF keyword. (3.) When the referenced field occurs

in the same DDS source file as the referencing field

There are two general formats for this keyword. They are as

follows:

Form 1

 Chapter 9. Example DDS - Physical File Coding 157

REFFLD(record-format-name/

referenced-field-name [blank]

library name/file name)

Form 2

REFFLD(Field name / *SRC)

Example 1

 The first example using Form 1 is shown immediately below:

REFFLD(VFORMAT/VNAME

VENDLIB/VNDMASP)

Example 2

Using this Form 1, you can also default the record format name

as well as the library name giving a statement such as the one

we supplied in the source as shown in Figure F-14. This line is

repeated below for your convenience:

REFFLD(VNAME VNDMASP)

Using Form 2 of REFFLD

Use *SRC (rather than the database-file-name) when the field

name being referred to is in the same DDS source file as the

field being defined. *SRC is the default value when the

database-file-name and the library-name are not specified. The

below example is from the last statement of Figure F-14.

ADDR3 . . . REFFLD(ADDR1 *SRC)

DFT

This field-level keyword is used to specify a default value for a

field. In the DDS shown in Figure F-14, there is a default value

of the ‘Wilkes-Barre’ given for CITY. This means that if

CITY is not specified in the database for a given record, the

default, rather than all blanks, is ‘Wilkes-Barre.’ This particular

entry would come in handy if your business were located in

Wilkes-Barre and most of your vendors were from Wilkes-

Barre.

There is one more thing to discuss before we can move from

Figure F-14. Take another look at the ADDR3 field. You will

notice that it has an “R” for reference and it has a REFFLD

specified. However, though it wants to use ADDR1 as its

reference field, this coding acknowledges that ADDR1 will be

too small for this new field ADDR3. The instruction “+5" in

the length column tells the DDS compiler to make the ADDR3

field five positions longer in the database than the ADDR1

field. Though not particularly pretty, this is a very powerful

facility in DDS.

Specifying Key Field Level PF

Keywords

Continuing our road down the DDS specification, we soon find

ourselves at the key-field level. In this level, another host of

keywords are available. You can use these to direct exactly

how the key field or portions of the key field should be used in

building the file’s index. These keywords are valid for both

physical files and logical files. They include the following:

 Chapter 9. Example DDS - Physical File Coding 159

DESCEND, ABSVAL, UNSIGNED, SIGNED, DIGIT, ZONE,

NOALTSEQ.

ABSVAL

You would use this key field level keyword to direct the

OS/400 program to ignore the sign of the field when it

sequences the values associated with this numeric field. This

keyword has no parameters.

DESCEND

You would use this key field-level keyword to specify that the

values of this character, hexadecimal, or numeric key field are

retrieved in descending sequence

DIGIT

You would select this key field-level entry to specify that only

the digit portion (farthest right 4 bits) of each byte of the key

field is used when constructing a value associated with this key

field. The zone portion would be zero-filled. Obviously you

must have a good reason for doing this. Digit is not one of the

frequently used keywords. The keyword has no parameters

associated with it. There are some restrictions and caveats,

however.

The DIGIT keyword is applied against the entire key field (not

just a position within the field). It is valid only for character,

hexadecimal, or zoned decimal type fields. You cannot use this

keyword with the ABSVAL, SIGNED, or ZONE keywords. If

you specify DIGIT for a key field, the value of the field is

treated as a string of unsigned binary data, rather than signed

data, which is the default for zoned decimal fields. This

keyword is the opposite of ZONE

NOALTSEQ

You would use this key field-level keyword to specify that if

you first had used the ALTSEQ keyword at the file level, and

you do not want it to apply to this key field. If you specify

ABSVAL or SIGNED for a key field, then NOALTSEQ is

automatically in effect whether or not the NOALTSEQ

keyword is specified for that key field.

SIGNED

You would code this key field-level keyword to specify that

when sequencing the values associated with this numeric key

field, the system is to consider the signs of the values (negative

versus positive values)

UNSIGNED

You would use this key field-level keyword to specify that

numeric fields are sequenced as a string of unsigned binary

data. Character, date, time, timestamp, and hexadecimal fields

default to unsigned values when this keyword is supplied.

ZONE

You should use this key field-level keyword to specify that

only the zone portion (farthest left 4 bits) of each byte of the

key field is to be used when constructing a value associated

with this key field. The digit portion is filled with zeros. This

keyword is the opposite of DIGIT.

 Chapter 9. Example DDS - Physical File Coding 161

Creating a Physical File

We have mostly exhausted the plethora of keywords that can

be employed for physical database files. Before we spice up

our days with logical files, let’s look again at the process of

how to create a physical file once you have determined what

your source DDS should look like.

The process involves the following five steps:

1. Invoke PDM to get your productivity list manager

going

2. Invoke option 3 of PDM which is SEU (STRSEU)

3. This sets you up so that you can type your DDS

specifications into a source file using the Source Entry

Utility (SEU). PDM option 3 invokes the SEU editor.

4. Press F6 to add the new member and then entr the DDS

source..

5. After the source is entered, then you can use PDM

option 14 to compile the source and create the physical

database file into a library of your choice

If you were to press the command prompter “F4" after typing

in option 14 of PDM, the system would very nicely prompt you

for all of the options on the CRTPF command. We have

already seen several examples of the CRTPF command. This is

yet another one. If you prompted from PDM, the PDM would

supply a number of the parameters on the create command for

you since PDM knows the source and name information.

A sample of the Create Physical File command you would see

after the prompter does its thing is shown in Figure F-15. When

you are satisfied that PDM has picked the right options for you,

you need only press ENTER and PDM will invoke the DDS

compiler, CRTPF, to create a physical file from your DDS.

Figure F-15 Sample Prompted CRTPF Command

CRTPF FILE(*CURLIB/MYFILE)

SRCFILE(*LIBL/QDDSSRC) +

SRCMBR(*FILE) MBR(*FILE)

MAXMBRS(1) +

SIZE(10000 1000 3) DLTPCT(*NONE)

TEXT(*SRCMBRTXT)

More PF Field Level

Keywords

There are a number of physical file field level keywords that

can be specified using database DDS but have little or nothing

to do with database function. These keywords are also valid for

logical files and have the same meaning in both physical and

logical files. The COLHDG keyword which we previously

covered fits this description. It has value for Screen Design Aid

(SDA) development, for DFU and for Query applications.

However, it does little for the database. The following

keywords fall into the same category as COLHDG: CHECK,

COMP, EDTCDE, EDTWRD, RANGE, REFSHIFT,

VALUES.

These are most often found in the field reference file when one

is deployed. They are not used by the physical file itself. They

 Chapter 9. Example DDS - Physical File Coding 163

are data attributes that use the database as a place for their

storage. When you link your database to programs or utilities

that can extract these attributes, such as display file objects

(DSPF) and printer file objects (PRTF), there are productivity

and standardization gains achieved. Thus, these attribute

keywords should be coded within the database, preferably

through a field reference file, since there is no display file or

printer file reference file.

If you have no field reference file there is still reason to add

these keywords to the database file descriptions. For example,

when the database is used as a reference file, all of these

display and printer attributes find their way into the display

and/or printer files objets merely by having referenced the

database file. We show an example of how these keywords are

coded in Figure F-19. However, because these keywords

pertain to other than database files, there are no detailed

explanations of them in this chapter. If you’ll pardon me, you

can find all the detail you need in IBM’s manual sets.

CHECK

You would use this field-level keyword to specify validity

checking in display files. CHECK does not affect the physical

or logical file being defined. When you define an input-capable

field in a display file, refer to the field that you defining in the

database by specifying an “R” in position 29 and using the REF

or REFFLD keyword. At display file creation, the OS/400

program copies the CHECK keyword and other field attributes

from the field in the physical or logical file into the field in the

display file.

COMP

You would use this field-level keyword to specify validity

checking for the field you are defining if and when it is referred

to at a later time during display file creation. You will see later

in this book that COMP is also a logical file keyword which is

specified at the select/omit-field level. When used in a logical

file it is used to control which records are selected to be in the

access path or are omitted from the access path. COMP is

equivalent to CMP.

EDTCDE and EDTWRD

You would use these field-level keywords to specify editing for

the field you are defining when you know the field will be

referenced later during display or printer file creation. The

EDTCDE and EDTWRD keywords have no effect on the

physical or logical file. The physical or logical file merely

stores these rules for use in a subsequent program.

The format of the EDTCDE keyword is:

EDTCDE(edit-code)

The format of the EDTWRD keyword is:

EDTWRD('edit-word')

When defining an input-capable field in a display file, you

would refer to the field in the database by specifying the letter

R in position 29 and the REF or REFFLD keyword. At display

file creation, the CRTDSPF command copies the EDTCDE or

 Chapter 9. Example DDS - Physical File Coding 165

EDTWRD keyword and other field attributes from the field in

the physical or logical file into the field in the display file.
RANGE

You would specify this keyword at the field level for a physical

or a logical file for validity checking purposes in a display file.

For a logical file, the RANGE can also be specified at the

select- or omit-field level, or both.

(Hint: The RANGE keyword applies to both

physical and logical files. In physical files it can

be used at the field level only. In logical files, it

can be deployed at the field level as well ast the

select/omit level.

The format of the RANGE keyword is as follows:

RANGE(low-value high-value)

The following example shows a complete set of complete DDS

for a logical file. However, the DDS from statements 20 to 40

are coded the same for a physical file. In this respect, for a

physical or a logical file, these statements represent coding

being done on behalf of a later to-be-built display file. If the

PFILE keyword were removed from the record line (00010) in

the sample code below, and line 60 were also removed, this

would be all be valid code for using the RANGE keyword with

a physical file.

00010A R RECORD PFILE(PF1)

00020A FIELDA 1 0 RANGE(2 5)

00030A FIELDB 1 RANGE('2'

'5')

00040A FIELDC

00050A K FIELDB

00060A S FIELDA RANGE(1 4)

In this example, you would code the RANGE (statements

00020 and 00030) as specified for FIELDA and FIELDB for

later display file validity checking purposes. At the field level

in a physical or logical file, the use of the RANGE is limited as

a keyword for display files that later refer to FIELDA and

FIELDB. In the display file that would later be built, when this

RANGE is in control of a field on a display, it requires that the

work station user type only 2, 3, 4, or 5 in FIELDA or

FIELDB. FIELDA is an example of coding a numeric field and

FIELDB is an example of coding a character field. All of the

information in this paragraph pertains to both physical and

logical files.

REFSHIFT

The REFSHIFT (Reference Shift) keyword is also valid for

both physical and logical files. You would use this field-level

keyword to specify that the keyboard should automatically shift

for a field when the field is later referred to in a display file or a

DFU operation. The format of the keyword is:

REFSHIFT(keyboard-shift)

 Chapter 9. Example DDS - Physical File Coding 167

When you are defining an input-capable field in a display file,

you would refer to the REFSHIFT field in the database by

specifying the letter R in position 29 and by specifying the REF

or the REFFLD keyword. When you create your display file,

the CRTDSPF command copies the REFSHIFT keyword and

other field attributes from the field in the physical or logical

file into the field in the display file.

VALUES

You would specify this keyword at the field level for a physical

or a logical file. For a logical file, the VALUES keyword can

also be specified at the select- or omit-field level, or both.

(Hint: The VALUES keyword applies to both

physical and logical files. In physical files it can

be used at the field level only. In logical files, it

can be deployed at the field level as well ast the

select/omit level.

The format of the keyword is:

VALUES(value-1 [value-2...[value-

100]])

The following example shows a complete set of complete DDS

for a logical file. However, the DDS from statements 20 to 40

are coded the same for a physical file. In this respect, for a

physical or a logical file, these statements represent coding

being done on behalf of a later to-be-built display file. If the

PFILE keyword were removed from the record line (00010) in

the sample code below, and lines 50 and 60 were also

removed, this would be all be valid code for using the

VALUES keyword with a physical file.

00010A R RECORD1 PFILE(PF1)

00020A FIELDA 1 0 VALUES(1 6 9)

00030A FIELDB 1 VALUES('A' 'B'

'C')

00040A K FIELDB

00050A S FIELDB VALUES('A' 'B')

00060A S FIELDA VALUES(1 6) 2

In this example, you would code the VALUES (statements

00020 and 00030) as specified for FIELDA and FIELDB for

later display file validity checking purposes. At the field level

in a physical or logical file, the use of the VALUES is limited

as a keyword for display files that later refer to FIELDA and

FIELDB. In the display file that would later be built, when this

VALUES keyword is in control of a field on a display, it

requires that the work station user type only 1, 6, or 9 in

FIELDA or an A, B, or C in FIELDB. FIELDA is an example

of coding a numeric field and FIELDB is an example of coding

a character field. All of the information in this paragraph

pertains to both physical and logical files.

Additional Keywords - Summary

 Chapter 9. Example DDS - Physical File Coding 169

Now, we have examined all of the keywords that you would

choose to use in a physical file. Additionally, because certain

keywords have two lives and live at different levels and in

different file types, we gave you a preview of what life will be

like when we cover logical files in the pages ahead. As a last

hoorrahh for physical files and as a sendoff for the trusty

EARNMAST file, we have taken the liberty of adding a whole

collage of these keywords to the EARNMAST DDS as you can

well see in Figure F-19.

Figure F-19 Using the Additional PF Keywords
A* PHYSICAL FILE (EARNMAST)

A*

A R EARNMSTR TEXT('Earnings

Master')

 EMPNAM 25 0 REFSHIFT(X)

 EMPINL 2 COLHDG('Emp

Initials')

 ACCT# 6 0 RANGE(50000000

59999999)

 PAYCOD 1 VALUES('A' 'R' 'D')

 RATE 6 2 COMP(GE 4.65)

 EDTCDE(J)

 COLHDG('PAY' 'RATE')

 STATUS 1 COLHDG(‘Pay Status’)

 EMPNO 6 0 CHECK(ME MF)

 EDTWRD('******')

 ...

(Hint The DDS in Figure F-19 is built with from

/ to positions, even though it is not a field

reference file. You do not need a field reference

file to create a physical file. However, as we have

previously noted, all physical database files can

be used as field reference files once they are

compiled into database objects.

 Chapter 12. Copy Utility for Populating Physical Files 171

Chapter 10.

Coding for Multiple

Member Physical Files

Multiple Member Source

Files

You have previously noted that a source file can have many

different members within the one file. A source file such as

QDDSSRC in the HELLO library, for example, would contain

as many members as there are different sets of DDS within the

file. One source file such as QDDSSRC in HELLO could hold

up to 32767 sets of DDS source in 32,767 members. The

Create Source Physical File command (CRTSRCPF) defaults to

the *NOMAX parameter for number of members. Thus, unless

you or somebody else changed your defaults, every one of

your source files can contain 32,767 sets of DDS.

Creating a Multi Member Physical

File

The Create Physical File command, which can also create a

source file, given the proper DDS, expects to be creating

normal one member database files. Therefore, IBM set the

default maximum members for the CRTPF command to one. In

Figure F-15, you can see that this is the value specified in the

sample CRTPF command. If you need more than one member,

you can change this value when creating your file, or you can

use the Change Physical File command (CHGPF)after the file

is created. The maximum number of members in a non-source

physical file is also 32,767 since a source file is a physical file

with a format that accommodates source processing.

From the above discussion you can safely conclude that source

files are not the only physical database files which can have

multiple members. In fact, any physical file can have more than

one member even if it were created with just one member.

After file creation, as noted above, using the Change Physical

File command (CHGPF) you could adjust the number of

members parameter with a specific number or you could set it

at *NOMAX for no maximum number limitation.

A physical file with multiple members has a structure which

looks like that in Figure F-16.

 Chapter 12. Copy Utility for Populating Physical Files 173

Figure F-16 Multiple PF Members

Format
R EARNMSTR

EMPNAM 25 0

EMPINL 2

ACCT# 6 0

 ...

Access Path
Member: COMPANY1

Data: Company1

Access Path
Member: COMPANY2
Data: Company2h

Access Path

Member: COMPANY3

Data: Company3

The relevant portions of the three commands which would be

necessary to create a three-member physical file are shown in

Figure F-17.

Figure F-17 Creating a 3-Member Physical File

CRTPF ...EARNMAST...

MBR(COMPANY1) MAXMBRS(3)

ADDPFM FILE(*CURLIB/EARNMAST)

MBR(COMPANY2)

ADDPFM FILE(*CURLIB/EARNMAST)

MBR(COMPANY3)

When the EARNMAST Physical File in Figure F-17 is created,

by default the command calls for one member to be created

within the file. Using the MBR parameter, the command

explicitly names the member COMPANY1. The CRTPF

command automatically by default creates one member in each

file it creates in addition to creating the file. If you do not

specify a member name as we did in Figure F-17, then the

compiler will give the one member it creates the same name as

the file object which it is creating. You can also use the

Rename Member command (RNMM) to rename a member after

the fact.

For the two additional members to exist, they must be added to

the physical file using the Add Physical File Member

ADDPFM command as shown in Figure F-17. Since each of

the additional two members use the same format (same fields,

keys, record layout etc.), and a physical file can have one and

only one format, there is no reason to create a new file for each

company. Storing the data in separate members will keep it

data separate for record reading and updating but together for

full file processing if desired.

 Chapter 12. Copy Utility for Populating Physical Files 175

Selecting the Member to Process

The Override with Database File command (OVRDBF)

typically must be used prior to a program using a multiple

member file. If by chance the override is not done, the program

will always work with the first member in the file’s member

list. In the example shown in Figure F-17, therefore, the default

is to work with the member named COMPANY1.

If the first member is not the member you want to process, the

OVEDBF is needed to select the specific member which will

be used. If, the programmer wants to use all members of the

file at once, the OVRDBF is again needed. In this case, after

the override, data would be presented, one member at a time,

until the program finishes. If the file had a key, for example,

the records in the members would not be merged into key order

before being presented. The first member would be processed,

followed by the second, followed by the third. The overrides

for processing all three members at once would look as

follows:

OVRDBF FILE(EARNMAST) MBR(*ALL)

Likewise, the CL override necessary to process only the second

member would be as follows:

OVRDBF FILE(EARNMAST)

MBR(COMPANY2)

And, to process just the third member of the EARNMAST

Physical file, you would use the following CL override:

OVRDBF FILE(EARNMAST)

MBR(COMPANY3)

How do you get data into your new EARNMAST file? The

answer is the same way you would get data into any other

physical file. You could use the IBM Data File Utility program

(DFU), or you could write a file maintenance program since

EARNMAST is a master file. If the file were a transaction file,

the transaction processing program such as Order Entry would

provide the data as a natural part of its operation.

The fact that EARNMAST has three separate and distinct

members, one for each separate company, means that the file

must be overridden to select the proper member prior to

running any program. Developers will typically create a CL

program which performs the override to the specific file and

then calls the program to process the file. The program has no

clue as to which member it is actually using. The override

alerts the database and that’s all that is necessary.

Populating the File - Summary

In summary then, once you have your file and member picked

and properly selected with an override, then you have a few

choices as to how to populate the file:

1. An interactive Data Entry Program

2. A batch program (can select data to add to the new file)

3. The Data File Utility (DFU) or SQL

4. The Copy Utility

5. Other

In the next chapter we examine one of the most powerful

utilities on the system. It is typically the ideal tool for

 Chapter 12. Copy Utility for Populating Physical Files 177

populating database files when the data is available in another

form such as a spreadsheet or a PC file.

Chapter 11

Copy Utility for

Populating Physical

Files

A Powerful Tool

The Copy File Utility is an extremely powerful tool on the

AS/400. It provides enough value to AS/400 programmers that

it certainly has earned its spot in this book. The best way to

learn the Copy File utility is to engage it for action. Take it for

a ride. Type in COPY on a command line and press F4 to get

all of the prompts. When a prompt is not self-explanatory,

position your cursor to the prompt line and press F1 or the Help

key, to get a more complete explanation. The AS/400 Help text

is very good. In the example in Figure F-18, we cover some of

 Chapter 12. Copy Utility for Populating Physical Files 179

the more popular options and capabilities of the Copy Utility

(Command).

Figure F-18A COPY Utility Command
 CPYF
 FROMFILE(HELLO/OLDEARN)
 TOFILE(HELLO/EARNMAST)
 MBROPT(*ADD)
*REPLACE
 FMTOPT(*MAP) *DROP |
*NOCHK

 CRTFILE(*NO)

*YES

Renaming EARNMAST

Assume, for the example in Figure F-18A, that OLDEARN is a

prior EARNMAST file. In Figure F-17, you have already

created a new EARNMAST physical file. To make the

example more believable, let us assume that you have added a

new field to the new EARNMAST file. The file is empty. It

contains no records. The prior records, without the new field,

are stored in a file called OLDEARN. Let us also assume that

OLDEARN was created by renaming the EARNMAST file to

OLDEARN using the following command:

RNMOBJ OBJ(HELLO/EARNMAST)

OBJTYPE(*FILE) NEWOBJ(OLDEARN)

This is a common technique used to save the data from a file

when field lengths are being changed or fields are being added

or deleted to a file. After the rename, EARNMAST is no longer

on the system, but all of its attributes and data are preserved in

the OLDEARN file in the HELLO library.

CPYF

The objective of the CPYF command, then, is to populate our

new file, EARNMAST with the data from OLDEARN. The

CPYF program in Figure F-18A would take the old

EARNMAST records currently stored in the OLDEARN file

and would copy them to the new earnings master file

(EARNMAST).

CPYF Replace or Add

But, CPYF wants a few questions answered before it does its

job for you. For example, do you want the new records that are

copied, to replace any old records, which might already be

there? This is the *REPLACE option. Do you want to add the

new records to any existing records that may already be there?

This is the *ADD option. For this example, either option will

work since there are no records in the newly created

EARNMAST file. For this CPYF, we selected the *ADD

option.

One more point before doing the copy. The override from

above is set to use the member named COMPANY3 which was

created in the example shown in Figure F-17. Member

COMPANY3 is used because it was our last override above.

Unmodified overrides last until you sign off your device.

CPYF *MAP and *DROP

 Chapter 12. Copy Utility for Populating Physical Files 181

CPYF also has some other very important questions it must

have answered in order to copy correctly: Does the data that is

in the from-file have the same shape or format as the data in the

to-file? In this example, we added a new field to the new

EARNMAST file. This makes it a different shape from the

OLDEARN file. We did not change the length or remove a

field from the new file, but since we added a new field (assume

in the middle of the record) the from-file and the to-file no

longer have the same shape,

The CPYF program is smart. It is aware that it is working with

an integrated database system. As such, it gives utility far

beyond what any other system can provide. In this example, as

shown in Figure F-18A, you would pick the format option

*MAP so that the CPYF program can properly take the from-

fields of the OLDEARN file and direct their data into the to-

fields of the same name in the EARNMAST file. It would do

this mapping as directed even if the new fields were bigger.

If you removed a field from DDS before the CRTPF command,

you would pick the *DROP option in addition to *MAP so that

the CPYF program would drop any fields from the old file

which were not defined in the new file.

Copy File and Flat Files

In addition to helping you map your old data to new data, the

CPYF program can also take data from databases and copy it to

the equivalent of flat files. It can also take a flat file and bring it

right into a database file using the *NOCHK option. In both of

these cases, the flat file record layout must correspond 100% to

the layout of the database file. Let’s take an example. Suppose

on a Unix box, we had a file with three fields – such as:

Name 30 positions

Address 30 Positions

City 20 Positions

(Hint: It would be helpful for you to have an

appreciation for Tape, CD, and DVD data

management, as well as PDM, and SEU to

achieve the five tasks below. The data

management knowledge can be gained by

working with AS/400 commands such as

CPYFRMTAP and absorbing the help text. It

can also be gained by reading IBM’s web based

documentation. We show you how to find IBM

manuals in the Appendix of this book. For PDM

and SEU, you can again use IBM’s Web

documentation library or you can use the iSeries

Pocket Developers’ Guide to help you earn all

you need to know about SEU and PDM.

