
QuikCourse A.. AS/400 & iSeries Architecture 1

Dear Reader: Thank you for downloading this free book from Brian

W. Kelly’s finished book catalog. I finished the book titled The

AS/400 & Iseries & IBM I Pocket Developers’ Guide

https://letsgopublish.com/technical/developer.pdf in the early

millennium. All the tools an AS/400 etc. developer needs to be

productive.

Most of my books had previously been published on

Amazon.

Click below if you would like to donate to help the free book

cause:

https://www.letsgopublish.com/books/donate.pdf

Enjoy!

https://letsgopublish.com/technical/developer.pdf
https://www.letsgopublish.com/books/donate.pdf

2 The iSeries Pocket Developer’s Guide

QuikCourse A.. AS/400 & iSeries Architecture 3

The AS/400 & iSeries
Pocket Developers
Guide

A Series of

Quikcourses from A to

Z

Pardon the

formatting, please.

When available in

hardcopy, quality was

better.

4 The iSeries Pocket Developer’s Guide

QuikCourse A.

AS/400 and iSeries

Architecture

Course Topics

QuikCourse A addresses the following topics:

A. AS/400 Machine Characteristics

B. Software Architecture

From 1978, with the introduction of the System/38, the

AS/400 and now the iSeries achieved its advanced

systems architecture while never abandoning the notion
of small system ease-of-use. The objective has always

been to allow applications to be built today that will

last long into the future.

QuikCourse A.. AS/400 & iSeries Architecture 5

At the core of the AS/400's machine and software

architecture are four advanced principles:

1. High-level machine

2. Single level storage

3. Object-oriented architecture

4. Integrated relational data base

These features provide a platform for flexibility,

ease-of-use, and nondisruptive growth. Let’s examine

each of these in detail.

High Level Machine

Quite simply, a high-level machine implementation

works in favor of the user, rather than the computer

designer. To get a picture of this, let’s look at

Figure A-1. This gives a side-by-side comparison of

traditional architecture and the AS/400 advanced

architecture.

Now that you have seen a picture, let’s try less than a

thousand words. Just what is the High Level Interface

anyway? It is another way of saying that user

functions are built into the machine. The traditional

approach is to use add-on software. If you need a

database – buy one! If you need a transaction

processor – buy one! If you need compilers – buy

them! A traditional approach is an ala carte approach.

You never get a full dinner. Most vendors, including

IBM with its other system models found it easier over

the years to just add function patches with some new

6 The iSeries Pocket Developer’s Guide

software, rather than start over and design the system

the right way.

Future System

That changed in the late 1970's with the System/38.

IBM had studied the best possible architecture and

ingredients for a new system replacement for its

mainframe processor line. However, the Future System

project was too advanced for mainframe customers and

IBM dropped support of the project.

QuikCourse A.. AS/400 & iSeries Architecture 7

Figure A-1 Traditional Machine Compared to the AS/400
 TRADITIONAL AS/400

 ------------------------| -------------------------|

 | Work Management | | OS/400 |

 | Spool Management | | |

 |Interactive Support | | |

<---|-----------------------|--- | |---->

 | Communications | | ======= MACHINE ====== |

 | . | | ======= INTERFACE ==== |

 | . | | |

<---------------------------#--- | |

 | . | | Task Management |

 | | | |

 | Task Management | | Resource Management |

 | Resource Management | | Storage Management |

 | Storage Management | | Data Access

 | Data Access | | Data Base Management |

 | Data Base Management | | Security Management |

 | Security Management | | . |

 | Storage Management | | . |

<------------------------------- | . |

 | ======= MACHINE ======= | | . |

 | ======= INTERFACE ======= | | . |

 *-----------------------------╜ | . |

 | | | . |

 | Internal Code | | . |

 | | | . |

 ------------------------- --------------------------

 | | | |

 | Hardware | | Hardware |

 | | | |

 |------------------------ -------------------------╜

The IBM Rochester team picked up the remnants of the

project and designed the System/38 as a small system

embodiment of all these future system ideas. The

System/38, the predecessor to the AS/400 and the

iSeries is the only system originated from scratch

since the 1970's. Since it was an effort from scratch,

IBM could approach the task in a way it should be

done instead of how things had been done.

Their efforts were quite fruitful. There still is no

machine built today, other than a System/38

descendent, such as the AS/400 and iSeries, which has

the elegant architecture that is designed into this

8 The iSeries Pocket Developer’s Guide

machine. So, for starters, a high level machine is one

which provides integrated function, which looks like

it is meant to operate together, as opposed to a

patchwork quilt of convenient add-ons.

Access to the powerful system function is provided by

a powerful, consistent interface a.k.a. the high-level
machine interface. Programmers love it and don’t want

to give it up because they don't have to learn cryptic

machine code and silly names for normal functions.

Even the machine instructions are more Englishlike. As

explained by IBM, the interface is at such a high

level on the AS/400 that machine instructions, not

add-on programs, are used to get data base records,

perform multiprogramming, handle storage management,

query a data base file, or create an index over a DB

file.

If you know it is needed in the design phase, you can

build it into the machine. When you do, it runs much

better rather than when you simply add function by

adding software packages. The AS/400 system is

"smarter," It can be told to query a data base with

just one machine instruction.

Some other facilities handled by high-level machine

instructions are as follows:

✓ Supervisor and control

✓ Language functions

✓ Symbolic interactive debug

✓ Data base management

✓ Communications

QuikCourse A.. AS/400 & iSeries Architecture 9

Advantages of High Level

Interface

By building your interfaces at the top rather than the

bottom, another advantage is that new technology does

not affect existing application programs. Who cares

what is in the pit when your interface is on the

platform?

The advantages are many:

1. Fewer programming interfaces are required.

2. There is greater potential for nondisruptive

growth.

3. Underlying hardware technology is not important.

4. You and your programs can move easily into the

future.

5. You can take advantage of both new hardware

technology and new software – without worrying about

changing your programs.

Building A High Level Interface

Is Not Easy

If it is easy to achieve, then why did WordPerfect

have to rewrite its package to go from DOS to Windows,

and again to go from Windows to Windows 95. If they

could have made the transition without rewriting, they

10 The iSeries Pocket Developer’s Guide

surely would have. Windows does not have a high-level

interface. More than likely, in order to take

advantage of 64-bit Intel technology and the 64-bit

Windows when it finally arrives cleanly, WordPerfect,

will again have to rewrite its software. It isn’t easy.

In 1995, IBM changed the AS/400 from CISC processors

to RISC processors. It changed from 32-bit processors

to 64-bit processors. Programs written in 1978 for

System/38 were already RISC ready and 64-bit enabled

without any rewriting. That is a high-level interface,

and it means investment protection. Code does not need

to be rewritten for system changes.

Single Level Storage

Most of us understand the notion of virtual storage.

It has been used in computer systems since the very

early 1970's. Virtual storage permits computers to run

programs that are bigger than the memory of the

machine itself. It also permits memory to be over-

committed, running many different programs. This has

many advantages including never being shut down for

inadequate real resources. Single Level Storage takes

this one step further. It takes virtual storage an

evolutionary step beyond traditional architectures.

The capabilities of AS/400 and iSeries have extended

the notion and the usability of the single level

storage notion even further than IBM even thought it

could go. For our purposes here, we discuss this

concept in terms of the System/38, which was the most

QuikCourse A.. AS/400 & iSeries Architecture 11

limited of the three advanced architecture machines

since it depended on the most simplistic and the

weakest hardware.

Big Time Addressability

The System/38 with single level storage believed that

all of its objects existed in a 281 trillion-byte

memory continuum. That’s pretty big. In 1979, I recall

my first presentation about the System/38 as an SE

with IBM. The presentation guide suggested that the

281 trillion bytes represented the sum total of all of

the disk drives that had ever been sold. I was

impressed for sure. It took mainframes twenty more

years to reach this level of addressability.

The notion of single level storage was originally

conceived at a time when bubble memory appeared to be

the storage of the future. If this were the case,

there would be no spinning disk drives with cylinders,

tracks or sectors. There would be just one huge blob

of memory. And, that is exactly how single level

storage is implemented. At the high level interface,

the system is unaware that it has disk drives. It does

not care. It accesses all objects by their single

level storage address and then huge system vector

tables resolve the memory addresses to either real

memory or disk cylinders, tracks, and sectors.

When an object is created, it is given an address

across this continuum, and that object has that one

address as long as it exists. Way back with the

12 The iSeries Pocket Developer’s Guide

System/38, the addressability was theoretically set at

a 48-bit level to match the 48-bit System/38 hardware.

It was expensive to build processors with high

addressability. The official word at that time was

that the 48-bit hardware had been augmented with 64-

bit software addressing, but it was not all being

used.

Lots of Bits

Today the hardware is 64-bit, but the software still

accesses the machine at a higher level. Just recently

IBM began to openly confess that the software was not

built at a 64-bit level. Actually, IBM had achieved

128 bit software addressability way back in the 1970's

with the high level interface of the System/38. With

real memory being so scarce when the System/38 made

its debut, I can appreciate why the company chose to

wait so long to become so frank about how it used up

so much memory back then – carrying around big

addresses in each instruction.

What Good Is Single Level

Storage?

One of the first things you see when you use the

system is that it frees you as a programmer or a user

from managing disk storage. The system manages the

disk storage all by itself. Since real disk storage is

treated as a large main storage area, the system

QuikCourse A.. AS/400 & iSeries Architecture 13

doesn't even know that disk storage is attached.

Moreover, since there is just one storage blob,

regardless of how many disk drives are on the system,

you don’t have to worry about “C” drives or “E” drives

or “F” drives. If you get a new disk drive, the system

begins to use it. You don’t specifically have to put

anything there. Thus, you can take advantage of new

technology faster. You can put in a new fast disk

drive without moving your data to it. The system will

automatically use it. None of your programs or

procedures are affected when you add or change disk

because it all looks like one space both before and

after the change. All objects are shared in single

level storage.

More than one user shares the same program code in

storage. The system, not the user or programmer makes

the most effective use of main storage. It avoids

having to manage multiple copies of the same program.

Data is also shared in virtual storage, not just

programs. The end result is improved system

performance and a much easier way to manage the

application development environment.

I have a copy of IBM’s old System/38 chart for single

level storage. As you can see in Figure A-2, all of

the objects are in an address continuum and are

fetched into main memory as needed. The user does not

know or care to know where they actually are located

in storage. Thus, the system is substantially easier

to manage.

14 The iSeries Pocket Developer’s Guide

Advantages of Single Level

Storage

There are even more advantages to single level storage

than you could imagine. Keeping in mind that the

storage vectors do not care where they locate an

object, if the object is found in main memory, for

example, that is where the object is used. Thus, main

storage serves as a direct access buffer (cache) for

the most frequently used objects. Programs, data and

other objects are effectively cached in main memory.

When you add main storage or disk storage, the system

automatically uses it to further improve system

performance. There is no requirement to partition or

create regions in the virtual system because of the

very large set of storage addresses. All objects can

be shared among all users on the system. Thus, there

is no need to make multiple copies of programs or

data.

On top of all this, the system uses object-based

security so that access to objects is not limited by

system restrictions. It is controlled by system

security. Single level storage makes everyone's job

easier than a traditional approach, whether you are a

programmer, an operator, or a user.

Figure A-2 Single-Level Storage
 VIRTUAL ADDRESS SPACE
@--$
| /----\ |
| |====| -------| |

QuikCourse A.. AS/400 & iSeries Architecture 15

	====			
	====	DB FILE	PGM1	
	====			
	====	*------╜		
*----╜				

		/----\		
	MENU		====	
		DB FILE	====	
			====	
*--------╜	====			
	====			
. -------	*----╜			
.				
.	PGM2	.		
.		.		
. *------╜ .				
. .				
. .				
. .				
. .				
@--------------------$ _________ .				
		/ \ .		
			_________/	
*---------| MAIN |-------| AUX STORE |---------╜
 | STORAGE | | |
 | | | |
 | | _________/
 | |
 *--------------------╜

Systems expertise is not required for disk or memory

management. This is most often required on other

machines. Windows has caught up a little, but not

completely. You may recall the DOS days when PC Memory

Management was a full day, difficult course.

The “Car” Analogy

16 The iSeries Pocket Developer’s Guide

To help us take a look at the “hugeness” of single

level storage in a proper perspective, let’s use an

analogy about a car.

If a car could go one inch per address, then a car

with a 24 bit address space would go 264 miles. Let’s

say we double the size of the address width to 48

bits. A car with a 48 bit address space could go 4.5

billion miles. In other words, the car could go to the

Sun and back about 24 times. Can you imagine where a

RISC System with its 64-bit address would take us?

Object-Oriented

Architecture

In 1978, IBM Systems Engineers spoke of the AS/400 as

having an object-oriented architecture. Since that

time, as we all have learned more about the notion of

objects, the System/38, AS/400 and iSeries have been

recast more correctly as object-based systems.

What Is an Object?

So, just what is an object anyway, and why is it good?

An Object is a package containing structured data, a

set of instructions, and rules for that data. A simple

view of an object is shown in

Figure A-3.

QuikCourse A.. AS/400 & iSeries Architecture 17

Figure A-3 Object Package
 ------------|

 | NAME |

 | |

 |-----------¬*------------|---------------------|

 | OWNER | TYPE | AUTHORIZATION |

 | | | |

 |-----------!-------------!---------------------|

 | DESCRIPTION |

 | |

 |---|

 | |

 | CONTENTS |

 | |

 --╜

Object-oriented and object based computing are all about objects.

The best way of looking at an object, from my days of teaching

comparative programming languages, is to think of an object as a

“black box.” Oh! It is not a solid black box. It has an opening for

input messages, and it has an opening for messages, which it must

send out. Thus, it can be thought of as a "black box," which receives

and sends messages.

Many computer science classes are taught about the idea of hiding

implementation details from the user of a computer subroutine. For

example, just like a hardware instruction, the user should not be

concerned how the instruction does the ADD. Additionally, the user

should not be concerned about modifying the ADD instruction to do

special things that the designer of the ADD never intended to be

18 The iSeries Pocket Developer’s Guide

done. There may be lots more to an ADD than just addition. On the

other hand, there may not be anything more. The point is that it does

not matter. An ADD is an ADD and that is all it is. The same applies

to the black box notion of all other objects. They are built to be

used, not to be toyed with.

Internal O-O Communication

A black box (object) actually contains code (sequences of computer

instructions) and data (information upon which the instructions

operate). But, unless you developed the object, you don’t get to see

any of that. Traditionally, code and data have been kept apart. For

example, in many programming languages, units of code are called

functions, or subroutines, while units of data are called structures.

Functions and structures are not formally connected outside of their

use together in a program. A function can operate on more than one

type of structure, and more than one function can operate on the

same structure. Thus, the link is not permanent between the program

function and the data structure.

Not so for object-oriented software! In o-o (object-oriented)

programming, code and data are merged into a single indivisible

thing – an object. So how does the code know what to do? That’s

one of the secrets of o-o. All communication to and from an object

is done through messages. The object receives a message which

instructs it to do something. In a sense, messages define the

interface to the object. Everything an object can do is represented by

the messages it can receive. Therefore, you don’t typically have to

know anything about what is in the black box in order to use it. You

tell the black box what to do via a message, and it does it. Then, it

gives you information back via a message.

By not looking inside the black box, you are not tempted to change

what is inside. Let’s say you looked inside and found a better way to

perform the task of the object, and you changed its implementation

details. Then later on the original programmer decided to make the

QuikCourse A.. AS/400 & iSeries Architecture 19

object even more capable while preserving the original message

interface. Your software would no longer work correctly! You

would be in trouble.

The same goes for packages of all kinds. If you stay away from the

implementation details and you use an object only through its

interfaces, then that object can be enhanced over and over and your

interfaces will continue to work, thereby preserving your code

investment.

Experience has taught us the popular adage that "software is not

written, it is rewritten." Many of the costliest mistakes in computer

history have come from software that breaks when someone tries to

change it. If you can let it be, and work with the building blocks of

objects, then your investment in software is better preserved.

IBM Rewrites Object Oriented

In 1995, IBM introduced RISC-BASED AS/400 machines which

were highly o-o oriented, and in order to do so, the company had to

change the implementation details of many low level objects.

Despite this major change in hardware architecture, the company

did not have to rewrite OS/400 to achieve its goal. Because the

operating systems were already based on high level objects, only the

low-level primitives (IBM estimated about 5% of the code) had to

be rewritten in o-o. IBM began to call this licensed internal code

rather than microcode during this time period.

If IBM had not developed its AS/400 and System/38 machines with

an object basis, the transition to RISC would have been as difficult

for IBM as it seems to have been for Intel. Seven years after IBM

put RISC AS/400s into production, Intel still does not have their

game perfected

Object Type Examples

20 The iSeries Pocket Developer’s Guide

To say the least, IBM, with the AS/400 and the iSeries have

perfected the object game. Examples of familiar object types in this

architecture include:

1. User profile

2. Subsystem description

3. Job description

4. Queue (message, output, job)

5. Program

6. Library

7. File

etc.

There are more than 200 different object types on the AS/400 and

iSeries. Among other facilities, the object orientation of the AS/400

makes the box a very special machine compared to the machines

many small businesses choose to use - PCs. Since most of us have a

good feel for the power and limitations of PCs, let’s compare the

object-based AS/400 with the file-based PC machines.

QuikCourse A.. AS/400 & iSeries Architecture 21

Objects vs. PC File Orientation

All computer systems, including PCs, have different types of data

structures:

1. Programs

2. Queues

3. Data files.

However, on most systems the type of object is not specifically

identified as to whether it is a program, a file or a queue. Instead,

the determination of what type of object is stored on a PC, as an

example, comes from how it is used at any given time. Since the

data and the methods of processing that data are separate, there is no

control in the item itself (program or file) to prevent you or the PC

system itself from making mistakes.

For example, a PC system permits programs to be processed as if

they were data and vice versa. This can lead to serious program and

data integrity problems. The reality is that there is only one object

type on a PC - the file. PCs support all objects as long as they are

files! Thus it is easy to ship a virus around in a PC because it can be

masked as something which it is not. This is much more difficult to

do with object-based technology.

Within object-based technology systems, the AS/400 object

orientation is unique. In fact, object integrity is not known to be an

issue on the AS/400 and iSeries. On a PC, as we have noted, a

program is a file and a file is a file. On an OS/400 object-based

system, a program is not a file. It is a program. When a program

object receives a message to send a record to a requesting object, the

program object checks its valid methods, and it says: “no can do!

Sorry!” The program itself knows that it is not a data file and it does

not let itself get treated as a data file. So also, a file is a file.

Therefore, when it gets asked to execute itself, it knows that the

request is not one of its valid methods and it respectfully declines.

22 The iSeries Pocket Developer’s Guide

Not so with PC systems whose identities change as quickly as the

three character suffixes of the file name changes.

With AS/400, objects combine the data and the valid methods of

using that data into one entity. Therefore, only valid methods of

using that data are allowed. By doing so, the system protects itself

from attempts to use a data structure incorrectly. This improves the

overall integrity of the system and its data.

Capability-Based Addressing

There is at least one more thing worth discussing regarding objects -

their security addressability. The AS/400 uses a computer science

facility called capability-based addressing as its object level security

implementation. AS/400 object addresses are really not known

above the machine interface and thus even security is enforced

below the machine interface

The AS/400 handles all security by object. Everything on the system

is an object. Everything can be secured very easily at this base level.

As noted above, the security mechanism is called capability-based

addressing. Capability (authority) must be established to use an

object (user profile / object description.) Security checking takes

place at the time you attempt to reference the object. If you are

authorized, you get it. If not, you are excluded. It’s built into the

machine itself.