It is clear that the record length, if we add the lengths of the

three fields together, is 80 positions. The data from the Unix

box can be brought to the AS/400 in a standard fixed record

length tape or CD or DVD from the Unix box. To store the data

on the AS/400 and move it into a database file, you would

perform the following five steps:

1. Create an AS/400 file called UNIXDATA in the

HELLO library with a record length of 80. You would

need no DDS. The CRTPF command would create a

file with a one big field named UNIXDATA, the same

as the file name. The command would look as follows:

CRTPF FILE(HELLO/UNIXDATA)

RCDLEN(80)

2. You would then use Client Access or FTP or even the

Copy From Tape command (CPYFRMTAP) to get the

 Chapter 12. Copy Utility for Populating Physical Files 183

data into the AS/400 disk file. Whichever option we

choose to bring data in, after the commands are

executed, the Unix data sits in the UNIXDATA file in

the HELLO library. Though a full description of tape

processing options is beyond this book, we show a

sample CPYFRMTAP below to help complete the

example:

CPYFRMTAP FROMFILE(QTAPE)

TOFILE(HELLO/UNIXDATA)

FROMDEV(TAP01) FROMRCDLEN(80)

FROMENDOPT(*REWIND)

MBROPT(*REPLACE) FROMBLKLEN(8000)

FROMRCDBLK(*FB)

3. You would then use PDM and SEU to build DDS to

reflect the fields: Name, Address, and City. You would

then create a file called NAFILE using PDM option

14, referencing the DDS you just created. The DDS

would look similar to those in Figure F-18B:

Figure F-18B DDS for Flat File Conversion
 Columns . . . : 1 71 Edit

HELLO/QDDSSRC

 SEU==>

NAFILE

 FMT A*A*. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+...

7

 *************** Beginning of data

0001.00 A* ('NAFILE DB FILE')

0002.00 A R NARF TEXT('NAME OF DB RECORD

FOR

0003.00 A NAME 30 COLHDG('NAME')

0004.00 A TEXT('NAME FIELD')

0005.00 A ADDRES 30 COLHDG('ADDRESS')

0006.00 A ALIAS(ADDRESS)

0007.00 A CITY 20 COLHDG('ADDRESS')

0008.00 A TEXT('CONTAINS HW

TRANSLATI

0009.00 A* BELOW REPEAT OF NAME FIELD IS TO DEFINE IT AS THE KEY TO FILE

0010.00 K NAME

 ****************** End of data

**

 F3=Exit F4=Prompt F5=Refresh F9=Retrieve F10=Cursor F11=Toggle

 F16=Repeat find F17=Repeat change F24=More keys

 (C) COPYRIGHT IBM CORP. 1981, 2000.

4. You would then invoke the CPYF utility as shown

below and you would specify *NOCHK for the

FMTOPT parameter. The CPYF program would then

take the big 80-byte field named UNIXDATA, from

the UNIXDATA flat file and plunk it byte for byte

into an 80-byte record chopped up into three fields in

the NAFILE format called NARF.

. The command would not check to assure that fields

lined up since you told it not to check by specifying

*NOCHK. The 80-byte field does not map size-wise

into any of the three database fields. Moreover, there is

no equivalently named field in the To-File in which the

80-byte field named UNIXDATA can be received.

There is no sense telling the CPYF utility to check the

data since any check on the data would stop the copy.

 Chapter 12. Copy Utility for Populating Physical Files 185

With *NOCHK, you are on your own. It is up to your

own editing to assure that the data lines up when the

CPYF is complete.

. The data from 1 to 30 in the UNIXDATA field would

naturally arrive in the NAME filed, from 31 to 60

would arrive in the ADDRES field, and the data from

61 to 80 would arrive in the CITY field. Because the

*NOCHK option in essence instructs the COPY

command to overlay all three fields with the record

information, as long as the data is lined up properly in

the from-record, it will be fine in the to-record. The

command to perform this is given below:

CPYF FROMFILE(HELLO/UNIXDATA)

TOFILE(HELLO/NAFILE)

MBROPT(*REPLACE) FMTOPT(*NOCHK)

5. Because most successful, detail-oriented, IT folks are

skeptics at heart, you would then take option 18 from

PDM Work With Objects (DFU) to see that the data

arrived properly. You might also issue a STRQRY

command and build a simple query to get a report on

the new data. For the bit-heads among us, why format?

Just use the IBM command, Display Physical File

Member (DSPPFM) and you can see the hex

representation of the file so that even the slightest

detail can be checked. The PDM option 18 and the

DSPPFM command are shown immediately below:

18 NAFILE PF N/A File For Unix

Data

DSPPFM FILE(HELLO/NAFILE)

 Chapter 12. Copy Utility for Populating Physical Files 187

Chapter 12.

Introduction to Logical

File Coding - DDS

Levels

Introduction

Well, we did it! We covered physical database file coding and

creation, multiple member files, and the great data populater,

the CPYF utility. Now, we turn our attention to logical files –

the function which may very well be the reason for a relational

database in the first place. One thing is for sure, we covered the

topics in the correct sequence since, try as you may, you cannot

create a logical file without there first being a physical file

upon which to base your logical file.

In the next part of this book, we will introduce various topics

pertaining to logical file including detailed explanations of

important keywords and coding examples for both single &

multiple format logical files and we will be using the relational

database operators which we described earlier. As you may

recall, these are: Union, Projection, Selection, and Join – as

well as Order. We will also review access path sharing

(Chapter 6 - under heading Sharing Access Paths) and format

sharing (Chapter 9, under heading FORMAT). We will also

provide examples and a detailed description of logical file

selections using select/omit logic. There are examples which

use both immediate selection and dynamic selection

(DYNSLT).

Logical Files Make Sense

If we can think of a logical file simply as a means of providing

how data records are selected and transformed when read by an

application or utility program, these examples will make more

sense. They will also make more sense, sooner. Eventually, I

would expect them to all make sense to you.

Non-Join Logical Files

There are two different types of logical files. The first type is

the more simple which we refer to as non-join logical files.

These can be very simple, such as when they are based upon

just one physical file. However, they can become more

complex. For example, a non-join, single format logical file —

also referred to as a UNION may be built over as many as 32

physical files. All files would have the same format in this

case. Additionally, a non-join, multiple format logical file can

also be based on as many as 32 physical files, and up to 32

different formats from the underlying physical files.

Join Logical Files

If we begin with the types of non-join logical files we can have,

if you’ll pardon the pun, it is “logical” that the next type of

logical file to discuss is the join logical file. The join logical

file is more complex. It introduces a number of different DDS

keywords which do not play in the non-join arena. However,

for the additional complexity, it provides necessary facility to

any relational database and we believe is one of the most

valuable capabilities provided by a relational database.

With the notion of the join logical file, it again helps to

remember that all data flows from physical files and that the

type of logical file deployed is controlled by DDS keywords.

There is no data in a join logical file. Just like all other logical

files, it provides a set of rules that make the data appear to be

coming from a single format physical file, but the reality is that

all data is retrieved from the underlying physical files when

using any logical view.

The chart in Figure F-20 summarizes what we have just

discussed and shows the specifics of both the join and non-join

types of files.

Figure F-20 Types of Logical Files

Non-join Join

1 PF 2-32 PFs DFTVAL No default

 1 Format

(Union)

Outer Join Inner Join

 2-32 Formats

Six Levels of DDS

Though not all types of entries are required in all cases, non-

join logical files use five of the six levels of DDS entries as

follows:

1. File-Level Entries

2. Record-Level Entries

3. Join Record-Level Entries

4. Field-Level Entries

5. Key Field-Level Entries

6. Select/Omit-Level Entries

Non-Join Logical Files-

Coding

We will examine all six levels of logical file DDS coding. But,

we will save the JOIN File description until we have discussed

all other levels. Since the JOIN specifications typically use

most of the other levels, you will be in a better position to

appreciate the nuances of the join after you have most of the

other information under your belt.

Our approach in this section will be to describe what happens

in each of the levels of DDS and how you code to make things

happen. To do this, we will closely examine the most popular

DDS keywords (and some not so popular) so that when we hit

the full DDS examples, you will be better prepared to

understand their underpinnings.

Many of the keywords we are examining have already been

fully explained In Chapter 9 since they also pertain to physical

files. Where it is better to repeat information, we will do so, but

we will also refer you back to Chapter 9 as appropriate.

Let’s start our logical file level adventure with the Big Cohuna

of all levels - the File Level.

File Level Keywords

Application requirements are the determining factor as to

which levels and which keywords should be used in a given

project. The file level keywords used in non-join logical files

include the following:

DYNSLT Select records only when view is used

ALTSEQ Use different collating sequence

FCFO Use first-changed, first-out sequencing of

duplicate keys

FIFO Use first-in, first-out sequencing of duplicate

keys

UNIQUE No duplicate keys allowed

LIFO Use last-in, first-out sequencing of duplicate

keys

DYNSLT is the only new keyword in the list above. The other

five keywords are described in detail in Chapter 9 as physical

file “file- level” entries. Because these four keywords control

the sequencing of keyed records, they pertain to keyed physical

files as well as logical files. As such, they received full

treatment in Chapter 9. DYNSLT is covered in detail in

Chapter 15.

Record Level Keywords

PFILE Specify based on physical file name and

library (optional) for logical file

FORMAT Share the format of another file - also involved

to perform equivalent of a rename format

TEXT Provides textual documentation at the record

level

Field Level Keywords

ALIAS Provides another name for a field. Most

valuable for giving fields longer names for use

in COBOL programs.

CONCAT Use for concatenation of fields - such as

making a date field from Month, Day and Year

fields.

FLTPCN Use the FLTPCN keyword to specify double

precision or to change the precision of an

already specified floating-point field.

RENAME Use to rename a physical file field for use in a

logical file

SST Use for sub-stringing fields – such as taking a

date field and creating a month field. It is the

opposite of CONCAT.

TRNTBL Provides a table to translate the data from a

field that is read from a physical file through a

logical field

Because they are so important and so common to logical files,

before we move on to more logical file keywords, key field

keywords, and select/omit keywords, we will take a deeper

look at the CONCAT, RENAME and SST field level

keywords.

CONCAT

The Concatenate keyword (CONCAT) is available for use in

logical files only. You would put this field-level keyword to

use when you want to combine two or more fields from a

physical file record format into one field in the logical file

record format you are defining.

The first necessary component of a CONCAT operation is that

the name of the new, concatenated field must appear in

positions 19 through 28 of the DDS specification. The second

component is the CONCAT keyword which is specified in the

functions area (column 45) as are all DDS keywords.

ofCONCAT keywoow

The format of the keyword is:

CONCAT(field-1 field-2 . . .)

You would specify the physical file field names in the order in

which you want them to be concatenated. The fields must be

separated by one or more blanks, and separate them by blanks.

(Hint: If you specify the same physical field

more than once in a record format in the logical

file — by using either RENAME or CONCAT,

the top-to-bottom sequence in which you specify

the fields in the logical file is the sequence in

which the data is moved to the physical file on

an update or insert operation.

Within your program, each field in the logical

file would have its own storage. When your

program updates through a logical view in

which CONCATs and /or RENAMEs are used,

data management actually updates the

underlying physical record just once. Therefore,

as it builds the physical record to be written or

updated, it moves the data to the physical file

one logical field at a time. Thus, the value in the

last occurrence of the physical field is the value

that is put in the physical record and is the value

that is used for all keys built over that physical

field. All previous values of the same physical

field are overlayed by the final value. The net

effect is that they are ignored.

The following examples show how you specify the CONCAT

keyword in DDS

.

Example 1

In this example, there are three fields - FIRST, SECOND, and

THIRD involved in the concatenation. All of these fields in the

physical file are to be concatenated into one field called

THREE in the logical file, as shown in the following example.

00010A R RCD1R PFILE(PF1)

00020A THREE CONCAT(FIRST SECOND

THIRD)

Example 2

In the following, if the program changes THREE from AA BB

CC to XX YY ZZ, the value placed in the physical record does

not change because the fields specified last are FIRST (value

AA), SECOND(value BB), and THIRD (value CC). However,

if FIRST, SECOND, and THIRD are changed to new values in

a program, the values in the physical record also changed.

00010A R RCD2R PFILE(PF1)

00020A THREE CONCAT(FIRST SECOND

THIRD)

00030A FIRST

00040A SECOND

00050A THIRD

Example 3

In the following example, fields from the physical file are

concatenated into more than one field in the logical file.

00010A R RCD3R PFILE(PF1)

00020A FISETH CONCAT(FIRST SECOND

THIRD)

00030A THFISE CONCAT(THIRD FIRST

SECOND)

Example 4

There is a ton of rules for determining whether a result field is

a variable length field or a fixed length field when two unlike

fields are concatenated. You could check these rules if you

like, by perusing the IBM Physical and Logical File DDS

guide in the IBM Web Documentation. Rather than put you

through the pain of reading all the rules and wondering what

they are all about, we present the following example in which

the fields from the physical file have the following names and

types:

FIXEDA Fixed length field.

FIXEDB Fixed length field.

VARLENA Variable length field.

There are three concatenations coded below in the DDS. The

first (00020) takes an undefined field (in terms of variable

length or fixed length) called FIELDA, and gives it a value of

the concatenation of a fixed length field. Because a variable

length field was involved in the concatenation, FIELDA

becomes a variable length field. The second (00030)

concatenation takes two fixed length fields and FIELD B winds

up as a fixed length field because the two concatenated fields

are fixed length. In the third DDS CONCAT (00040) FIELDC

is defined as variable length in this set of DDS. Even though

the concatenation is of two fixed length fields, because

FIELDC is defined as variable length, the result of the

CONCAT is a variable length field.

In summary, the resulting fields that would be presented to a

HLL program are as follows:

FIELDA Variable length field

FIELDB Fixed length field

FIELDC Variable length field

The Code

00010A R RCD4R PFILE(PF1)

00020A FIELDA CONCAT(FIXEDA

VARLENA)

00030A FIELDB CONCAT(FIXEDA

FIXEDB)

00040A FIELDC CONCAT(FIXEDA

FIXEDB)

00050A VARLEN

RENAME

The Rename Field keyword (RENAME) is available for use in

logical files only. You would put this field-level keyword to

use when you want to rename a fields from a physical file

record format in the logical file record format you are defining.

You would use this keyword when you want a field name in

the logical record format you are defining to be different from

its corresponding physical file field name.

The format of the RENAME keyword is:

RENAME(physical-file-field-name)

The name as it appears in the physical file record format is the

one parameter value for this keyword. One particular field in

the physical file record format can be renamed multiple times

in a logical file format. There are a number of reasons why you

might want to rename a field through a logical view:

1. You want to use programs that were written using a

different name for the same field.

2. You want to map one field in a physical file record

format to two or more fields in a logical file record

format.

3. You are using a high-level language that does not

permit two fields having different names to have only

one data storage area. By specifying the RENAME

keyword, you allow both fields to access the same data

storage area.

Just as with the CONCAT statement which we described

above, the top-to-bottom sequencing of multiple renames of the

same physical field determines what data actually gets written

during a WRITE or UPDATE operation in an HLL program.

The following examples show how to specify the RENAME

keyword.

Example 1

In the example immediately below, the OLDFIELD field in the

physical file (PF1) is renamed NEWNAME in the logical file.

00010A R RCD1R PFILE(PF1)

00020A NEWNAME

RENAME(OLDFIELD)

Example 2

In the following example, the renamed field in the logical file

(NEWNAME) is used as a key field.

00010A R RCD1R PFILE(PF1)

00020A NEWNAME

RENAME(OLDFIELD)

00030A K NEWNAME

SST

The Substring keyword (SST) is available for use in logical

files only. You would put this field-level keyword to use when

you want to use a piece of a field value from a physical file

record format in the logical file record format you are defining.

You would use this keyword to specify a character string that is

a subset of an existing character, hexadecimal, zoned field, or

graphic field.

The format of the keyword is:

SST(field-name starting-position

[length])

The first parameter you specify in the SST operation is the

fieldname. This specifies the name of the field from which the

substring is taken. The field must be defined in the same

logical file format prior to the SST field (which is the field you

are defining) or it must exist in the physical file specified on a

PFILE or JFILE keyword (JFILE is a Join record level

keyword).

(Note: Though we do not like to spend the time

and space for rules in an action-oriented,

example driven book, simply because rules are

boring. If you are reading the rules below and

you get a bit bored, consider this small section

reference material and move on!

The rules for SST are reasonable and relatively easy to

comprehend. To find the field, the database searches for a

matching field name using the following rules:

1. First, the database searches the field names specified in

positions 19 to 28 in the logical file format prior to the

SST field.

2. If it finds no matching field name in positions 19 to 28

in the logical file format, the database searches for the

field name in the physical file as specified on the

PFILE or JFILE keyword, using another set of rules as

follows:

 A. If the logical file is a simple or multiple format

logical file, the field must exist in all files

specified on the PFILE keyword.

 B. If the logical file is a join logical file and the

JREF keyword is specified on the SST field,

the field must exist in the JFILE referred to by

the JREF keyword.

 C. If the logical file is a join logical file and the

JREF keyword is not specified on the SST

field, the field must exist in exactly one JFILE.

The second parameter you specify in the SST operation is the

starting character position of the string within the field

specified in the first parameter. The substring thus begins at the

starting position you specify on the SST keyword.

The third parameter (optional) you specify in the SST operation

is the length of the string which you are taking from the

starting position, defined in the second parameter, of the field

whose name you specify in the first parameter of the SST

operation. Thus you specify the name of the field which has the

string, the starting position of the sub string, and how many

characters you want to be part of the new substring field which

references the substring.

As another option for the length parameter, you can also

specify the substring length on the field length column (DDS

positions 30 through 34). As you would expect, the name and

starting position are required parameters; the length is optional.

Example 1

The following example shows how to specify the SST keyword

on a simple or a multiple format logical file.

A R RCD1R PFILE(PF1)

A FIRSTNAME I SST(EMPNAM 1 10)

A K LASTNAME

In this example, the FIRSTNAME field is a substring of

EMPNAM from PF1. The substring begins in position 1 of

EMPNAM and continues to position 10. The usage (I in

position 38 of DDS) must be specified for SST fields in simple

or multiple format logical files.

Example 2

The following example shows how to specify the SST keyword

on a simple logical file.

A R RCDR2 PFILE(PF1)

A ADDR1

A STATE I SST(ADDR1 44 2)

A CYR I SST(CREATEDATE

5)

A VNAME

A VENDNAME I SST(VNAME 11

10)

A K CYR

This example shows:

1. STATE is a substring of ADDR1 from the logical

format It starts in position 44 for a length of 2.

2. CYR is a substring of CREATEDATE and is built to

hold the year the record was created. It starts in

position 5 for a length of 2 (end of field)

3 VENDNAME is a substring of VNAME. It starts in

position 11 for a length of 10.

4 Since CYR is a key field, the unique field name

CREATEDATE must exist in PF1.

5 The usage (position 38) for a field with the SST

keyword must be I (input only).

Example 3

The following example shows how to specify the SST keyword

on a join logical file. You may want to make a note of this page

and come back later after we cover Join logical files.

A R RCDR1 JFILE(PF1 PF2)

A J JOIN(1 2)

A JFLD(STATE

STATE)

A ADDR1 JREF(2)

A STATE I SST(ADDR1 44 2)

A JREF(2)

A CYR I SST(CREATEDATE

5)

A VNAME JREF(1)

A VENDNAME I SST(VNAME 11

10) A JREF(2)

A K CYR

This example shows:

1. STATE is a substring of ADDR1 from the logical

format and PF2, and is joined with STATE from PF1.

It starts in position 44 for a length of 2.

2. CYR is a substring of CREATEDATE and is built to

hold the year the record was created. It starts in

position five for a length of 2 (end of field)

3 VENDNAME is a substring of VNAME from PF2,

since VNAME in the logical file format has a different

JREF. It starts in position 11 for a length of 10.

4 Since CYR is a key field, the unique field name

CREATEDATE must exist in PF1, not PF2.

5 The usage (position 38) for a field with the SST

keyword must be I (input only). Since this is a join

logical file, the usage default is always I.

More LF Field Level

Keywords

The following keywords are not used for logical files per se but

provide information to display files and other programs used on

the AS/400 and iSeries. These keywords have previously been

discussed in Chapter 9 under the heading More PF Field Level

Keywords.

CHECK

COMP

COLHDG

EDTCDE

EDTWRD

RANGE

VALUES

Logical File Key-Field Level

Keywords

The use of the logical file Key-Field level keywords is exactly

the same as for physical file definitions. The detailed

explanations of the following keywords which are used at the

Key-Field level for logical views are provided in Chapter 9

under the heading: Specifying Key-Field Level PF Keywords.

DESCEND

ABSVAL

UNSIGNED

SIGNED

DIGIT

ZONE

NOALTSEQ

Logical File Select/Omit

Level Keywords

COMP Use with an S or O in position 17 to provide

comparison values for select/omit processing.

Use to select or omit fields with a specific

code.

RANGE Use with an S or O in position 17 to provide a

range of values for record selection or

omission in select/omit processing

VALUES Use with an S or O in position 17 to provide a

list of values to be selected or omitted in

select/omit processing

.

ALL Use ALL with S in position 17 to tell the

database to select any records that do not meet

any of the other select/omit rules specified

above the ALL. Specify O to omit any records

that do not meet any of the other select/omit

rules.

Detailed Look at Select /Omit

Keywords

Logical File selection is provided by the combination of the S

and O codes in column 17 and the four logical file selection

keywords examined in general terms above.

(Note: Because this is such an important topical

area in the study of logical files, we are

providing a detailed explanation and specific

examples for each of the select/omit keywords.

This is provided in addition to all of the specific

DDS how-to examples and their associated

descriptions.

Additionally, in the detailed description of the

COMP keyword below, we have included a

section called Select/Omit Rules. Rather than

describe these rules in this general area, prior to

discussing the keywords and examples, we

placed these rules within an example context and

use the code in the COMP section to

demonstrate the rules.

The following detailed explanations of select / omit keywords

also include specific select / omit examples for your

edification.

ALL

Because we like to start simple, and because we are covering

these logical file select/omit keywords in alphabetical

sequence, we shall cover the ALL keyword first. You use this

select/omit field-level keyword to specify the action to be taken

after all other select/omit

specifications have been processed for the logical file.

Works With “O” and “S”

Just as all select specifications, you would specify ALL with an

S in position 17 when you want any records that do not meet

any of the other select/omit rules (preceding the ALL) to be

selected. Selected in this instance means to be included in the

view verses omitted or excluded from the view. You would

specify the ALL keyword with an O in position 17 to omit any

records that do not meet any of the other select/omit rules.

It follows that when you specify the ALL keyword, it must

follow all of the other select/omit statements. It is the leftover

clause. You do not specify a field name with the ALL keyword.

It does not make sense and the DDS compiler does not let you

do it.

This ALL keyword has no parameters. It is therefore very easy

to coded.

Life Without “ALL”

It is just as important that you understand what happens when

you do not specify ALL and you have used select / omit logic.

Say you have five OR specifications which are all S in 17 -

select oriented. If the record does not match any of the five

COMP operations, and it falls through to the end of the

select/omit specs, does it get selected? That is the question. The

answer in this case is No! Why? Because we were specifically

selecting records, the default is to omit if ALL is not specified.

Now, say you have five OR specifications which are all O in 17

- omit oriented. If the record does not match any of the five

COMP operations, and it falls through to the end of the

select/omit specs, does it get selected? That is the question. The

answer in this case is YES! Why? Because we were

specifically omitting records, the default is to select the others

if ALL is not specified

What happens if there are S records and O records (column

17)? If you do not specify the ALL keyword, the default action

taken is the exact opposite of the last select/omit statement in

the DDS. Thus, if the last statement was a select, the default is

to omit all. If the last statement was an omit, the default is to

select all. It does not matter how many O’s or S’s came before

the last statement!

“ALL” Code Snippet

Let’s look at an example DDS snippet, which shows how to

specify the ALL keyword in your logical file DDS.

00010A S ACT COMP(EQ 3000)

00020A S ACT COMP(GT 3100)

00030A O AMT COMP(LT 0)

00040A O ALL

Suffice it to say that if none of the S’s or O’s match the

record, then the default for the record is to be omitted.

COMP

When used in a logical file it controls which records are

selected to be in the access path or are omitted from the access

path.

The word COMP is short for comparison and that is its

function. It is valid in physical and logical files at the field

level. At the field level, it is used for display file and other

validity checking. But, its key use for logical files is in the

select/omit level where it controls which records are included

in a view and which records are not included.

COMP Function and Forms

COMP is equivalent to the CMP keyword, which has been

around for twenty-years. COMP is now the preferred keyword.

You would use this select/omit level logical file keyword, to

select records or omit records, based on specific values in

specific fields which you test. At the select omit level, you

specify an S in column 17 for selection and you specify an O

for omission.

The formats of the keyword are as follow:

COMP(relational-operator value)

COMP(relational-operator field-

name)

COMP Relational Operators

With the relational operator, you specify the type of selection

or omission you require. You test for equal, greater than, less

than, etc. On the other side of the relational operator, you

specify the filed name or the value which you are specifically

testing.

The valid relational operators are as follows:

Operator Meaning

EQ Equal to

NE Not equal to

LT Less than

NL Not less than

GT Greater than

NG Not greater than

LE Less than or equal to

GE Greater than or equal

to

You can specify the value parameter at either the field level or

the select/omit field level. However, a field name can be

supplied only at the select/omit field level in a logical file. Here

are a few examples showing the power of the COMP operation

at the select / omit level and the field level.

Example A:

00010A R RECORD PFILE(PF1)
00020A
00030A FIELDA COMP(NE O)
C0040A FIELDB COMP(NE 'A')
00050A FIELDC
00060A FIELDD
00070A FIELDX
00080A K FIELDB
00090A S FIELDC COMP(EQ
FIELDX)
00100A S FIELDA COMP(NE O) 2
00110A S FIELDD COMP(NE *NULL)
00120A O FIELDB COMP(GE 'A')

At statements 00020 and 00030, the COMP keyword is

specified for both FIELDA and FIELDB as a validity checking

keyword for any display files that may reference FIELDA and /

or FIELDB.

At statements 90 through 120, the COMP keyword is specified

as a select/omit keyword for FIELDC, FIELDA, FIELDD, and

FIELDB. When processing through this view, records from the

physical file PF1 are retrieved depending on the result of the

following comparisons:

1. FIELDC: Records are always selected when FIELDC

equals FIELDX.

2. FIELDA: Records not meeting the FIELDC test are

tested at this statement. They are selected using this S

COMP statement only when FIELDA is not equal to

zero.

3. FIELDD: Records not meeting FIELDA test or the

FIELDC test are tested at this statement. They are

selected only when FIELDD is not a null value.

4 FIELDB Those records not selected in the above three

tests are tested. They are specifically omitted if

FIELDB is greater than or equal to the letter “A.”

Select/Omit Rules

There are some rules to remember when both select and omit

keywords:

1. All select/omit level compares are OR conditions when the S

or O designation is specifically entered in column 17. When

column 17 is blank, after the first S or O specification, the

blank COMP records are logically ANDed with the above O or

S specification. There are no ANDed specifications in the

example above. All are ORs. In an OR condition, whenever a

comparison is satisfied, the record is selected or omitted, no

other comparisons are made for the record, and the next record

is processed.

2. If you specify both select and omit for a record format, the

order in which you specify the keywords, is very important.

The statements are processed in the order in which they are

specified. Thus, if a record satisfies an early statement, the

record is either selected or omitted as specified, and any

remaining select/omit statements are not examined for that

record. In other words, once the criteria for selection or

omission is met, the record is selected. No other selection tests

are required. The record is either specifically selected or

omitted and the next record is processed.

3. If you specify both select and omit statements, you can

indicate whether records not meeting any of the values

specified are to be selected or omitted. You do this by

specifying the ALL keyword on the last select/omit statement.

If you specify S, the records not meeting the comparisons are

selected. If you specify O, the records not meeting a specific

comparison are omitted.

4. If you do not specify the ALL keyword, as in the example

above, the action taken for the records that do not meet the

values is the converse of the type of the last statement

specified. Records that do not meet selection values are

omitted, and records that do not meet omission values are

selected. In the example above, all records not meeting any of

the values would be selected since the last operation is an

OMIT (O in 17).

Here is another example:

Example B:

This example specifies the COMP keyword using a

hexadecimal character string.

00010A R RCD1 PFILE(PF1)

00020A FIELDA

00030A FIELD1

00040A FIELD2

00050A K FIELD1

00060A S FIELDA COMP(EQ X'51')

00070A FIELD1 COMP(NE X' ')

In this example, the COMP keyword is specified as a

select/omit keyword for FIELDA (which is defined as a 1-byte

field in the physical file). Records from physical file PF1 are

retrieved through this record format only if the value of field

CODEA is equal to a hex 51 and if the value of FIELD1 is not

blank.

RANGE

You would specify this keyword at the field level for a physical

or a logical file. For a logical file, the RANGE can also be

specified at the select- or omit-field level, or both.

(Hint: The RANGE keyword also applies to

physical files and logical files when specified at

the field level for validity checking in display

files.

RANGE Function and Form

The RANGE keyword is used in the select/omit level with

either a select (S) or Omit (O) option specified in column 17. It

works very similarly to the COMP operation. However, instead

of one value being tested a range of values is tested. The

select/omit rules described under COMP also apply to

RANGE.

The format of the keyword is:

RANGE(low-value high-value)

RANGE Example

The following example shows a complete set of complete DDS

for a logical file. However, the DDS from statements 00020 to

00040 are coded the same for a physical file when specifying a

validity check for a display file. In this respect, for a physical

or a logical file, these statements represent coding being done

on behalf of a later to-be-built display file. If the PFILE

keyword were removed from the record line (00010) in the

sample code below, and line 00060 were also removed, this

would be all be valid code for using the RANGE keyword with

a physical file.

00010A R RECORD PFILE(PF1)

00020A FIELDA 1 0 RANGE(2 5)

00030A FIELDB 1 RANGE('2'

'5')

00040A FIELDC

00050A K FIELDB

00060A S FIELDA RANGE(1 4)

RANGE at the Field Level

In this example, you would code the RANGE (statements

00020 and 00030) as specified for FIELDA and FIELDB for

later display file validity checking purposes. At the field level

in a physical or logical file, the use of the RANGE is limited as

a keyword for display files that later refer to FIELDA and

FIELDB. In the display file that would later be built, when this

RANGE is in control of a field on a display, it requires that the

work station user type only 2, 3, 4, or 5 in FIELDA or

FIELDB. FIELDA is an example of coding a numeric field and

FIELDB is an example of coding a character field. All of the

information in this paragraph pertains to both physical and

logical files.

RANGE at the Select/Omit Level

For logical files only: You would also code the RANGE at

statement 00060, if you were using that range for selecting or

omitting records via a logical file. It is not at first obvious that

statements 00020 and 00060 above are not mutually exclusive.

They mean different things. As you can see in this example, on

statement 00060, the RANGE is specified as a select/omit

keyword for FIELDA. Records from the physical file PF1 are

retrieved through this logical file record format only if the

value of FIELDA is 1, 2, 3, or 4. The RANGE on statement

00020 is for later use in a display file for validity checking.

VALUES

You would specify this keyword at the field level for a physical

or a logical file. For a logical file, the VALUES keyword can

also be specified at the select- or omit-field level, or both.

(Hint: The VALUES keyword also applies to

physical files and logical files when specified at

the field level for validity checking in display

files.

VALUES Function and Form

The VALUES keyword is used in the select/omit level with

either a select (S) or Omit (O) option specified in column 17. It

works very similarly to the COMP operation. However, instead

of one value being tested, or a range of values being tested, a

list of values is tested. The select/omit rules described under

COMP also apply to VALUES.

The format of the keyword is:

VALUES(value-1 [value-2...[value-

100]])

VALUES Example

The following example shows a complete set of complete DDS

for a logical file. However, the DDS from statements 20 to 40

are coded the same for a physical file. In this respect, for a

physical or a logical file, these statements represent coding

being done on behalf of a later to-be-built display file. If the

PFILE keyword were removed from the record line (00010) in

the sample code below, and lines 50 and 60 were also

removed, this would be all be valid code for using the

VALUES keyword with a physical file.

0010A R RECRD1 PFILE(PF1)

0020A FIELDA 1 0 VALUES(1 6 9)

0030A FIELDB 1 VALUES('A' 'B'

'C')

0040A K FIELDB

0050A S FIELDB VALUES('A' 'B')

0060A S FIELDA VALUES(1 6) 2

VALUES at the Field Level

In this example, you would code the VALUES (statements

00020 and 00030) as specified for FIELDA and FIELDB for

later display file validity checking purposes. At the field level

in a physical or logical file, the use of the VALUES is limited

as a keyword for display files that later refer to FIELDA and

FIELDB. In the display file that would later be built, when this

VALUES keyword is in control of a field on a display, it

requires that the work station user type only 1, 6, or 9 in

FIELDA or an A, B, or C in FIELDB. FIELDA is an example

of coding a numeric field and FIELDB is an example of coding

a character field. All of the information in this paragraph

pertains to both physical and logical files.

VALUES at the Select/Omit Level

For logical files, You would also code the VALUES keyword

at statements 00050 and 00060, if you were using those values

for selecting or omitting records via a logical file. It is not at

first obvious that statements 00020 and 00060 above are not

mutually exclusive. Additionally. Statements 00030 and 00050

are not mutually exclusive. They mean different things.

As you can see in this example, on statements 00050 and

00060, VALUES is specified as a select/omit keyword for

FIELDA. Moreover, on statements 00030 and 00050,

VALUES is specified as a select/omit keyword for FIELDB.

As a point of note, the two select omit statements at 00050 and

00060 form an OR condition, not AND. Therefore, records

from the physical file PF1 are retrieved through this logical file

record format only if the value of FIELDA is 1, 6 or 9 or the

value of FIELDB is A, B, or C. The Values keyword on

statements 00020 and 0030 are for later use.

Chapter 13.

Logical File Coding

Examples - Non Join

Format Operations

LF DDS Coding Example -

Projection

Now that we have reviewed the level keywords for logical file

DDS, let’s move on to a bit of logical file coding that uses a

number of these keywords. At the same time, we’ll give more

detailed explanations of some keywords we have already used -

in the context of the examples.

 Chapter 13. Logical File Coding - Non Join Format Operations 223

(Note: In order to correctly explain Dynamic

Select (DYNSLT), just about all other aspects of

non-join and join files needs to be reasonably

understood. Therefore, we dedicated a whole

Chapter 15 for this purpose. To present the

forthcoming examples in th best light, you will

find the DYNSLT keyword used where it makes

sense. It is a chicken / egg situation. As

appropriate in these examples, we describe the

functions of the DYNSLT in context without

describing DYNSLT per se.

Figure F-21 DDS Logical File - Some Fields
A* Logical FILE (PRINQRY)
A DYNSLT
A R PRINQRYR PFILE(HELLO/EARNMAST)
 EMPNAM
 EMPINL
 RATE
 EMPNO
 STATUS

 K EMPNAM
 S STATUS COMP(EQ 'D')

PFILE Keyword in Example

The PFILE parameter in Figure F-21 says that the

EARNMAST file in HELLO is the physical file upon which

this logical file named PRINQRY is based. The PFILE keyword

is used to code the physical file(s) and the library (optional),

upon which the logical file being defined is to be built.

Relational Projection

The rule for fields in logical files is that either (1) you specify

no fields at all and then you get all fields in your logical view,

or (2) you specify each of the fields that you want in your view

and do not specify those fields that you do not want in your

view. It’s all or nothing but specified.

Subset Fields and / or Rearrange

This is how DDS provides the relational projection operation

which is the moral equivalent of the Create View command in

SQL. In addition to being able to project a subset of the fields,

you might also choose to rearrange the fields. You must specify

all of the fields you want in the view in the sequence that you

want your record to be projected.

Let’s suppose you do not want to subset fields. You merely

want to change the order of one or two fields in the record

layout using the logical view, you must specify all of the other

fields you want to be in the view. For example, let’s say you

wanted to switch the record position of the EMPNAM and

EMPNO fields. In order to also have all of the other fields in

the view, you would have to specify each of the other fields in

the field sequence in the record format as you desired. The

moral is that when you define or change the position of just one

field, you have to specify them al l— to get them all in the

view.

Relational Order

Relational order is achieved in this set of DDS via the K in

position 17 next to the EMPNAM field. This Key level field

name defines the key for the file. If more than one key is

desired for the file (composite key), then more key field entries

can be used. The most important keys must be specified first in

order to achieve the desired record sequence. As you can see

this view is sequenced by EMPNAM (Employee name). HLL

 Chapter 13. Logical File Coding - Non Join Format Operations 225

programs can randomly or sequentially access this logical

using the key regardless of whether the physical file was built

with a key.

(Hint You cannot use a field which you are not

projecting (in the logical file record format) as a

key field. If you project no fields and you

therefore get all fields, you can select any field in

the physical file as the key. In this case, all fields

from the physical are also fields in the logical

view. If, however, you use subset of the physical

file fields as the fields for the logical view, you

cannot use a field which is not in the logical file

as the key for that file.

Relational Selection

The last statement in Figure F-21 is the select / omit level for

the DDS. This is how relational selection is provided in DDS.

In the Select/Omit level, you use the DDS select / omit

keywords (COMP, RANGE, VALUES) along with the S and

O level codes to specify your record selection criteria. In the

example in Figure F-21, as you can see, only the records in

which the status codes are equal to the letter “D” are visible.

The keyword, DYNSLT tells the database that the selection

criteria for this file should not be maintained immediately.

Instead, the status “D” records are selected at run time. In this

way, the database does not have to work keeping this access

path up to date when there are no programs using the logical

file. Thus, records are selected dynamically in Employee name

sequence, with only the five projected fields delivered in this

view.

Record Format Names

In the Logical file DDS in Figure F-21, the comment suggests

that the logical file created from this DDS will be named

PRINQRY. The PFILE keyword says it will be built over the

Physical File EARNMAST. The logical file format name we

selected is PRINQRYR. This is merely the file name with an

“R” at the end. It could have been given any name as long as

fields are defined for the format. If no fields were specified,

which means that all fields from physical are to be used, the

format name used for the logical file, would have to be the

same name as the format name in the physical file. There is one

more possibility regarding the format name. You can also use

the name of a format in another file. In this case, however, you

would need to specify the DDS FORMAT command which is

covered in Chapter 9 under the heading FORMAT, as well as

below.

LF DDS Coding Example -

Order, No Projection

Now, let’s examine and in some cases, reexamine the logical

file record format level keywords, such as PFILE, TEXT, and

FORMAT as they exist in some live logical files – at least in the

DDS.

Figure F-22 represents DDS with these keywords.

Figure F-22 DDS Logical File - all fields

A* Logical FILE (PRMASTL1)

A*

A R EARNMSTR PFILE(PREARNMAST)

 K EMPNO

Logical File Name

 Chapter 13. Logical File Coding - Non Join Format Operations 227

This DDS code in Figure F-22 is more like the way most

developers code their logical files. A logical file, frightening as

it may be initially to understand, is a piece of cake to code in its

most simplistic form. Here it is before you in Figure F-22. If it

were not for the comments noting the based on physical file,

there would be just two DDS statements.

(Hint: By the way, The association of the

physical file name with the DDS occurs with the

CRTLF command. Nothing in DDS links the file

to the DDS. Therefore, it is a good convention

(shop standard) to present the file name in a

comment within the DDS for that file.

Record Format Name

Unless a different projected relational view is required, you get

a full logical file with the coding in Figure F-22. By specifying

no fields (no projection) in your logical file, you get all the

fields in your new view. Notice that the format name which is

used is EARNMSTR. It is the format in the physical file

(PFILE) EARNMAST.

By specifying this format name on the record level line(R in

17) , you are telling the DDS compiler to take a trip to the

physical file format EARNMSTR within the file object

EARNMAST (not the physical file’s DDS),at compile time, to

rustle up all the fields for this new logical view. It’s a lot easier

to write than that last sentence. It saves you a lot of

unnecessary coding and that is its main purpose.

The link to all of the fields in the format by specifying the

format name of the physical file in the DDS “R” (record

format) specification line. When you specify the right format

name for the physical file, you get all of its fields. It’s that

simple. The DDS compiler copies them from the physical file

object into the format of the logical file. Therefore, if you want

all the fields, there is no need to specify any fields when the

logical file will include all of the fields.

Key Field

If you look again at Figure F-22, you will notice that the last

line is a Key-Field level “K” entry. As you would expect, this

is where the key is provided — or keys are provided —

depending on the file. In this case, the key is EMPNO. The

system will build an access path for this key if it finds none

suitable to share. Otherwise, it will latch onto and share an

existing access path if one exists from another logical file or

even the EARNMAST physical file’s keyed access path. Of

course, if the physical file were already in key sequence by

EMPNO, there would be little need for this Key-Level or this

logical file for that matter.

Remove Key Field

If we were to remove the key field specification for this file,

would the DDS continue to represent a viable logical file. Yes,

it would! Of course, to create a logical file, we would have to

compile the DDS. This DDS will most certainly compile, even

though there is just one live statement. It happens that the

statement has a PFILE so it knows the based-on physical. It

also has a record format level “R” named EARNMSTR which

can be found in the physical file. The resulting logical file

would not have a keyed access path but it would process the

data (all fields) from the EARNMAST physical file in arrival

sequence. There may not be much use for this type of one

 Chapter 13. Logical File Coding - Non Join Format Operations 229

statement logical file, but it sure helps give an appreciation for

how logical files work, what is essential, and what is not.

Fields Made Part of LF Format

It is good to remember that the logical file does not borrow the

record format of the physical file at execution time. Nor does it

continually point to the record format of the physical file No

Sir–ee Bob! It has its own record format as part of the logical

file object. Where does it get it? At compile time, it goes to the

physical file object and gets all of the information it needs from

the referenced format and it brings it into the logical file.

LF DDS Coding Example-

Order With Projection

Figure F-23 shows another simple example of projection over

the EARNMAST file. This time the image projected is of just

two fields: employee name and employee initial. The file is

ordered by employee name (EMPNAM) as per the key level

statement with the EMPNAM field repeated.

Figure F-23 Simple Logical File With Projection and Order
A* Logical FILE (PROJPRL)

A*

A R PROJECTN PFILE(HELLO/EARNMAST)

 EMPNAM

 EMPINL

 K EMPNAM

Notice that only EMPNAM and EMPINL are the only two

fields included in the projection (view) in Figure F-23. A

program using this view in its file description would receive

only these two fields for input and/or output use. The HLL

(RPG, COBOL) compiler does not see the other fields in the

underlying physical file.

LF DDS Coding Example -

Union & Order with

Projection

Now, let’s try another relational operation, UNION. In the next

two examples, you have an old master file and a new master

file and the objective is to marry (logically merge or union) the

two files using fields that are common to them both.

Relational Union Versus Relational

Join

Unlike a join which we will be studying shortly, the result of a

UNION is a view of similar data in multiple files as if they

were all lumped together, and then sorted by the union key

level field. In other words, if there were a three file union and

each of the three physical files had thirty-three records, the

union view would have ninety nine records – all sorted

together like one big homogenous file view.

We can contrast Union with Join even before we study Join. If,

for example, you joined the same three files. Assume for this

instance that you know that the data is perfect and that the

 Chapter 13. Logical File Coding - Non Join Format Operations 231

resulting Join would produce a logical file that which was

really a natural, inner, and matching join (three names for the

same thing). In other words, there would be a record in each of

the secondaries for each primary record. If this were all true,

then after the join, the resulting view would not show 99

records as in the Union example. Instead it would show just

thirty-three records. As a friend of mine would say

“Combinatorically speaking, the Join combines the records into

one record.” Therefore, each record would show a piece (one

or several fields) from each of the physical files which were

joined.

Figure F-24 DDS LF - UNION - Some Fields
A* Logical FILE (PRUNSOME)
A*
A R PRUNSOMR PFILE(EARNMAST
OLDEARN)
 EMPNAM
 EMPINL
 RATE
 EMPNO
 STATUS

 K EMPNO

From Two, One

Union takes two almost identically structured files and

combines them. A good example is that shown in Figure F-24

in which there are New Masters and Old Masters. The new

combined view of the data (PRUNSOMR) includes only the

named (projected) fields from all records in both the old

Payroll Earnings Master (OLDEARN)and the new Payroll

Earnings Master (EARNMAST). Overall, up to 32 files can be

unioned. Though there are two files defined in the PFILE,

without library qualifiers, this is not a join since there is no Join

Record Format (J in column 17). Each record contains data

from just one physical file, not both as in a join. A key field

(EMPNO in this case) must be specified in a UNION.

LF DDS Coding Example-

Union, Order No Projection

In Figure F-25, we show a UNION with all fields.

Figure F-25 DDS LF - UNION - all fields
A* LOGICAL FILE (PRUNALL)

A*

A R EARNMSTR PFILE(EARNMAST

OLDEARN)

 K EMPNO

Figure F-25 includes all fields from all records in both the old

Payroll Master and the New Payroll master. Notice the format

name is EARNMAST. This says that the union will use the

format (all the fields) of the new master file. There cannot be

any extra fields in EARNMAST compared to OLDEARN. All

fields in EARNMAST must also exist in OLDEARN. If there

are any such differences in these two files, the logical file will

not compile and it will produce severe error messages and it

will not be created.

LF DDS Coding Example-

Reformat and Order with no

Projection

 Chapter 13. Logical File Coding - Non Join Format Operations 233

Now, let’s try a new wrinkle on Union. Let’s use a Format

keyword to reformat the UNIONed data. In the next example,

we assume that we have added a new field to the new earnings

file and we want a unioned view of the fields in the

OLDEARN file. This does not contain the new field. This may

be something you would do to accommodate consolidations,

etc., so that you can get the known information from two

similar groups of records. Take a look at the DDS in Figure F-

26, and ask yourself if it has a new format? If so, what format

is that?

In the example in Figure F-26, you see another UNION but this

time assume that the files have different formats. Since we still

want the records UNIONED, you are going to have to select a

format which has fields that exist in both files to govern the

new UNIONed view.

 Figure F-26 DDS LF - UNION - Format
A* LOGICAL FILE (UNALLFMT)

A*

A R OLDEARNR PFILE(EARNMAST OLDEARN)

 FORMAT(OLDEARN)

 K EMPNO
This new logical view of data called UNALLFMT, uses the

format of the old earnings file. Both the old and the new

earnings file have all of the fields of the new EARNMAST file.

Assume we have just added the PAYCOD field to the

EARNMAST file. We cannot use the EARNMSTR format for

the union since there is no PAYCOD field in the OLDEARN

file.

This new format shares the OLDEARNR format from the old

Payroll Master File. Fields from the new master which are not

in the old format are not included in the new Unioned view

called UNALLFMT.

LF DDS Coding Example-

Simple, Non-Join Multiple

Format Logical File

Now, we have an even newer wrinkle. As part of our

continuing saga of presenting non-join solutions for your

approval, we leave the unions behind and move on to a non-

join, non-union example set. Again this example uses two

physical database files. They will not be joined and they will

not be unioned.

Multiple Formats - One Set of DDS

Instead, one logical file will be built over the two physicals.

The end result is that both formats, one from each physical file,

will be present in the new view. Rather than bore you by

showing all the physical file detail, we can assume that, in

addition to the EARNMAST file, our payroll system also has a

timecard file called TIMECARD. The full description of the

TIMECARD file is given in Chapter 8. The file has a number

of important fields such as employee number and number of

hours worked. It also has one record format, the name of which

is TIMECDR.