Let’s try a little more technical explanation. The actual authority

check takes place below the machine interface by the system. First

the system locates the object by name, then checks the object. Are

you the owner? If not, the system checks your user profile to see if,

as a nonowner, you have authority to the object. If so, a capability

pointer is passed up allowing you to use the object. If not, use is

denied by the system.

QuikCourse A.. AS/400 & iSeries Architecture 23

This procedure is performed each time a user attempts to touch any

system object for the first time in a process. With capability-based

addressing, security checking is enforced by the machine and is

performed all the time on every object in the system. Unless there is

a problem, you never know!

Integrated Data Base

The System/38, in 1978 was the first computer ever built with a

relational database integrated within the hardware and the

framework of the system. The integrated relational database was and

continues to be a hallmark of the AS/400 and the iSeries. There is

no other machine in existence, even today, which comes with a

built-in database. Can you imagine how far ahead of the competition

the System/38 was in 1978 when DB2, IBM’s mainframe relational

database product had yet to be announced? And with a System/38, it

was just there!

Relational databases by definition are flexible, natural, and simple

to use. Yet there is a high level of sophistication in the capabilities

and the low level implementation. Consider that one of the most

frequently used operations in a relational database is index creation.

The AS/400 has implemented this function as a hardware

instruction. There is no argument that the AS/400 is a database

machine since its inherent capabilities come from implementations

that are not pert of add-on products but, in fact are built into the

hardware and the internal code of the system.

AS/400 and iSeries Break DB Rules

Most relational databases use set theory and set oriented operations.

Simple features such as the ability to link a compiler read and write

operation to the database are not part of the deal. In fact, “compiler

reads and writes to a database” are anathemas to the spirit of a

relational database. Not only does it read and write naturally to the

24 The iSeries Pocket Developer’s Guide

database, the compilers were written knowing the integrated

database would be there.

The AS/400 breaks this big DB rule that data must be processed in a

set. Not only does the AS/400 provide high-level SQL facilities and

set operations with the data manipulation language, as you would

expect any database to deliver, it also provides and in fact optimizes

“natural read, write and update record-at-a-time oriented operations”

to the database. You do not have to use SQL if you want to use an

HLL compiler such as RPG or COBOL with your database. You

don’t have to define input and output for your RPG and COBOL

programs because the compilers know about the database and copy

the definitions in from the database at compiling time in much the

same fashion as copy books.

Database Is a Given

In fact, the compiler writers, knowing that the very fabric of the

AS/400 was its integrated database, used the natural APIs in the

database, so that normal HLL reads, writes, and updates to the

database occur in the same way that other compilers access flat file

systems. In other words, you get the power of the integrated

database in program development built-in at the compiler level

without having the pay the development burden of an add-on,

unnatural facility that the compiler knows nothing about.

Moreover, the operating system provides major database recovery

facilities that are just as built-in as the database. High performance

journaling, and commitment control are built-ins, not afterthoughts,

for advanced recovery scenarios. Many companies have used this

support to deploy cross system journaling in which all of the

updates on a given computer are mirrored via journaling on a

computer in the next room or in the next city.

QuikCourse A.. AS/400 & iSeries Architecture 25

No Name Database

In the early 1990's IBM did a survey of its AS/400 customers. It is a

fact that many AS/400 customers have no or little professional staff

keeping their systems running. The company asked AS/400

customers if the AS/400 had a database. Reportedly half of the

AS/400 users did not know their machine had an integrated

database. That’s when IBM decided to use the IBM relational DB

brand DB2 for the AS/400. IBM speakers often joked about this fact

at conferences, believing that their audiences would see the slam

more as a put-down to the unaware AS/400 community, rather than

as intended for the enlightened students in the room! After all, they

were not at the conference.

If It Has a Name, It Can’t Be Integrated?

Of course that ruined one of my favorite pitch lines that I always felt

put the AS/400 DB in perspective. Once I was able to say: “If it has

a name, the machine knows nothing about it . . . If it has a name, it

is not built-in, it is an add-on.” Consider the plethora of databases

which fit this mold: DB2 for all other platforms, Sybase, Informix,

Oracle, etc. No compilers are aware of any of the hooks in these

named databases. IBM wanted to make sure its customers knew that

the company supplied a free database and a no-name version was

not cutting it. Now, the AS/400 database has a name and it has the

power of the best that IBM knows about a database. Corporate

IBM’s Santa Theresa Labs, where the relational database was

invented, are now a big part of this new database for the future.

And, it is still integrated with the machine.

Summary and Conclusions

Though this is a very short sample of the innate capabilities of the

AS/400, and it is a snapshot taken at a high altitude, hopefully, you

now have a better appreciation for what the “Future System Today”

26 The iSeries Pocket Developer’s Guide

has looked like since it was first built in 1978. An honest appraisal

by the Windows-loving trade press of the underpinnings of the

AS/400, which in conception is still System/38 technology, would

render a far more complimentary identifier than the label, “legacy.”

AS/400 architecture represents everything IBM knows about

computers and wishes it could have rammed into mainframes over

the years. It is the most technologically elegant machine within

IBM, and in the entire computer marketplace. It is certainly not well

understood, and is not marketed by IBM in a way which comes

close to the distance separating this system from all others.

Maybe IBM will get it right one day. But, I don’t think so!

Unfortunately, even IBM does not seem to believe that it is

politically correct to actually suggest that its technology is superior

to all others. If you’d like to check on that, ask yourself if you have

ever heard IBM say one more positive thing in public about the

AS/400 or iSeries, than any other IBM product. Many AS/400

aficionados continue to believe that there remain some souls in

other divisions of IBM, who would be happy if the AS/400 and its

advanced architecture would just go away.

QuikCourse A.. AS/400 & iSeries Architecture 27

28 The iSeries Pocket Developer’s Guide

QuikCourse C:

Creating a Source

Development

Environment for AS/400

and iSeries

File Systems

Before IBM invented the integrated file system (IFS)

about eight years ago, everything that I am about to

say was absolutely true. Now, in order for it all to

be true, you must take it in the context of the native

file system on the AS/400, which is also known as the

library file system. If you are an IFS buff, you may

know it as the QSYS.LIB file system.

 QuikCourse C. Creating a Development Environment
 29

How would you know what file system your AS/400

operates within? It is certainly easy to find out. If

you turn your AS/400 on and it seems to work, then you

can bet your pay that your machine is operating in

native mode, going through its paces in the

traditional library/file system. You actually have to

do a few special things in order to not use the

traditional methods. So, for now, let’s pretend that

the library file system is all that there is.

The Genesis:

Everything starts someplace. The AS/400 system library

name is QSYS. Besides containing the bulk of the

operating system code, every other library on the

system resides in QSYS. There are no sub-libraries per

se, so that you cannot have a library within a

library.

Libraries are objects. They provide the same

facilities as directories which point to the objects

in the library system. There are many different object

types on the system such as:

Object type name System abbreviation

Programs *PGM

Files *File

Output Queues *Outq

Data Comm lines *LIND

 Data Areas *DTAARA

30 The iSeries Pocket Developer’s Guide

Again, all objects are located by library, much like

the directories on PCs and Unix systems. No useable

object in the library file system exists on the AS/400

that is not "contained in a library"

Since it all starts from the QSYS Library, or the

system library, you can say that QSYS is the genesis

of the library file system. It is the source from

which all else spans. Though it is not the root

directory, it is the root of the library file system.

As we noted above, QSYS is also the only library on

the system which can contain objects of the type *LIB.

 QuikCourse C. Creating a Development Environment
 31

Let’s Create a Library

How do you create a library? For the first command in

this section, in Figure C-1, we show a picture of the

AS/400 command line from within the AS/400's main

menu, and the command to create a library called

PAYROLL. When we suggest typing other commands as this

QuikCourse progresses, consider that these commands

will be typed from a terminal or PC whose display

panel looks like that in Figure C-1.

After you type “crtlib payroll” on the AS/400 command
line, and you press the ENTER key, the message Library

PAYROLL created appears right where the IBM copyright
is in Figure C-1. A library object named PAYROLL now
exists in the QSYS library. By the way, AS/400 and

iSeries commands can be upper or lowercase. The system

does not care.

32 The iSeries Pocket Developer’s Guide

Figure C-1, Create Payroll Library
MAIN OS/400 Main Menu

 System: HELLO

Select one of the following:

 1. User tasks

 2. Office tasks

 3. General system tasks

 4. Files, libraries, and folders

 5. Programming

 6. Communications

 7. Define or change the system

 8. Problem handling

 9. Display a menu

 10. Information Assistant options

 11. Client Access/400 tasks

 90. Sign off

Selection or command

===> crtlib payroll text('This is the payroll library')

F3=Exit F4=Prompt F9=Retrieve F12=Cancel F13=Information Assistant

F23=Set initial menu

©) COPYRIGHT IBM CORP. 1980, 2000.

Though we say that an object is contained in a library. This is just a

figure of speech. In reality, just as DOS directories on PCs, libraries

point to locations in which objects are stored. Of course, with a PC

the only object type is a file, so the directory entries all point to

files.

For an AS/400 example, since we created it, it is safe to assume that

there is a directory entry in QSYS right now which contains the

name PAYROLL and that it points to a location in single level

storage in which the PAYROLL library object actually resides.

When objects are created in the PAYROLL library, for each object,

a directory entry will be created in the PAYROLL library object.

The entry will contain the name, object type, and the location in

single level storage in which the object can be located by the

system.

 QuikCourse C. Creating a Development Environment
 33

Thus objects "placed" in this library are merely located (pointed to)

via the library entries. They can physically be located anywhere on

any of the AS/400 disks

Since it is just a form of a directory, the amount of space, which a

library occupies is minimal. Each referenced object within a library

consists of not much more than a name and a pointer. It is analogous

to the index at the back of a book

If Everything Is in Directories,

Where Is the Data?

We might ask at this point: Where has all the data gone?

Unfortunately, Peter, Paul, and Mary are not going to give us the

answer. Since we ask, however, we will also answer. Data is stored

in Physical Files which are stored in libraries. How do we create one

of these files?

Let’s Create a Database

The Command “CRTPF PAYROLL/MASTER” will create a

physical file called MASTER in a library called PAYROLL.

MASTER is given a single level storage address, and then it is

placed on any disk on the system. In fact, parts of MASTER may be

on different disks. The system keeps track of it all.

 MASTER is pointed to (located) by an entry in the PAYROLL

Library (directory). Of course having MASTER in the library does

not really give us a database. For MASTER to be a database file

containing the structure of its data as well as its data, the structure

must be referenced on the CRTPF command (create physical file).

34 The iSeries Pocket Developer’s Guide

The system cannot guess what fields should be in the MASTER file

so the programmer enters the field names and attributes into a

source file. The programmer then submits the source for

compilation. The database compiler reads the source file as input

and creates the database physical file as its output.

Database Structures

I like to call physical database file descriptions “structures,” since

that is how they have been referred to in PC land since the days of

Ashton Tate’s dBase. Database structures, as they are called in

dBase, are part of physical files on the AS/400. A physical file on

the AS/400 contains both the structure of the data, and the data

itself.

However, unlike dBase, the AS/400 structure can lie about the real

shape of the data. If, for example a database is created properly with

a source definition, the structure, more than likely, will match the

actual shape of the data. This is demonstrated below. However,

without a source description to show the specific fields in the

database, the physical file would believe that it has just one big field

in the file which happens to have a size equal to the record length.

DB With No Structure

 QuikCourse C. Creating a Development Environment
 35

There has actually been a lot said in the preceding paragraph. First

of all, real native AS/400 databases, with fields known to the

system, are created when the CRTPF command is given a source

definition from which it can build the actual DB field descriptions

within the database file object. However, a database file can be

created without source definitions. In this case, the file looks a lot

like the flat files you would find on other record oriented systems

such as mainframes, and System/36s. For example, a file can be

created with a length of 200 characters with the following

command:

CRTPF FILE(PAYROLL/MASTER) RCDLEN(200)

This command creates a database file for sure, since there is no file

on the AS/400 that is not a database file. However, there are no field

definitions provided to the database compiler. After this command,

if you wanted to get a list of the field names in the file, you could

use the display file field description command or DSPFFD. This

command would show you that there was, in fact, one field defined

for this file. Its name would be MASTER, and the field would be 200

bytes long.

High Level Language (HLL) programs are not forced to use the

power of the database on the AS/400. Therefore they can describe

the record layout (Input in RPG and Data Division in COBOL) of a

file within the program itself, just as with a non database machine.

As long as the total size of the internally described data fields did

not exceed 200, and the spots carved out in the record for numeric

data actually were used for numeric data, using this method is OK

on an AS/400. Of course, it does not help when you want to run the

Data File Utility or Query against the file, since the file projects that

it has just one field.

The ability of an AS/400 database file to be “internally described”

within a program has some advantages. For example, this capability

36 The iSeries Pocket Developer’s Guide

can come in especially handily, when you are importing data from

other systems. It can also come in handy when you are running

programs from another system, which does not have a database,

such as an IBM System/36.

Creating and Using Source DB

Files & Members

Because it gets a little hairy trying to explain that a source file

which describes a database file is actually a database file itself, I

will try to do this using a Q&A technique. Hopefully, these are the

questions you would ask.

Q & A - Data Description Specifications

Q1. How is a data description, or structure, made known to the

AS/400 system?

A1. DDS - Data Description Specifications

Q2. Where does DDS go?

A2. In almost all cases, DDS goes into a pre created special source

file, called QDDSSRC in one of the system's libraries. IBM supplies

a default file called QDDSSRC in the QGPL library, when an

AS/400 is shipped from the plant. Most AS/400 shops continue to

use this name for the source file which contains DDS specifications.

Q3. Can this QDDSSRC file, which holds the DDS, be in any

library?

 QuikCourse C. Creating a Development Environment
 37

A3. Yes. QDDSSRC can be in any library, and many libraries. The

libraries in which the file exists are those specified at the time the

create command is entered into the system. The command is

CRTSRCPF. (Create Source Physical File). You can also use the

CRTPF command but there is more work to do in order to make the

file a source file if you choose this route. The recommendation is to

use CRTSRCPF. With the CRTPF command, you would actually

have to create DDS in order to build the source file with its record

length of 92. The layout of a standard DDS type source file would

be as follows:

Length Description

6 Sequence number

6 Date

80 DDS statement

Since the CRTSRCPF builds the same three-field source file,

without you having to define any DDS, it does not make sense to

use the CRTPF to achieve the same result since it is more work, and

there is more potential for error. So, don’t do the unnecessary work.

Just type a command such as the following: (AS/400 typically does

not care about case)

crtsrcpf payroll/qddssrc

text('Payroll File Source Descriptions')

Q4. How do these DDS statements get into the file, called

QDDSSRC?

A4. By Using the Source Entry Utility (SEU)

38 The iSeries Pocket Developer’s Guide

Q5. What kinda stuff do I need to specify in DDS?

A5. You need to name the file, the record formats, and the fields.

Additionally, you must size the fields and describe their attributes

(numeric, alphabetic etc.). There is a set format for the

specifications.

Q6. After I get the structure for my file, say MASTER, into the

source file QDDSSRC, can I then put data into the File?

A6. No! After using SEU to type the DDS into the QDDSSRC

source file, there is one more step required. You must take the

description of the file (structure definition in source), which you

typed into QDDSSRC, and make an object from it. The file object

must be created with the CRTPF command, referencing the name of

the DDS member containing the source description, and specifying

the name which you want to give to your file object. The CRTPF

command would look as follows:

CRTPF FILE(HELLO/MASTER)

SRCFILE(HELLO/QDDSSRC)

SRCMBR(MASTER)

If the source member were not specified, the system

would default to the name of the field to be created

which, in this case, is also the name of the source

member.

 QuikCourse C. Creating a Development Environment
 39

Q7. You mentioned the word “Member.” What do you mean by a

member, and do I need a QDDSSRC file to contain the DDS for

every different file I wish to create?

A7. These questions are related. Just as a library is a directory to

system objects on the AS/400, a file is a directory to different sets of

data which are all shaped exactly the same. The file determines the

shape of the data but not the contents. In fact, files do not contain

data at all. Files “contain” members. Members “contain” data.

So, in the file QDDSSRC, there can be many different database

definitions, each with its own name, and each contained in a

separately named member.

For the MASTER file, for example, more than likely you would

name its defining structure member in the QDDSSRC file the same

as that of the file object to be created. In other words, because you

want to create a database file named MASTER in HELLO, you type

up your DDS specifications and store those in a member named

MASTER in the source file QDDSSRC.

Sometimes a picture is worth a thousand words. Starting from

QSYS, the genesis of the object MASTER, before it is created

would look like Figure C2. The genesis of MASTER, after it is

created, is shown in Figure C3.

40 The iSeries Pocket Developer’s Guide

Figure C-2 QSYS Before Creating MASTER
System User Object Object Members

Library Library Names Types (If file)

Name Names

QSYS Payroll Qddssrc *File File1

File2

Master

Menu *Pgm

Prt01 *Outq

File1 *File File1

Mystuf QRPGSRC *File RPG01

RPG02

RPG01 *Pgm

Figure C-2 shows that QDDSSRC is in the PAYROLL library. It is a

*file object type. Within QDDSSRC are several members, File1,

File2, and Master. These are the DDS statements for the three files

respectively. Notice that File2 and Master are not yet created as

objects in the PAYROLL library as shown in Figure C-2. Notice also

that there is another library listed called Mystuf. This has a source

file called QRPGSRC with two members, RPG01, and RPG02.

These are source programs. Notice also that RPG01 has been

compiled and it exists as an object in the Mystuf library. Though the

source for RPG02 exists, the figure C-2 shows that it has not been

compiled successfully into an object at this time.

 QuikCourse C. Creating a Development Environment
 41

Figure C-3 QSYS Genesis After CRTPF PAYROLL/MASTER
System User Object Object Members

Library Library Names Types (If file)

Name Names

QSYS Payroll Qddssrc *File File1

File2

Master

Menu *Pgm

Prt01 *Outq

File1 *File File1

>>>> Master *File

Mystuf QRPGSRC *File RPG01

RPG02

RPG01 *Pgm

After we compile Master, notice that in Figure C-3, it exists as an

object in the PAYROLL library. At this point, File 2 and RPG02

have yet to be created, though their source has been typed.

Q8. If we compile source program RPG02 into the Mystuf library,

will this chart (Figure C3) change?

A8. Yes, of course, an entry would exist in Figure C-3 immediately

after the last line RPG01 *Pgm, for RPG02 *Pgm, showing that it

was compiled and has become an object in the Mystuf library.

File / Member Commands

The following is a list of commands and descriptions which are used

to create and delete database files and members:

42 The iSeries Pocket Developer’s Guide

CRTPF Create Physical File

CRTLF Create Logical File (an index plus more)

CRTSRCPF Create Source Physical File

ADDPFM Add Physical File Member (to a physical file)

RMVM Remove Member from any type of file

DSPLIB Display Library

DSPFD Display File Description (File attributes)

DSPFFD Display File Field Description - the database field

definitions within the file itself

DSPPFM Display Physical File Member - displays raw data

in physical files.

Development Environment.

When an AS/400 is to be used for application development, an

implementer typically sets up a source library for the developers to

use. In addition to the source library, the implementer would also

create a library in which the programs and other objects reside. A

third library would be created for the data. This is not a rule, but it is

a convention that I have seen in many shops.