In a payroll application, it does not make sense to join a

timecard record to a master record. After all, a time card is a

transaction record that has a life of about one payroll period.

Next pay period there will be a new record. However, most

 Chapter 13. Logical File Coding - Non Join Format Operations 235

payrolls are processed by reading the time card and then

reading the master record. Wouldn’t it be nice if you could

fashion a logical file over both the employee master file and the

time card file so that the records would arrive in the typical

way payrolls are processed?

Link by a Common Field

Well, you can! By using a common field which exists in both

files, you can define each format with a key field, such as

employee number. It doesn’t matter if the key in one format is

named EMPNO and in the next it is EMP#. What matters is

that a common field exists and that the attributes of the fields

are the same.

By defining the time card file first in DDS, as in Figure F-27,

you can create a logical view in which the time card record is

presented first followed by the master record. By using the

same employee number key on both files, the two files would

behave as if they had been merged.

Proper Order, Intermixed Records

Therefore, a program could rightly expect that after the time

card record for say, employee 300 was processed the next

record read in the program would be the employee record for . .

. you guessed it . . . employee 300. Unless the master were

missing, which creates a processing issue in all cases, the

master record for an employee would always be processed

immediately after the time card record for the same employee.

It’s simple. It’s just the way it works.

Since the format of the time card record is different from the

format of the master record, the logical file built over these is

known as a multiple-format logical file. The resulting view

therefore has two formats, not one format as in the Union

examples above and in the Join examples to come.

HLL Program Processing

The HLL program to process this logical file, would need just

one file defined - the multiple format logical file (MULTPRTC in

this example). The program would read from the one logical

file and would process both records separately — the time card

record followed by the payroll master record.

The AS/400 database is the only relational database which

provides a multi-format view of data. Another name for this is

a hierarchical view, and it is the most favorite view presented

by hierarchical databases, which were the predecessors of

relational DBS.

Check Out the DDS

When you examine the DDS in Figure F-27, you will notice

that there are multiple record format level “R” statements

defined. Since you want multiple formats in the logical file

(time card and master) you would need to be able to define the

separate formats (TIMECDR and EARNMSTR) for both

physical files within in the same set of DDS. Moreover, the

format names are the same and must be the same names as the

formats in the underlying physical files.

Ladies and Gentlemen, the view we have been waiting for is

now available in Figure F-27.

 Chapter 13. Logical File Coding - Non Join Format Operations 237

Figure F-27 Multiple-Format LF - Non-Union, Non-Join
A* Logical FILE (MULTPRTC)

A*

A R TIMECDR PFILE(TIMECD)

 K EMPNO

A R EARNMSTR

PFILE(EARNMAST)

 K EMPNO

Compatibility View

This hierarchical view of the Payroll Master and the timecard

files is a database extension for compatibility with non

database systems (multiple record types in the same file). Up to

32 files can be logically "merged" in this fashion. That means

you can have up to 32 formats — one record format per

physical file defined within one set of DDS and linked by a

common key field.

Each record, when processed, provides data from just one

physical file at a time. A key field must be specified for the

logical "merge" to take place.

LF DDS Coding Example-

Multiple Format Logical File

- Complex

To round out our coverage of multiple-format logical files, let’s

up the ante a bit. To get going, let’s take a look at a logical

view over three physical files with some of the key fields

missing. See Figure F-28 to observe the coding for this nifty

trick.

In the example, there are clearly three files specified. In the

DDS coding, you can see that each grouping (between each

record format – R in position 17) represents the coding for one

physical file. Even without knowing all of the specifics, such as

all of the field names in the physical file, you can code this

logical file, or at least you can be in a position to understand its

coding. First, of course, you need to learn how the multiple

format logical file object is constructed.

There is a piece of information about this example, and its new

files (ADDRMAST and DEDMAST) that you would need to

know to make all this make sense. We will reveal this

information very shortly.

Physical File Definitions

For now, for your convenience, we have provided the physical

file layouts for these two files in Figure F-29. You will see the

DDS for both physical files in a consolidated DDS form.

Additionally, if you want a better definition of these files, you

can see their full record layout under the heading DDS

Examples right at the end of

Chapter 8.

We have already seen a number of examples using the

EARNMAST file and we have examined a detailed record

layout and we have coded the DDS for the physical file as well

as a number of based-upon logical files. However, you are not

 Chapter 13. Logical File Coding - Non Join Format Operations 239

yet as familiar with the ADDRMAST and the DEDMAST

files. Therefore, it may help for you, before you may choose to

re-take a theory diversion, to examine the coding for the

logical file and these two physical files in Figures F-28 and F-

29.

At the end of Chapter 6, you will find a section called Formal

Diversion - Database Theory. You may want to divert back

there before you continue. When you do that, come aback and

we’ll say: “Now, let’s go take that diversion!”

If you are already well familiar with formal entity relationship

theory and data modeling, feel free to skip the section in

Chapter 6, and proceed to the heading: The PRMULT File

under the Return from Database Theory heading below.

Return from Database

Theory

Go have a nice Coffee or a Gatorade or even a beer or some

nice red wine to reward yourself for that head hurting theory

activity from which you may have just returned. We are going

to continue right where we left off with the complex multiple

format logical file.

The PRMULT File

So what does all this theory have to do with the multiple format

logical file we have displayed in Figure F-28. Now that you

have seen the record layouts and we have discussed some

database theory, hopefully this Figure will be much easier to

understand.

The EARNMAST Component

Notice first that the area of DDS in which the EARNMAST file

is described has but one primary key, the EMPNO field. The

records are unique in that file based on EMPNO. That is not the

case for the other two files.

The ADDRMAST Component

The ADDRMAST file, for example has a field in it called

Line#. A person’s address in the ADDRMAST file may take

anywhere form three to 100 records to store all the lines of

address. You might choose to put all of your address lines in

one file, but, technically, there is a one to many relationship

between an employee and a line of address. Thus, this design is

relationally correct. With this design, of course, you can see

why the Address Entity is not within the EARNMAST file.

Rather than have a repeating group inside the EARNMAST

file, the designer chose to have each line of the address be in its

own record. Because the line number field is numeric and it is

two digits wide, there can be 100 lines of address (00 to 99) for

each employee. If you think know you’d never need that many,

then that is good design.

The EMPNO field and the LINE# field form what is called a

composite key. Uniqueness cannot be achieved in this file

without mashing both of these fields together. Since a major

relational database precept (which can be violated with

impunity on AS/400 and iSeries with DDS) is that you must

have a primary (unique) ID for each record, the composite key

of EMPNO and LINE# does the trick for the ADDRMAST file.

These two keys together make the “key” unique.

 Chapter 13. Logical File Coding - Non Join Format Operations 241

The DEDMAST Component

Now, let’s take the DEDMAST file. This guy also has a

composite key. The first part is EMPNO and the second part is

the deduction type. That is how each deduction type, for which

an employee is signed up, is linked and is therefore unique to

the particular employee. For example, consider

EMPNO/DEDTYP = 000300UW. This would be the United

Way deduction for employee number 300.

There are a number of different type deductions for Payroll

such as United Way, Hospitalization, Bonds, etc. Thus each

deduction has its own ID such as UW, HOSP, BOND, etc and

the ID is stored in a 5-position alpha field. Together with

EMPNO, a 6, 0 field, this makes each deduction record for

each employee unique, thereby fulfilling the primary key rule.

Putting the Whole System Together

Now, let’s say you are employee 321. Let’s also say you have

six lines of address. Thus each of these address lines, as the

record layout shows, has EMPNO as well as LINE# in the

record. Let’s also say that you have two of the three deductions

- codes UW & HOSP. These records would need EMPNO and

DEDTYP in them.

File and Data Sequencing

Let’s say one more thing before we shut up. In the process of

designing the system, the analyst defined just one program. It

needs all of the address records to be processed immediately

after the EARNMAST record. The last of these ADDRMAST

line records is to be followed by the DEDMAST records for

each employee, one employee at a time. Thus the sequence of

records for employee 321 is as follows:

Primary Key Physical File

000321 from EARNMAST

00032101 from ADDRMAST

00032102 from ADDRMAST

00032103 from ADDRMAST

00032104 from ADDRMAST

00032105 from ADDRMAST

00032106 from ADDRMAST

000321HOSP from DEDMAST

000321UW from DEDMAST

From One File, Many Formats

The analyst also wants the programmer to use just one file in

the program to access the data from these three files. The only

way the data from multiple files could be processed through

one file definition in a program is if the file is a multiple format

logical file - period. Your job is to take the analysts system

design and do the database magic. You get to specifically

design and code the logical file that can make that set of

requirements actually happen.

Les Voila! You already did it and your coding for it is in

Figure F-28. Thanks for a great job!

 Chapter 13. Logical File Coding - Non Join Format Operations 243

Figure F-28 DDS Multi-Format LF- More Than 2 Physicals
A* Logical FILE (PRMULT)
A UNIQUE (LIFO, FIFO)
A*
A R EARNMSTR PFILE(EARNMAST)
 K EMPNO
 K *NONE
 K *NONE

 R ADDRMSTR PFILE(ADDRMAST)
 K EMPNO
 K LINE#
 K *NONE

 R DEDMASTR PFILE(DEDMAST)
 K EMPNO
 K *NONE
 K DEDTYP

Figure F-29 Address & Deduction Masters – Physical File

DDS
A* PAYROLL NAME AND ADDRESS MASTER

A R ADDRMSTR TEXT('ADDRESS MASTER')

 EMPNO 6 0 COLHDG('EMPLOYEE NUMBER')

 LINE# 2S 0 COLHDG('ADDRESS LINE #')

 ADLINE 40 COLHDG('ADDRESS LINE DATA')

 K EMPNO

 K LINE#

 K ADLINE

A* PAYROLL DEDUCTION MASTER

A R DEDMSTR TEXT('ADDRESS MASTER')

 EMPNO 6 0 COLHDG('EMPLOYEE NUMBER')

 DEDTYP 5 COLHDG('DEDUCTION TYPE')

 DEDDSC 40 COLHDG('DED DESCRIPTION')

 DEDAMT 6 2 COLHDG('DEDUCTION AMOUNT')

 DEDFRQ 2S 0 COLHDG('DED FREQUENCEY')

 K EMPNO

 K DEDTYP

Analyzing the DDS Code

In Figure F-28, the first step is to line up your formats. All

three format records are in tact in the figure, referencing the

proper format name in the underlying physical files. The

PFILE keywords are also accurate. Each reflects the correct

physical file. The order of the record formats is right also. How

do we know this? Well, the specs say that all of the address

records should sit in between the EARNMAST records and the

deduction records. They will in this circumstance.

Format Placement

The placement of the formats is critical to achieving this. When

there is a match on the most important key value, the primary

record (first record format described) is processed first,

followed by the first secondary file, followed by the next

secondary file, etc. Was it luck? Maybe! Don’t matter though!

It is correct.

*NONE Key Fields

Now, how about those darn key fields containing the

“*NONEs?” Well, the system cannot merge keys that do not

have the same attributes. The first thing to do is to try to figure

out how many keys are involved. Since there are three different

key fields, it is pretty easy. There will be three slots. The first

key, EMPNO, will exist in the first slot for all of the record

formats. It is present in all three files and it has the same

attributes in all files.

EARNMAST Specifications

If you take a look at the primary file - EARNMAST file – the

first file specified – you quickly notice that there are no LINE#

 Chapter 13. Logical File Coding - Non Join Format Operations 245

or DEDTYP fields present in the format. They exist only in the

ADDRMAST and DEDMAST files, respectively. To

accommodate this, DDS permits you to put in the “*NONEs.”

For EARNMAST it means *NONE in the second and third key

positions.

ADDRMAST Specifcations

The same goes for the address file which is the second file to

be specified. You know there are three key slots. There are just

two key slots needed to order and make the ADDRMAST file

unique. One of them is EMPNO and the other is LINE#.

LINE# therefore becomes the second key in the logical file.

Since ADDRMAST has no third key, you just say “*NONE” in

the third key position.

This coding says that when there is a match on employee

number with EARNMAST, the database should provide a

sorted view of the ADDRMAST records using LINE#. In this

way, the logical view presents line 1 before it presents line 2,

then it presents line 2 before it presents line 3, etc.

DEDMAST Specifications

The DDS coding processes the DEDMAST file in similar

fashion. In this case, there is no LINE# field in the DEDMSTR

format, yet the slot for LINE# is already taken. So, how do you

accommodate this? You specify *NONE in the DEDMSTR

format for the second key since there is no LINE# in the

DEDMAST file.

Since there is just one key slot left, the DEDTYP field is

specified in the DEDMAST file. Two key slots are already

occupied. Since EMPNO and LINE# do not mean the same

thing nor are their attributes the same, they cannot exist at the

same key slot. We say *NONE in the second key position since

the second level key for the file is already occupied by a 2-

position numeric LINE# field. The DEDMAST file has no such

field. Therefore, for DEDMAST, you use the third key level

position to specify ordering by the DEDTYP field.

This says that whenever we have an EMPNO match among the

three files or between the EARNMAST file and the

DEDMAST file, the database should provide a sorted view of

the deduction records using the DEDTYP field.

How About *NONE for DEDTYP

If you specify *NONE in the third key slot of the DEDMAST

DDS, the DDS compiler would bomb since, in the third key-

slot, each file would provide *NONE. You must have at least

one real key in a key slot. Therefore, if you really would like to

specify *NONE instead of DEDTYP and you are willing to let

the deduction records arrive in random sequence within

EMPNO, you can reduce the number of key slots to two. If you

do not care about the order of the DEDMAST records, you

would use only two key levels for the file.

Review

 Chapter 13. Logical File Coding - Non Join Format Operations 247

Let’s take a quick review. For any multiple format logical file,

you can always count on at least one thing. There will be one

format for each physical file. Though this idea may be

intuitive, there is something about multiple format logical files

that at first looks formidable. Having this one rule in mind will

certainly help you get started in coding the DDS for any

multiple format logical file.

It follows that you will have as many record format level (“R”

in column17) in your DDS as you have physical files. In fact,

each physical file will have to be coded in your DDS by

specifying the name of its format on the “R” level

specification as well the PFILE statement which names the

physical file for that particular record.

Though the presence of the *NONE entries above in Figure F-

28 complicate the picture somewhat, the notion of multiple

physical files can appear to be more simple than it first seems.

Look again if you would at the coding for each referenced

physical file - EARNMAST – Earnings Master,

ADDRMAST – Name and Address Master, and DEDMAST –

Deduction Master.

In Figure F-28, each physical file is coded as it would be if

there were no other physical files. So, if you can envision

coding each physical file from its “R” spec to its last key-field

level statement on a separate piece of paper, or a separate

panel, it can simplify your approach to creating the DDS for all

of the files in a multiple format logical file. Do each one

separately and then bring them together. When you have

multiple key levels, just specify *NONE as a place holder

when the file you are describing has no field for a certain key

value.

Composite Key

In this section, the three key slots represented what is called a

composite key. You need a composite key when there is more

than one field in a file which is needed to provide unique (no

duplicates) access to a physical file.

LF DDS Coding Example-

Simple, Non-Join, Rename a

Format

Now, it is time to move on to a new function – the last new

function being introduced for this chapter. Let’s rename a

format in a logical view. The coding for this is very similar to

the UNION with the OLDEARNR format from F-26. The new

code is shown in

Figure F-30

Figure F-30 DDS Logical File - Rename Format
A* Logical FILE (RNMFORMAT)
A*
A R RNMFORMATR
PFILE(EARNMAST)

FORMAT(EARNMSTR) K EMPNO

The technique in Figure F-30 is used when the logical file and

the physical over which it is built are defined in the same

program. Both files must have different format names when

used in the same program. Since many HLL operations, such as

READ and WRITE are performed against the Format name

 Chapter 13. Logical File Coding - Non Join Format Operations 249

rather than the file name, this tool provides a way to remove

the confusion for the HLL compiler.

Operations to one format (RNMFORMATR) would be for the

logical file (RNMFORMAT) and operations against the other

format (EARNMSTR) would be for the physical file. The

Format statement informs the DDS compiler to create a new

format for this logical file and to use the EARNMSTR format

as the basis. The new format name (RNMFORMATR) is

specified on the first record level line along with the PFILE for

EARNMAST.

Chapter 14.

Logical File Coding

Examples - Non Join

Field Operations

LF DDS Coding Example -

Rename Fields

Moving right along in our DDS expose, let’s now learn how to

rename fields in DDS. Check out the DDS in Figure F-31.

 Chapter 15. Logical File Coding - Key and S/O Level Keywords 251

Figure F-31 Renaming Fields in Logical File
A* Logical FILE (PRRENAMEF)

A*

A R PRRENAMEFR

PFILE(EARNMAST)

 NAME RENAME(EMPNAM)

 INL RENAME(EMPINL)

 EMPINL

 ...

 K EMPNO

First, notice the convention for naming the file within DDS

comments – PRRENAMEF This represents the payroll logical

file with renamed fields. This is a new record format because

the view is not the same as the structure of the physical file.

This is a projected view. The name for this new format is

PRRENAMEFR.

The coding in Figure F-31 renames the physical file field

EMPNAM to NAME for use in this logical view. The field

named EMPINL is also renamed to INL for this logical view.

The next line shows the field EMPINL as the third field in the

projected view. Though there may not be much practical use

for this particular example, it does show that you can create

views that provide multiple field names for the same space in

the record. In this example, INL and EMPINL will point to the

same storage location in a program.

Handy for Program Conversion

This technique can come in handy if you are converting some

old programs from System/3 or System/34 or System/36 or

System/36 environment to native database access. If your

programs have several names for the same field, you can

rename the field as many times as you would like. When you

convert your program to use the external description from the

database, the internal fields in various programs can use the

same names as when the data was internally described as long

as you rename the field and include all the renamed field in the

format sued in your programs.

LF DDS Coding Example -

Concatenation and

Substrings

Now let’s move to Figure F-32 where we do some fancy stuff

like concatenate and substring some physical file fields for use

in a logical view. When you do this, the user of the logical sees

one big field instead of several small ones for concatenations,

and sees smaller fields for substrings.

Figure F-32 DDS Logical File - CONCAT and SUBSTRING

fields
A* Logical FILE (PRCATSST)

*

A R PRCATSSTR PFILE(EARNMAST)

 NAME CONCAT(EMPINL

EMPNAM)

 RATE

 SEQDAT CONCAT(YR MO DA)

 PRTDAT CONCAT(MO DA YR)

 STREET I SST(ADDR1 4 21)

 ...

 K EMPNO

Again, you can see the convention for naming the file within

DDS comments – PRCATSST. This represents a payroll

logical file with concatenated and substringed fields. There is a

new record format because the view is not the same as the

structure of the physical file. This is a projected view. The

 Chapter 15. Logical File Coding - Key and S/O Level Keywords 253

name for this new format is PRCATSSTR, which uses the file

name plus “R” convention.

Concatenation for Name

There are three concatenations defined for Figure F-32. From

the top, the first CONCAT takes Initial and Name and brings

them together into one field called NAME. There are no blanks

between the fields, unless they are within the fields.

Concatenation for Sequence Date

The next field is the RATE, followed by SEQDAT. The

SEQDAT field (date for sequencing) is formed from a

concatenation of fields YR, MO, and DA (year, month day).

This permits a year first date which can be used for sorting by

date.

Concatenation for Print / Display

Date

The PRTDAT field concatenates the same three date fields:

MO, DA, and YR, but in a different sequence. These are

combined to create a normal date format for printing.

Substring Street

The next field in the projected view is the street name. This

field is formed by sub-stringing the ADDR1 field, hoping to

capture the street name in position four. You may rightly

suggest this is a bogus substring, and you are correct.

In the substring of the street field, the coder is assuming that

the street number is three positions (probably not a good

assumption) and that the real street starts at position four for a

length of 21 characters. The result of the substring of field

ADDR1 is stored in a new field which exists only in the logical

called STREET.

This example may have more value if you create a few other

views of this file in addition to this view, and each view

showed the street name starting at a different position in the

record, theoretically all the street names could be captured in

perhaps as few as six different views. You could then write a

simple program which created a new physical file which

contained only the records from the six views which did not

contain a blank or a number in position one of the record.

The number of records in the resulting physical file would

approximate, if not be exactly the number of records in the

based-on physical file. The street name would be a real field

without the number. Such work can be helpful in file

conversions as well as in applications for government

jurisdictions in which street is an important element.

Concatenation and Substring Rules

As you would expect, there may be instances where everything

that is concatenated or sub-stringed does not look as you would

expect or you can’t really do what you want with the data.

There are a few simple rules to follow to get the most from

these tools:

Some more boring rules / reminders are appropriate at this

time. The rules for concatenated fields include the following:

 Chapter 15. Logical File Coding - Key and S/O Level Keywords 255

1. You can concatenate any character field with no issue.

2. When concatenating any zero decimal position

numeric field, the sign of the rightmost field is the sign

which is used.

3. Numeric concatenations always convert to zoned

decimal form, not packed decimal and the size limit is

31 digits maximum.

The following rules apply for substring fields:

1. If the field on the SST keyword is hexadecimal, the

resulting field is hexadecimal; otherwise, the resulting

field is always character. If the data type is not

specified in DDS, a default of H or A is assigned.

2. The use of the resulting field must be either input-only

(I) or neither (N).

3. The length of the resulting field is optional. You must

specify either the field length or the length parameter

on the keyword. If you specify both, they must be

equal. If the field length is not specified, it is assigned

the length parameter on the keyword.

4. You cannot specify this keyword on the same field

with the CONCAT, RENAME, or TRNTBL keywords.

5. The field specified on this keyword cannot be defined

with the CONCAT, TRNTBL, or SST keywords

LF DDS Coding Example -

Changing Field Lengths

While we are playing with the look and feel of fields in a

logical file projection, let’s get even simpler than concatenation

and substring. Wouldn’t it be nice if you could change the

projected length of some fields so that their view is different

from the underlying reality.

Of course, you must remember when using this type of

projection that the underlying physical still stores all the data.

No matter how big or small you make a logical field, if there is

no room for data from the real field to be projected, you will

get an error in your HLL program when it tries to use a

misshaped projection.

Figure F-33 DDS LF - Change Field Lengths
A* Logical FILE (CHGLEN)

A*

A R CHGLENR

PFILE(EARNMAST)

 EMPNAM 21

 EMPINL

 RATE +2 3

 SALARY +2 +1

 EMPNO

 STATUS

 K EMPNO

In the example code, we continue the convention for naming

the file within DDS comments – CHGLEN. This represents a

payroll logical file with field lengths changed in the view.

There is a new record format because the view is not the same

as the structure of the physical file. This is a projected view.

 Chapter 15. Logical File Coding - Key and S/O Level Keywords 257

The name for this new format is CHGLENR, which uses the

file name plus “R” convention.

You can also see that we changed the length of three different

fields as projected by this view. We reduced EMPNAM to 21

positions from 25. We increased RATE two positions to eight.

And we increased its # of decimals from two to three. We also

increased SALARY in size by two positions. One of the

positions is to be used for additional decimals. Though this is

neat and can be very helpful, I repeat that you must be careful

when writing through the logical that you do not send data

which the physical file cannot handle.

As you can see, the length and decimal positions for the logical

view can be specified in two different ways - by direct

specification or by addition and/or subtraction. The EMPNAM

field, for example is hard coded with a 21, even though the

physical data length is 25. This may make the field more usable

for queries when the user does not want to shorten fields within

the Query – so he or she can fit more data on one line.

The RATE field is coded with a +2 for the length and a three

for the number of decimals. As you may recall from the

EARNMAST DDS, the RATE is defined as six (length), two

(decimals). The plus two would make it eight (length), two

(decimals). However, the logical overrides the number of

decimals to three making the new projected view as eight

(length), three (decimals).

The SALARY field is coded with a +2 for the length and a +1

for the number of decimals. As you may recall from the

EARNMAST DDS, there was no SALARY field. We made it

up for this example. Let’s assume it would be seven (length),

two (decimals). The plus two would make it nine (length), two

(decimals). However, the logical overrides the number of

decimals by +1 making the new projected view as nine

(length), three (decimals).

Chapter 15.

Logical File Coding

Examples - Key Level

and Select/Omit Level

Keywords

Key-Level Keywords

Moving down the logical level hierarchy from fields, our next

stop is key-field level keywords. As noted previously, the key

field level keywords for logical files are: ABSVAL, DESCEND,

DIGIT, NOALTSEQ, SIGNED, and UNSIGNED. The use of

these keywords for a logical file is exactly the same as for a

physical file definition.

 Chapter 15. Logical File Coding - Key and S/O Level Keywords 259

LF DDS Coding Example -

Using Composite Keys

In Figure F-34, we introduce the notion of coding more than

one key field for a simple logical file join..

Figure F-34 Multiple Key Fields
A* Logical FILE (TWOKEY)
A*
A R TWOKEYR
PFILE(EARNMAST)
 EMPNAM
 EMPINL
 RATE
 EMPNO
 K RATE

 K EMPNAM

You can see the convention for naming the file within DDS

comments – TWOKEY. This example DDS represents a payroll

logical file with a composite key. There is a new record format

because the view is not the same as the structure of the physical

file. This is a projected view. The name for this new format is

TWOKEYR, which uses the logical file name plus “R”

convention.

Just as there were rules for concatenation, and there are rules

for just about everything else, even though rules are boring, we

now present to you some of the rules for key fields.

1. One or more fields can comprise a key or composite

key.

2. Key fields can be noncontiguous.

3. Back when the AS/400 was invented, the key length

maximum was 256 BYTES. Now, the number of

fields that make up a key is restricted to 120 and the

total key length cannot exceed 2000 bytes (1995 bytes

If you are using FCFO).

4. Key field must be in, or it’s based on field (RENAME,

et.) must be in the both physical and the logical file.

5. You cannot sequence on a field that is not projected for

the logical view.

Now that we have become smart about keys, there really is

little more we can say about keys. So, let’s move on to some

examples in the most exciting part of non-join logical file

access - the select and omit level

LF DDS Coding Example -

Simple Select Records

There are three select/omit level keywords which can be used

in a logical file to reduce the number of records returned

(selected) in a query. These are: COMP, a.k.a. CMP, RANGE,

and VALUES. Let’s start our examination of selection with the

DDS in Figure F-35.

 Chapter 15. Logical File Coding - Key and S/O Level Keywords 261

Figure F-35 DDS Logical File - Select records
A* Logical FILE (SELKEY)

A*

A R SELKEYR PFILE(EARNMAST)

 EMPNO

 EMPNAM

 EMPINL

 RATE

 PAYCOD

 K EMPNO

 S PAYCOD COMP(EQ 'S')

You can see the convention for naming the file within DDS

comments – SELKEY. This example DDS represents a payroll

logical file with one select / omit statement, ordered by

EMPNO. key. There is a new record format because the view is

not exactly the same as the structure of the physical file. This is

a projected view. The name for this new format is SELKEYR,

which uses the logical file name plus “R” convention.

There is only one selection criterion in this example. As you

can see it is the last statement in DDS. You can read this DDS

statement as follows: “Select records where the pay code is

“S.”” Because there is no ALL keyword on an “S” or “O”

(Column 17) statement, the default is to omit all of other

records in which PAYCOD is not equal to “S.”.

LF DDS Coding Example -

Select Records with VALUES

OR RANGE

Figure F-36 Select OR Relationship
A* Logical FILE (SEL2KEY)
A*
A R SEL2KEYR PFILE(EARNMAST)
 EMPNAM
 EMPINL
 RATE
 EMPNO
 PAYCOD
 K EMPNAM
 S EMPNO VALUES(1 10 100
500)

 S EMPNO RANGE(750 850)

You can see in Figure F-36 the convention for naming the file

within DDS comments – SEL2KEY. This example DDS

represents a payroll logical file with two ORed select / omit

statements, ordered by the EMPNAM key. There is a new

record format because the view is not exactly the same as the

structure of the physical file. This is a projected view. The

name for this new format is SEL2KEYR, which uses the

logical file name plus “R” convention.

There are two selection criteria coded in the sample DDS. You

read this set of DDS as follows: “Select records where the

employee number is a 1, 10, 100, or 500. If the employee

record does not get selected using this criteria, then select all of

the employee records in which the EMPNO field is between

750 and 850.”

 Chapter 15. Logical File Coding - Key and S/O Level Keywords 263

This is an “OR” relationship. When two lines are to be “ORed”

together, you repeat the “S” in the second and subsequent

“ORed” select/omit line. An “AND” relationship would be

coded as a blank (Range) on the second and subsequent

select/omit records.

In this example, you are telling the database to include the

record in the view if it is one of the listed values or if it is in the

750 to 850 range. Otherwise, since the ALL keyword is not

coded and the last select/omit spec is a select, all other records

are omitted and thus, will not appear in the view.

LF DDS Coding Example -

Select / Omit Records with

ALL

Figure F-37 shows several other select/omit relationships.

Figure F-37A DDS Logical File - Select and Omit Records
A* Logical FILE (SELOKEY)
A*
A R SELOKEYR
PFILE(EARNMAST)
 EMPNAM
 EMPINL
 EMPNO
 PAYCOD
 RATE
 K EMPNO
 S EMPNO COMP(EQ 550)
 O EMPNO RANGE(500 599)
 S ALL

You can see in Figure F-37A the convention for naming the file

within DDS comments – SELOKEY. This example DDS

represents a payroll logical file. There is a new record format

which means that the view is not exactly the same as the

structure of the physical file. Thus this is a projected view. The

name for this new format is SELOKEYR, which uses the

logical file name plus “R” convention.

This example has a Select statement and an Omit statement that

are ORed together. If the first condition is not true and the

record is not selected, then the second condition is tested. If the

second test (RANGE test) is true, then the DDS says to omit

the record. If neither the first nor the second test is true, then

the S... ALL statement says to select all the remaining records

when they are not specifically selected or omitted.

The relationship says to include records in the view for

employee # 550 in all circumstances, but to omit all other

employees in the 500 to 599 employee number range, and

select all the rest.

 Chapter 15. Logical File Coding - Key and S/O Level Keywords 265

LF DDS Coding Example -

Select / Omit Records with

And

Figure F-37B DDS Logical File - Select and Omit Records
A* Logical FILE (SELAND)

A*

A R SELANDR PFILE(EARNMAST)

 EMPNAM

 EMPINL

 EMPNO

 PAYCOD

 RATE

 K EMPNO

 S RATE CMP(GT 4.45)

 RATE CMP(LT 12.35)

 TYPE CMP(EQ 'UNION')

You can see the convention for naming the file within DDS

comments – SELAND – in Figure F-37B . This example DDS

represents a payroll logical file. There is a new record format

which pertains to both example DDS sets. The view is not

exactly the same as the structure of the physical file. Thus this

is a projected view. The name for this new format for both the

top and bottom example is SELANDR, which uses the logical

file name plus “R” convention.

This example says to include records in the view with a RATE

that is greater than 4.45 and less than 12.35, and the type of

employee is union. Reject all others from the view. Another

way of saying this is that all union employees whose hourly

rate is between 4.45 and 12.35 will be included in this view.

Creating a Logical File

Now, that we have covered all of the various levels (from

record format to select/omit) that are involved in a non-join

physical file, let’s review the Create Logical File command one

more time so we know how to get logical file objects created.

The same CRTPF command also works when compiling JOIN

logical file DDS.

The process to create a logical file is very similar to creating a

physical file. It requires the following steps:

1. Iinvoke PDM to get your productivity list manager

going,

2. Invoke option 2 of PDM which is SEU (STRSEU)

3. Name the member, in order to type your DDS

specifications into a source file. Make sure you code

the file as LF and not PF.

4. Use option 14 of PDM to compile the source and

create the logical database file in a library of your

choice. If you were to press the command prompter

“F4" after typing in option 14 of PDM, the system

would very nicely prompt you for all of the options on

the CRTLF command. It would have the ones it could

figure out from PDM already filled in for you. A

sample of create physical file command you would see

is given below:

CRTLF FILE(HELLO/SELAND)

SRCFILE(HELLO/QDDSSRC) +

SRCMBR(*FILE) MBR(*FILE) DATAMBRS(*ALL)

MAXMBRS(1) +

TEXT(*SRCMBRTXT)

 Chapter 15. Logical File Coding - Key and S/O Level Keywords 267

Chapter 16.

Logical File Coding

Examples -

Join Keywords

Join Level Keywords

Application requirements are the determining factor as to

which levels and which keywords should be used in a given

project. The DDS keywords associated with the Join operation

bring their own baggage to the mix. First of all, there is a Join

Level in DDS at about the same hierarchical level as the record

format. It is called the Join Record Format Level.

Unfortunately, only two of the six Join keywords work at this

level.

Therefore, we have provided a little chart right below which

shows all six Join type keywords and it identifies the particular

level in which the keyword can be specified.

 Chapter 17. Logical File Coding Examples - Join Operations 269

Join Keyword Levels

Join Keyword DDS Level

JFILE Record Format

JOIN Join Record Level

JDFTVAL File Level

JDUPSEQ Field Level

JFLD Join Record Level

JREF Field Level

Join File Level Keywords

JDFTVAL Tells the join to provide default values for

unmatched primaries. This is used to signal a

left outer join type in which the database

provides a record in the resulting view for

every record in the primary file (first physical

file defined). Default values of zeroes blanks

or the database default are filled into the

missing fields in the join format

Record Level Keywords

JFILE Names the Physical Files in the Join. Provide

the names of the physical files (library name /

file name) of the files that are to be included in

the join. There can be up to 32 files in a Join.

Join Record Level Keywords

JOIN Specifies the sequence of the Joins. Use this join

record level keyword to specify the sequence

of the joins. These can be specified using file

names or numbers which represent the

sequence of the file in the JFILE statement

JFLD Specifies the link fields for the join. Use this join

record level keyword to specify the linking

fields in each of the files which are being

joined.

Field Level Keywords

JDUPSEQ Sort on this field when there are duplicates.

Use this field level keyword to designate a

field which should be used to control the order

of the records when there is a duplicate.

 Chapter 17. Logical File Coding Examples - Join Operations 271

JREF Tells the Join to use the field from this file. When two

or more files in a join have the same field and

it is a field which you are projecting, the JREF

permits you to specify the specific based-on

physical file from which the contents of that

field are to be extracted when the database

builds the Join format.

Detailed Look at the Join

Keywords

JDFTVAL

You would use this Join logical file-level keyword (Join

Default Values) so the system provides default values for fields

when a join with a secondary file does not produce any records.

In other words, use default values when there is an unmatched

secondary

The format of JDFTVAL is quite easy since the keyword has

no parameters. When you code your first joins, like us, you

may think that the JDFTVAL keyword gets specified at the

record level or join record level. This is not so. It gets specified

at the file level.

The supplied default values for the database are blanks for

character and hexadecimal fields and zeros for numeric fields.

Of course, you can change the defaults for any of the fields

specifying the DFT keyword for the fields when you define

them in the physical file.

The beauty of the JDFTVAL keyword is that it gives DDS a

left outer join facility. It has nothing to do with the notion of

“left-out,” however. Secondaries are not left out when you use

the JDFTVAL. They are included. When you do not use the

keyword JDFTVAL, any primary record which does not have a

secondary record is left-out of the join. No default values are

needed because neither the primary nor secondary records are

included in the join record. The record does not make it into the

view.

In a nutshell, if you specify JDFTVAL, your program retrieves

all records from a primary file. All records are included in the

view. W for which a secondary file does not have a

corresponding record. Even records without a matching record

in the join files are selected in the view. For these, the Join

provides default values since there is no secondary record from

which to get the data. If you do not specify JDFTVAL, a record

in the primary file for which there is no corresponding record

in a secondary file is skipped.

If you are joining two or more files, and you specify the

JDFTVAL keyword for fields used as join fields, default values

of fields missing in secondary files are used in the same way

that a field value is used.

The AS/400 Database, DB2/400 does not support a full outer

join nor does it support a right outer-join. Left outer join is left

to right. Right outer join is built right file to left file. Full is

both ways (left to right and right to left).

When you do a left outer join, for example, when all the left

file records are joined to their matching right file record,

unless there is a firm one to one relationship between the left

 Chapter 17. Logical File Coding Examples - Join Operations 273

and right files in the join, there more than likely are secondary

(right file) records which are not selected to be in the final

view. These would only be included if the AS/400 and iSeries

database supported had a right-outer join or full outer join

facility. One day as DB2/400 gets stronger, we may see right

outer and full join facilities.

Example

The following example shows how to specify the JDFTVAL

keyword.

00010A JDFTVAL

00020A R RCDR1 JFILE(PF1 PF2)

00030A J JOIN(PF1 PF2)

00040A JFLD(EMPN EMPN)

00050A EMPN JREF(1)

00060A ADDR1

00070A RATE

PF1 is the primary file and PF2 is a secondary file. Let us

assume that PF1 and PF2 have the following records:

PF1 PF2
EMPN ADDR1 EMPN RATE

Beny 120 Sea St. Beny 5.00

Dana 40 Doughley Dana 2.50

Mike 2 Kackawax Dr. Sura 5.50

Sura 120 Beltway

With JDFTVAL specified in the join logical file, the program

reads the following records (shown in arrival sequence):

EMPN ADDR1 RATE

Beny 120 Sea St. 5.00

Dana 40 Doughley 2.50

Mike 2 Kackawax Dr. 0.00

Sura 120 Beltway 5.50

Without JDFTVAL specified in the join logical file, the

program can read only three records (no record is found for

Mike) The records would look as follows:

EMPN ADDR1 RATE

Beny 120 Sea St. 5.00

Dana 40 Doughley 2.50

Sura 120 Beltway 5.50

Now, let’s get a little ahead of ourselves to the JREF keyword

which we generally explained above, and which we explain in

detail below. In this example, if we specified JDFTVAL at the

file level as well as JREF(2), instead of JREF(1) as originally

specified, the field level for EMPN would be blank since that is

the default for an unmatched secondary. The records returned

to the program would be different, then, as follows:

EMPN ADDR1 RATE

Beny 120 Sea St. 5.00

Dana 40 Doughley 2.50

Mike 2 Kackawax Dr. 0.00

Sura 120 Beltway 5.50

 Chapter 17. Logical File Coding Examples - Join Operations 275

JDUPSEQ

The Join Duplicate Sequence keyword is available in join

logical files only You would use this join-level keyword to

specify the order in which records with duplicate join fields are

presented

when your program reads through a join logical file.

The format of the keyword is:

JDUPSEQ(sequencing-field-name

[*DESCEND])

This keyword has no effect on the ordering of unique records.

If you do not specify the keyword, the database does not

guarantee the order in which records with duplicate join fields

are presented, through the view. If you use more than one

JDUPSEQ keyword in one join specification, the order in

which you specify the JDUPSEQ keywords determines the

order of presentation of duplicate records. This is similar to

specifying an additional key field, in that it determines the

order in which records with duplicate keys are presented.

Example

The following example shows how to specify the JDUPSEQ

keyword.

00010A R JREC JFILE(PF1 PF2)

00020A J JOIN (PF1 PF2)

00030A JFLD(EMPN1 EMPN2)

00040A JDUPSEQ(PHON#)

00050A EMPN1

00060A ADDR1

00070A PHON#

This example assumes that PF1 and PF2 have the following

records:

PF1 PF2

EMPN1 ADDR1 EMPN2 PHON#

BENY 120 Sea St. BENY 555-

1111

Doug 40 Doughley BENY 555-

6666

Mike 2 Kackawax Dr. BENY 555-

2222

 Doug 555-

5555

 Chapter 17. Logical File Coding Examples - Join Operations 277

There are three records for BENY in PF2, showing three

different telephone numbers. Notice that the JDUPSEQ

keyword only affects the order of records when duplicates

exist. With JDUPSEQ specified as shown, the records are

returned as follows:

EMPN1 ADDR1 PHON#

BENY 120 Sea St. 555-1111

BENY 120 Sea St. 555-2222

BENY 120 Sea St. 555-6666
Doug 40 Doughley 555-5555

JFILE

The Joined Files keyword is for join logical files only, and it is

specified at the Record Level. You would use this keyword to

identify the physical files containing the data to be accessed

through the join logical file you are in the process of defining.

The format of the keyword is:

JFILE([library-name/]physical-

file-name [..32])

This keyword is specified, exactly as the PFILE keyword. The

difference between the two is that the JFILE keyword identifies

this file as a join logical file. The underlying physicals for the

join logical file are specified in the JFILE as if the JFILE were

the PFILE statement. There is no PFILE statement in a Join.

Moreover, the JFILE keyword is not allowed with the PFILE

keyword. If you have no JFILE keyword at the record level in

your join logical file DDS, you will not create a join logical

file.

One more difference with the PFILE is that the JFILE keyword

requires a minimum of two physical file names. PFILE can

have one or more names. You can also specify the same file

name more than once, and we have an example coming up in a

while which does just that with the EARNMAST file.

The first file specified in DDS is called the primary file. This is

the file from which the join will begin. All other files are called

secondary files. Even the third file is called a secondary file.

Up to 31 secondary files can be specified . . . all the way up to

32 total files on one JFILE keyword.

Example 1

The following example shows how to specify the JFILE

keyword.

00010A R JRCD1R JFILE(PF1 PF2)

00020A J JOIN(PF1 PF2)

00030A JFLD(EMPN1

EMPN2)

In the join logical file, PF1 is the primary file and PF2 is the

secondary file. This is an inner join. If there is not a match with

the secondary, neither the primary nor the secondary record

parts are in the view.

 Chapter 17. Logical File Coding Examples - Join Operations 279

Example 2 - Join More Than Two Files

00010A R JRCD1R

JFILE(HELLO/PHYS1 +

00020A HELLO/PHYS2 +

00025A HELLO/PHYS3)

00030A J JOIN(1 2)

00040A JFLD(FIELD1

FIELD2)

00050A J JOIN(1 3)

00060A JFLD(FIELD1

FIELD2)

In the join logical file in Example 2, file PHYS1 in library

HELLO is the primary file. File PHYS2 in library HELLO and

file PHYS3, also in library HELLO are secondary files. Notice

that there are three files in this join, and the functions area does

not really give a lot of room to string things out — so we use

three lines of DDS.

Instead of using the file names on the Join specifications, the

example uses the numeric nomenclature in the JOIN statement

to represent the file numbers in the sequence they were defined

with the JFILE keyword. Thus, the Join level and JFLD

keywords at statements 00030 and 00040 says to join File 1

with file 2 — a.k.a. PHYS1 with PHYS2. This adds the fields

from File 2 to the join record. The next pair of JOINs and

JFLDs (00050 and 00060) says to then join File 1 with File 3.

This join picks up some fields from File 3. File 3, of course is

PHYS3.

JFLD

The join level Joined Fields (JFLD) keyword is for join logical

files only. You would use this keyword to identify the from and

to fields, whose values are used to join physical files in a join

logical file. JOINs and JFLDs are always specified in pairs.

These fields are both referred to as join fields.

The format of the keyword is:

JFLD(from-field-name to-field-

name)

If you do not specify a JOIN keyword, then the JFILE keyword

is used to provide JOIN functionality. At least one JFLD

keyword is required for each join specification. A join

specification is identified by the “J” in position 17. Since at

least one join specification is required in a join logical file, you

must also have at least one JFLD keyword specified in a join

logical file.

Unlike key fields which must be projected, the fields used

These JFLD fields do not have to be projected. IN other words,

they need not also be specified as fields in the record format for

a join logical file. To specify additional join fields to use when

joining physical files, you would simply use more than one

JFLD keyword.

As you would expect from your study of DDS so far, the field

names you specify on the JFLD keyword must either be

specified at the field level in the join record format or in one of

the physical files, as specified on the JFILE keyword.

 Chapter 17. Logical File Coding Examples - Join Operations 281

Example

The following examples show how to specify the JFLD

keyword.

Example 1:

00010A R JRCD1R JFILE(PF1 PF2)

00020A J JOIN(PF1 PF2)

00030A JFLD(EMPN1 EMPN2)

The fields used for the link in this simple join is the EMPN1

field in PF1 and the EMPN2 field in PF2.

JOIN

The Join keyword is for join logical files only and is specified

at the join level. You would use this join-level keyword to

identify which pair of files are joined by the JOIN specification

in which you specify this keyword.

The format of the keyword is:

JOIN(from-file to-file)

You can use file names or their relative file numbers to indicate

which files are to be joined. You must specify a relative file

number if the same file is specified more than once on the

JFILE keyword.

If you specify file names, you must select files that you have

specified only once on the JFILE keyword. In other words if

you ae joining a file to itself, you must use the relative file

number format on the JOIN rather than the file name.

To describe a join specification do the following:

1. Specify J in position 17 immediately after the record

level (before the first field name in positions 19

through 28). The “J” in position 17 indicates the

beginning of a join specification.

2. Specify the JOIN keyword. The JOIN keyword is

optional when only two files are specified on the JFILE

JFILE is one of those keywords for which there are a lot of

rules. They are not even all boring. It is also one of the

keywords in which understanding the rules, can help you

understand the keyword. Let’s list some of these rules now:

1. On each JFILE keyword, the from-file must occur

before the to-file.

2. If you specify numbers, they correspond to the files

specified on the JFILE keyword. The following are the

valid values:

File Valid Values

From-file number To-file

number

1 through 31 2 through 32

3. The from-file number must always be less than the to-

file number.

 Chapter 17. Logical File Coding Examples - Join Operations 283

4. In a join logical file, each secondary file can be a to-

file only once.

5. When more than two physical files are specified on the

JFILE keyword, one JOIN keyword is required for

each secondary file.

6. Specify the JFLD keyword at least once for each join

specification.

7. The end of the join specification is indicated by

another J in position 17 or by a field name specified in

positions 19 through 28.

8. There must be one join specification for each

secondary file specified on the JFILE keyword.

Therefore, at least one join specification is required in

a join logical file. You can specify the JOIN keyword

only once within a join specification.

Example 1

00010A R REC1 JFILE(PF1 PF2

PF3)

00020A J JOIN(PF1 PF2)

00030A JFLD(EMPN1 EMPN2)

00040A J JOIN(PF1 PF3)

00050A JFLD(EMPN1 EMPN3)

00060A EMPN1

In this example, PF1 is joined to PF2 and also to PF3.

Example 2

The following example shows how to specify JOIN using

relative file numbers.

00010A R RECORD1 JFILE(PF1 PF2

PF3)

00020A J JOIN(1 2)

00030A JFLD(EMPN1

EMPN2)

00040A J JOIN(1 3)

00050A JFLD(EMPN1

EMPN3)

00060A EMPN1

Example 2 is equivalent to Example 1. PF1 is the first physical

file specified on the JFILE keyword and has relative file

number 1. PF2 and PF3 are the second and third files specified

on the JFILE keyword and have relative file numbers 2 and 3,

respectively.

JREF

The Join Reference keyword is specified at the field-level and

is valid for join logical files only. Use this keyword in join

logical files for fields whose names are specified in more than

one

physical file. With this keyword, you specify from which

physical file, the values shown in the view should be taken.

 Chapter 17. Logical File Coding Examples - Join Operations 285

The format of the keyword is:

JREF(file-Name | relative-file-

number)

When using the JREF keyword, you can opt. to use the

physical file name or its relative file number. If a physical file

is named twice on the JFILE keyword, however, then you must

specify the relative file number. There would be no other

unique value. The relative file number corresponds to the

physical file name specified on the JFILE keyword. For

example, specifying JREF(1) associates a field with the first

physical file specified on the JFILE keyword. Specifying

JREF(2) associates a field with the second physical file

specified on the JFILE keyword.