If, for example an Accounts Payable system is being developed

from scratch, the letters AP may be used as the defining part of the

library names. Three libraries would be created as follows:

CRTLIB APSRC TEXT(‘Library for AP Source’)

CRTLIB APOBJ TEXT(‘Library for AP Objects’)

CRTLIB APDTA TEXT(‘Library for AP Data’)

 QuikCourse C. Creating a Development Environment
 43

Within the APSRC library, for an RPG and COBOL shop,
you would want to create the following source files:

CRTSRCPF FILE(APSRC/QDDSSRC)

TEXT('Source File for DDS')

CRTSRCPF FILE(APSRC/QCLSRC) TEXT('Source

File for CL Pgms')

CRTSRCPF FILE(APSRC/QRPGSRC)

TEXT('Source File for RPG/400')

CRTSRCPF FILE(APSRC/QCBLSRC)

TEXT('Source File for CBL/400')

44 The iSeries Pocket Developer’s Guide

CRTSRCPF FILE(APSRC/QRPGLESRC)

RCDLEN(112) TEXT('Source File for ILE RPG

Source')

The Procedure

The development routine for creating new modules,

whether COBOL, RPG, or DDS, would be as follows:

1. Start the Program Development Manager

2. Select Work With members (option 3)

3. Specify the file (QDDSSRC) and the library

(HELLO) to work with.

4. Press F6 to create a new source member

5. Type in the new source member’s name (Master,

etc.)

6. SEU panel opens up. Enter source statements

7. Press F3 to end SEU, and fill the new member

with source statements

8. Create the object. From PDM Work With Members

list, type a 14 next to the source member to use

as the source for the object to be created.

9. The compiler will create the object, or give you

an error message

10. If error, type WRKOUTQ on command line to find

printout queue.

11. Type option 5 to view the output queue.

12. Type option 5 next to your printout and 4 next

to those you want deleted.

13. Look through the listing to find errors

14. Select Option 3 from STRPDM panel to work with

members

15. Pick your source file and library

16. Place a 2 for edit next to the member you wish

to change.

17. Change statements as appropriate.

18. Work through steps 7 through 17 until the member

compiles error free.

Summary and Conclusions

In this QuikCourse, we outlined the considerations and

the steps necessary to create an application

development environment on your AS/400. Once you

create your environment, you can use the tools in the

Application Development Tool set as well as other

tools in the WebSphere Development Studio for iSeries

to build the source and objects necessary for your

applications.

46 The iSeries Pocket Developer’s Guide

QuikCourse D.

Introduction to

AS/400 and iSeries

Control Language

What is CL?

Control Language, which many in the AS/400 refer to as

Command Language, or just CL, is a very powerful

programming, operations, and systems management

language and tool. It requires no installation or

generation, and all functions are available at

installation time. Many implementers change the

default values and are pleased to find that the

configuration changes are effective immediately.

CL is a natural part of the Operating System/400

(OS/400). Of course OS/400 itself is very efficient

and requires no special generation or installation

QuikCourse D. AS/400 & iSeries Control Language 47

steps, as are required on many environments such as

Linux and mainframe systems. In most cases, OS/400 is

pre-loaded at the plant and requires no tape or CD or

DVD installation time at all.

All functions of the operating system are available at

installation time through a very crisp, concise and

HARD TO FORGET Control Language (CL).

System Values

One of the unique attributes of an AS/400 is that it

is table-driven. In other words, functions are
enabled, disabled, or selected at the system level

through a series of options known as system values.

On many other “large” or mid-sized, especially IBM

systems, you go through a system generation process

when you install an operating system in order to tune

it for your needs. In this process, different modules

are copied in and, different modules are excluded so

that the resulting operating system in one shop is, by

definition, different from that in the next shop–

with the same operating system.

On the AS/400 and iSeries this is not the case. These

values can be changed at any time through natural

system interfaces (WRKSYSVAL command). The impact on

the system is either immediate, or the change takes

effect after one IPL and/or power down/power up

sequence.

48 The iSeries Pocket Developer’s Guide

A sample list of AS/400 and iSeries system values is

given below:

System Shipped Description

Value
 QABNORMSW 0 Previous end of system

indication

 QACGLVL *NONE Accounting level

 QACTJOB 20 Initial number of active

jobs

 QADLACTJ 10 Additional number active

jobs

 QADLSPLA 2048 Spooling control block addl

stg

 QADLTOTJ 10 Additional number of total

jobs

 QALWUSRDMN *ALL Allow user domain objects in lib

 QASTLVL *BASIC User assistance level

 QATNPGM *ASSIST Attention program

QuikCourse D. AS/400 & iSeries Control Language 49

System Shipped Description continued

Value
 QAUDCTL *NONE Auditing control

 QAUDENDACN *NOTIFY Auditing end action

 QAUDFRCLVL *SYS Force auditing data

 QAUDLVL *NONE Security auditing level

 QAUTOCFG 1 Autoconfigure devices

 QAUTOVRT 0 Autoconfigure virtual

devices

 QBASACTLVL 6 Base storage pool activ.

lvl.

As you can see in the above list, there are quite a

few system values. It took 15 values to get through

the A’s. When you have a chance, get an AS/400 or

iSeries command line, and type the WRKSYSVAL command.

If you have time read the HELP text about all of these

system values and the role that they play, you will be

amazed at how much you will learn about your system.

Control functions

CL provides traditional command functions plus more.

For example it is the interface for the following

important system facilities:

1. Librarian functions

2. Utility Programs - COPY, etc.

3. Procedures

4. Operator Commands

5. File and disk space management

50 The iSeries Pocket Developer’s Guide

On other systems, to perform all of the functions that

the one CL interface provides, you may need several

different languages. Even IBM’s beloved System/36 has

OCC (operator control commands) and OCL (operation

control language). On some systems, spooling requires

another language for its management and control. CL,

by contrast, is a single interface to all AS/400

functions. AS/400 CL is made up of many commands that

replace the functions of traditional commands. There

is only one control language on AS/400 for all

functions, and that alone gives it a big plus, over

all other control languages, on all other systems

CL Capabilities

Control Language is a single consistent interface to

all system functions. It is used in interactive or

batch mode. In interactive mode, it provides prompts

and command grouping menus to help you find the

command you need for a given function.

CL can also be compiled into programs. This is unique

to AS/400. All other systems use interpretive forms of

control language which means the system must translate

the source on the fly to figure out the user request,

and then it must execute the request. It is designed

for controlling application flow. CL is fast, with

powerful logic and data manipulation facilities. CL

can also have a built-in direct workstation interface

so that CL programs can use the same type of display

file as other high level languages (HLL) on the

system.

QuikCourse D. AS/400 & iSeries Control Language 51

A significant feature is the ability, in interactive

mode, for a CL user to be prompted during the

formation of a command. Simply by pressing the F4

Command Key, the user is prompted for all command

parameters. Along with the AS/400 and iSeries menus

and extensive help options, the command prompter makes

it almost impossible to forget how to get something

done. You can’t forget since the system has all of this

stuff in CL to remind you how to accomplish tasks that

you may only occasionally use. Moreover, this feature

helps you avoid many look-ups and searches into the

many system reference manuals.

52 The iSeries Pocket Developer’s Guide

What Makes a CL Command?

There are three basic components of a CL command:

1. Command Name

2. Command Parameters (0 - 50)

3. Blank Separators

How are CL commands structured?

CL commands are designed as mini-abbreviated English

sentences. Each CL command has at least two

Englishlike, abbreviated components: (1) a verb, and

(2) a noun, and sometimes an adjective or two. The

noun often represents an object type on the system

which the verb is operating upon. For example the

command to display a program is DSPPGM Whenever you

want to use a verb in a command to display anything,

you can count on the three characters, DSP beginning
the command you choose to use.

Other popular command verbs are as follows:

CRT Create

WRK Work with

DLT Delete

STR Start

CHG Change

RMV Remove

QuikCourse D. AS/400 & iSeries Control Language 53

Besides PGM, for program, there are also a number of

nouns or objects, which you will find in many CL

commands. You will find the nouns to be a little more

cryptic than self-explanatory. However, once you know

the abbreviations for the verbs and the nouns, you can

almost form any command yourself. A sample set of

abbreviations for these is as follows:

D Description

E Entry

F File

LIB Library

ARA Area

Q Queue

Verbs, Adjectives, Nouns

You are not done yet. Here’s why! Let’s say you take

the verb DSP and the noun Q. The command would be

DSPQ. If you try this on the system, it will fail?

Why? The answer is in another question: What type of

Q? However if you know that you want to look at an

output queue versus a job queue, you can use an

adjective in front of Q, such as “OUT” Q (OUTQ), to

hone-in to the specific object that you want to

reference. Thus there are adjectives, sometimes

several adjectives which are necessary in the

formation of a command. Moreover, sometimes an

abbreviation for a CL noun is actually used as an

adjective. An example of this is file description or

“FD.”

54 The iSeries Pocket Developer’s Guide

The adjectives can be 1, 2, or even 3 characters long,

depending on the choice of the AS/400 command

structure designer in IBM’s Rochester Minnesota lab.

Let’s take a look at a group of common adjective

modifiers which are often found in CL commands:

P Physical

DSP Display as in display file (also a verb)

MSG Message (also a noun)

DTA Data (also a noun)

BCK Backup

OBJ Object (also a noun)

F File (also a noun - meaning in context)

F Field (also a noun - meaning in context)

JOB Job (also a noun)

Looking at this again, we have the AS/400 Command

Structure made up of a 3-character verb, which denotes

the action to be taken, an adjective or two, and a

noun. For example, for the verb create, use CRT
whether you are creating a physical file, a program,

or an output queue.

The adjective modifier in the command can be 1 to 3

characters. This distinguishes the type of action to

be taken, although sometimes the modifier has to do

with the actual type of object to be worked upon, and

/ or created.

For example, when creating a program or file object,

the modifier determines whether the created object is

a physical file (CRTPF) vs. a Logical File (CRTLF) .

QuikCourse D. AS/400 & iSeries Control Language 55

. . or perhaps a COBOL program (CRTCBLPGM) vs. an RPG

program (CRTRPGPGM).

The third part of a command is the noun, which often

serves as the object of the verb, which causes action

to be taken against it. This noun delineates that

action is taken on a file, library, description, or

other object type. The noun (object of the verb) can

be 1 to 3 characters. Often the noun (object) gets its

full object type by combining with the adjective /

modifier, as in the case of PF, LF, DSPF. CBLPGM,

CLPGM, RPGPGM.

In summary, CL command names are comprised of 1 verb,

 0-2 adjectives or modifiers, and 1 object or noun.

Let’s play a little game. Cover up the answers below

the questions. You fill in the blanks:

VERB MODIFIER OBJECT

Create RPG Program CRT RPG

PGM

Create Physical File ____ __________

Display Library ____ __________ ______

Start Print Writer ____ __________

56 The iSeries Pocket Developer’s Guide

The answers are as follows:

Create Physical File - CRT P F CRTPF

Display Library - DSP LIB DSPLIB

Start Print Writer - STR PRT WTR STRPRTWTR

Command Parameters

Commands need parameters to actually get work done.

For example a CREATE command needs a name for the

object to be created. Another advantage of CL is that

its parameters can be keyword, positional, or MIXED

Let’s take the command “create library” as an example:

CRTLIB LIB(liba) TYPE(*prod) AUT(*none)

TEXT(*blank)

There are four keywords used in the above example.

Default Parameters, Positional

Parameters, Keywords

Now, let’s take another example with a mix of keywords and

positional parameters:

CRTLIB liba AUT(*none)

QuikCourse D. AS/400 & iSeries Control Language 57

In this example, liba is positional and AUT(*none) is keyword

oriented. A rule is that you can use positional parameters on any

command until you use your first keyword. From then on, all

prompts must be keyword-oriented. If you want to use positional

parameters, the first ones are the easiest to use, since you are just a

few commands away from the start. If, however, you wanted to

merely change the text of an object, a mythical command might

have to be specified with lots of commas, such as:

MYTCMD MYTHOBJ,,,,,,,,,,,,’city life’

Programmers are also welcome to create your own commands, such

as MYTHCMD above. These commands typically look as nice as

those created by IBM but they use your programs to perform their

work. Almost all IBM commands have defaults. User commands

also have defaults. That is why in the above example, you did not

have to fill in between the commas. The default parameter values

were used.

An example of an incorrect command is as follows:

CRTLIB AUT(*NONE) liba

The problem is that positional parameters such as liba must precede

keyword parameters. This one is correct:

CRTLIB liba AUT(*NONE)

58 The iSeries Pocket Developer’s Guide

Interactive Prompting

Commands can also be prompted interactively by typing the

command and then pressing F4. They can also be prompted and

completed in an SEU session. They can also be prompted at

execution time by placing a “?” in front of a compiled command

when typing in the source. Additionally, selected command

parameters (parts of commands) can be prompted individually by

placing “?” in front of the keywords when typing in the CL with

SEU.

QuikCourse D. AS/400 & iSeries Control Language 59

Command Alternatives From

the Past

To help us gain an appreciation for how nice AS/400 commands

are, let’s take a look at some System/36 OCL below:

// LOAD PGM1

// FILE NAME-APLVND1

// FILE -------------------

// FILE -------------------

// RUN

There are five statements for this simple program call with just three

files. If there were ten files, there would be twelve statements in the

command to run an S/36 program. With AS/400, it is reduced to one

statement as follows:

CALL PGM1

OCL vs. CL

When using S/36 OCL you have to include statements, which load

the program, define the files to be used, then run or execute the

program. Syntax checking occurs each time you execute any set of

OCL. On the AS/400 you simply call the program to execute it. No

file statements are required. The virtual addressing scheme used for

programs is also used for files.

Let’s copy a file using a method from another time era. First, we

show the System/3– the first IBM Rochester small system. Then,

we contrast it by showing how much less work is needed on the

AS/400 and iSeries.

60 The iSeries Pocket Developer’s Guide

SYSTEM/3 OCL

// LOAD $COPY,F1

// FILE NAME-COPYIN,LABEL-APPVEND,

 UNIT-D1,PACK-ABCDEF

// FILE NAME-COPYO,LABEL-APPVEND1,

 UNIT-D2,PACK-GHIJKL,RECORDS-500

// RUN

// COPYFILE OUTPUT-DISK

// END

AS/400 CL

CPYF APPVEND APPVEND1 MBROPT(*ADD)

On other traditional systems such as the System/3, and mainframes,

if you wanted to copy a file, you would have to specify the pack,

unit, and file name. With AS/400 and iSeries, you need specify only

the “from and to” files in addition to an indicator as to whether you

are adding or replacing records. AS/400 CL is much easier and

simpler to use than any other control language.

Sample AS/400 CL Commands

CRTLIB MYLIB

QuikCourse D. AS/400 & iSeries Control Language 61

CHGLIB MYLIB TEXT('MYLIB TEXT')

DLTLIB LIB(MYLIB)

?CRTLIB

WRKSYSSTS

WRKACTJOB

CRTDUPOBJ

RNMOBJ

GRTOBJAUT

WRKSYSVAL

The commands above are translated below for your edification:

CRTLIB creates a library.

CHGLIB changes object information about the library.

DLTLIB deletes a library.

?CRTLIB keyed interactively or inside a program. The “?”

Invokes the system command prompter. In fact, a

question mark before any command invokes the

command prompter.

WRK is a prefix (verb), which provides a vehicle for

working with an object (display, change, delete,

etc.)

WRKSYSSTS displays the status of the system, and provides for

changes to be made.

62 The iSeries Pocket Developer’s Guide

WRKACTJOB displays the status of all active jobs in the system

and allows them to be changes.

CRTDUPOBJ creates duplicate objects.

RNMOBJ renames objects.

GRTOBJAUT grants a user authority to an object.

WRKSYSVAL displays a list of the system values and allows the

user to select a value for display or change

purposes.

CL Program Command Statements

Cl can also be also used in programs. CL Programs provide

additional commands, which only make sense in a programming

environment. They cannot be used interactively. In fact many have

suggested that CL looks a lot like the PL/1 programming language,

but it does not have the full facility of the super PL/1 language.

Since CL is a programming language, you find operations such as

the following in its basic makeup:

DO

DATA

IF

GOTO

etc.

What is a CL Program?

CL programs are compiled. This is the first control language to

which I was introduced, which operated in compiled form. Rather

than interpret CL into machine language at execution time, as most

other command processors would do, IBM chose to make CL

invocation substantially faster, and for this purpose, built the CL

compiler. Arithmetic and data manipulation operations were also

made part of the language so that CL stands today as the super

model for Control Languages on all systems.

QuikCourse D. AS/400 & iSeries Control Language 63

There are a number of commands on the AS/400 such as

STRDBRDR (Start Database Reader) and SBMDBJOB (Submit

Database Job which can interpret CL that is stored in a source file.

However, most AS/400 and iSeries aficionados will go through their

whole careers without finding a need for these commands.

Simple CL Program

To give an appreciation for what a CL program may look like, let’s

examine a simple menu program. For this example, assume that you

have already created the display file. If you want to examine the

display file first, you can go to the mini lab in Figure D-5.

The program is as follows:

PGM

DCLF FILE(VENDSELECT)

START: SNDRCVF RCDFMT(VENDREC)

IF COND(&IN99) THEN(GOTO END)

 IF COND(&OPTION = '1') THEN(DSPMSG)

 IF COND(&OPTION = '2') THEN(DSPLIBL)

 IF COND(&OPTION = '3') THEN(WRKOUTQ)

 IF COND(&OPTION = '4') THEN(CALL ENDINQ)

 IF COND(&OPTION = '5') THEN(SIGNOFF)

 GOTO START

END: ENDPGM

This is an example of a CL program that would be used for a menu

application. The CL program writes a display screen, using the send

and then receive format - SNDRCVF command, and gives the user

64 The iSeries Pocket Developer’s Guide

five options to take from the menu. At any time, the user can press

F3 which turns on indicator 99 in the display file (Figure D-5).

Indicator 99 causes a branch to the END: label and the ENDPGM

program is executed causing the program to end.

If F3 is not pressed, when the user types in an option and hits

ENTER, the program tests the option field (&OPTION) as entered.

If the user types in a value of 1 to 5, one of the IF statement

commands is satisfied, and the appropriate program is executed.

Following execution, the program falls to the bottom, loops, and

then sends and receives another menu option. The game continues

until the user hits F3.

In this simplified program, there is no test for an invalid option, so if

something other than 1 to 5 is entered, the program falls through to

the “GOTO.” It loops and the user is prompted again to enter

another option - with no indication that something was wrong.

Declare File

If you are wondering where the variables (shown beginning with an

“&” in CL programs) are defined, look at the DCLF (declare file)

statement. This is the Declare File statement. It is the link between

the display file (Figure D-5) and the CL program. This command

brings in the display file object which defines all of the fields in the

Display File named VENDSELECT to the CL program.

What About Other Variables?

&OPTION and &IN99 (indicator) are the only two variables in the

display file. They are intrinsically defined by the DCLF display file

reference. If you wanted to define a variable independent of a

display file, you can use the declare operation (DCL). Sample

declarations are included below:

QuikCourse D. AS/400 & iSeries Control Language 65

DCL VAR(&COUNT) TYPE(*DEC) LEN(5 0)

DCL VAR(&USER) TYPE(*CHAR) LEN(10)

DCL VAR(&JOBNO) TYPE(*CHAR) LEN(6)

The first field declared is a variable COUNT which is decimal, 5

positions long, with no decimal positions. The next is a variable

USER which is character with a length of 10. The next is a field

called JOBNO which is defined as character with a length of 6.

 Command Prompting and

Assistance

Prompting and assistance is available on the AS/400 in a number of

ways. First of all, there is a facility which is available at the touch of

the attention key called Operational Assistant. This is invisible

unless you ask it for help.