We have learned that Join logical files are based on two or

more physical files (up to 32). The field names, which are

specified in the record format in a join logical file, must

uniquely identify at least one field from the physical files upon

which the join logical file is based. For example, if the join

logical file is built over two physical files, and each physical

file has the field named EMPN, you must give the database a

clue as to which EMPN are you talking about. Is it the EMPN

in PF1 or the EMPN in PF2? To do this, you must specify the

JREF keyword to identify from which physical file the

duplicate fields in the logical format are to come.

When a field name is unique among the physical files specified

on the JFILE keyword, there is no need to specify this JREF

keyword. You can provide the keyword, however. It doesn’t

help or hurt. For example, if the join logical file is associated

with two physical files, and only one of the physical files has

an EMPN field, you do not need to specify the JREF keyword.

If the join logical file is associated with only one physical file

(the JFILE keyword names the same file twice), you must

specify the JREF keyword on every field since every field

would exist twice.

Example 1

The following examples show how to specify the JREF

keyword.

00010A R JRCD1R JFILE(PF1 PF2

PF3)

00020A ...

00030A ...

00040A ...

00045 ...

00050A EMPN JREF(PF2)

In this example, the JREF keyword is specified with the file

name, and EMPN occurs in both PF1 and PF2. Specifying

JREF (PF2) associates this field with PF2.

Example 2

The following example shows how to use the file reference

numbers to specify JREF.

00010A R JOINREC JFILE(PFA PFB

PFC)

00020A :

00030A :

00040A :

 Chapter 17. Logical File Coding Examples - Join Operations 287

00050A EMPN JREF(2)

Example 2 is equivalent to example 1. In example 2, EMPN

occurs in both PFA and PFB. Specifying JREF(2) associates

this field with PFB (the second of the physical files specified

on the JFILE keyword).

Chapter 17.

Logical File Coding

Examples -

Join Operations

The JOIN Relational

Operator

A picture is worth a thousand words. Let’s first take a look at

the files which we are about to join in Figure F-38. Then, we’ll

let’s code the DDS to make this type of join happen when we

create the Join Logical File Object.

LF Data Diagram- Inner Join

 Chapter 17. Logical File Coding Examples - Join Operations 289

In the simple join diagram shown in Figure F-38, rather than

just use the part number in the order master, as you can see, the

diagram shows how the description from the Parts master file is

Joined into the corresponding records of the order master, The

coding for this is in Figure F-39.

Figure F-38 Joining Data - Inner Join
 ORDER Transaction PARTS Master
 |-----------|--------|-------| |--------|-------------|--
---|
 |Order No |Part No |Date | |Part No |Description
|Loc |

 |-----------|--------|-------| |------------------------
--|
 |159244 |55511 |7/1/88 | |55511 |CKK Valve
|Whs 1|
 | | | | | | |
|
 |263255 |29999 |7/7/88 | |29999 |Left Bracket
|Whs 3|
 | | | | | | |
|
 |978121 |64444 |6/9/88 | |97676 |Brass plate
|Whs 1|
 | | | | | | |
|
 |. . . |. . . |. . . | |. . . |. . . |.
. .|

 *-----------!--------!-------E *--------!-------------!---
--E
 V V
 V V
 V V
 JOINED FILE
 |-----------|---------|------------------|
 |Order No |Part No |Description |

 |--------------------------------------|
 |159244 |55511 |CKK Valve |
 | | | |
 |263255 |29999 |Left bracket |
 | | | |
 | | | |
 |. . . |. . . |. . . |

 *-----------!---------!------------------E

As you may deduce, the order number is the primary key of the

ORDER transaction file. Most of the other fields are not

shown. Part No is the primary key to the PARTS Master file.

Most of the other fields in the PART Master File are not

shown. The extra fields in both files are there for the ride and

need not be visible for this to work. They are not necessary for

the join we have diagramed

The objective of this exercise is to place the description field

into the matching ORDER Transaction records to create a more

human-readable record. The description exists only in the

PARTS master file. You can see how the joined record which

contains both the order information and the description, as

shown at the bottom of the diagram, has far greater utility for a

user than either file by itself.

Since Part No is a common field in both files, it will be used as

the linking field in the coding for the Join. The part number

field in the ORDER file has a one to one relationship with the

part record in the PARTS file. In other words, there is one

record, and only one record in the Parts Master file for each

record (Part No) in the ORDER file. There are no missing parts

records. Of course we need information besides the shape of

the data to know this as a fact. Since we know that the records

in the ORDER Transaction file were edited at Order Entry time

to assure that the part record exists for each part ordered, we

know that there are no records in the transaction file that do not

have a matching Parts record.

Therefore, we have the makings of what is called a natural

join, or an inner join, or a matched join, or an equality join.

In relation to the primary file (top left in the diagram and first

file – left file – specified in DDS), there are no unmatched

secondaries. Each transaction record points to an existing

PARTS master record.

If, by any chance, there were a problem and there was a

missing PARTS record for an ORDER record, the Equality join

would not include any ORDER Transaction record in the

logical view that was unmatched with a PARTS record.

 Chapter 17. Logical File Coding Examples - Join Operations 291

LF DDS Coding Example -

Inner Join

Figure F-39 LF Coding Joining Data - Inner Join
A* Logical FILE (INNER)
A*
A R INNERR JFILE(ORDER
PARTS)
 J JOIN(ORDER PARTS)
 JFLD(PARTNO
PARTNO)
 ORDNO
 PARTNO JREF(ORDER)
 DESCR

 K ORDNO

You can see in Figure F-39, the convention for naming the file

within DDS comments – INNER. This example DDS represents

a logical file join of the order file and the parts file as first

shown in Figure F-38. There is a new record format (INNERR)

which consists of two fields from the ORDER file and one field

from the PARTS file. It uses the logical file name plus “R”

convention.

A Join view cannot be exactly the same as the structure of the

primary physical file. Thus all Join views are projections. Joins

are different because the projected fields come from more than

one file.

Figure F-39 is the coding to get the inner join job done.

Working from file to fields, the first file level keyword you see

that you have never seen before is the JFILE keyword. JFILE

is used to specify the file names which are being joined - in this

case, ORDER, and PARTS. You may choose to qualify the file

names if you do not anticipate the proper libraries being in the

library list.

How are they to be joined? This question is answered by the

JOIN parameter in conjunction with the JFLD parameter. The

purpose of the JOIN parameter comes into play when there are

more than two files to be joined. In fact, with just two files, you

do not need the JOIN keyword at all. JFILE and JFLD are

enough.

You use the JOIN record level parameter to identify the

sequences of pairs for joining. In the above example, we tell

the system to join ORDER to PARTS using the PARTNO fields

from each file. It looks like the JFILE would serve this purpose

just fine. However, the JFILE cannot do the trick when there is

more than one join. For two, joins, you need two JOIN

statements. For three joins, you need three JOIN statements,

and so on until you reach 31 joins with 32 files. The notion of

more than one Join is explored in the example shown in Figure

F-43.

Since there is a PARTNO field in both files, you must tell the

DDS which PARTNO field you want displayed in the joined

record. Of course, they will have the same value when there is

a match but will not if there is an unmatched record. The

JREF(ORDER) statement accomplishes this.

Notice that there is a completely new format created with this

view. Fields which you want in the view must all be specified.

There is no option to take all fields in coding for a JOIN. In this

format, two fields come from one file when there is a match

and the part description comes from the other file.

Finally, notice that there is a key field on the join. This field

orders the records so that they appear in a certain sequence in

the view. There are some restrictions as to which fields can be

 Chapter 17. Logical File Coding Examples - Join Operations 293

key fields. For example, a key field must be projected in the

view, and the field must come from the primary file.

Only when there is a match will a join record be included in the

view. No Record appears for 978121 in Figure F-38, because

there is no matching Parts record.

LF Data Diagram- Left

Outer Join

The sample diagram in Figure F-40 depicts a Left Outer Join.

In this join, as you can see, if there is no match with the

primary (First file in JFILE) the system still includes the record

in the view. However, since it has no field value from the

secondary record, it assigns default values to the fields which

would have come from the secondary file. In the chart in

Figure F-40, you will notice that the unmatched records from

the left file are included. This occurs because the JDFTVAL

keyword (use join default values) was used at the file level in

DDS.

Figure F-40 Left Outer Join (Default Join)
 ORDER MASTER PARTS MASTER

 |-----------|--------|-------| |--------|-------------|--

---|

 |Order No |Part No |Date | |Part No |Description

|Loc |

 |-----------|--------|-------| |------------------------

--|

 |159244 |55511 |7/1/88 | |55511 |CKK Valve

|Whs 1|

 | | | | | | |

|

 |263255 |29999 |7/7/88 | |29999 |Left Bracket

|Whs 3|

 | | | | | | |

|

 |970121 |64444 |6/9/88 | |97676 |Brass plate

|Whs 1|

 |. . . |. . . |. . . | |. . . |. . . |.

. .|

 *-----------!--------!-------E *--------!-------------!---

--E
 V V

 V V

 V V

 JOINED FILE

 |-----------|---------|------------------|

 |Order No |Part No |Description |

 |--------------------------------------|

 |159244 |55511 |CKK Valve |

 | | | |

 |263255 |29999 |Left bracket |

 | | | |

 |970121 |64444 |bbbbbbbb |

 *-----------!---------!------------------E

As you can see in Figure F-40, the missing fields are filled with

blanks if character. If numeric, the fields will be filled with

zeroes and if the DFT keyword is used, the value specified for

this default field will be used.

LF DDS Coding Example -

Left Outer Join (Default

Values)

 Chapter 17. Logical File Coding Examples - Join Operations 295

The coding for the left outer join is shown in Figure F-41. As

you can see the only difference between the coding in Figure F-

39 and Figure F-41 is that the JDFTVAL is specified which

makes the join a left outer Jon rather than an inner join.

Figure F-41 Coding DDS Logical File -Left Outer Join
A* Logical FILE (LOUTER)
A*
A JDFTVAL
A R LOUTERR JFILE(ORDER
PARTS)
 J JOIN(ORDER
PARTS)
 JFLD(PARTNO
PARTNO)
 ORDNO
 PARTNO JREF(ORDER)
 DESCR

 K ORDNO

You can see in Figure F-41, the convention for naming the file

within DDS comments – LOUTER. This example DDS

represents a logical file join of the order file and the parts file

as first shown in Figure F-40. There is a new record format

(LOUTERR) which consists of two fields from the ORDER

file and one field from the PARTS file. It uses the logical file

name plus “R” convention.

LF Data Diagram- Left

Outer Join with Multiple

Matched Secondaries

We are going to get a little more hairy now to show the power

of the join. Unfortunately, our data does not work as well in

this next step. So, we will play with the data a little bit to make

it work. Instead of the ORDNO/PARTNO to PARTNO

relationship (basically a one to one relationship from the

Orders file to the Parts file since an order would have only one

record for a particular part number), we are about to code a one

to many relationship. Therefore, we must reverse the

relationship of the test data and establish the Parts file as the

primary file. In this way, as you can see in Figure F-42, there

can be more than one order for a particular part number. This

gives parts to orders a one to many relationship.

 Chapter 17. Logical File Coding Examples - Join Operations 297

Figure F-42 Multiple Matched Secondaries
 PARTS MASTER

|--------|-------------|-----|

|Part No |Description |Loc |

|--------------------------|

|55511 |CKK Valve |Whs 1|

| | | |

|29999 |Left Bracket |Whs 3|

| | | |

|97676 |Brass plate |Whs 1|

|. . . |. . . |. . .|

*-----------!--------!-------E
Join the other way One to many

ORDER MASTER

 |-----------|--------|----

---|

 |Order No |Part No |Date

|

 |-----------|--------|----

---|

 |159244 |55511

|7/1/94 |

 | | |

|

 |263255 |29999

|7/7/94 |

 | | |

|

 |978121 |97676

|6/9/94 |

 | | |

|

 |984315 |97676

|7/21/94|

 *-----------!--------!----

---E
 V V

 JOINED FILE

 |----------|---------|------------------|

 |PART NO |ORDR NO |Description |

 |-------------------------------------|

 |29999 |263255 |Left bracket |

 | | | |

 |55511 |159244 |CKK Valve |

 | | | |

 |97676 |978121 |Brass Plate |

 | | | |

 |97676 |984315 |Brass Plate |

 *----------!---------!-------------------

LF DDS Coding Example -

Left Outer Join with Multiple

Matched Secondaries

(JDUPSEQ)

The primary file records are repeated in the join file view when

more than one matching secondary record exists. JDFTVAL in

this case would produce even more records than shown in

Figure F-42 where there are no matched secondaries. The

sequence in which the matching secondaries are retrieved is

indeterminate unless you code the JDUPSEQ parameter as in

Figure F-43.

Figure F-43 Coding Multiple Matched Secondaries -

JDUPSEQ
A* Logical FILE (LOUTERM)

A JDFTVAL

A R LOUTERMR JFILE(PARTS

ORDER)

 J JOIN(PARTS

ORDER)

 JFLD(PARTNO

PARTNO)

A JDUPSEQ(ORDNO)

 PARTNO JREF(PARTS)

 ORDNO

 DESCR

 K ORDNO

You can see in Figure F-43, the convention for naming the file

within DDS comments – LOUTERM. This example DDS

 Chapter 17. Logical File Coding Examples - Join Operations 299

represents a logical file join of the PARTS file and the ORDER

file as first shown in Figure F-42. There is a new record format

(LOUTERMR) which consists of two fields from the ORDER

file and one field from the PARTS file. It uses the logical file

name plus “R” convention.

Other than the sequence of the file being changed (PARTS

primary, ORDER secondary), the DDS is basically the same.

However, there is one new keyword used in this example.

When you have multiple secondaries, there is another join

specification (JDUPSEQ) which helps you assure that the

matched or unmatched (JDFTVAL) secondary records will be

presented in a defined sequence. In Figure F-43, look for the

JDUPSEQ keyword. It is a JOIN level keyword and within the

one parameter, the field name ORDNO is specified. The

statement is repeated below for amplification:

A JDUPSEQ(ORDNO)

In this case, JDUPSEQ tells the database to order the

duplicates on ORDNO whenever there is a part number that is

on more than one order, the JDUPSEQ gets the ORDER

records virtually “sorted” in order number sequence, rather

than random sequence. It tells the system to sort the orders in

ascending sequence. If you coded the following, the database

would present the multiple secondaries (duplicate order

records) in descending sequence:

 A JDUPSEQ(ORDNO

*DESCEND)

LF DDS Coding Example -

Left Outer Join with Multiple

Matched Secondaries Using

Relative File Number

Figure F-44 demonstrates an alternate coding technique to that

shown in Figure F-43. There is one difference in function but it

is not caused by the alternate coding technique. We squeezed in

another teaching opportunity.

Figure F-44 Alternate JOIN Coding Technique
A* Logical FILE (ALTJOIN)
A JDFTVAL
A R ALTJOINR JFILE(PARTS
ORDER)

 J  JOIN(1 2)
 JFLD(PARTNO
PARTNO)
 JDUPSEQ(ORDNO)

 PARTNO  N JREF(1)
 ORDNO
 DESCR

 K ORDNO

You can see in Figure F-44, the convention for naming the file

within DDS comments – ALTJOIN. This example DDS

represents a logical file join of the PARTS file and the ORDER

file as first shown in Figure F-42. There is a new record format

(ALTJOINR) which consists of two fields from the ORDER

file and one field from the PARTS file. It uses the logical file

name plus “R” convention. Though PARTNO seems to be

 Chapter 17. Logical File Coding Examples - Join Operations 301

included in this record format, check out the N code in the

usage column. We’ll get back to that.

The big thing in this example is the use of the relative file

number instead of the file name on many of the join keywords.

Instead of saying to specifically join PARTS to ORDERS, there

is another convention. You can use the relative sequence of the

file as specified on the JFILE statement. Thus, the DDS JOIN

records specification shows:

JOIN(1 2)

This says that File 1 is being joined to file 2. There is no

difference in function with this coding technique. Once fields

are defined with the JFILE, you can use numeric references for

them. This is a better coding technique, since the join files can

later change and the coding you have done with keywords does

not have to change.

The “N” specified in the Usage column tells the DDS compiler

that this join field will not appear in the join record. Thus, with

this coding, PARTNO is omitted from the resulting join

because of usage "N" Two Brass Plates are in the joined file

because of 2 matches, but the “N” has kept the PART NO field

from appearing in the resulting view.

LF Data Diagram- Three File

Join

Figure F-45 Adding a Customer File - 3 Join Files
 PARTS MASTER
|--------|-------------|-----|
|Part No |Description |Loc |

|--------------------------|
55511	CKK Valve	Whs 1
29999	Left Bracket	Whs 3
97676	Brass plate	Whs 1
.

*-----------!--------!-------E
Join the other way One to many

 ORDER / CUST ORDER

|-----------|-------------| |-----------|--------|---
----|
| Order No | Cust Name | |Order No |Part No
|Date |
|-----------|-------------| |-----------|--------|---
----|
| 159244 | Ward's Store| |159244 |55511
|7/1/94 |
|-----------|-------------| | | |
|
 |263255 |29999
|7/7/94 |
 | | |
|
 |978121 |97676
|6/9/94 |
 | | |
|
 |984315 |97676
|7/21/94|
 *-----------!--------!---
----E
 V V
 JOINED FILE
 |---------|------------------|-------------|
 |ORDR NO |Description | Cust Name |

 |---------------------------|-------------|
 |159244 |CKK Valve | Ward's Store|

 | | |

Now, let’s add a customer file to this two-file set that we have

been joining so well. As you can see in Figure F-45, this join

will be very similar to those we have done in the past. More

than likely, we will have multiple secondaries. In this case, we

want an inner join so that only records with matches are

selected. Thus, for each part in the PARTNO file, we only

 Chapter 17. Logical File Coding Examples - Join Operations 303

show the record if there is an order outstanding and if we have

the customer link properly accommodated. By now, we know

that the mere absence of the JDFTVAL keyword gives us a no

default join.

Additionally, if we have an order record for a part, then we

want to look up the customer name using another join. As you

will see in the DDS, there are two JOIN keywords in the DDS

because there are two joins as a data requirement.

LF DDS Coding Example -

Three File Inner Join

Let’s see how we might be inclined to code this. Look at

Figure F-46.

Figure F-46 LF Coding for Double Join
A* Logical FILE (DOUBJOIN)
A*
A
A R DOUBJOINR JFILE(PARTS ORDER
CUST)
 J JOIN(PARTS ORDER)
 JFLD(PARTNO PARTNO)
 J JOIN(ORDER CUSTORD)
 JFLD(ORDNO ORDNO)
 ORDNO
 PARTNO JREF(PARTS)
 DESCR
 CUSNAM

 K ORDNO

You can see in Figure F-46, the convention for naming the file

within DDS comments – DOUBJOIN. This example DDS

represents a logical file join of the PARTS file and the ORDER

file, joined again with the CUST file as first shown in Figure F-

45. There is a new record format (DOUBJOINR) which

consists of two fields from the ORDER file, one field from the

PARTS file, and one field from the CUST file. The example

uses the logical file name plus “R” convention.

OK, you’ve had enough time. But, go ahead and recheck the

coding in Figure F-46. Do you see anything wrong with this?

Are the join files OK? Are the key fields OK? What can be

wrong? Is nothing wrong?

Here are the Hints.

Hints:

1. Look at the JFILE File Names Sequence

should be?

2. Can a joined view be sequenced on a

secondary?

3. How can Parts (PARTNO) be taken from the

view?

4. Can the CUST (customer file actually be linked

to the ORDER file or the PARTS file?

5. Is there a file in the diagram which can help?

Now it’s answer time. There are lots of things wrong with this

coding.

1. The JFILE specifies a third file named CUST, yet this is not

used by the JOIN statements. Instead a file named CUSTORD

is used.

2. A joined view cannot be sorted on a secondary file. ORDNO

is an invalid key the way it is positioned. You would need to

make the order file the primary file in order to accomplish this.

3. PARTNO will be included in the view in this coding. To get

it out, you would have to code an “N” in the DDS usage

column on the line in which PARTNO is defined in the format.

 Chapter 17. Logical File Coding Examples - Join Operations 305

4. There is no real way that you can link to the CUSTOMER

file from the order file because no customer file ever designed

would have order number within it.

5. However, there is a file called CUSTORD which has the

customer name within it. This file can be part of the second

join so that the objectives can be accomplished. The diagram in

Figure F-45 shows the data in the CUSTORD file, including

the customer name.

LF DDS Coding Example -

Corrected Three File Inner

Join

The resulting corrected DDS would look like the example in

Figure F-46A

Figure F-46A Corrected LF Coding for Double Join
A* Logical FILE (DOUBJOIN)
A*
A
A R DOUBJOINR JFILE(ORDER PARTS
CUSTORD)
 J JOIN(ORDER PARTS)
 JFLD(PARTNO PARTNO)
 J JOIN(ORDER CUSTORD)
 JFLD(ORDNO ORDNO)
 ORDNO
 PARTNO JREF(PARTS)
 DESCR
 CUSNAM

 K ORDNO

LF DDS Coding Example -

Join a File to Itself

There are lots of tricks that can be done with Join logical files.

If you can appreciate how they are done, then you will have a

better understanding of coding database files even if you do no

tricks. In the example in Figure F-47, we join a file to itself.

Hang on to your seats for this one.

Figure F-47 Join a File To Itself
A* Logical FILE (JOINSELF)
A*
A
A R JOINSELFR JFILE(EARNMAST
EARNMAST)
 J JOIN(1 2)
 JFLD(EMPNO MGRNO)
 EMPNO JREF(1)
 EMPNAM JREF(1)

 MGRNAM JREF(2)
 RENAME(EMPNAM)
 MGRNO JREF(1)

 K EMPNO

You can see in Figure F-47, the convention for naming the file

within DDS comments – JOINSELF. This example DDS

represents a logical file join of the EARNMAST file with itself

(EARNMAST). The record format name is built from the file

name with the logical file name plus “R” convention.

There is a new record format (JOINSELFR) which consists of

three fields from the primary file version of the EARNMAST

and one field from the secondary file version of the

 Chapter 17. Logical File Coding Examples - Join Operations 307

EARNMAST file. You can tell the versions in the coding

because the JREFs had to be coded to get the proper data in the

record when the file was joined to itself.

Assume the objective is to have a view of the payroll data

which includes the following fields: employee number,

employee name, manager name and manager number. The

problem is that there is no manager file. Yet each manager is an

employee and each employee record includes manager number.

So, theoretically, if after reading a record, you could tell the

system to use the manager’s number and go read the manager’s

record with the manager’s employee number as the key, and

you could store the manager’s name in a different field, you

can solve this problem.

The coding in Figure F-47 does exactly that. Though all of this

data is in the same file, the manager name is in a different

record. By using the JREF keyword on the EMPNAM and

MGRNAM fields, the MGRNAM field gets populated when the

secondary record (manager’s employee record) is read to form

the second half of the two file join. Since EMPNAM is renamed

to MGRNAM, at the time of the secondary read, the EMPNAM

field is different from what it was for the primary (employee)

record read. Since the JREF is also used on all of the other

fields in the primary file, the data does not get wiped out when

the secondary record with the same fields is read. Thus the

necessary managers’ data is captured and presented in the

view.

Notice in Figure F-47 that the EMPNO field is the designated

join field for the primary file and the MGRNO field is the

designated field for the secondary file. In fact, the primary file

and the secondary file are one and the same, but the secondary

read gets the manager’s record, and this coding stores it

successfully in the MGRNAM field.

Join Summary

Before we forget this stuff, let’s summarize what we now know

about a join.

1. Only One record format allowed

2. 1 to 32 joined physical files

3. Key fields must exist in a primary file

4. Secondary files must be joined in the same order as

specified on the JFILE statement

5. Join files cannot be updated

Join is one of the most powerful operators in a relational

database. If you have a good feeling for the DDS Join

examples we examined in this chapter, you are well on your

way to database proficiency with the AS/400 and iSeries. If

you would like to explore SQL a little more, you are also in a

better position to understand what this database language

standard can do for you.

 Chapter 17. Logical File Coding Examples - Join Operations 309

Chapter 18.

Dynamic Record

Selection - DYNSLT

DYNSLT Overview

You would use the DYNSLT file-level keyword to indicate that

the selection and omission tests specified in the file (using

select/omit specifications) are done at processing time.

Technically, what this keyword tells the database is to use

dynamic select/omit logic when the file is being processed

rather than to continually maintain the access path with

select/omit logic. Using DYNSLT, the cost (disk and

processor) for the work involved by the database for the

selection or omission of records is borne at the time the logical

file (view) is used in a processing program. In other words if a

program were reading the view sequentially, the determination

of which records were presented (selected) and which records

were not presented (omitted) would be done by the database

while the program was reading records through the logical

view.

Without DYNSLT, when the processing program opens the

logical file, the access path already reflects the selections and

there is no further burden on the database for the selection

process. This true statement may make it seem that DYNSLT is

a burden on the system and it should not be used. Actually,

DYNSLT is often the most efficient way to process select /omit

statements in a logical view even though it must first read each

physical record to dynamically determine whether or not a

record gets presented to the processing program.

In many ways the logic of DYNSLT is the same as if you had

done no record selection in your logical view but, instead you

did the selection / omission tests within your HLL program.

However, since the DYNSLT work is done in the operating

system, it is substantially faster than having to drag each record

into your program, as required in the do-it yourself approach.

If the select/omit burden is not borne at processing time with

DYNSLT, then it is borne continually as records are changed,

added or deleted from the underlying physical file(s). There

may be many programs which affect a file. For each change by

any program the database would have to examine if the change

affected the access path and if a record should be selected or

omitted. Since the processing program has no part in this

activity, the database makes the change to the access path

itself. DYNSLT saves the system from all the checking and

access path manipulation which would occur in a busy file.

Without forcing the access path to be maintained for selections

or omissions, the overall system performance for busy files is

almost always better. If there were very few changes to the

underlying data, then DYNSLT would not be as good an

option for logical file processing.

DYNSLT Summary

As a program does input operations to a logical file with the

DYNSLT keyword specified, all the records in the associated

physical file are tested by the system to see if they satisfy the

select/omit values. Only those records that satisfy the values

are supplied to your program. It certainly costs the system at

processing time to test each record and it can result in slower

I/O performance, but it still may be more efficient than

maintaining an access path for the file. This is particularly

likely for files read only occasionally, especially when the

physical files they are based on are updated frequently. Using

dynamic select/omit is probably also more efficient for files

with a high percentage of selected records.

(Hint: Though we have not yet covered logical

file examples and keywords such as select/omit,

and we have not shown join examples in this

book, this information and the examples code

which you see are provided at this time since the

DYNSLT file level keyword is currently being

studied. There is always a little chicken or the

egg when introducing new material. You will

better appreciate this arrangement when you

use this book as a reference. If the notion of

DYNSLT and select/omit is something you

would prefer to deal with after you have

digested the notion of logical files and select/omit

logic, it is OK to skip or merely glance over this

material at this time. But, we do expect you

back!

When DYNSLT Does Not Apply

In keyed sequence access files, the system creates an access

path at logical file creation time and the access path is

maintained for the file according to the MAINT parameter on

the Create Logical File (CRTLF) or Change Logical File

(CHGLF) command. The DYNSLT keyword does not affect

the maintenance of access paths for keyed sequence access

files.

When DYNSLT Does Apply

For all single-format logical files with a DYNSLT keyword,

you do not need to specify key fields in order to specify

select/omit fields. However, for all multiple-format logical files

with a DYNSLT keyword, you do need to specify at least one

key field. The key field is used to bring them together. You can

specify *NONE for this key field.

There are instances where you must do the record selection or

omission dynamically using DYNSLT since the system does

not always have an access path which easily accommodates

select / omit logic. For example, you must use the DYNSLT

keyword when you want to select or omit fields and any of the

following conditions are true:

1. The logical file has an arrival sequence. The DDS in this

case would have no key fields specified. This example is

shown below as Example 1.

 Chapter 19. Date and Time Formats 313

2. The logical file is a join logical file with the JDFTVAL

(Join default value) keyword specified. You will come to

learn the meaning of the JDFTVAL keyword very soon when

we cover Join logical files. Basically it means that the primary

file in a join will always present a record, even if the secondary

file(s) has no matching record(s). The secondary data is

provided as default values.

3. The logical file is a join logical file, and the select/omit

fields come from more than one of the physical files the

logical file is based on, and one of the following is also true:

A. The select/omit fields are on the same select or omit

statement. See example three below.

B. The select/omit fields are on a mixture of select and

omit statements. See example four below.

C. The select/omit fields are on select statements that

are ORed together.

D. The select/omit fields are on omit statements that

are ANDed together.

DYNSLT Examples:

The following four examples show how to specify the

DYNSLT keyword in different circumstances.

Example 1:

The following example shows how to specify dynamic select

with arrival sequence. Notice that there is no key field specified

in the following DDS.

00010A DYNSLT

00020A R RECORD1 PFILE(PF1)

00030A FIELD1

00040A FIELD2

00050A S FIELD1 COMP(GT 2)

The PFILE keyword in statement 00020 is at the record level

and it says that this record format is in the physical file named

PF1. This is the keyword which tells the logical file which

physical file(s) it is based upon. Statement 00050 is where the

selection takes place. It reads like this: When FIELD1 is

greater than 2, include the record in the view. The DYNSLT

keyword is required because there are no key fields (K in

column 17). The logical file applies dynamic selection and

supplies the records to your program in arrival sequence.

Assume that physical file PF1 has the following records:

FIELD1 FIELD2

 1 AAA

 2 XXX

 3 KKK

 4 BBB

As your program does input operations, the system tests the

first two records according to the select/omit values, but does

not supply them to your program since the value of FIELD1 is

 Chapter 19. Date and Time Formats 315

not greater than 2. Therefore, your program sees only the last

two records:

FIELD1 FIELD2

 3 KKK

 4 BBB

Example 2

The following example shows how to specify dynamic

selection when there is a keyed sequence access path.

00010A DYNSLT

00020A R RECORD1 PFILE(PF1)

00030A FIELD1

00040A FIELD2

00050A K FIELD1

00060A S FIELD2 COMP(GT

'BBB')

In this example, the DYNSLT keyword is actually not required.

The logical file supplies records to your program in keyed

sequence. Let’s assume that physical file PF1 has the following

records:

FIELD1 FIELD2

 1 AAA

 2 XXX

 3 KKK

 4 BBB

When your program requests a record, the system tests the

value of FIELD2 for that record according to the select/omit

values. Therefore, your program only sees the following

records:

FIELD1 FIELD2

 2 XXX

 3 KKK

Example 3

The following example shows you how to specify a join logical

file using select/omit logic which compares fields from two

different physical files.

00010A DYNSLT
00020A R REC1 JFILE(PF1 PF2)
00030A J JOIN(Pf1 PF2)
00035A JFLD(FIELD1
FIELD3)
00040A FIELD1 JREF(PF1)
00050A FIELD2 JREF(PF1)
00060A FIELD3 JREF(PF2)
00070A FIELD4 JREF(PF2)
00080A S FIELD1 COMP(GT FLD4)

 Chapter 19. Date and Time Formats 317

This example uses a join. There are four keywords necessary

for a join. The JFILE (join file) keyword in 00020 says that

files PF1 and PF2 will be joined. The “J” or join record

(column 17) uses the JOIN (join files) keyword to specify the

order in which the files are being joined. This can be different

from the order in the JFILE. The JFLD (join field) keyword in

statement 0035 shows which fields are being joined - Field1 is

in PF1, and FIELD3 is in PF2.. The next keyword is the JREF

(join reference file) and this tells the DDS compiler when two

files being joined have the same field names, which file to take

the data from.

FIELD1 and FIELD2 come from the primary file (PF1). The

primary file is the first file specified in a join, and FIELD3 and

FIELD4 come from the secondary file (PF2). The select

specification compares FIELD1 from the primary file with

FIELD4 from the secondary file. Therefore, the DYNSLT

keyword is required. See Rule 3A above.

Example 4

The following example shows how to specify a join logical file

that contains both select and omit statements which come from

more than one physical file.

00010A DYNSLT

00020A R JREC JFILE(PF1 PF2)

00030A J JOIN(PF1 PF2)

00040A JFLD(FIELD1

FIELD2)

00050A FIELD1 JREF(PF1)

00060A FIELD2 JREF(PF1)

00070A FIELD3 JREF(PF2)

00080A K FIELD1

00090A S FIELD1 COMP(GT 0)

00100A O FIELD3 COMP(GT 4)

FIELD1 and FIELD3 come from different physical files and

are specified in a mixture of select and omit statements.

Therefore, the DYNSLT keyword is required according to rule

3B above.

 Chapter 19. Date and Time Formats 319

Chapter 19.

Date and Time

Formats

Many Operations Use Date

and Time

This book would be incomplete if we did not give sone

attention to the data and time formats. I would suggest reading

the material in IBM’s Physical and Logical File Database

Guide which you can find by using the Appendix of this book.

Many operations use the date or the time as a critical value. We

know that from the effort expended in the Y2K battle that dates

are very important. Yet, many of us continue to use our own

hand-written code to handle date routines, rather than using the

database field type and using the various date and time

formatting facilities available in DDS.

 Chapter 19. Date and Time Formats 321

There are three special data types that the DDS formatting

keywords apply to. Moreover, the length for fields with data

type L (date), T (time), or Z (timestamp) is determined by the

system. When defining such a field in DDS, you are told

specifically by IBM not to enter a field length in positions 30

through 34 of the DDS specification. IBM believes you don’t

have to know the internal format as long as there is a way for

you to externalize the date and date-like fields in one or many

pleasing formats. Additionally, being the multi-language

company IBM is, you can bet they can take those crazy shaped

fields and make them look like any type of date that you need.

If you think this, you are absolutely correct!

Let’s take a look in reasonable detail about the date formats

and date separator keywords and we’ll use this as a basis for

leveraging a discussion on the other formats. In other words, if

they are basically the same, you would probably [refer that we

say that, rather than present everything two or three times, and

let you figure it out. Let’s start with the DATFMT keyword.

DATFMT

The Date Format keyword is valid for both physical and logical

files. You would use this keyword to specify the format of a

date field. This keyword is valid only for date fields

(data type L) or for logical file zoned fields (data type S),

packed fields (data type P), or character fields (data type A)

whose corresponding physical file fields are date fields (data

type L). Already you know that the date separator can deal with

more than IBM’s internal date format.

The format of the keyword is:

DATFMT(date-format)

It would not be too much to suggest that the date-format

keyword specifies the format for the date. That is exactly what

it does. IBM has built a table that is printed in the Physical and

Logical Files Database Guide which describes the valid date

formats and their default separator values for physical file

fields. Let’s examine this table in Figure F-48

Figure F-48 Date Format Table

Format Name Date-

Format

Parameter

Date Format

and

Separator

Field

Length

Example

Job Default *JOB

Month/Day/Year *MDY mm/dd/yy 8 06/23/69

Day/Month/Year *DMY dd/mm/yy 8 23/06/69

Year/Month/Day *YMD yy/mm/dd 8 69/06/23

Julian *JUL yy/ddd 6 69/174

International

Standards

Organization

*ISO yyyy-mm-dd 10 1969-06-23

IBM USA

Standard

*USA mm/dd/yyyy 10 06/23/1969

IBM European

Standard

*EUR dd.mm.yyyy 10 23.06.1969

Japanese Industrial

Standard Christian

Era

*JIS yyyy-mm-dd 10 1969-06-23

Other attributes of the DATFMT keyword for physical file

fields are:

 Chapter 19. Date and Time Formats 323

1 You may specify only the DATFMT keyword on the

date (L) data type.

2. If you do not specify the DATFMT keyword, the

default is *ISO.

3. Field length values and decimal position values must

be blank.

The iSeries DDS Reference: Physical and Logical Files

manual which is in IBM’s Web Library (access instructions in

the Appendix) has a very large table of supported formats and

separations for logical files. You may want to take a trip to this

manual if you have a project where detailed knowledge of

dates is key to the solution.

Example

The following example shows how to specify the DATFMT

keyword.

00010A R RECORD

00020A DATE1 L DATFMT(*JUL)

00030A DATE2 L DATFMT(*EUR)

If the current date is June 23, 1969, the current system date

format value is MDY, and the current system separator is /,

DATF1 contains 90/172 (the 174th day of the year 1969).

DATE2 contains

21.06.1990.

DATSEP

The Date Separator keyword is for both physical and logical

files. You would use this field-level keyword to specify the

separator character for a date field. This keyword is valid only

for date fields (data type L).

The format of the keyword is:

DATSEP(*JOB | 'date-separator')

The date separator parameter specifies the separator character

that appears between the year, month, and day. Valid values are

a slash (/), dash (–), period (.), comma (,) or blank (). The

parameter must be enclosed in apostrophes.

If you specify *JOB, the default is the job attribute. For

physical files, if you do not specify the DATSEP keyword, the

default is the job attribute. For logical files, if you do not

specify the DATSEP keyword, the default is the date separator

from the physical file. If you did not specify the DATSEP

keyword for the physical file field (*ISO, *USA, *EUR, or

*JIS was specified on the DATFMT keyword), the default for

DATSEP is the job attribute.

If you specify the *ISO, *USA, *EUR, or *JIS date format

value on the DATFMT keyword, you cannot specify the

DATSEP keyword. These formats have a fixed date separator.

The DATSEP keyword overrides the job attribute. It does not

change the system default.

 Chapter 19. Date and Time Formats 325

Here is an Example:

The following example shows how to specify the DATSEP

keyword.

00020A R RCD1R

00030A DATE3 L DATFMT(*DMY)

DATSEP('-')

00040A DATE4 L DATSEP(' ')

If the current date is June 23, 1969, the current system date

format value is MDY, and the system date separator value is '/',

DATE3 contains 23-06-69. DATE4 contains 06 23 69.

Time and Timestamp

Operations

The Keywords for time and timestamp are as follows:

TIMFMT (Time Format)

TIMSEP (Time Separator)

The iSeries DDS Reference: Physical and Logical Files

manual which is in IBM’s Web Library (access instructions in

the Appendix) has a table of supported time formats and

separations for physical logical files. You may want to take a

trip to this manual if you have a project where detailed

knowledge of time fields is key to the solution.

 Chapter 19. Date and Time Formats 327

Chapter 20.

Summary and

Conclus

ions

Data Base Summary

In this mini course, we examined native database coding on the

AS/400 and iSeries. We answered the following questions

along the way:

1. What is a data base?

2. Why is a data base needed?

3. What is the AS/400 data base?

4. How does one use the AS/400 data base for

 data creation / manipulation?

5. How do you code DDS for Physical and Logical Files

This course has defined what a data base is, explained the

benefits of having an integrated data base on a data processing

system, and it introduced the AS/400 integrated, relational data

base and followed up with a series of highly useable examples.

You should now be prepared to move off and begin making

more effective use of this marvelous database tool

It’s time to go have some database fun!

Our best wishes for your database future!

 Appendix. IBM Documentation - How to Find it! 329

Appendix

IBM Documentation -

How to Find it!

How to Find an IBM AS/400

or iSeries Manual Using

IBM’ S Web-Based

Documentation

Many IBM iSeries manuals are excellent. Though you will be

able to amble somewhat through the wonderment of iSeries

program development after taking these QuikCourse tutorials,

for your details and specifics, unfortunately, you must access

IBM’s wealth of AS/400 manuals and other documentation.

There was once a time that every IBM manual had a form

number which was very easy to locate. It was on the front

cover of the book or manual. This was a nice way of uniquely

identifying the manual you needed. Things have changed,

mostly for the better. Now, you don’t need any manuals at all

per se, since all of IBM’s AS/400 documentation is available

on the web in HTML and/or PDM format. Thus, every manual

for AS/400 and iSeries is just a Web access away. Throw your

old manuals away. Save the trees! Clear up your desks.

How do you find the manual you need? For this book, you will

position yourself to IBM’s iSeries documentation web site.

This will be your entre’ into the world of IBM documentation

for version 5.X of the operating system. From here, for certain

manuals, you will take very specific paths to get to the

manuals of your choosing. For others, which are still

referenced by manual number, and there is a ton of them, you

will go to the supplemental manuals’ page, a sample of the

manuals there is shown in Figure AA-1.

Figure AA-1 IBM Supp. Manuals Page - Looking for a Manual
Title

Docu

ment

Numb

er

3270 Device Emulation Support SC41-

5408

ADTS for AS/400: Report Layout Utility SC09-

2635

ADTS for AS/400: Screen Design Aid SC09-

2604

ADTS for AS/400: Source Entry Utility SC09-

2605

ADTS/400: Application Dev. Manager API Reference SC09-

2180

ADTS/400: Application Dev.t Manager Intro and GC09-

1807

 Planning Guide

 Appendix. IBM Documentation - How to Find it! 331

ADTS/400: Application Dev. Manager Self-Study Guide SC09-

2138

ADTS/400: Application Dev. Manager User's Guide SC09-

2133

ADTS/400: Application Dictionary Svcs Self-Study Guide SC09-

2086

ADTS/400: Application Dictionary Services Users Guide SC09-

2087

ADTS/400: Advanced Printer Function SC09-

1766

ADTS/400: Data File Utility SC09-

1773

ADTS/400: File Compare and Merge Utility SC09-

1772

ADTS/400: Interactive Source Debugger SC09-

1897

ADTS/400: Programming Development Manager SC09-

1771

ADTS/400: Screen Design Aid for the S/36 Environment SC09-

1893

CL Programming SC41-5721

COBOL/400 Reference SC09-

1813

COBOL/400 Users Guide SC09-

1812

ILE Application Development Example SC41-

5602

ILE C/C++ Compiler Reference SC09-

4816

ILE C/C++ for AS/400 MI Library Reference SC09-

2418

ILE C/C++ Language Reference SC09-

4815

ILE C/C++ Programmer's Guide SC09-

2712

ILE C for AS/400 Run-Time Library Reference SC41-

5607

ILE COBOL Programmer's Guide SC09-

2540

ILE COBOL Reference SC09-

2539

ILE COBOL Reference Summary SX09-

1317

ILE Concepts SC41-

5606

ILE RPG Programmer's Guide SC09-

2507

ILE RPG Reference SC09-

2508

ILE RPG Reference Summary SX09-

1315

Introducing ADTSet for OS/400 and GC09-

2088

 the AS/400 Server Access Programs

REXX/400 Programmer's Guide SC41-

5728

REXX/400 Reference SC41-

5729

RPG/400 Reference SC09-

1817

RPG/400 User's Guide SC09-

1816

Sort Users Guide and Reference SC09-

1826

System Operation SC41-4203

System/36-Compatible RPG II User's Guide and Reference SC09-

1818

System/38-Compatible COBOL Reference Summary SX09-

1286

System/38-Compatible COBOL User's Guide and Reference SC09-

1814

VisualAge RPG Language Reference SC09-

2451

 Appendix. IBM Documentation - How to Find it! 333

VisualAge RPG Parts Reference SC09-

2450

Work Management SC41-

5306

Finding a Manual - IBM

Process

Let’s find a couple manuals. As an example, Let’s say you are

looking for database manuals. What is the first thing you do?

You want to go to IBM’s documentation site. The easiest way

to get there is to go to the main AS/400 / iSeries site at

WWW.AS400.IBM.COM

On the left frame, notice a link called Library. Take the link

then, from the right panel, take the iSeries Information Center

link. From there, you will get a panel which lets you pick the

version and release and the language. Pick V5R1 and English,

then click on the GO button. You are now at IBM’s English

documentation site for V5R1.

To get to the database books, you have a few more links to go.

After you press GO, for Database, 1. click on Database and

File Systems, 2. Then click DB2 UDB For iSeries. 3. Then

click Manuals and Redbooks.

In this section, you will find two valuable manuals. The first,

DDS Reference: Concepts, shows how to use DDS, and the

second, DDS Reference: Physical and Logical Files shows how

to create physical and logical database files. When we find

these two manuals, we have found what we are looking for.

When I did my search, I noticed that neither of these manuals,

taking this path, showed up with IBM form numbers. At least I

could not find them. Now, let’s try to find a few books which

would come in handy in some of the QuikCourses you are

studying. Suppose you were looking for books in any of the

following topical areas:

http://www.as400.ibm.com/

 Appendix. IBM Documentation - How to Find it! 335

 Work Management

 PDM - Program Development Manager

 SEU - Source Entry Utility

 DFU - Data File Utility

 SDA - Screen Design Aid

As you are going through the main path as we did for database,

you would notice that there is no stopping point for Application

Development. So, how do you find the books above?

Instead of clicking on the Database and File System path, go

down a bit further, until you see: Looking for A Manual? Take

this link. You will then get a new browser window with all

AS/400 and iSeries manuals listed by topical area. Page down

this display. While paging, look at all the manuals you see and

make a note of them for future reference. You will come to a

section called Supplemental Manuals. For your edification, we

cut out a sample of these supplemental manuals and made them

available as Figure AA-1 above.

Please note that the list of five manuals, for which we were

searching, are all available in this list. The SEU, DFU, etc.

manuals are prefixed by ADTS which means the Application

Development ToolSet. As you know, with V5R1, the ADTS is

bundled with the 5722-WDS product called WebSphere

Development Studio for iSeries.

As you move through the QuikCourses, especially those

teaching a technical topic such as SEU or PDM, feel free to

take a trip out to the Web and either download your own PDF

version of these manuals or check it out in HTML form right

from the Web. Like me, I would expect that you will be

impressed with all that IBM has made available for your use,

and how easy it is to access and find specific information.