There is also system assisted command entry via:

1. Menu Displays

2. Prompt Displays

3. Interactive Syntax Checking

4. Extensive HELP / On-line Documentation

These assistants are available when using:

1. Command entry display

2. Programmer / Operator/ Main Menus via the command line

3. Source Entry Utility(SEU)

4. Program Development Manager (PDM)

66 The iSeries Pocket Developer’s Guide

A Look at the Command Prompter

As I suggested above, my favorite CL component is the command

prompter, because it makes it impossible to forget about a

command. Let’s say you are at a display station and you know that

you want to create something, for example. All you have to do is hit

F4. Don’t type anything, just press F4. The system responds with

the command grouping menu in Figure D-1

Figure D-1 Command Grouping Menu

MAJOR Major Command Groups

 System: HELLO

Select one of the following:

 1. Select Command by Name SLTCMD

 2. Verb Commands VERB

 3. Subject Commands SUBJECT

 4. Object Management Commands CMDOBJMGT

 5. File Commands CMDFILE

 6. Save and Restore Commands CMDSAVRST

 7. Work Management Commands CMDWRKMGT

 8. Data Management Commands CMDDTAMGT

 9. Security Commands CMDSEC

 10. Print Commands CMDPRT

 11. Spooling Commands CMDSPL

 12. System Control Commands CMDSYSCTL

 13. Program Commands CMDPGM

 More...

Selection or command

===>

F3=Exit F4=Prompt F9=Retrieve F12=Cancel F13=Information Assistant

F16=AS/400 Main menu

(C) COPYRIGHT IBM CORP. 1980, 2000.

Command Grouping Menus

Take a look at Figure D-1. This is a programmer’s dream. All of the

commands and substantial help text are just a finger’s touch away.

In the example that you are pursuing, you want to create something.

To get some help on all of the create commands, you can do a few

different things.

QuikCourse D. AS/400 & iSeries Control Language 67

1. You can GO CMDCRT. This is a quick means of using command

HELP navigation. Use GO as the menu command, CMD as the

command menu prefix, and CRT, DLT, etc as the subject you are

looking for. In this instance, you are taken to the create menu.

2. You can type 2 in the command grouping menu in Figure D-4,

and press ENTER. The next panel is similar to that shown in Figure

D-2. To get to the panel in Figure D-2, just press the ROLL Down

or Page Down key on your keyboard.

Figure D-2. Second Page of Verb Command Groups
 VERB Verb Commands

 Select one of the following:

 15. Cancel Commands CMDCNL

 16. Container Commands CMDCNR

 18. Copy Commands CMDCPY

 19. Create Commands CMDCRT

 20. Create File Commands CMDCRTF

 21. Create Program Commands CMDCRTPGM

 22. Convert Commands CMDCVT

 23. Declare Commands CMDDCL

 24. Deallocate Commands CMDDLC

 25. Delete Commands CMDDLT

 26. Delay Commands CMDDLY

 27. Dump Commands CMDDMP

 28. Do Commands CMDDO

 More...

 Selection or command

 ===>

F3=Exit F4=Prompt F9=Retrieve F12=Cancel F16=Major menu

To get to the CREATE menu, select option 19 and press ENTER.

You will then be taken to the first CREATE menu as shown in

Figure D-3.

When you get to the panel in Figure D-3, you are at the first panel

of 13 panels of commands for which you can be prompted. More

than likely, you would read these commands and roll from panel to

panel looking for the object type you want to create and then you

would pick the command by number and be prompted. Let’s say

68 The iSeries Pocket Developer’s Guide

you wanted to create a bound C program for example. You would

select option 5 on this menu and you would be taken to a panel such

as Figure D-4 in which you would be prompted to enter the

appropriate parameters for the command. Tell me why you need a

book! Tell me why GUI is so good!

Figure D-3 Create Commands Menu
CMDCRT Create Commands

Select one of the following:

 Commands

 1. Create Alert Table CRTALRTBL

 2. Create Authority Holder CRTAUTHLR

 3. Create Authorization List CRTAUTL

 5. Create Bound C Program CRTBNDC

 6. Create Bound COBOL Program CRTBNDCBL

 7. Create Bound CL Program CRTBNDCL

 8. Create Bound C++ Program CRTBNDCPP

 9. Create Binding Directory CRTBNDDIR

 10. Create Bound RPG Program CRTBNDRPG

 11. Create COBOL Module CRTCBLMOD

 12. Create COBOL Program CRTCBLPGM

 13. Create Configuration List CRTCFGL

 More...

Selection or command

===> 5

F3=Exit F4=Prompt F9=Retrieve F12=Cancel F16=Major menu

©) COPYRIGHT IBM CORP. 1980, 2000.

QuikCourse D. AS/400 & iSeries Control Language 69

Figure D-4, CREATE C program Prompt
 Create Bound C Program (CRTBNDC)

Type choices, press Enter.

Program CPROGRAM Name

 Library *CURLIB Name, *CURLIB

Source file QCSRC Name

 Library *LIBL Name, *LIBL, *CURLIB

Source member *PGM Name, *PGM

Source stream file

Text 'description' *SRCMBRTXT

 Bottom

F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel

F13=How to use this display F24=More keys

70 The iSeries Pocket Developer’s Guide

Control Language Mini Lab

To strengthen your knowledge of CL and get some structured

machine time, we have built a simple, yet complete CL Lab for you

to exercise. We urge you to take this Lab. If things get boring to

you, either you started knowledgeably, or you have already “gotten”

the material! We introduce some notions in this lab which have not

yet been taught. Don’t worry about it. You will be able to

accomplish these exercises, and you will know CL and how it fits in

even that much better. If there’s something you don’t understand,

move through the lab anyway. More than likely, we’ll be getting to

it soon.

Mini Lab Objectives

The objectives of this little lab are to get you familiar with how to

function in an AS/400 and iSeries application development

environment while creating a small CL program. In the lab, you will

create a CL program to:

1. Display messages

2 Display a library list

3. Work with all output queues on the system

4. Call a mythical RPG III Vendor Inquiry program. Note: We

have not created this program yet. In your lab, feel free to

substitute another program from your shop.

5. Sign off the system

The source for RPG programs and files should naturally be created

as part of previous QuikCourses. However, when appropriate in the

Mini Lab, we show how to create necessary objects which may not

have been previously created.

QuikCourse D. AS/400 & iSeries Control

Language 71

☺ Note: Though this is a CL program creation lab.

The source for the display file, and the steps to create

the display file are shown in this lab for

Completeness.

The Lab Steps:

Though this example lab is very simple, it shows the power of CL

programming as used in an interactive environment. The same

program which we built above is used in this lab. This time,

however, you will perform all of the steps necessary to create the

CL program as an object on your system.

The steps you will follow are:

0. Signon to the system and start the Program Development

Manager (PDM) by typing STRPDM. PDM is covered in

QuikCourse E in this book.

1. Take option 3 from PDM (Work with members).

2. Enter file - QDDSSRC, library - HELLO, press ENTER. If

HELLO is not built, then you can create it by typing

CRTLIB SAMPLE on a command line and pressing

ENTER. If QDDSSRC is not in HELLO, you can create it

with: CRTSRCPF HELLO/QDDSSRC

3. Press F6 for the SEU ADD member function to add

VENDSELECT to the Source File. Then type in your DDS

(covered in QuikCourse F).

4. When you have keyed the VENDSELECT Display File

DDS, take F3 to end the job and save your work. You will

return to PDM member selection menu.

5. Place a 14 next to VENDSELECT to create the display file

for the CL program. Press F4 to assure yourself that this

will compile to the HELLO library. If it is not set to do this,

change it to HELLO and press ENTER. This will compile

the display file named VENDSELECT and place the display

file object in the HELLO library.

72 The iSeries Pocket Developer’s Guide

6. From the PDM Work With Members panel, change the

source file name on the top left to QCLSRC and assure the

library name continues to be HELLO. Then press ENTER.

This should place PDM into the QCLSRC file in the

HELLO library. If QCLSRC (the source file for CL) does

not exist, then create it with the following command:

CRTSRCPF HELLO/QDDSSRC. After typing this, press

ENTER to create the source file. When the file is created,

change the top of the PDM screen to get into the QCLSRC

file as described above.

7. Press F6 for the SEU ADD member function to add the CL

program named VENDSELECT to the QCLSRC source

File.

8. Then type in your CL program. When you have keyed the

VENDSELECT CL program, take F3 to end the job and

save your work. You will return to PDM member selection

menu.

9. Place a 14 next to VENDSELECT in QCLSRC to create the

CL Program. Press F4 to assure yourself that this will

compile to the HELLO library. If it is not set to do this,

change it to HELLO and press ENTER. This will compile

the CL Program named VENDSELECT and place the CL

program object in the HELLO library.

10. Call VENDSELECT to execute by typing CALL

VENDSELECT on your command line and pressing

ENTER.

* If there are problems compiling or executing in which a

“file not found” message is displayed, your library list

needs to be changed. If you submit to batch, you can add the

library to the list you use in your job description. If you

compile interactively, execute this command before

selecting PDM option 14 again: ADDLIBLE HELLO.

The display file to be keyed in step 3 is shown in Figure D-5. The

program to be keyed in step 8 is shown in Figure D-6, and the

QuikCourse D. AS/400 & iSeries Control Language 73

display panel for the CL program, when executing, is shown in

Figure D-7.

Figure D-5 VENDSELECT Display File DDS
 Columns . .: 1 71 Edit HELLO/QDDSSRC

 SEU==>. VENDSELECT

 FMT A* ..A*. 1 ...+... 2 ...+... 3 ..4 ...+... 5 ...+... 6 ...+... 7.......

 ****************** Beginning of data********************************

 0003.00 A PRINT CF03(99)

 0004.00 A R VENDREC BLINK OVERLAY

 0005.00 A 6 34'VENDOR SELECTION'

 0006.00 A 7 2'Select one of the following:

 0007.00 A 9 4'1. ' DSPATR(HI)

 0008.00 A 9 9'DISPLAY MESSAGES'

 0009.00 A 10 4'2. ' DSPATR(HI)

 0010.00 A 10 9'DISPLAY LIBRARY LIST'

 0011.00 A 11 4'3. ' DSPATR(HI)

 0012.00 A 11 9'WORK WITH ALL OUTPUT QUEUES’

 0013.00 A 12 4'4. ' DSPATR(HI)

 0014.00 A 12 9'CALL RPG/400 VENDOR INQUIRY PROGR+

 0015.00 AM'

 0016.00 A 13 4'5. ' DSPATR(HI)

 0017.00 A 13 9'SIGNOFF'

 0018.00 A 23 2'Option: '

 0019.00 A OPTION 3 I 23 12DSPATR(PC)

 0020.00 A 24 22'F3 END OF JOB'

 ****************** End of data***************************************

 F3=Exit F5 Refresh F9=Retrieve F10=Cursor F12=Cancel

 F16=Repeat find F24=More keys

74 The iSeries Pocket Developer’s Guide

Figure D-6 Program to Display Menu & Accept Options

 Columns: 1 71 Edit HELLO/QCLSRC

 SEU==>. . . VENDSELECT

 FMT ** ...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7

 *************** Beginning of data ***********************************

 0001.00

 0002.00 PGM

 0003.00 DCLF FILE(VENDSELECT)

 0004.00 START: SNDRCVF RCDFMT(VENDREC)

 0005.00 IF COND(&IN99) THEN(GOTO CMDLBL(END))

 0006.00 IF COND(&OPTION = '1') THEN(DSPMSG)

 0007.00 IF COND(&OPTION = '2') THEN(DSPLIBL)

 0008.00 IF COND(&OPTION = '3') THEN(WRKOUTQ)

 0009.00 IF COND(&OPTION = '4') THEN(CALL VENDINQ)

 0010.00 IF COND(&OPTION = '5') THEN(SIGNOFF)

 0011.00 GOTO START

 0012.00 END: ENDPGM

 ****************** End of data **

 F3=Exit F5=Refresh F9=Retrieve F10=Cursor F13=Cancel

 F16=Repeat find F24=More keys

 ©) COPYRIGHT IBM CORP. 1981, 1990.

Figure D-7 CL in Action

 VENDOR SELECTION

 Select one of the following:

 1. DISPLAY MESSAGES

 2. DISPLAY LIBRARY LIST

 3. WORK WITH ALL OUTPUT QUEUES

 4. CALL RPG/400 VENDOR INQUIRY PROGRAM

 5. SIGN OFF

 Option: ___

 F3 END OF JOB

Since you will not have created the RPG program (menu option 4)

in Figure D-7, prior to executing this CL menu program, selecting

option 4 from the menu will cause an OS/400 Function Check.

That’s OK. When you get the function check, you will know that

the menu option in the CL program performed as designed.

QuikCourse D. AS/400 & iSeries Control Language 75

Now, perform the steps from step zero until you have completed

this mini lab.

Start PDM

0. Signon to the system and start the Program Development

Manager. Key the following and press ENTER.

STRPDM

You will see a panel similar to that in Figure D-8

Figure D-8 PDM Main Menu
 AS/400 Programming Development Manager (PDM)

 Select one of the following:

 1. Work with libraries

 2. Work with objects

 3. Work with members

 9. Work with user-defined options

 Selection or command

 ===> 3

 F3=Exit F4=Prompt F9=Retrieve F10=Command entry

 F12=Cancel F18=Change defaults

Work With Members

1. Take option 3 from PDM as shown on Figure D-8. You will see a

panel similar to that in Figure D-9.

Figure D-9 Specify Members to Work With.
 Specify Members to Work With

 Type choices, press Enter.

76 The iSeries Pocket Developer’s Guide

 File QDDSSRC Name, F4 for list

 Library HELLO *LIBL, *CURLIB, name

 Member:

 Name *ALL *ALL, name, *generic*

 Type *ALL *ALL, type, *generic*, *BLANK

 F3=Exit F4=Prompt F5=Refresh F12=Cancel

☺Note: Figure D-10 has been intentionally skipped.

 Specify QDDSSRC and HELLO

2. In the panel shown in Figure D-9, Enter the file name -

QDDSSRC, and enter the library name - HELLO, then press

ENTER. If the library HELLO is not built yet, then you can create it

by typing CRTLIB HELLO, on a command line and pressing

ENTER. If QDDSSRC is not in HELLO, you can create it

by typing CRTSRCPF HELLO/QDDSSRC on a command line

and pressing ENTER.

If you must create the file, restart with STRPDM in

step 1 above, and your panel will again look like the

panel in Figure D-9. When you get the panel in Figure

D9 completed properly, press ENTER and you will be

taken to Figure D-11.

QuikCourse D. AS/400 & iSeries Control Language 77

Figure D-11 Work With Members
 Work with Members Using PDM HELLO

 File QDDSSRC

 Library HELLO Position to

 Type options, press Enter.

 2=Edit 3=Copy 4=Delete 5=Display 6=Print 7=Rename

 8=Display description 9=Save 13=Change text 14=Compile 15=Create module...

 Opt Member Type Text

 (No members in file)

 Parameters or command

 ===>

 F3=Exit F4=Prompt F5=Refresh F6=Create

 F9=Retrieve F10=Command entry F23=More options F24=More keys

Add VENDSELECT Member

3. Press F6 from the panel in Figure D-11 for the SEU ADD

member function to add source program (member) VENDSELECT

to the Source File. The next panel you see is the START SEU panel

in Figure D-12. In this panel, you provide the name

(VENDSELECT), then type (DSPF for display file), and the text (to

describe the object). In Figure D-13, type in your DDS (covered in

QuikCourse G).

Figure D-12 Work With Members
 Start Source Entry Utility (STRSEU)

Type choices, press Enter.

78 The iSeries Pocket Developer’s Guide

Source file > QDDSSRC Name, *PRV

 Library > HELLO Name, *LIBL, *CURLIB, *PRV

Source member > VENDSELECT Name, *PRV, *SELECT

Source type > DSPF Name, *SAME, BAS, BASP...

Text 'description' Vendor Selection Display File

 Bottom

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

F24=More keys

Figure D-13 SEU Edit Panel

Columns . . . : 1 71 Edit HELLO/QDDSSRC

SEU==> VENDSELECT

FMT DPAAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++

 *************** Beginning of data *************************************

''''''

. . .

''''''

 ****************** End of data **

F3=Exit F4=Prompt F5=Refresh F9=Retrieve F10=Cursor F11=Toggle

F16=Repeat find F17=Repeat change F24=More keys

Member VENDSELECT added to file HELLO/QDDSSRC. +

Type DDS, Save Work, Exit

4. When you have keyed the VENDSELECT Display File DDS in

Figure D-14, take F3 to end the job and save your work. This will

bring you to the SEU Exit panel shown in Figure D-15. The options

should be already filled in as seen in the panel. Press ENTER and

you will return to the PDM member selection menu as shown in

Figure D-16.

Figure D-14 SEU Edit Panel With DDS
 Columns . . . : 6 76 Browse HELLO/QDDSSRC

QuikCourse D. AS/400 & iSeries Control Language 79

 SEU==> VENDSELECT

 FMT DP AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions+++++++++++++++++++++++

 *************** Beginning of data *************************************

0001.00 A PRINT CF03(99)

0002.00 A R VENDREC BLINK OVERLAY

0003.00 A 6 34'VENDOR SELECTION'

0004.00 A 7 2'Select one of the following:'

0005.00 A 9 4'1. ' DSPATR(HI)

0006.00 A 9 9'DISPLAY MESSAGES'

0007.00 A 10 4'2. ' DSPATR(HI)

0008.00 A 10 9'DISPLAY LIBRARY LIST'

0009.00 A 11 4'3. ' DSPATR(HI)

0010.00 A 11 9'WORK WITH ALL OUTPUT QUEUES'

0011.00 A 12 4'4. ' DSPATR(HI)

0012.00 A 12 9'CALL RPG/400 VENDOR INQUIRY +

0013.00 A PROGRAM'

0014.00 A 13 4'5. ' DSPATR(HI)

0015.00 A 13 9'SIGNOFF'

0016.00 A 23 2'OPTION: '

F3=Exit F5=Refresh F9=Retrieve F10=Cursor F11=Toggle F12=Cancel

 F16=Repeat find F24=More keys

80 The iSeries Pocket Developer’s Guide

Figure D-15 SEU Exit Panel
 Exit

 Type choices, press Enter.

 Change/create member Y Y=Yes, N=No

 Member VENDSELECT Name, F4 for list

 File QDDSSRC Name, F4 for list

 Library HELLO Name

 Text Vendor Selection Display File

 Resequence member Y Y=Yes, N=No

 Start 0001.00 0000.01-9999.99

 Increment 01.00 00.01-99.99

 Print member N Y=Yes, N=No

 Return to editing N Y=Yes, N=No

 Go to member list N Y=Yes, N=No

 F3=Exit F4=Prompt F5=Refresh F12 Cancel

Figure D-16 PDM Member Selection Menu

 Work with Members Using PDM HELLO

File QDDSSR

 Library HELLO Position to

Type options, press Enter.

 2=Edit 3=Copy 4=Delete 5=Display 6=Print 7=Rename

 8=Display description 9=Save 13=Change text 14=Compile 15=Create module...

QuikCourse D. AS/400 & iSeries Control Language 81

Opt Member Type Text

 14 VENDSELECT DSPF Vendor Selection Display File

 Bottom

Parameters or command

===>

F3=Exit F4=Prompt F5=Refresh F6=Create

F9=Retrieve F10=Command entry F23=More options F24=More Keys

Create Display File for CL Program

5. Place a 14 next to VENDSELECT in Figure D-16 to create the

display file for the CL program. Press F4 after typing 14 to prompt

for the create command. You want to be assured that the display file

will compile to the HELLO library. See Figure D-17 for an example

of how this should look. If it is not set to compile to HELLO,

change it accordingly and press ENTER. This will compile the

display file named VENDSELECT, and place the display file object

in the HELLO library.