Index

1978 ... 25

5722-WDS .. 24

access path

*DLY 31
*IMMED 30

*REBLD................................ 31

Access path 86
Arrival Sequence 86, 87, 89

Direct processing 87

Keyed Sequence 87
Multiple Formats 86

No key fields 87

REFACCPTH 88
Reference access path 88

Sequential processing 87

Sharing 88
Add Logical File Member .. 93

Add Physical File Member 93
ADDLFM ... 93, 94

ADDPFM ... 93, 158

AS/400 Database
Characteristics 57

Physical file 11

Primary key 11
Relations................................ 11

Tuples 11

ASPs ... 66

Aattributes .. 11, 49

Behavioral Rules... 63

CHGPF ... 30, 64
Clear Physical File ... 93

CLRPFM .. 93

COBOL .. 20, 23
Compilers ... 20

Composite Key ... 225

Conversions .. 59
Copy File Utility .. 161

*MAP and *DROP 163

*NOCHK 164
CPYF................... 162, 163, 167

CPYFRMTAP 165

DDS..................................... 166

F

l

a

t

F

i
l

e

s

1

6
4

F

M
T

O
P

T

1

6

6
R

e

p

l

a

c
e

o
r

A
d

d

1

6

3

R

N
M

O

B
J

1

6

2

U
n

i

x

b

o
x

1

6

5
C

r

e
a

t

i
n

g

L

o

g
i

c

a
l

F

i

l
e

s

4

8

,

9

1

,

2

4

2

C

r
e

a

t
i

n

g

P

h
y

s

i
c

a

l

F

i
l

e

s

3

7
,

9
0

,

1

4
5

C

R
T

P

F

c

o

m
m

a

n

d

1
4

5

M
B

R

p

a

r
a

m

e
t

e

r

1

5
8

M

u
l

t

i
p

l

e

M
e

m

b
e

r

1

5

5
M

u

l
t

i

p

l

e

M

e

m
b

e

r

S

o
u

r

c
e

F
i

l

e
s

1
5

5

P
D

M

1
4

5

S
E

U

1

4

5
C

R

T
L

F

2

8

,

5

1
,

9
1

D

i
s

s

e
c

t

i
n

g

C

R

T
L

F

P

a

r
a

m
e

t

e
r

s

5

4

C

R
T

P

F

2

8

,

4
0

,

6

4

,

9

0
,

9
3

D

i
s

s

e
c

t

i
n

g

C

R

T
P

F

P

a
r

a

m
e

t

e

r
s

4
2

D

a

t

a

3

,

9

0

S
a

m

p
l

e

1

2

7
D

a

t
a

B
a

s

e

S

u
m

m
a

r

y

2

9
9

D

a
t

a

C

u

r

r

e

n
c

y

2

7

,

3

0
D

a

t
a

D
i

c

t
i

o

n
a

r

y

3

8
D

a
t

a

I

n

d
e

p

e

n
d

e

n
c

e

5

8

D
a

t

a

M

a
n

a

g
e

m

e
n

t

A

t

t
r

i

b
u

t

e
s

6
3

D
a

t

a
b

a

s
e

3
D

a

t
a

A

c

c

e
s

s

4

D

a
t

a

B

a

s
e

M
a

n

a
g

e

m
e

n

t

4

D
a

t
a

c
o

n

t
r

o

l

5

D
a

t

a

O

r
g

a

n
i

z

a
t

i

o
n

4
H

i

e
r

a

r
c

h

i
c

a

l

D

a
t

a
b

a

s
e

6
N

e

t

w
o

r

k

d

a

t

a

b
a

s

e
s

6

P

r
o

g

r
a

m

s

5

R
e

l

a
t

i

o
n

a

l

3
R

e

l
a

t

i
o

n

a

l

d

a
t

a

b

a

s

e

7
t

y

p
e

s

o

f

d

a

t
a

b

a
s

e

m

a

n
a

g

e
m

e
n

t

s

y

s
t

e

m

s

6
W

i

t

h

o

u
t

a

D

a
t

a

B

a

s
e

5
D

a

t
a

b

a
s

e

T

h

e
o

r
y

2
1

7

E
-

R

D
i

a

g
r

a

m

i

n

g

9
5

S

o
l

u

t
i

o

n

1

0
1

C

a
r

d

i
n

a

l
i

t

y

R
e

l

a
t

i

o
n

s

h

i
p

s

9

7

D

a

t

a

B

a
s

e

N

o

r
m

a

l
i

z

a
t

i

o
n

9
5

E-R .. 95

E-R diagraming 97
E-R) diagraming 96, 97

Entities 96

First Normal Form 99
Many to Many Relationship 100

Methods............................... 102
Parent & Child Example 97

Removing Repeating Groups 95

Rules 101
Second Normal Form 99

Third Normal Form 99

Date .. 293
Date and Time

, T (time) 293

Date Format Table 295

DATFMT 294
DATSEP 296

DATSEP Example 297

DDS formatting keywords . 293
Example 296

L (date) 293

 ... Z (timestamp 293

DB Operators ... 13

DB2 .. 19

DDS .. 22, 26, 28, 33, 36, 79
Data description specs 25

Field level DDS 37

File level DDS 37
Join level DDS 37

Key field level DDS 37

Select/omit field level DDS .. 37
Six Levels of DDS 36

DDS .. 48

Column 17 - Type of Name 115
Column 18 - Unused 117

Column 29 - Reference 118

Column 35 - Data type 119
Column 38 - Unused 121

Column 6 113

Column 6 - Form Designator113
Column 7 - Comments 115

Columns 19 to 28 - Name .. 117

Columns 36 to 37 - # of
Decimal Places . 121

Columns 39 to 34 - Field

Length 119
Columns 39 to 44 - Unused . 121

Columns 45 to 80 - Keyords 122

Columns 8 to 16 - Unused ... 115
D

e

s
c

r
i

b

i
n

g

D

a

t

a
b

a

s
e

s

1

0

5
E

x

a
m

p

l
e

s

1

3

2
E

x

c
l

u

d
e

d

1

2

6
F

o

r
m

1

1

3
H

i

e
r

a

r

c
h

y

1

0

5

,

1
0

6

K
e

y

w
o

r

d
s

1
1

0

,

1

2
2

D

E
L

A

Y

7

3
D

F
U

2
6

,

1

5

9
D

I

F
F

E

R

E

N

C
E

1

2

D
i

s

p
l

a

y

&

P

r

i
n

t

e
r

F
i

l

e
s

8

2
D

i

s
p

l

a

y

P

h
y

s

i

c

a

l

F

i
l

e

M

e

m
b

e

r

1
6

8

D
S

P

P
F

M

1

6

8
D

I
V

I

S
I

O

N

1

2
D

M

L

2

3

D

T

A
M

B

R
S

9
2

E

N
D

J

O
B

7
3

E

O
F

D

L
Y

7
1

E

x
t

e
r

n

a
l

l

y

D

e

s
c

r

i
b

e

d

F

i
l

e

s

6

1
F

E

O
D

7
3

F

i
e

l

d

L

e
v

e

l

1

0
7

A
L

I

A
S

1
4

0

,

1

7

4
C

H

E

C

K

1

4

7
,

1
8

5

C
M

P

1

4

7
C

O

L
H

D

G

1

3
9

,

1

8
5

C

O
M

P

1

4

7

,

1

8
5

D

F

T

1
4

2

E
D

T

C
D

E

1

4

8
,

1
8

5

E
D

T

W
R

D

1

4

8
,

1

8

5
F

L

T
P

C

N

1

7

4
K

e

y

w

o

r
d

s

1

7

4
M

o

r
e

L
F

1

8

5
M

o

r
e

L
F

K
e

y
w

o

r
d

s

1

8

5
M

o

r
e

P

F

K
e

y

w
o

r

d
s

1
4

6

P
F

K
e

y

w
o

r

d
s

1
3

8

R
A

N
G

E

1

4

8
,

1

8
5

,

1

9

5

R

E

F
F

L

D

1

4
0

R

E
F

S

H
I

F

T

1

5
0

,

1

8

5
R

E

N
A

M
E

1
7

4

,

1

7

8
S

S

T

1

7

4

,

1

8

0
S

u

m
m

a

r
y

1
5

2

T
E

X

T

1

8
5

T

R
N

T

B
L

1

7

4
V

A

L
U

E

S

1

5

0
,

1

8

5

,

1

9
8

F

i
e

l

d

R

e
f

e

r
e

n

c
e

F
i

l

e

3
8

F
i

e

l
d

s

6

0

F

i
l

e

a

n

d

D

a
t

a

S

e

q
u

e

n
c

i

n
g

2
1

9

M
a

n

y

F

o
r

m

a
t

s

2
2

0

f
i

l

e

l

e

v
e

l

1

0

6
,

1
0

7

,

1

3
2

A

l
t

e

r
n

a

t
e

C
o

l

l
a

t

i
n

g

S

e
q

u

e
n

c

e

1

3
5

D

Y

N

S

L
T

1
7

3

FCFO 137
FIFO 137

Keywords 172

LIFO 137
REF 134

File Object .. 82

File system .. 12
Fields 12

Files 12

Records 12
FMTDTA ... 70

Format .. 82

FRCRATIO .. 64
HLL .. 20

IBM Documentation .. 301

WWW.AS400.IBM.COM .. 304
Finding a Manual - IBM

Process 303

How to Find it! 301
Web-Based Documentation 301

IDDU ... 33, 34

Dictionary Support 38
Index Currency ... 30

Information... 3
Integrated Data Base .. 20

Aa built-in database 19

Break DB Rules 20
Commitment control 21

Compiler writers 20

Database recovery 21
DB2/400 21

Journaling 21

Mainframe relational

database 19
No Name Database 21

INTERSECTION ... 12

JDFTVAL ...250
Example 1250

JDUPSEQ ...251

Example 1252

JFILE ...253

Example 1254

Example 2 255
JFLD ...255

Example256

Join .. 17, 257
Example 1259

Example 2259

JOIN .. 12
Join Field Level Keywords......................................247

JDUPSEQ247

J
R

E

F

2

4
7

J

o
i

n

F

i

l
e

C
o

d
i

n

g
J

F

I
L

E

2
4

7

J
o

i

n

F

i
l

e

L

e

v
e

l

K

e

y
w

o

r
d

s

2

4

6
R

e

c
o

r

d

L
e

v

e
l

K
e

y

w

o
r

d

s

2

4

7

J

o
i

n

F

i

l
e

L
e

v

e
l

K
e

y

w
o

r

d
s

2
4

6

J
D

F
T

V

A
L

2
4

6

J

o
i

n

K

e

y

w

o

r
d

s

D
e

t

a
i

l

e
d

L
o

o

k

2
4

8

J
o

i

n

L

e
v

e
l

K
e

y

w
o

r

d

s

2

4
5

J

o

i

n

R

e

c
o

r

d

F

o
r

m

a
t

1
0

7

J
o

i

n

R

e
c

o

r
d

L

e

v
e

l

1

0

6
J

o

i
n

R

e

c

o
r

d

L

e

v
e

l

K

e

y
w

o

r
d

s

2

4

7
J

F

L
D

2
4

7
J

O

I
N

2
4

7

J

R
E

F

2

6

0

E

x

a
m

p

l
e

1

2

6
1

E

x
a

m

p
l

e

2

2
6

2

K
e

y

-
F

i
e

l

d

L

e
v

e

l

1

0

6
,

1

0

8

A
B

S

V
A

L

1

4

3
,

1
8

6

D
E

S

C
E

N

D

1

8
6

D

E
S

C
E

N

D

1
4

3

D

I
G

I

T

1

4

3

,

1

8

6
L

o

g
i

c

a
l

F
i

l

e

1
8

5

L
o

g

i
c

a

l

F
i

l

e

K

e
y

w

o

r
d

s

1

8

5

N

O

A
L

T

S
E

Q

1

4

4
,

1
8

6

P
F

K
e

y

w
o

r

d
s

1
4

2
S

I

G
N

E

D

1

4

4
,

1
8

6

U

N

S

I
G

N

E
D

1
4

4

,

1

8
6

Z

O
N

E

1

4

4
,

1
8

6

K
e

y
w

o

r
d

1
0

9

,

1

1

0
A

L

I

A

S

1

1

0
C

O

L
H

D

G

1

1
0

C

O
M

P

1

1

0
E

D

T
C

D

E

1
1

0

E
x

c

e
p

t

i

o
n

s

f

o

r

S

o
u

r

c
e

F
i

l

e
s

1
2

4

E
x

c

l
u

d

e
d

1
2

6

J
o

i
n

L
o

g

i
c

a

l

F

i

l
e

s

1

2

4
L

e

v
e

l

s

1

3
2

L

o
g

i

c
a

l

F

i

l
e

s

1

2

3
P

F
I

L

E

1

1
0

P

h
y

s

i
c

a

l

a

n
d

L
o

g

i
c

a

l

F

i
l

e

s

1
2

3

R
E

F

1

1

0
S

i
m

p

l
e

a
n

d

M
u

l

t
i

p

l

e

F
o

r

m
a

t

L

o

g
i

c

a
l

F
i

l

e
s

1

2

4
T

E

X
T

1

1

0
,

1
2

9

L

e
v

e

l

C

h

e

c

k

7
3

L

o
g

i

c
a

l

F

i

l
e

2

6

,

2

9
,

8
3

F
i

l

e

L

e
v

e

l

K

e

y
w

o

r

d

s

1

7

2
M

u

l
t

i

p
l

e

F

o

r
m

a

t
s

8
3

Non-Join Logical Files 172

One Format............................ 83
Logical File Coding ... 169

All fields 205

COBOL) 208
Compatibility View 215

Concatenation 229
Concatenation Rules 231

Create View 203

Data Diag- Inner Join 263
Data Diag- Left Outer Join . 268

Data Diag- Left Outer Join

With Mult
Matched

Secondaries 270

Data Diag -Three File Join . 276

DDS Levels 169
DYNSLT 202

DYNSLT Example 2 288

DYNSLT Example 3 289
DYNSLT Example 4 290

DYNSLT Example1 287

DYNSLT Overview 283

Example - Changing Field

Lengths 232

Example - Concatenation
and Substrings ... 229

Example - Corrected Three

File Inner Join ... 279
Example - Inner Join 266

Example - Join File to Itself 279

Example - Left Outer Join .. 269
Example - Left Outer Join

with Multiple

Matched
Secondaries 272

Example - Left Outer Join

with Multiple
Matched Sec -

Rel # 274

Example - Order, No Project 205
Example - Projection 201

Example - Rename Fields ... 227

Example - Select / Omit
Records with

ALL 240

Example - Select / Omit
Records with

And 241

Example - Select Records
with Range 239

Example - Select Records

with VALUES .. 239
Example - Simple Select

Records 237
E

x

a
m

p

l
e

-

3

F
i

l

e

I

n
n

e

r

J

o
i

n

2

7
7

E

x
a

m

p
l

e

-

U
s

i

n
g

C

o

m
p

o

s
i

t

e

K

e

y
s

2

3

6

E
x

a

m
p

l

e
-

R
e

n

a
m

e

a

F
o

r

m
a

t

2

2
5

E
x

a

m
p

l

e
-

M

u
l

t

i
p

l

e

F

o
r

m

a
t

L
o

g

i
c

a

l

F

i
l

e

-

C
o

m

p
l

e

x

2

1

6
E

x

a
m

p

l

e
-

O
r

d

e

r

W
i

t

h

P

r
o

j

e
c

t

i
o

n

2

0
8

E

x
a

m

p
l

e

-

R
e

f

o
r

m

a
t

,

O
r

d

e
r

2

1

1
E

x

a
m

p

l
e

-

S

i

m
p

l

e
,

N
o

n

-
J

o

i
n

2
2

5
E

x

a
m

p

l
e

-

U
n

i

o
n

,

O

r

d
e

r

N

o

P

r

o
j

e

c
t

i

o
n

2
1

0

F
i

e

l
d

s

2

0
7

F

i
l

e

N

a

m

e

2

0
5

F

O

R

M

A
T

2
0

5

F
o

r

m
a

t

N

a

m
e

2
0

6

H
L

L

P

r

o
g

r
a

m

P

r

o
c

e

s

s
i

n

g

2

1

4

J
o

i

n

F

i
l

e

L

e

v
e

l

K

e

y
w

o

r
d

s

2

4

6
J

o
i

n

L

e

v
e

l

K
e

y

w
o

r

d

s

2
4

5

J
o

i

n

L

o
g

i

c
a

l

F

i

l
e

s

1

7
0

J

O
I

N

R

e
l

a

t
i

o

n

a
l

O
p

e

r

a

t

o
r

2
6

3

J
o

i

n

S

u
m

m

a
r

y

2

8

1
K

e

y

F

i
e

l
d

2
0

7

K
e

y

-

L
e

v

e
l

K

e

y

w
o

r

d
s

2
3

5

N
o

n

J

o

i
n

F
i

e

l
d

O
p

e

r
a

t
i

o

n
s

2

2

7
N

o

n

J

o

i

n

F

o

r
m

a

t

O

p
e

r

a
t

i

o
n

s

2

0
1

N

o
n

-

J
o

i
n

L
o

g

i
c

a

l

F

i

l
e

s

1

7
0

P

F
I

L

E

2

0
2

,

2

0

5
P

F

I
L

E

K

e

y
w

o

r
d

2

0
2

P

r
o

g

r

a
m

C
o

n

v

e

r

s
i

o

n

2
2

8

P
r

o

j
e

c

t
i

o

n

o

p
e

r

a
t

i

o
n

2

0
3

R

e
a

r

r

a
n

g

e

2

0

3

R

e
c

o

r
d

F
o

r

m
a

t

N

a

m
e

s

2

0

4
R

e

l
a

t

i
o

n
a

l

O

r

d
e

r

2
0

3

R
e

l

a

t

i

o
n

a

l

P

r
o

j

e
c

t

i
o

n

2

0

2
R

e

l
a

t

i
o

n

a
l

S

e

l
e

c

t
i

o

n

2

0

4
R

e

l

a

t

i
o

n

a
l

U
n

i

o
n

V
e

r

s
u

s

R

e

l
a

t

i
o

n

a
l

J

o

i
n

2
0

9

R

e
m

o

v
e

K

e

y

F

i

e
l

d

2

0

7
R

P

G

2

0
8

S

e
l

e

c
t

O
R

R
e

l
a

t

i
o

n

s
h

i

p

2

3
9

S

i

m

p

l
e

,

N

o

n
-

J

o
i

n

M

u

l
t

F
m

t

L

o

g
i

c

a
l

F

i

l
e

2
1

2

S

i
x

L
e

v

e

l

s

o

f

D

D

S

1
7

1

S
u

b

s
e

t

F

i

e
l

d

s

2
0

3
S

u

b
s

t

r
i

n

g

2

3

0
S

u

b

s

t

r
i

n

g

R

u
l

e

s

2

3
1

T

E
X

T

2

0

5

Types of Logical Files 171

Union & Order w/ Project .. 209
Logical View ... 26

LVLCHK ... 73

MAINT .. 92
Members .. 27, 92

Adding & Removing 93
OVRDBF 159

Selecting the Member 159

Multiple Format Logical File - Complex 216
*NONE Key Fields 222

ADDRMAST Component .. 218

Analyzing the DDS Code 221
Composite key 218

DEDMAST Component 218

EARNMAST Component217

Format Placement222
One File, Many Formats 220

Physical File Definitions216

PRMULT File217
Review224

NBRRCDS ... 70

Object ... 82

ODP ... 75

Open Data Path ... 75

Oracle ... 8
Order .. 13

Order ... 13

Order Entry ..160
OVRDBF .. 69, 70, 159

Physical file .. 26, 27, 82

Batch program 160
Coding131

Coding Technique133

Copy Utility160
DDS131

DFU160

Example131
Interactive Data Entry Pgm ..160

Populating the File 160

SQL 160
Physical File Definitions ...216

Primary key .. 11

PRODUCT ... 12
Program-Described Files .. 59

Limitations 60

PROJECT .. 12
Projection ... 15

QDDSSRC .. 51

Query ... 26
R

A

I
D

D

i

s
k

p
r

o

t

e
c

t

i
o

n

6

5

,

6

6
R

e

c
o

r

d

F

o
r

m

a
t

8

2

R
e

c

o
r

d

F

o
r

m

a
t

L
e

v

e

l

C

h
e

c

k

7
3

,

1

0

7
F

O

R
M

A

T

1

3
7

,

1

7

3
K

e

y
w

o

r
d

s

1

7
3

P

F

K

e

y
w

o

r
d

s

1

3

7
P

F

I
L

E

1

7

3
T

E

X
T

1
3

7

,

1

7
3

R

e
c

o

r
d

W

a

i
t

T
i

m

e

6

9
R

e

l

a

t

i
o

n

a
l

d
a

t

a
b

a

s
e

s
o

f

t
w

a

r
e

8

A

S
/

4
0

0

1

1

B
e

n

e

f
i

t

s

8

I

n

t

e
g

r

a
t

e

d

1

1
R

e

l
a

t

i
o

n

a
l

O
r

d

e
r

2
0

3
R

e

l
a

t

i
o

n

a

l

P

r
o

j

e

c

t

i
o

n

2

0

2
R

e

l
a

t

i
o

n

a
l

S
e

l

e
c

t

i
o

n

2

0
4

R

e
l

a

t
i

o

n

s

1

1
R

e

l

a

t

i
v

e

R

e

c
o

r

d

N

u
m

b

e
r

8

9

R
e

m

o
v

e

M

e
m

b

e
r

9

3

R

e
n

a

m
e

M

e

m

b
e

r

c

o

m
m

a

n
d

1

5

8
R

M

V
M

9
3

R

N
M

M

1

5
8

R

N
M

O

B
J

1

6
2

R

o
c

h

e

s

t

e
r

2
4

R

P
G

7
1

C

H
A

I

N

7

1
R

P

G

2
0

R

P
G

/
4

0

0

1

2
9

R

P
G

I

V

1

2

9

S

E
L

E

C
T

1
2

,

2

6

S
e

l

e
c

t

/
O

m

i
t

l
e

v

e
l

1

0

6
,

1
0

8

A

L
L

1
8

7

,

1

8
8

A

L
L

C
o

d

e

S

n
i

p

p
e

t

1

8
9

C

O
M

P

1

8
6

,

1

8

9
C

O

M

P

F

u
n

c

t

i

o

n

a

n
d

F
o

r

m
s

1
9

0

C
O

M

P

R

e
l

a

t
i

o

n
a

l

O

p
e

r

a
t

o

r

s

1

9
0

D

e

t

a

i
l

e

d

L

o
o

k

1

8
7

L

o
g

i

c
a

l

F

i

l
e

K
e

y
w

o

r
d

s

1

8

6
R

A

N
G

E

1

8

6
,

1
9

4

,

1

9
6

R

A
N

G

E

E

x
a

m

p
l

e

1

9

5
R

A
N

G

E

F

u
n

c

t

i
o

n

a

n

d

F

o
r

m

1

9

5
S

e

l
e

c

t
/

O

m
i

t

R

u

l
e

s

1

9

2
V

A
L

U

E
S

1
8

6

,

1

9

6
,

1

9

8

V
A

L

U
E

S

E

x

a
m

p

l
e

1
9

7

V
A

L

U
E

S

F

u

n
c

t
i

o

n

a

n
d

F

o
r

m

1

9

7

S

e

l
e

c

t
i

o

n

1

6
S

E

Q
O

N

L
Y

7
6

N

B
R

R

C
D

S

7

6
O

V

R

D

B
F

7

6

S

E

U

3

6

SHARE ... 75
Source Entry Utility ... 36

SQL ...20, 22, 23, 33, 35

Structured Query Language 13
DML...................................... 13

System “R” .. 7

System/38 ... 13, 19
1978 19

Tables .. 25

Tedd Codd ... 7, 12, 35, 63
Relational Model 7

Time ... 293

Time and Timestamp ... 298
TIMFMT 298

TIMSEP 298

Toronto Lab ... 24
Tuples ... 11

Union .. 14

UNION .. 12
INTERSECTION 12

View ... 26

WAITFILE ... 67
WAITRCD ... 69

WebSphere Development Studio 24

Windows .. 26

Advertisements 385

Advertisement: Coming
Attractions:

LETS GO PUBLISH! is proud to announce that five more
AS/400 and iSeries books will soon be available to help you
inexpensively address your AS/400 and iSeries education and
training needs:

LETS GO WebSphere Interactive:
Getting Started With The WebSphere Development Studio
for iSeries – Interactive
Your introduction to the new IBM strategy for Application
Development. Includes a case study and examples of UI /
Logic separation and CPW savings techniques.

LETS GO WebSphere AD:
The iSeries Pocket Developers’ Guide.
Comprehensive Pocket Guide to all of the AS/400 and iSeries
development tools - DFU, SDA, etc. You’ll also get a big
bonus with chapters on Architecture, Work Management, and
Subfile Coding.

LETS GO Query:
The iSeries Query/400 Pocket Developers’ Guide.
This one QuikCourse covers all Query options

LETS GO WebSphere GUI:
Getting Started With The WebSphere Development Studio
for iSeries – Client Server and the Web
Your introduction to the client server and web development
tools. Includes CODE/400, VisualAge RPG, CGI, WebFacing,
and WebSphere Studio. Case study is base code as in the
Interactive Book.

LETS GO WebFacing:
The iSeries WebFacing Pocket Developers Guide.
This book quickly moves from basic WebFacing examples to
the building of a 30 panel interactive application with Web
affinity. This interactive 5250 application is WebFaced in a

case study format before your eyes. You can read this book
with no machine exercises or work along on your own system
while you read.

WWW.LETSGOPUBLISH.COM