Figure D-17 Create Display File
 Create Display File (CRTDSPF)

 Type choices, press Enter.

 File > VENDSELECT Name

 Library > HELLO Name, *CURLIB

 Source file > QDDSSRC Name, *NONE

 Library > HELLO Name, *LIBL, *CURLIB

 Source member > VENDSELECT Name, *FILE

 Generation severity level . . . 20 0-30

 Flagging severity level 0 0-30

82 The iSeries Pocket Developer’s Guide

 Display device *REQUESTER Name, *NONE, *REQUESTER

 + for more values

 Text 'description' *SRCMBRTXT

 Additional Parameters

 Replace file > *NO *YES, *NO

 Bottom

 F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

After you hit ENTER on the panel in D-17, if you have done your

homework well, you will receive the following message at the

bottom of the panel:

File VENDSELECT created in library HELLO.

You will return to the panel as shown in Figure D-18.

QuikCourse D. AS/400 & iSeries Control Language 83

Figure D-18 Changing Source File in PDM
 Work with Members Using PDM HELLO

 File QCLSRC <<<<

 Library HELLO Position to

 Type options, press Enter.

 2=Edit 3=Copy 4=Delete 5=Display 6=Print 7=Rename

 8=Display description 9=Save 13=Change text 14=Compile 15=Create module...

 Opt Member Type Text

 VENDSELECT DSPF Vendor Selection Display File

 Bottom

 Parameters or command

 ===>

 F3=Exit F4=Prompt F5=Refresh F6=Create

 F9=Retrieve F10=Command entry F23=More options F24=More keys

 File VENDSELECT created in library HELLO.

Work With QCLSRC File

6. From the PDM Work With Members panel, in Figure D-18,

change the source file name from QDDSSRC in the top left corner

to QCLSRC, and assure the library name continues to be HELLO.

Then press ENTER. This should place your PDM session into the

QCLSRC file in the HELLO library as shown in Figure D-19.

If QCLSRC (the source file for CL) does not exist, then create it

with the following command: CRTSRCPF HELLO/QDDSSRC.

After typing this, press ENTER to create the source file. When the

QCLSRC file is created, repeat this full step.

Your display will now look like the panel in Figure D-19.

84 The iSeries Pocket Developer’s Guide

Figure D-19 Member List of QCLSRC
 Work with Members Using PDM HELLO

File QCLSRC

 Library HELLO Position to

Type options, press Enter.

 2=Edit 3=Copy 4=Delete 5=Display 6=Print 7=Rename

 8=Display description 9=Save 13=Change text 14=Compile 15=Create module...

Opt Member Type Text

 (No members in file)

Parameters or command

===>

F3=Exit F4=Prompt F5=Refresh F6=Create

F9=Retrieve F10=Command entry F23=More options F24=More keys

Add VENDSELECT CL Member to QCLSRC

7. Press F6 from the panel in Figure D-19 for the SEU ADD

member function to add VENDSELECT to the Source File. The

next panel you see is the START SEU panel in Figure D-20 in

which you provide the name (VENDSELECT), the type CLP (for

CL Program) and the text (to describe the object).

QuikCourse D. AS/400 & iSeries Control Language 85

Figure D-20 Start SEU
 Start Source Entry Utility (STRSEU)

Type choices, press Enter.

Source file > QCLSRC Name, *PRV

 Library > HELLO Name, *LIBL, *CURLIB, *PRV

Source member > VENDSELECT Name, *PRV, *SELECT

Source type > CLP Name, *SAME, BAS, BASP...

Text 'description' Vendor Selection CL Program

 Bottom

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

F24=More keys

Figure D-21 Edit Panel

Columns . . . : 1 71 Edit HELLO/QCLSRC

SEU==> VENDSELECT

FMT DPAAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++

 *************** Beginning of data *************************************

''''''

''''''

''''''

''''''

''''''

''''''

''''''

''''''

''''''

''''''

''''''

''''''

''''''

''''''

''''''

86 The iSeries Pocket Developer’s Guide

 ****************** End of data **

F3=Exit F4=Prompt F5=Refresh F9=Retrieve F10=Cursor F11=Toggle

F16=Repeat find F17=Repeat change F24=More keys +

Member VENDSELECT added to file HELLO/QCLSRC.

Type Your CL Program VENDSELECT

8.In Figure D-21, type in your CL program. When you have keyed

the VENDSELECT CL Program as shown in Figure D-22,

take F3 to end the job and save your work. This will

bring you to the SEU Exit panel shown in Figure D-23.

The options should be already filled in as seen in the

panel. Press ENTER, and you will return to the PDM

member selection menu as shown in Figure D-24.

QuikCourse D. AS/400 & iSeries Control Language 87

Figure D-22 SEU Edit Panel With CL Program
 Columns . . . : 1 71 Edit HELLO/QCLSRC

 SEU==> VENDSELECT

 FMT ** ...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7

 *************** Beginning of data *************************************

0001.00 PGM

0002.00 DCLF FILE(VENDSELECT)

0003.00 START: SNDRCVF RCDFMT(VENDREC)

0004.00 IF COND(&IN99) THEN(GOTO CMDLBL(END))

0005.00 IF COND(&OPTION = '1') THEN(DSPMSG)

0006.00 IF COND(&OPTION = '2') THEN(DSPLIBL)

0007.00 IF COND(&OPTION = '3') THEN(WRKOUTQ)

0008.00 IF COND(&OPTION = '4') THEN(CALL VENDINQ)

0009.00 IF COND(&OPTION = '5') THEN(SIGNOFF)

0010.00 GOTO START

0011.00 END: ENDPGM

 ****************** End of data **

 F3=Exit F4=Prompt F5=Refresh F9=Retrieve F10=Cursor F11=Toggle

 F16=Repeat find F17=Repeat change F24=More keys

 ©) COPYRIGHT IBM CORP. 1981, 2000.

88 The iSeries Pocket Developer’s Guide

Figure D-23 SEU Exit Panel
 Exit

 Type choices, press Enter.

 Change/create member Y Y=Yes, N=No

 Member VENDSELECT Name, F4 for list

 File QCLSRC Name, F4 for list

 Library HELLO Name

 Text Vendor Selection CL Program

 Resequence member Y Y=Yes, N=No

 Start 0001.00 0000.01-9999.99

 Increment 01.00 00.01-99.99

 Print member N Y=Yes, N=No

 Return to editing N Y=Yes, N=No

 Go to member list N Y=Yes, N=No

 F3=Exit F4=Prompt F5=Refresh F12-Cancel

QuikCourse D. AS/400 & iSeries Control Language 89

Figure D-24 PDM Member Selection Menu
 Work with Members Using PDM HELLO

 File QCLSRC

 Library HELLO Position to

 Type options, press Enter.

 2=Edit 3=Copy 4=Delete 5=Display 6=Print 7=Rename

 8=Display description 9=Save 13=Change text 14=Compile 15=Create module...

 Opt Member Type Text

 14 VENDSELECT CLP Vendor Selection CL Program

 Bottom

 Parameters or command

 ===>

 F3=Exit F4=Prompt F5=Refresh F6=Create

 F9=Retrieve F10=Command entry F23=More options F24=More keys

 Member VENDSELECT added to file HELLO/QCLSRC. +

Creating the CL Program

9. Place a 14 next to VENDSELECT in Figure D-24, to

create the CL program. Press F4 after typing 14 for the prompt

panel so that you can assure yourself that this CL Program will

compile to the HELLO library. See Figure D-17 for an example of

how this should look. If it is not set to compile to HELLO, change it

accordingly, and press ENTER. This will compile the display file

named VENDSELECT, and place the display file object in the

HELLO library.

Figure D-25 Create the CL Program
 Create CL Program (CRTCLPGM)

Type choices, press Enter.

Program > VENDSELECT Name

90 The iSeries Pocket Developer’s Guide

 Library > HELLO Name, *CURLIB

Source file > QCLSRC Name

 Library > HELLO Name, *LIBL, *CURLIB

Source member > VENDSELECT Name, *PGM

Text 'description' *SRCMBRTXT

 Additional Parameters

Replace program > *NO *YES, *NO

 Bottom

F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel

F13=How to use this display F24=More keys

After you hit ENTER on the panel in D-25, again if you have done

your homework well, you will receive the following message at the

bottom of the Work With Members panel:

Program VENDSELECT created in library HELLO.

You will return to the panel as shown in Figure D-24.

10. From the panel in Figure D-24, Call the VENDSELECT

program to execution by typing CALL VENDSELECT on

your command line and pressing ENTER. You will get the

panel as shown in Figure D-26.

Figure D-26 Vendor Selection Program Operational
 VENDOR SELECTION

 Select one of the following:

 1. DISPLAY MESSAGES

 2. DISPLAY LIBRARY LIST

 3. WORK WITH ALL OUTPUT QUEUES

 4. CALL RPG/400 VENDOR INQUIRY PROGRAM

 5. SIGN OFF

QuikCourse D. AS/400 & iSeries Control Language 91

 Option: ___

 F3 END OF JOB

Take each of the options in sequence from the menu in Figure D-26.

Since we have not built an RPG program for this menu, you will get

a function check. Ignore it and come back to the menu. Then take

option 5 to sign off. You have now completed the CL QuikCourse

Mini Lab. Nice Job!

92 The iSeries Pocket Developer’s Guide

More Exercises Pardner?

No, every CL program is not as easy as VENDSELECT. You

can do lots of interesting things with CL. As a

compilable control language, it also serves a job

control function. Batch job strings and startup job

strings are built with CL and other high level

languages on AS/400 and iSeries. So that we don’t leave

you thinking that menu programs are it for CL, we have

two more example programs which we will dissect to

help make your CL experience more complete.

Batch CL Program Examples

The first program is IBM’s startup program (QSTRUP),

which is shipped with every system, and its serves as

the system startup program. The other is a homemade

batch job stream which has a number of CL operations

worth exploring.

First we will show the programs in their entirety.

Then, we will take each program, piece by piece,

section by section and explain the function and the

purpose of the code.

In a short QuikCourse such as this, our objectives are

not to create a crackerjack CL coder in just a few

hours. Instead, we hope to make CL appear to be as

easy as possible, so that you can use the system’s

documentation and help text to find any command you

need. Then, you can be in a position to prepare the

QuikCourse D. AS/400 & iSeries Control Language 93

parameters necessary for that command to perform your

will. This exercise should help you get there!

The startup program is shown in Figure D-27 and the

homemade batch program is in Figure D-28.

94 The iSeries Pocket Developer’s Guide

Figure D-27 AS/400 Standard Startup Program (QSTRUP)

0001.00 PGM

0002.00 DCL VAR(&STRWTRS) TYPE(*CHAR) LEN(1)

0003.00 DCL VAR(&CTLSBSD) TYPE(*CHAR)LEN(20)

0004.00 DCL VAR(&CPYR) TYPE(*CHAR) LEN(120) +

 VALUE('5722-SS1 ©) COPYRIGHT- +

 IBM CORP 1980, 2000. LICENSED + MATERIAL -

PROGRAM PROPERTY OF IBM')

0006.00 QSYS/STRSBS SBSD(QSPL)

0007.00 MONMSG MSGID(CPF0000)

0008.00 QSYS/STRSBS SBSD(QSERVER)

0009.00 MONMSG MSGID(CPF0000)

0010.00 QSYS/STRSBS SBSD(QUSRWRK)

0011.00 MONMSG MSGID(CPF0000)

0012.00 QSYS/RLSJOBQ JOBQ(QGPL/QS36MRT)

0013.00 MONMSG MSGID(CPF0000)

0014.00 QSYS/RLSJOBQ JOBQ(QGPL/QS36EVOKE)

0015.00 MONMSG MSGID(CPF0000)

0016.00 QSYS/STRCLNUP

0017.00 MONMSG MSGID(CPF0000)

0018.00 QSYS/RTVSYSVAL SYSVAL(QCTLSBSD)-

RTNVAR(&CTLSBSD)

0019.00 IF COND((&CTLSBSD *NE 'QCTL QSYS ')+

 *AND (&CTLSBSD *NE +

'QCTL QGPL ')) THEN(GOTO +

QuikCourse D. AS/400 & iSeries Control Language 95

CMDLBL(DONE)) 0021.00

QSYS/STRSBS SBSD(QINTER) 0022.00 MONMSG

MSGID(CPF0000)

0023.00 QSYS/STRSBS SBSD(QBATCH)

0024.00 MONMSG MSGID(CPF0000)

0025.00 QSYS/STRSBS SBSD(QCMN)

0026.00 MONMSG MSGID(CPF0000)

0027.00 DONE:

0028.00 QSYS/RTVSYSVAL SYSVAL(QSTRPRTWTR)-

RTNVAR(&STRWTRS)

0029.00 IF COND(&STRWTRS = '0') THEN(GOTO -

 CMDLBL(NOWTRS))

0030.00 CALL PGM(QSYS/QWCSWTRS)

0031.00 MONMSG MSGID(CPF0000) 0032.00 NOWTRS:

0033.00 RETURN

0034.00 CHGVAR VAR(&CPYR) VALUE(&CPYR)

0035.00 ENDPGM

96 The iSeries Pocket Developer’s Guide

Command Continuation

Before we dip into the programs, we need to discuss an important

factor about CL syntax. In the two examples we are about to dissect,

you will find that certain commands and parameters cannot fit on

one statement. They are continued. In both examples, there are a

number of statements which need several lines to complete. As you

can see in the Figures, in addition to using the continuation

characters (+ and -), we eliminated the line number from the

continuation lines, so that we show that all of the continued lines

were related.

Commands are most often entered in free format. A command does

not have to begin in a specific location on a statement line. Most

commands are contained entirely in one statement. However, as we

have been discussing, commands can be continued on several lines,

or in several statements.

Whether continued or not, the total command length cannot exceed

20,000 characters. Either of the two special characters noted above,

the plus sign (+) or the minus sign (-), can be entered as the last

nonblank character on the line to indicate that a command is

continued. Blanks immediately preceding a + or - sign are always

included. Blanks immediately following a + or - in the same

statement are ignored.

Blanks in the next line (the continued line), however, that precede

the first nonblank character are ignored when “+” is specified. They

are included when “-“ is specified. The “+” is most often used

useful between parameters or values. At least one blank must

precede the sign to make it effective when it is used between

separate parameters or values.

The difference between the plus and minus sign usage is particularly

important when continuation occurs inside a quoted character string.

QuikCourse D. AS/400 & iSeries Control Language 97

Assuming that there are three blanks preceding the continued “ITH”

of Smith, the following example shows the difference:

CRTLIB LIB(SMITH) TEXT('This is SM+

 ITH')

CRTLIB LIB(SMITH) TEXT('This is SM-

 ITH')

These statements materialize as the following:

For + :

CRTLIB LIB(SMITH) TEXT('This is SMITH')

For - :

CRTLIB LIB(SMITH) TEXT('This is SM ITH')

QSTRUP Program Dissection

Now, let’s look at different groups of Cl statements in

the QSTRUP CL program and we’ll explain them as we go.

98 The iSeries Pocket Developer’s Guide

0001.00 PGM

All Cl programs begin with the PGM Statement. When the

program has a parameter passed, the PARM parameter is

used to catch it.

0002.00 DCL VAR(&STRWTRS) TYPE(*CHAR) LEN(1)

0003.00 DCL VAR(&CTLSBSD) TYPE(*CHAR)LEN(20)

0004.00 DCL VAR(&CPYR) TYPE(*CHAR) LEN(120) +

 VALUE('5722-SS1 ©) COPYRIGHT- +

 IBM CORP 1980, 2000. LICENSED + MATERIAL -

PROGRAM PROPERTY OF IBM')

This program has three variables declared (defined).

As you can see the first two variables are to store

the results of RTVSYSVAL (Retrieve System Value).

These will be tested, and the program will take

different branches depending on their values. The

third variable is a convention which IBM uses to store

its copyright information within the running program.

0006.00 QSYS/STRSBS SBSD(QSPL)

0007.00 MONMSG MSGID(CPF0000)

0008.00 QSYS/STRSBS SBSD(QSERVER)

0009.00 MONMSG MSGID(CPF0000)

0010.00 QSYS/STRSBS SBSD(QUSRWRK)

0011.00 MONMSG MSGID(CPF0000)

QuikCourse D. AS/400 & iSeries Control Language 99

This next block of code uses three STRSBS commands to

get three IBM subsystems started - QSPL, QSERVER,

QUSRWRK. Each of these is followed by a generic MONMSG

command, which assures that the program will continue

if an unexpected condition has occurred in the STRSBS

commands. Unmonitored messages cause function checks

which are typically very disruptive to CL programs.

The Monitor Message (MONMSG) command is used to

monitor escape, notify, and status messages sent to

the program message queue of the program in which the

command is used. As a point of note, completion and

diagnostic message types cannot be monitored.

When the MONMSG command is compiled in a control

language (CL) program, such as this (QSTRUP), it

establishes a monitor for the arrival of the specified

messages. The command monitors the messages. It can

also monitor for any special conditions when the

comparison data parameter is used in the command. If

a message, meeting the conditions, arrives on the

message queue, the CL command specified on the MONMSG

command is processed.

In the three monitor messages above, there is no EXEC

clause to call another program. The sole purpose of

these monitors is to assure that if the subsystems are

already up and alive, and this program tries to start

them, the STRSBS commands will not cause the program

to terminate with a function check.

100 The iSeries Pocket Developer’s Guide

0012.00 QSYS/RLSJOBQ JOBQ(QGPL/QS36MRT)

0013.00 MONMSG MSGID(CPF0000)

0014.00 QSYS/RLSJOBQ JOBQ(QGPL/QS36EVOKE)

0015.00 MONMSG MSGID(CPF0000)

This block of code releases special System/36-related

job queues and avoids a function check by monitoring

for the generic CPF0000 message.

0016.00 QSYS/STRCLNUP

0017.00 MONMSG MSGID(CPF0000)

Statements 16 and 17 calls the cleanup program, which

is an IBM facility that cleans up various logs and

queues and reclaims otherwise wasted space.

0018.00 QSYS/RTVSYSVAL SYSVAL(QCTLSBSD)+

RTNVAR(&CTLSBSD)

0019.00 IF COND((&CTLSBSD *NE 'QCTL QSYS ') +

 *AND (&CTLSBSD *NE +

'QCTL QGPL ')) THEN(GOTO +

CMDLBL(DONE))

Statement 18, which just like 19, is continued with a

“+” sign, goes to the system value area in the

QuikCourse D. AS/400 & iSeries Control Language 101

operating system and extracts the QCTLSBSD value. This

is where the name of the controlling subsystem is

stored. (Work Management is covered in

QuikCourse B.)

Once the system value for the controlling subsystem is

stored in the program defined CL variable, &CTLSBSD,

it is compared in statement 18 to the subsystem named

QCTL. If the QCTL subsystem is not the controlling

subsystem, regardless of whether its description is

stored in library QSYS (system library or library

QGPL– IBM’s general purpose library), the program

branches to the label “DONE” at statement 27.

Otherwise, if QCTL is the controlling subsystem, it

executes the code from statements 21 through 26.

102 The iSeries Pocket Developer’s Guide

0021.00 QSYS/STRSBS SBSD(QINTER)

0022.00 MONMSG MSGID(CPF0000)

0023.00 QSYS/STRSBS SBSD(QBATCH)

0024.00 MONMSG MSGID(CPF0000)

0025.00 QSYS/STRSBS SBSD(QCMN)

0026.00 MONMSG MSGID(CPF0000)

The above block of code starts the subsystems QINTER,

QBATCH, and QCMN, which are typically associated with

a “System/38-like” or “native-like” system execution

environment. Notice that the monitors are in place to

prevent an error which would cause program

termination.

0027.00 DONE:

0028.00 QSYS/RTVSYSVAL SYSVAL(QSTRPRTWTR)+

RTNVAR(&STRWTRS)

0029.00 IF COND(&STRWTRS = '0') THEN(GOTO +

 CMDLBL(NOWTRS))

0030.00 CALL PGM(QSYS/QWCSWTRS)

0031.00 MONMSG MSGID(CPF0000)

The above block of code executes, regardless of the

controlling subsystem. The QSTRPRTWTR system value is

fetched, stored in the CL variable &STRWTRS, and

QuikCourse D. AS/400 & iSeries Control Language 103

compared to “0." If this value is set to zero, your

system is set to start no print writers (printers) at

startup. If you want them started later, you will have

to start them manually with STRPRTWTR commands. In the

value is “0,” the program bypasses statement 30, which

calls the system program to start the printers

(QWCSWTRS). Instead, as shown in statement 29, the

program branches to the NOWTRS label at statement 32.

0032.00 NOWTRS:

0033.00 RETURN

0034.00 CHGVAR VAR(&CPYR) VALUE(&CPYR)

0035.00 ENDPGM

This block of code (32 to 35) provides a branch spot

for the print writer test, and it is also executed if

the print writers are started. The program returns to

its caller at statement 33. So that the variable

&CPYR, which is a mechanism for IBM’s copyright message

to exist, is not unused, line 34 is added as a bogus

line to use the &CPYR variable to avoid a program

compilation error. It is never executed. The program

ends and goes away at line 35.

You might be wondering what gets called if the QCTL

environment does not get started. The answer is that

regardless of the startup program, the system

automatically starts the controlling subsystem. You

can create your own controlling subsystem or you can

use one of IBM’s. You can use QCTL for a System/38 or a

104 The iSeries Pocket Developer’s Guide

native AS/400-like environment or you can choose the

System/36-like environment called QBASE. This

subsystem handles interactive, batch, and

communications within the one QBASE subsystem, rather

than the more flexible QCTL, QCMN, QBATCH. and QINTER.

Now, take a look at the home grown application code in

Figure D-28 which we are about to highlight in much

the same way as program QSTRUP.

Figure D-28 Homemade Example Batch Program CL01
0001.00 PGM PARM(&LOADPAR)

0002.00 DCL VAR(&WRK01) TYPE(*CHAR)

0003.00 DCL VAR(&WRK02) TYPE(*CHAR)

0004.00 DCL VAR(&LOADPAR) TYPE(*CHAR) LEN(10)

0005.00 DCL VAR(&PARM1) TYPE(*DEC) LEN(1)

0006.00 DCL VAR(&PARM2) TYPE(*CHAR) LEN(10)

0007.00 /* Retrieve LDA values. */

0008.00 CALL PGM(LDALOAD) PARM(B LDALST 2) 0009.00

CHGVAR VAR(&PARM1) -

VALUE(%SST(*LDA 301 1))

0010.00 CHGVAR VAR(&PARM2) -

VALUE(%SST(*LDA 302 10))

0011.00

0012.00 CHGVAR &WRK01 -

VALUE('S' *CAT %SST(&LOADPAR 1 9))

0013.00 DLTF FILE(QTEMP/&WRK01)

0014.00 MONMSG MSGID(CPF2105)

0015.00 CRTPF FILE(QTEMP/&WRK01)

RCDLEN(1726) OPTION(*NOSRC +

QuikCourse D. AS/400 & iSeries Control Language 105

 *NOLIST) FILETYPE(*DATA) +

SIZE(*NOMAX)

0017.00 /* */

0018.00 OVRDBF FILE(R020) TOFILE(CUSTMST)

0019.00 OVRDBF FILE(ORD) TOFILE(ORDERS)

0020.00 OVRDBF FILE(PAR) TOFILE(QTEMP/&LOADPAR)

0021.00 OVRDBF FILE(SUM1) TOFILE(QTEMP/&WRK01)

0022.00 CALL PGM(ROUTESHEC)

0023.00 DLTOVR FILE(*ALL)

0024.00 /* */

0025.00 CHGVAR &WRK02 +

VALUE('T' *CAT %SST(&LOADPAR 1 9))

0026.00 DLTF FILE(QTEMP/&WRK02)

0027.00 MONMSG MSGID(CPF2105)

0028.00 CRTPF FILE(QTEMP/&WRK02) RCDLEN(1726) +

 OPTION(*NOSRC +

*NOLIST) FILETYPE(*DATA) +

 SIZE(*NOMAX)

0030.00 /* */

0031.00 FMTDTA INFILE(QTEMP/&WRK01) +

 OUTFILE(QTEMP/&WRK02) +

106 The iSeries Pocket Developer’s Guide

SRCFILE(QFMTSRC) SRCMBR(SRTLOAD) +

OPTION(*NOCHK *NOPRT *NODUMP)

0034.00 /* */

0035.00 /* ROUTEPRT PROGRAM */

0036.00 CHGJOB SWS(00000000)

0037.00 /* RETRIEVE LDA values. */

0038.00 CALL PGM(LDALOAD) PARM(B LOADRPT 1)

0039.00 OVRDBF FILE(S010) TOFILE(CONFIG)

0040.00 OVRDBF FILE(PAR) TOFILE(QTEMP/&LOADPAR) 0041.00

OVRDBF FILE(SUM1) TOFILE(QTEMP/&WRK02)

0042.00 OVRDBF FILE(R020) TOFILE(CUSTMST)

0043.00 OVRPRTF FILE(RPT) TOFILE(QSYSPRT) +

 OUTQ(&PARM2) COPIES(&PARM1)

0045.00 CALL PGM(ROUTEPRTC)

0046.00 DLTOVR FILE(*ALL)

0047.00 DLTF FILE(QTEMP/&WRK01)

0048.00 DLTF FILE(QTEMP/&WRK02)

0049.00 RETURN

0050.00 ENDPGM

QuikCourse D. AS/400 & iSeries Control Language 107

Homemade Batch Dissection

0001.00 PGM PARM(&LOADPAR)

This program accepts a ten-character parameter from

the calling program, when called, and stores it in a

character variable of ten spaces, called &LOADPAR.

0002.00 DCL VAR(&WRK01) TYPE(*CHAR)

0003.00 DCL VAR(&WRK02) TYPE(*CHAR)

0004.00 DCL VAR(&LOADPAR) TYPE(*CHAR) LEN(10)

0005.00 DCL VAR(&PARM1) TYPE(*DEC) LEN(1)

0006.00 DCL VAR(&PARM2) TYPE(*CHAR) LEN(10)

The above block of code defines the five variables

used in this program. Four are defined as character

and one is defined as decimal.

0007.00 /* Retrieve LDA values. */

The /* */ combination is used to sandwich CL

comments.

0008.00 CALL PGM(LDALOAD) PARM(B LDALST 2)

A program called LDALOAD is used to load specific

values to the local data area. Each job has a local

108 The iSeries Pocket Developer’s Guide

data area LDA (like a one record file) associated with

it. In this case, the CL01 program is calling LDALOAD

and instructing LDALOAD to load specific values to the

LDA.

0009.00 CHGVAR VAR(&PARM1) VALUE(%SST(*LDA 301 1))

0010.00 CHGVAR VAR(&PARM2) VALUE(%SST(*LDA 302 10))

In statements 9 & 10, PARM1 and PARM2, locally defined

variables are primed with the newly loaded contents of

very specific sub-stringed areas of the LDA. Parm1

gets what is in position 301. Parm2 gets what is in

positions 302 to 311.

The CHGVAR (change variable) command is the only CL

command which cam make assignments. In my opinion, it

is one of the ugliest CL commands. In a normal

programming language, for example, you would say PARM1

= VALUE(%SST(*LDA 301 1)), rather than be saddled with

a command. I suspect that since every CL statement is

a CL command, this is the problem with the language.

CHGVAR is also used to perform addition and

subtraction, multiplication and division. To add 5 to

a variable, for example, you would say:

CHGVAR &RESULT (&VAL1 + 5)

or the prompted form:

QuikCourse D. AS/400 & iSeries Control Language 109

CHGVAR VAR(&RESULT) VALUE(&VAL1 + 5)

0012.00 CHGVAR &WRK01 +

VALUE('S' *CAT %SST(&LOADPAR 1 9))

Statement 12 is another assignment statement in which

an “S” is concatenated to the sub-stringed positions, 1

through 9, of the LOADPAR variable, which was passed

to the program. Variable &WORK01 contains the result

of the concatenation of the S to the substring. This

is a valuable CL statement for you to save in your CL

arsenal.

0013.00 DLTF FILE(QTEMP/&WRK01)

0014.00 MONMSG MSGID(CPF2105)

0015.00 CRTPF FILE(QTEMP/&WRK01)

RCDLEN(1726) OPTION(*NOSRC +

 *NOLIST) FILETYPE(*DATA) +

SIZE(*NOMAX)

In the next block of code shown above, the newly

changed field &WORK01 apparently contains the name of

a file, which this program uses as a work file.

Statement 13 deletes the file from the QTEMP library.

Statement 14 monitors the existence of the file

110 The iSeries Pocket Developer’s Guide

(CPF2105), so that the program does not function check

if the file is not there when it is asked to be

deleted.

QTEMP is a special temporary library that gets built

for every job that starts on the system. When you

access QTEMP, for example, it is your own QTEMP that

you are accessing, though QTEMP can exist more than a

thousand times in one system. When your job ends, your

QTEMP disappears.

Once the file is deleted, or is definitely not there,

the program recreates it again with the CRTPF command

shown in statement 15. Sometimes, rather than delete

files and have to recreate them (an expensive

operation) programs are written which clear files

(CLRPFM), or remove the data member (RMVM), and then

add the member back in, rather than delete and

recreate. It is much easier on the machine than the

deletion and recompilation of a database file.

0017.00 /* */

0018.00 OVRDBF FILE(FILE1) TOFILE(CUSTMST)

0019.00 OVRDBF FILE(FILE2) TOFILE(ORDERS)

0020.00 OVRDBF FILE(FILE3) TOFILE(QTEMP/&LOADPAR)

0021.00 OVRDBF FILE(FILE4) TOFILE(QTEMP/&WRK01)

0022.00 CALL PGM(ROUTE)

0023.00 DLTOVR FILE(*ALL)

QuikCourse D. AS/400 & iSeries Control Language 111

In this next block of code, 17 to 23, we find several

files being overridden, a program being called (22),

and the file overrides being deleted (23), so they do

not apply again in this same job.

The override with database file command is one of the
most powerful and most common statements in CL

programs which drive batch work. In the four overrides

above, it is clear that the ROUTE program uses four

files named FILE1, through FILE4.

This is a technique from the 1970's used by batch

programmers to write generic programs that did not

need a specific file to compile. The file information

could be provided when the program actually ran. In

mainframe systems, the DLAB or DLBL statements

provided the information at execution time. On

System/3, 34, and 36, the file “Label” parameter gave

the information at execution time. In CL, this is

provided by the OVRDBF, again at execution time. As

you begin to write CL, when you prompt for the OVRDBF

command, you will learn that it has substantially more

facility than just overriding a file name. Yet, in the

four examples above, that is all that is being done.

112 The iSeries Pocket Developer’s Guide

0024.00 /* */

0025.00 CHGVAR &WRK02 +

VALUE('T' *CAT %SST(&LOADPAR 1 9))

0026.00 DLTF FILE(QTEMP/&WRK02)

0027.00 MONMSG MSGID(CPF2105)

0028.00 CRTPF FILE(QTEMP/&WRK02) RCDLEN(1726) +

 OPTION(*NOSRC +

*NOLIST) FILETYPE(*DATA) +

 SIZE(*NOMAX)

0030.00 /* */

In lines 24 to 30, a new file name is being built for

variable &WRK02 to hold, the file is deleted,

monitored, and then when it is definitely gone, it is

recreated fresh at statement 28.

0031.00 FMTDTA INFILE(QTEMP/&WRK01) +

 OUTFILE(QTEMP/&WRK02) +

SRCFILE(QFMTSRC) SRCMBR(SRTLOAD) +

OPTION(*NOCHK *NOPRT *NODUMP)

Yes, Virginia, there is a SORT on the AS/400. However,

it is called Format Data (FMTDTA). In line 31, The

file whose name is in variable &WRK01 in QTEMP, is the

QuikCourse D. AS/400 & iSeries Control Language 113

input to the sort. The output is the newly created

file whose name is contained in variable &WRK02. The

sort specifications are stored in a file called

QFMTSRC, in a member called SRTLOAD. Three specific

options are invoked so that there is no major checking

of the sort specs, no specs are printed, and no dump

is to be taken if there is an issue.

QFMTSRC is a file referenced in the library list.

Every job has a library search list associated with

it. When you ask for an object and you do not qualify

it by library name, the system searches your library

list to find the object. If it cannot find it, the job

bombs (function check). Originally, jobs were allowed

to have 10 libraries in the list. This was then raised

to 25, which seemed immense. Now it has been jacked up

even further to 250 libraries in a library list.

0034.00 /* */

0035.00 /* ROUTEPRT PROGRAM */

0036.00 CHGJOB SWS(00000000)

The CHGJOB command can change the attributes of

executing jobs on the fly. It is a powerful CL

command. This particular change sets off all of the

eight job switches. A program can test the job

switches and make branching decisions depending on

their values. They can be set on and off with a CHGJOB

command.

114 The iSeries Pocket Developer’s Guide

As with all CL commands, even those which can only be

used in a CL program, such as CHGVAR, you can prompt

the command from a command line by typing it and

hitting F4. You can then hit HELP or F1 on any and all

 parameters. You get a ton of information to help you

make the right selections for your purposes.

Using F4 regularly gives you a lifelong method for

learning about commands which you do not need today.

If you have no idea as to which command, you might

want to use, hit F4 with nothing on the command line.

You’ll get access to lists of all the IBM commands on

the system. You better have a few spare days or more

because that’s how much help there is on the hundreds

of AS/400 and iSeries commands which IBM has given us.

0037.00 /* RETRIEVE LDA values. */

0038.00 CALL PGM(LDALOAD) PARM(B LDARPT 1)

0039.00 OVRDBF FILE(FILE1) TOFILE(CONFIG)

0040.00 OVRDBF FILE(FILE2) TOFILE(QTEMP/&LOADPAR)

0041.00 OVRDBF FILE(FILE3) TOFILE(QTEMP/&WRK02)

0042.00 OVRDBF FILE(FILE4) TOFILE(CUSTMST)

0043.00 OVRPRTF FILE(REPORT) TOFILE(QSYSPRT) +

 OUTQ(&PARM2) COPIES(&PARM1)

0045.00 CALL PGM(PRTREPORT)

0046.00 DLTOVR FILE(*ALL)

0047.00 DLTF FILE(QTEMP/&WRK01)

0048.00 DLTF FILE(QTEMP/&WRK02)

QuikCourse D. AS/400 & iSeries Control Language 115

0049.00 RETURN

0050.00 ENDPGM

Now, we are at the final code block shown in statements 37 to 50.

This loads a new block of values into the LDA using the trusty

LDALOAD program, overrides four files, and then overrides the

printer file for the job.

We have not seen the OVRPRTF command before in this

QuikCourse. This command references a printer file called

REPORT, which is in program PRTREPORT. The printer file this

points to is an IBM standard named QSYSPRT, a generic printer

file. (Printer files hold rules, such as lines per inch, etc. for how

printer output should be formatted). This override does not change

many of those rules, but it does change the default output queue and

the number of copies.

After the report program is run with the five file overrides, the

overrides are deleted from the job structure, the work files are

deleted, and the program returns and ends.

Summary and Conclusions

CL Commands can be entered from command-capable menus and

the command entry screen as well as within utility programs, such

as SEU or PDM. The system assists in the command entry process

by providing menu displays and prompt displays. Extensive help

can be obtained for the Command itself or for command options.

Commands entered via any of these displays are syntax-checked for

validity and conformity to syntax rules.

You have learned the rudiments of CL, how it is

structured, and how to structure it for your

objectives. The CL manual on the System/38 was so big,

116 The iSeries Pocket Developer’s Guide

that a normal human being could not carry it. On the

AS/400 it was made into five books by splitting the

commands along alphabetic boundaries. Besides the huge

CL reference manuals, there is also a CL programming

book, plus the ton of HELP text right in the operating

system.

IBM has always offered a course in CL that was at

least four full days, and perhaps five days long.

There is no question that CL is an exhausting topic,

and no QuikCourse could treat it exhaustively.

However, this course is designed to give you the

ability to get up, and move on your own. From building

simple programs to dissecting the programming work of

others, this little CL course has been your first stop

to a comprehensive understanding of CL, how it works,

what it can do for you, and how you can make it do

what you want.

In your CL travels, don’t forget that the prompter is

just an F4 away.

Best wishes in your further CL endeavors.

QuikCourse D. AS/400 & iSeries Control Language 117

118 The iSeries Pocket Developer’s Guide

 QuikCourse E.

AS/400 and iSeries

Programming

Development Manager

(PDM)

Program Development Manager

(PDM) Features

PDM is part of the Application Development Tool Set

(ADTS) which had been a staple for application

development on the AS/400 since 1988, when they were

announced. Recently, the whole ADTS has been

repackaged and is now part of the WebSphere

Development Studio for iSeries. PDM is, therefore, not

QuikCourse E. Programming Development Manager (PDM) 119

an island. It works with all of the other tools in

the tool set including the following:

1. Source Entry Utility (SEU)

2. Screen Design Aid (SDA)

3. Data File Utility (DFU)

4. Advanced Printer Function (APF)

5. Report Layout Utility (RLU)

PDM is the cornerstone for a highly integrated set of

development tools. It supports all AS/400 environments

(S/38, S/36 and native). It is the consummate AS/400

development tool in that it enables programmers to

create, test and maintain an array of AS/400 objects,

from programs, to screens, to reports, and also to

data files.

Better Than the Programmer’s Menu

Prior to PDM, my favorite development tool on the

AS/400 was the old ported Programmer’s Menu from

System/38 days. I know a number of folks who still use

the Programmer’s Menu. In fact, it took me about two

years to embrace it.

I first talked it down. From my eyes, it was more

difficult than the Programmer’s Menu, though it is not.

I did not want to learn it. I did not understand it.

As an IBM SE, eventually I saw my peers embrace PDM as

if it were as good as the Programmer’s Menu. Since I

knew they were wrong, I learned PDM. They were right.

Since I did not want to be a doofus using the

120 The iSeries Pocket Developer’s Guide

Programmer’s Menu after I knew PDM was superior, I

switched. Over time, I took a lot of folks with me.

PDM provides a focal point and an integrated

environment for using the development tools available

to the programmer on the AS/400. It works with lists

of items to be developed or maintained. Virtually all

types of objects can be accessed using PDM interfaces,

though it is most commonly used for programs, display

files (or screens), and data base objects (or files).

QuikCourse E. Programming Development Manager (PDM) 121

PDM: the List Manager

Libraries, objects, and members can be selected easily

from lists provided by PDM. Option numbers are

provided for the most commonly used functions, to save

keystrokes for the programmer. PDM is smart enough,

that if you have not filled in required parameters, it

automatically invokes a prompting facility to get that

done. Additionally, developers can build their own

options that can be used in standard PDM panels and

they can change PDM’s default values.

For example, on development-only machines, the “Compile

in batch?” option of PDM invoked via the Change

Defaults option (F18) may be set to “N,” so the

developer can more productively work with PDM members.

This can also be done on production machines, but the

users may very well complain about its impact on their

performance. Overall, the major benefit of this PDM

option is that it makes programmers more productive.

What Does PDM Do?

There are three main functions as displayed on the PDM

main menu. These are as follows:

1. Work with libraries

2. Work with objects in libraries

3. Work with members in a source file

122 The iSeries Pocket Developer’s Guide

For each option, the user is prompted for the specific

library list, library or source file to be used. A

list will then be displayed, from which the programmer

can select objects and options for those objects to be

executed. The programmer has the option of seeing the

items in a single column with more information or a

multiple column format in much the same way the S/36

POP program presented the lists.

Whether you are working with libraries, objects, or

members, from the list provided, PDM enables you to

place an option number next to the library, object, or

member. The option number corresponds to a function

such as copy, move, rename, delete, view, change,

execute, compile, save, or restore. Based on the

option number, and the type of object being operated

upon, PDM will ask you for additional information to

complete the operation, and then it will go ahead and

apply the function to the library, object, or member

as requested.

Of course, only those functions that can be provided

for the object type selected will be allowed. For

example, the "Compile" option is not available, unless

you are working with source members. Likewise the

execute (or RUN) option is not available unless the

selected object is an executable program. Multiple

options can be selected for multiple objects at a

time. PDM will group all like functions (e.g., all

"copy" functions) for all objects together and prompt

for necessary details (e.g., for the new name and/or

location of the copy). This is certainly a part of the

QuikCourse E. Programming Development Manager (PDM) 123

utility that makes it a very effective and productive

tool.

Starting PDM

Let’s start PDM so that we know what it looks like. You

do this by typing STRPDM and pressing ENTER. The panel

in Figure E-1A appears.

124 The iSeries Pocket Developer’s Guide

Figure E-1A, The PDM Main Menu
 PDM MAIN Menu HELLO

 AS/400 Programming Development Manager (PDM)

 Select one of the following:

 1. Work with libraries

 2. Work with objects

 3. Work with members

 9. Work with user-defined options

 Selection or command

 ===> 1

F3=Exit F4=Prompt F9=Retrieve F10=Command Entry

 F12=Cancel F18=Change defaults

From this panel in Figure E-1A, we will first select work with

libraries, option 1. Before you press ENTER here, there’s a little

more to know.

PDM Main Panel

Figure E-1A shows the main menu used to begin working with

PDM. There are also menu bypass options which permit a PDM

user to ignore the menus and go directly to the functional areas. For

example, Figure E-1A can be bypassed by using the fast path

method to get into one of the specific options of PDM.

The commands to get to the options directly are:

 WRKLIBPDM

QuikCourse E. Programming Development Manager (PDM) 125

 WRKOBJPDM

 WRKMBRPDM.

When the user or a programmer takes one of the first three options,

he or she will be prompted for the libraries, objects, or members

desired as in Figure E-1B. When you specify the library or *ALL

for all libraries on the system, you get a panel similar to that in

Figure E-2.

Figure E-1B, Specify Libraries to Work With
 Specify Libraries to Work With

Type choice, press Enter.

 Library *ALL *LIBL, name, *generic*, *ALL,

 *ALLUSR, *USRLIBL, *CURLIB

F3=Exit F5=Refresh F12=Cancel

Work with Libraries Using

PDM

126 The iSeries Pocket Developer’s Guide

This panel in Figure E-2, is an example of a typical list of libraries

that would appear if one took option 1 from the menu "Work with

Libraries," shown in Figure E-1B.

Notice the layout of the PDM screens. F2 is representative of

PDM’s list screens. They all follow this same list panel standard

format. Information concerning what list you are looking at is at the

top. Next is a list of options that can be entered in any of the option

fields next to the items listed. The list of items (in this case,

libraries) is in the middle of the screen. Near the bottom of the

screen is a command line on which AS/400 commands or

parameters for the option specified above for a library can be

entered.

QuikCourse E. Programming Development Manager (PDM) 127

Figure E-2, Work With Libraries Using PDM
 Work with Libraries Using PDM HELLO

 List type *LIBL_____

 Type options, press Enter.

 2=Change 3=Copy 5=Display 7=Rename

 8=Display description 9=Save 10=Restore 12=Work with ...

 Opt Library Type Text

 __ FROMDEBS *PROD

 __ GENERAL *PROD General Query Library for Helpdesk

 __ GL02 *PROD GL02 REL. 9.9

 __ GRIMEDEN *PROD COLLECTION - created by SQL

 __ GUEST *PROD

 __ GUITEST *PROD Test Lib for Web GUI

 __ HAWKEYE *PROD PATHFINDER - CALL HAWKEYE/HAWKEYE for main menu

 7 HELLO *PROD

 7 HELLOA *PROD

 More...

 Parameters or command

 ===> ___

 F3=Exit F4=Prompt F5=Refresh F6=Add to list

 F9=Retrieve F10=Command Entry F23=More options F24=More keys

Notice in Figure B-2, that we have marked two libraries for rename.

If we hit ENTER with the 7's in place, we will be prompted to enter

the name to which we would like to change them.

128 The iSeries Pocket Developer’s Guide

Library Options and Function Keys

At the bottom of the screen are the function keys available. Notice

the eight options listed at the top of the screen. Any of these options

may be entered into the “Opt” field next to any of the library

names to perform functions. (Copy, display etc.) Prompting will

occur where necessary. For example, if you were to place a 7

(rename option) beside library HELLO, as shown in Figure E-2, you

would be prompted to fill in the new name for the library.

Several libraries could be renamed at a time by placing 7s next to

several libraries as we have done. All new name prompts would

appear together on a screen making it convenient to perform

multiple renames. Likewise, if one entered other options, such as 3

(copy) and 9 (save) next to library names, the proper prompting

would occur for each option separately on the panel following the

list selection.

Additional Options & Keys

By pressing F23, additional options appear on the bottom of the

screen, as shown in Figure E-3. By pressing F24, additional

Function keys appear on the bottom of the panel, as shown in both

Figure E-4, and E-5.

Figure E-3, Additional Options

13=Change text 20=Move within list 21=Move before

22=Move after 23=Remove from list ...

The screen picture in Figure E-3 shows the additional options

available that would appear if the user were to press F23.

Figure E-4, Additional Function Keys Part I

QuikCourse E. Programming Development Manager (PDM) 129

F11=Display names and types F12=Cancel F13=Repeat

F16=User options F23=More options F24=More keys

Figure E-5, Additional Function Keys Part I

F18=Change defaults F21=Print List

F23=More options F24=More keys

The panel in Figure E4 appears when you hit the F24 key for the

first time. The panel in Figure E5 appears when you hit the F24 key

a second time. Figure E-6 is the next slide that we would see if we

pressed the ENTER key with the two option 7's filled in on

Figure E-3.

130 The iSeries Pocket Developer’s Guide

Figure E-6 Rename Libraries

 Rename Libraries

 To rename library, type New Name,

press Enter.

Library New Name

HELLO HELLOX1

HELLOA HELLOAX1

 Bottom

F3=Exit F5=Refresh F12=Cancel F19=Submit to batch

To rename libraries, you place a 7 (rename) next to the library in the

opt field of the Work with Libraries Using PDM screen (Figure E-2)

and press ENTER. You will then be prompted to provide the new

name for each library as in Figure E-6. This rename action could

take place interactively, or could be submitted to a batch job by

pressing F19.

Change Defaults

Now, Press F18 for the “Change Defaults” screen from any of the

"Work With" screens in PDM. You will see the panel as shown on

Figure E-7A.

QuikCourse E. Programming Development Manager (PDM) 131

Figure E-7A Change PDM Defaults.
 PDM Defaults Display

 Change Defaults

 Type choices, press Enter.

 Object library *SRCLIB___ Name, *CURLIB, *SRCLIB

 Replace object N_ Y=Yes, N=No

 Compile in batch Y_ Y=Yes, N=No

 Run in batch N_ Y=Yes, N=No

 Job description QBATCH____ Name, *USRPRF, F4 for list

 Library *LIBL_____ Name, *CURLIB, *LIBL

 Change type and text Y_ Y=Yes, N=No

 Option file QAUOOPT___ Name

 Library QGPL______ Name, *CURLIB, *LIBL

 Member QAUOOPT___ Name

 Full screen mode N_ Y=Yes, N=No

 F3=Exit F4=Prompt F5=Refresh F12=Cancel

In Figure E-7A, a PDM user can tailor his or her PDM environment.

The Object library is where you want objects to go when they are

compiled using option 14 of the Work with Members Using PDM

screen. (The user may choose to always use F4 for prompting to

override these defaults, if desired.)

"Y" for Replace object will cause the new object to replace the old

one if it exists in the library. "N" will cause PDM to prompt the user

for permission to delete the old object first.

132 The iSeries Pocket Developer’s Guide

A“Y" for Compile in batch will submit a batch job for each compile

option (opt 14) requested from the "Working with Members Using

PDM" screen. The job description specified on the next line will be

used to define the batch job's environment

A "Y" to Run in batch will submit a batch job for each run option

(opt 16) requested from the "Working with Objects Using PDM"

screen.

he option for "change type and text" refers to the Work with

members using PDM screen. A "Y" response makes the type and

text fields input-capable on the screen. An "N" response makes

them display only.

Work With Objects

Now that we have set our defaults, and examined how to work with

libraries, let’s go through the other options on the PDM main menu

as shown in Figure E1A. Instead of working with libraries, this

time, let’s pick option 2, Work with objects.

For this PDM exercise, there should be a small library called

HELLO prebuilt, so that when you get the Specify Objects to Work

With Panel, as shown in Figure E-7B, you would choose the

HELLO library and let the rest default to *ALL. Before you press

ENTER on the Specify Objects to Work With Panel, take a look at

the other options.

Figure E-7B Specify Objects to Work With Panel
 Specify Objects to Work With

Type choices, press Enter.

 Library HELLO *CURLIB, name

 Object:

QuikCourse E. Programming Development Manager (PDM) 133

 Name *ALL *ALL, name, *generic*

 Type *ALL *ALL, *type

 Attribute *ALL *ALL, attribute, *generic*,

 *BLANK

 F3=Exit F5=Refresh F12=Cancel

Typically, the only option that is filled in is the library name

(contains the objects to be worked with). However, the PDM user

could also fill in Object Type (e.g., PGM, USRPRF, FILE, etc.), and

Object Attribute (e.g., CLP, CBL, PF-SRC, etc.). This limits

(subsets) the resulting list of objects to those types/attributes.

A user could also enter a name or a generic name (Burge*, SA*,

SA, *SA) which also limits the list to those beginning with,

containing, or ending with certain characters. As your development

efforts produce fruits, the number of objects to maintain grows

quickly, and these filtering techniques help you in finding the items

you want posthaste.

The default library for this option is always the job's current library.

For your information, the current library can be specified in the user

profile, can be overridden at sign-on, or can be changed using the

CHGCURLIB command. You can, of course type in the library

name in Figure E-7B as is shown.

After you go through the selection process described above, and you

press ENTER with just the library HELLO typed in, you would see

the “Work with Objects Using PDM” panel such as that in Figure

E-8.

134 The iSeries Pocket Developer’s Guide

Figure E-8 Work with Objects Using PDM
 Work with Objects Using PDM HELLO

 Library HELLO Position to

 Position to type

Type options, press Enter.

 2=Change 3=Copy 4=Delete 5=Display 7=Rename

 8=Display description 9=Save 10=Restore 11=Move ...

 Opt Object Type Attribute Text

 HELLOAC001 *PGM CBL Advanced Hello World, CBL/400

 HELLOAR001 *PGM RPG Advanced Hello World, RPG/400, Pgm1,

 LANGUAGE *FILE PF-DTA LANGUAGE File For Hello World

 PANEL *FILE DSPF Display FIle Panel For Advanced Hello

 QCBLLESRC *FILE PF-SRC FILE FOR ILE COBOL SOURCE

 QCLSRC *FILE PF-SRC CL Source FIle

 12 QDDSSRC *FILE PF-SRC dds source

 QRPGLESRC *FILE PF-SRC RPGIV Source File

 More...

 Parameters or command

 ===>

 F3=Exit F4=Prompt F5=Refresh F6=Create

 F9=Retrieve F10=Command entry F23=More options F24=More keys

QuikCourse E. Programming Development Manager (PDM) 135

Work With & Other Options

Option 12, as shown in Figure E9, and visible when you hit F23, is

used frequently to work with a selected object. This can come in

really handily if you are working with objects and then, for example

you want to work with members of the QDDSSRC source file. If the

QDDSSRC source file is on your screen as in Figure E-8, just take

option 12 on that line and you will be taken to a Work with members

panel for the members in QDDSSRC. It’s a handy trick!

If you want to perform an action, such as option 12, but you cannot

see it, it helps to remember that there are a number of command

keys and options that are not visible from all views. To change your

view, press F23 or F24. Figure E-9 shows the additional options,

and Figures E10 and E11 show the additional command keys,

available to the PDM user with the Work With Objects panel.

Figure E-9 Additional options (F23)

12=Work with 13=Change text 15=Copy file

16=Run 18=Change using DFU 25=Find string

Figure E-10 Additional keys (F24)First Time

F11=Display names and types F12=Cancel F13=Repeat

F16=User options F23=More options F24=More keys

Figure E-11 Additional keys (F24) Second Time

F17=Subset F18=Change defaults F21=Print List F23=More

options F24=More keys

136 The iSeries Pocket Developer’s Guide

After selecting the objects to work as we did with

HELLO library, the Work with Objects using PDM screen
appears. You can see in Figure E-8 that the format of

the screen is just like the “Work With Libraries Using
PDM” screen. However, the options available for

working with objects, and the function keys available

are somewhat different.

For example, you can still rename and save objects,

plus you can Move (to another library), Run (if it is

a PGM), Change using DFU (if it is a data file) etc.

Notice also in the top right corner of the panel in

Figure E-8 that you can position your list of objects

using an object name, as well as an object type. For

example, if you wanted to position the list to all

files beginning with "Q,” you could put "Q" in the
“position to” field and “*FILE” in the “Position to

type” field.

Find String Function

Another powerful PDM facility, which operates at the

object level, and is worth highlighting, is the “Find
String” Function

Figure E12 Find String
 Find String

 Type choices, press Enter.

 Find MyString

 From column number. . 1______ 1 - *RCDLEN

QuikCourse E. Programming Development Manager (PDM) 137

 To column number. . . *RCDLEN 1 - *RCDLEN

 Kind of match 2 1=Same case, 2=Ignore case

 Option 5_____ *NONE, Valid option

 Prompt N Y=Yes, N=No

 Print List N Y=Yes, N=No

 Print records N Y=Yes, N=No

 Number to find . . . *ALL_ *ALL, number

 Print format *CHAR__ *CHAR, *HEX, *ALTHEX

 Mark record Y Y=Yes, N=No

 Record overflow . . . 1 1=Fold, 2=Truncate

 Find string in batch. . N Y=Yes, N=No

 Parameters __

 F3=Exit F5=Refresh F12=Cancel F16=User Options

 F18=Change Defaults

Find String allows the PDM user to search an entire source file (or a

specific member) for a string of characters. The search can be

executed interactively or in batch mode. Parameters can be entered

on the parameter line as necessary. You have several options to take

when the string is found. The choices actually are the options that

are available on the “Working with Members Using PDM” screen.

These include:

1. Display or edit the member (using SEU),

2. Compile the member,

3. Delete the member,

4. Execute a user-defined option.

If the “Edit” option is used, for example, the programmer can use

the SEU Find/Change Services function to change the string to a

138 The iSeries Pocket Developer’s Guide

different string. The advantage is that this change will be

remembered for all subsequent members where the string is found.

Work With Members

Now that we have set our defaults, worked through Objects, and

used the FIND facility, let’s go through the last major option on the

PDM main menu as shown in Figure E1A. Instead of working with

Objects, this time, let’s pick option 3, Work with Members.

If you took the option from the main menu to Work With Members,

you would then get a screen requesting which source file to use. For

this example, pick QDDSSRC in HELLO for this example. On this

same panel, you could request a sub-setting of the member list by

generic name and/or source type (e.g., PF, CBL, RPG38, etc.) This

helps filter the list to meaningful items. To get to the member list

panel, you have to fill in the panel answering the requests. Then

press ENTER to get to the “Work with Members using PDM”

screen, as shown in Figure E-14.

QuikCourse E. Programming Development Manager (PDM) 139

Figure E-14 Work With Members
 Work with Members Using PDM HELLO

 File QDDSSRC

 Library HELLO Position to

 Type options, press Enter.

 2=Edit 3=Copy 4=Delete 5=Display 6=Print 7=Rename

 8=Display description 9=Save 13=Change text 14=Compile 15=Create module...

 Opt Member Type Text

 2 JOBINFO PF Job Information File For SBMJOB

 LANGUAGE PF LANGUAGE File For Hello World

 LOGICINF PF Job Information File For EOFDLY Receive LOGIC

 MASTER PF Master Payroll File

 PANEL DSPF Display FIle Panel For Advanced Hello World

 TESTFILE PF Testing File

 UIINF PF Job Information File For EOFDLY Send UI

 Bottom

 Parameters or command

 ===>

 F3=Exit F4=Prompt F5=Refresh F6=Create

 F9=Retrieve F10=Command entry F23=More options F24=More keys

Hitting F23 and F24 gives you even more options and more

command keys as shown in Figures E-15 through E-17.

Figure E-15 Additional Options (F23)

14=Compile 16=Run procedure 17=Change using SDA

19=Change using RLU 25=Find string ...

 Figure E-16 Additional keys (F24)

140 The iSeries Pocket Developer’s Guide

F11=Display names and types F12=Cancel F13=Repeat

F14=Display date F15=Sort date

F23=More options F24=More keys

 Figure E-17 Additional keys (F24)

F16=User options F17=Subset F18=Change defaults F21=Print list

F23=More options F24=More keys

As you can see, the “Work with Members Using PDM” panel looks

like the other PDM "work with" screens. However, there are more

options than the libraries and objects panels. For example, there are

a number of functions that apply only to members only, such as

those in the following list:

Edit (SEU).) Edit any type of source code- RPG,

COBOL, database)

Compile. Compile any type of program - RPG,

COBOL, database

Change using SDA This option works only if the type is a

display file.

Change using RLU This option works only if the type is a

printer file.

The “Work with members” screen, as shown in Figure E-14, is

affected by the "Change type and text" option on the "Change

Defaults" screen shown in the panel in Figure E-7. You may recall

that there was an option for this that enabled you to indicate whether

 you wanted to allow the Type and Text prompts to be changed by

QuikCourse E. Programming Development Manager (PDM) 141

typing over them on the “Work with Members Using PDM” display

as in Figure E-14.

“Type” and “Text”

If you would now look at the “Type” and “Text” columns in the

middle of the panel in Figure E-14, you will have a better

appreciation for what can be changed here. Notice the underlines in

the panel indicating “changeable.” When you change the text on any

of the members in this panel, you are, in fact, changing the source

text within the member itself.

This data is not stored in PDM. It is actually stored within the

source member sub-object. In fact, changing via PDM is the same as

doing a Change Physical File Member (CHGPFM) and changing

the source text of the member. The same applies to the “Type”

parameter, though this has more implications than documentation.

Editing Source Members

When a developer places an option 2 for Edit with SEU next to a

member, such as JOBINFO, as shown in the example in Figure E-

14, the SEU brings a syntax checker with its editor to match the

Type parameter. If the Type is RPG, the RPG syntax checker

examines every statement that is keyed and forces you to correct

those in error during your editing session. If the C language type is

used, then C is what checks the member syntax during the SEU

keying process. The same syntax examines the source during editing

as during the compilation process.

To learn more about the editing process, be sure to take QuikCourse

G, the Source Entry Utility.

Compiling (Creating Objects from

Members) with PDM

142 The iSeries Pocket Developer’s Guide

Speaking of compilation, this happens to be PDM member option

14. In Figure E-14, you are dealing with source in the Work with

Members Using PDM panel. This is the panel in which option 14

(compile) comes in to play. You cannot compile objects and you

cannot compile libraries but you certainly can compile source

members into objects.

By placing a 14 next to the object you want to be compiled, PDM

invokes the proper compiler based on the “type” parameter. If, for

example, you coded an RPG program as a CBL type, then PDM

would invoke the COBOL compiler to compile your RPG source.

This situation would not be good, and of course, would not work.

That is why the PDM permits you to change the source type so

easily on this panel. If you want the RPG compiler, just make sure

that the Type” says RPG, or type over whatever it says, and make it

RPG. Then invoke option 14 again. If you do as prescribed in this

example, the RPG compiler will be invoked to compile your source

into an RPG *PGM object.

Member Source Types

A sampling of valid source types which you can use is shown in

Figure E-18. The Type column in Figure E-14 is where a developer

can key in a valid source type, to identify the specific type of source

which is what the member should contain. This “type” attribute, just

as the “text” attribute is stored in the member and is changeable

with the CHGPFM command or, again, by typing over the “type” in

the PDM display.

Figure E-18 Sampling of Source Types

Type Description

BAS Basic

QuikCourse E. Programming Development Manager (PDM) 143

C C Language

CBL COBOL

CBLLE ILE COBOL for AS/400

CBL36 COBOL System/36

CBL38 COBOL System/38

CLLE ILE Control Language

CLP Control Language CLP38 System/38 Control

Language

CMD Command

DSPF Display File

DSPF36 Display File System/36

etc.

So, again I remind you that when you hit F18 to change the options

panel (Figure E-7A), remember that the “Type” and” Text”

parameter enables or disables your ability to change the type or the

text of a member. You can choose from the following options:

Y=Yes: You would type “Y” to indicate that you can change the

Type and Text prompts on the Work with Members Using PDM

display if you have the authority to do so.

N=No: You would type “N” to indicate that you cannot change the

Type and Text prompts on the Work with Members Using PDM

display above. For now, this is enough about type and text.

Not only does PDM invoke the editor quite well. It enables common

functions such as COPY and DELETE to be performed almost as

quickly as the click of a mouse. Who said that? Let’s use the panel

in Figure E-14 as a basis to perform a copy. Let’s copy a member to

another member, thereby creating a new member.

144 The iSeries Pocket Developer’s Guide

COPY Members with PDM

In fact, let's copy 3 members. To do this, enter a "3" for COPY next

to 3 members in the list in E-14 and press ENTER. The panel is

Figure E-19 appears.

Figure E-19 Copy Members using PDM
 Copy Members

 From file : QDDSSRC

 From library : HELLO

 Type the file name and library name to receive the copied members.

 To file QDDSSRC___ Name, F4 for list

 To library QGPL_______

 To rename copied member, type New Name, press Enter.

 Member New Name

 JOBINFO JOB2INF

 MASTER MASTERP

 PANEL PANELA

 Bottom

 F3=Exit F4=Prompt F5=Refresh F12=Cancel

 F19=Submit to batch

The PDM gives lots of prompting opportunities such as those in

Figure E-19. This panel is prompting the user to input more

information about the members that we asked to copy from the

QuikCourse E. Programming Development Manager (PDM) 145

previous screen. The three members that you asked to copy are

shown with the COPY option given. To make this work, you fill in

the file and library to which you want to copy these members. You

can add a new name for each new member as you see fit.

As you can see in Figure E-19, we have already filled in the new

names for our to-be-copied members. Since you are copying them to

a different QDDSSRC source file in a different library (QGPL), you

could have let the names remain the same since this would not have

created any duplicates in the originating library.

When you hit the ENTER key on this panel, the three members are

copied to QDDSSRC in QGPL as fast as a cat swoops down on a

nice piece of chicken.

Summary and Conclusions

In this brief QuikCourse, we introduced PDM and much of its

splendor. Hopefully, by showing this small subset of PDM facilities,

 you now can see the capabilities and productivity benefits which

PDM can provide in an AD environment. I hope you enjoyed this

and the QuikCourse modules.

Addendum

This QuikCourse E addendum contains a layout of the VENDORP

physical file which is used extensively in many QuikCourses. Over

the course of moving from one QuikCourse to another in this book,

you may find it handy to have a picture of one of the files frequently

used as a reference. If you forget where it is, it is included below.

Figure E-20, Sample DDS For VENDORP File
 "R" means that this is a Record Format

 |

 | Names of Fields or Record Formats

 | |

 | | Data type and length

146 The iSeries Pocket Developer’s Guide

 | | |

 | | | Number of decimal positions

 | | | |

 | | | | Keywords

 | | | | |

 V V V V V

 TEXT('FIELDREF')(either or)

 TEXT('Vendor Master File)

 R VNDMSTR TEXT('VENDOR DB FORMAT')

 VNDNBR 5S 0 COLHDG('VENDOR' 'NUMBER')

 ALIAS(VENDOR_NUMBER)

 NAME 25 COLHDG('NAME')

 ADDR1 25 COLHDG('ADRRESS LINE 1')

 ALIAS(ADDRESS_LINE_1)

 CITY 15 COLHDG('CITY')

 STATE 2 COLHDG('STATE')

 ZIPCD 5 0 COLHDG('ZIP' 'CODE')

 ALIAS(ZIP_CODE)

 VNDCLS 2 0 COLHDG('VENDOR' 'CLASS')

 VNDSTS 1 TEXT('A=ACTIVE, D=DELETE, S=SUSPEN')

 BALOWE 9 2 COLHDG('BALANCE' 'OWED')

 SRVRTG 1 COLHDG('Service' 'Rating')

 TEXT('G=GOOD, A=AVERAGE, B=BADP=POOR'

...

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU)

 147

QuikCourse G.

Source Entry Utility

(SEU) For AS/400 and

iSeries Application

Development

Part I: Introduction to SEU

In this QuikCourse, we study SEU. However, in the

process, we lightly review AS/400 database technology,

including physical and logical files, since the

examples for SEU are all database examples. At the end

of this QuikCourse, we also take a very brief look at

148 The iSeries Pocket Developer’s Guide

DFU as seen through option 18 of PDM. DFU is also

covered formally within this book. See QuikCourse I.

The format of the course will be to present the facts

about SEU first in lecture format, followed by a

tutorial-type machine exercise segment in which

databases are created with SEU and data is entered

with DFU. This hands-on approach can be effective

whether you are following along step-by-step at the

office with your AS/400 or just reading the material

for self edification.

As a major source of documentation for your SEU

efforts, the SEU manual is available in IBM’s

documentation library from the www.as400.ibm.com

website. The SEU manual you would look for is known

formally as Application Development Tool Set for AS/400

Source Entry Utility Version 4 – SC09-2605-00. As of 5.1, the

iSeries name was not used for this manual, giving the proper

impression that SEU has not been changed by IBM for quite some

time. “Get used to it!”

AS/400 Database

In the Architecture and Environment QuikCourses, we

described the generic attributes of the AS/400 and

iSeries database. In this mini course, we will

reexamine a few of the constructs which make up the

database. Using SEU as the tool, we will present ways

in which you can develop simple AS/400 native database

facilities in your own shop. Let’s now begin by taking

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 149

a close look at the power of one of a developer’s

favorite traditional tools, the Source Entry Utility.

There Are Lots of Editors

Every machine has an editor which is recognized as the tool by

which programmers get their source programs keyed into the

system. On mainframes, for example, a favorite tool is called ISPF.

On Microsoft PCs, there is the old standby DOS EDIT. On IBM

PCs, after the breakup of the Microsoft and IBM friendship, the

editor provided simply “e.” It is similar to DOS EDIT.

On AS/400 and iSeries, the most used editor is the Source Entry

Utility or SEU. To get the taste of using your AS/400 for SEU, we

are first going to go through a few different exercises in which the

objective is to bring up the Source Entry Utility. Following this we

will have a break in the action to explain SEU and then we’ll pick it

up with a nice and easy SEU Case Study.

SEU Features Overview

SEU is packed with editing power. Most SEU users have little idea

as to just how powerful this editor actually is. Full screen editing

with prompts and formats, syntax checks, as well as move, copy and

delete commands, are about all you typically need to be a proficient

SEU user. Yet, there is lots more! AND I MEAN LOTS!

I know that you are anxious to touch your keyboards and get on this

ride. We'll do that in just a minute. But, first, let's prepare ourselves

by filling our tanks with an overview of the many SEU features that

you will be able to use. Some of these will require plenty of

example time within the lecture / tutorial, and the Case Study.

150 The iSeries Pocket Developer’s Guide

Others are discussed in this section for your awareness, and will not

be covered in detail elsewhere in this QuikCourse.

Please note that this is not the SEU manual. This is an SEU

QuikCourse. Each time we add a feature to the QuikCourse, it slows

it down. Therefore, we have tried to be both comprehensive, yet

frugal in the treatment of the cavalcade of SEU features. In the

features overview immediately below, we show the feature

grouping, and then describe what that feature is, what it does, and

briefly, how you might use it. Many of these features are described

in detail in other sections of this QuikCourse

SEU Features:

Commands:

You can use SEU commands to work with the SEU environment,

members, and records. You can tailor your edit sessions, hide

records shown on the display, and save, file, or cancel changes to a

member.

Format Lines:

You can use format lines to verify the position of statements in

high-level language source statements. SEU provides predefined

format lines for high level languages and for AS/400 control

language (CL) commands. When you invoke a format with an "F"

line command, a template appears on top of the text you are keying

to help guide your positioning.

Full Screen Mode:

SEU is equipped with a full screen editor. In normal "full" screen

the reminders for the command keys are placed at the bottom of the

screen. You can hide these and use a real full screen mode on the

Edit and Browse displays. You select to remove function keys from

the SEU display, providing four more lines of source.

Function Keys:

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 151

Each SEU display supports a set of function keys at the bottom of

each panel, when the display is not in full-screen mode. You use

these keys as shortcuts to perform specific tasks. For example, you

can press F12 (Cancel) to cancel the current operation, and return to

the previous display.

If F24 (More keys) is shown, you can press this key to see

additional function keys for the display. Except for F1 (Help),

which is not displayed at the bottom, but is always valid, a function

key is valid on a specific display only if it is listed at the bottom of

the display. A function key may perform differently, depending on

the operation you are doing.

If you are using SEU in full screen mode, you can use all of the

function keys for that display, even though they are not shown.

Detailed information on function keys is provided later in this

QuikCourse, as well as in the online help information for the

AS/400 system. If you place the cursor on the function keys section

of any display, and press Help or F1, detailed information appears.

Language and Command Prompts:

You can use the SEU high-level-language or command prompts to

create mostly error-free records. When you request a language or

command prompt, you can type the data for a record, one field at a

time. It makes it so much easier that way, especially for beginners.

You can use the SEU-supplied prompts, or define your own.

Line Commands:

You can use line commands in SEU to do many operations, such as

insert blank records, copy records, and request language and

command prompts. You can create your own line commands

(user-defined) to add to those provided by the standard SEU line

commands.

List Displays:

152 The iSeries Pocket Developer’s Guide

You can use SEU list displays to view different types of lists, as

follows:

1. Member list shows all members in a specified file. Use the

member list to select a member to edit, browse, print, or delete.

2. File list shows all files in a specified library. Use the file list to

select a file with members that you want to edit, browse, print, or

delete.

3. Spooled file list shows all spooled files for a specified user. Use

the spooled file list to select a spooled file that you want to browse

or copy.

4. User list shows all jobs running under all IDs. Use the user list to

select the user ID from which you want to browse or copy a job.

You can only access the spooled files, and you may require

authorization.

Maximum Number and Length of Records:

SEU allows a maximum number of 32,764 records (source

statements) in a source member. The maximum record length SEU

allows is 240 characters, which includes six characters for the

sequence number and six characters for the date. To use files with

record lengths of sizes larger than 92 (the standard on the

CRTSRCPF command), you would need to specify the record

length when you create the source file.

Options Displays:

You can use options displays to control the SEU environment and

do operations on file members and spooled files. The following

options displays are used frequently in SEU:

1. Change Session Defaults: Use the Change Session Defaults

display to specify the characteristics of your edit or browse session.

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 153

2. Browse/Copy Options: Use the Browse/Copy Options display

while editing a member to look at another member or spooled file,

copy another member or spooled file into the member you are

editing, or copy specific records from another member or spooled

file into the member you are editing.

3. Find/Change Options: Use the Find/Change Options display to

search for a specified string in some or all records, change a

specified string in some or all records, or search for records that

contain syntax errors.

Split Session Editing and Browsing:

You can use split session editing and browsing to edit one member

and browse another on the work display at the same time. You can

also browse two members at the same time, but you cannot edit two

members on the work display at the same time. If you access the

Browse/Copy Options display from a split session, you can copy

records from one of the members shown on the display to another

member that you are editing.

Syntax Checking:

You can use SEU syntax checking to verify the source statements

for several high-level languages, including BASIC, PL/I, COBOL,

FORTRAN, and RPG, as well as AS/400 CL programs.

System Command Window:

You can conveniently enter AS/400 system commands, while

working on the SEU Edit display. To get the System Command

window, press F21 (System command).

The System Command window avoids overlaying the cursor, so

depending on the cursor location, the System Command window

may appear in the top portion or in the bottom portion of the

display. If you have used this feature, you may have wondered for

years why the window shows up differently at different times. Now,

you know!

154 The iSeries Pocket Developer’s Guide

You cannot enter data on the SEU Edit display while the System

Command window is displayed. You can only use the command

window. It is as if the rest of the panel is inoperative. You cannot

enter any System/36 and System/38 commands in the System

Command window. However, you can access the Command Entry

display through the Attention key, though this proves to be quite

inconvenient.

☺ Hint: System commands such as SIGNOFF (in the

AS/400 system) or ENDS36 (in the System/36

environment) end the SEU session abnormally. When

you re-access the member that you were editing, the

Recover SEU Member display appears

Getting SEU Started

SEU can be invoked in any one of three ways, and actually a few

more. The three popular methods of invocation are as follows:

1. STRSEU (Start SEU) Command

2. PDM Work with members panel

3. OS/400 Main Menu

To use any of the three methods above, you must first be signed

onto your AS/400 or iSeries. When you sit down at an AS/400

terminal, or when you are working with PC/400, Client Excess 5250

emulation, TN5250, or Rumba, and you are in green screen session

with the system, you first get a Signon screen as shown in Figure

G-1.

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 155

Figure G-1 OS/400 Signon Panel
 Sign on

 System : HELLO

 Subsystem. . . . : QUIKCOURSE

 Display: COURSE1

 Users SEU1

 Password

 Program/procedure

 Menu.

 A current library

...

 ©) COPYRIGHT IBM CORP. 1980, 2000.

From the signon panel, you enter your user ID and your password

and press ENTER. Notice in Figure G-1 that there is apparently

nothing keyed in the password field. On the AS/400, as you may

already know, a person wanting to steal your password must watch

your fingers as you type because the password does not display as

you type it. When you have filled in the signon panel, press

ENTER, and more than likely you will see the OS/400 Main Menu

panel as shown in Figure G-2. If your system administrator has set

you up differently, ask her to set you up so you can have the Main

Menu appear from your user profile.

156 The iSeries Pocket Developer’s Guide

Figure G-2 OS/400 Main Menu Panel
 MAIN OS/400 Main Menu

 System: HELLO

 Select one of the following:

 1. User tasks

 2. Office tasks

 3. General system tasks

 4. Files, libraries, and folders

 5. Programming

 6. Communications

 7. Define or change the system

 8. Problem handling

 9. Display a menu

 10. Information Assistant options

 11. Client Access/400 tasks

 90. Sign off

 Selection or command

 ===> 5

 F3=Exit F4=Prompt F9=Retrieve F12=Cancel F13=Information Assistant

 F23=Set initial menu

 ©) COPYRIGHT IBM CORP. 1980, 2000.

Using STRSEU to Start SEU

This is the main menu on the AS/400. From here, you can type

STRSEU as one way of starting SEU and press F4 for prompting.

Then, you will get the panel as shown on Figure G-5. To continue

with this method, go ahead several pages, to the section titled Start

SEU Panel.

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 157

Using PDM To Start SEU

Many developers like to use the Program Development manager to

invoke SEU. PDM is fully explained in QuikCourse E in this book.

To start PDM, issue the STRPDM command and press ENTER.

Take option 3 to Work with Members. Then, type QDDSSRC as the

source file and HELLO as the library. After filling in the panel,

press ENTER. You will be taken to the Work with Members Using

PDM screen. From here, press F6 to create a new member. At this

point, you will be taken to the panel as shown in Figure G-5. If this

is the method you select to invoke SEU, continue at the heading a

few pages from here titled Start SEU Panel.

If you have not taken any other QuikCourses, for any of the

methods to get into SEU, you may have to create both of the

necessary objects (library and source file). You can use the

following commands to accomplish this:

CRTLIB HELLO TEXT(‘HELLO library for QuikCourses’)

CRTSRCPF HELLO/QDDSSRC TEXT(‘Source File for DDS’)

Using the Main Menu to Start SEU

The Menu structure of OS/400 enables you to navigate quite easily.

Using this path, it will take longer to explain how to start SEU than

for you to actually do it. From the panel in Figure G-2, type a “5"

and press ENTER. You will get the Programming Menu as shown

in Figure G-3.

158 The iSeries Pocket Developer’s Guide

Figure G-3 Programming Menu
PROGRAM Programming

 System: HELLO

Select one of the following:

 1. Programmer menu

 2. Programming Development Manager (PDM)

 3. Utilities

 4. Programming language debug

 5. Structured Query Language (SQL) pre-compiler

 6. Question and answer

 8. Copy screen image

 9. Cross System Product/Application Execution (CSP/AE)

 50. System/36 programming

 70. Related commands

Selection or command

===> 3

F3=Exit F4=Prompt F9=Retrieve F12=Cancel F13=Information Assistant

F16=AS/400 Main menu

©) COPYRIGHT IBM CORP. 1980, 2000.

There are a number of ways to get to SEU from here. Options 1, 2,

and 3 will all get you there. For this example, choose option 3, since

SEU is a Utility Program. You will then see the first page of a 119-

option menu which is the OS/400 command grouping menu for all

commands beginning with start (STR). This is shown in Figure G-4.

Figure G-4 SEU Utilities Menu (STR Menu)
CMDSTR Start Commands

Select one of the following:

 79. Start QSH STRQSH

 80. Start Question and Answer STRQST

 81. Start REXX Procedure STRREXPRC

 86. Start Report Layout Utility STRRLU

 87. Start Remote Support STRRMTSPT

 88. Start Remote Writer STRRMTWTR

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 159

 90. Start Subsystem STRSBS

 91. Start Search Index STRSCHIDX

 92. Start Screen Design Aid STRSDA

 93. Start Source Entry Utility STRSEU

 94. Start Support Network STRSPTN

 95. Start SQL Interactive Session STRSQL

 More...

Selection or command

===> 93

 F3=Exit F4=Prompt F9=Retrieve F12=Cancel F16=Major menu

You can either ROLL until you see option 93 “Start Source Entry

Utility,” type “93," and press ENTER, or you can take it on faith

and type it in on the first page of the Start Commands menu and

press ENTER. In either case, you will be taken to the Start SEU

panel in Figure G-5.

Figure G-5 Start SEU Panel

 Start Source Entry Utility (STRSEU)

Type choices, press Enter.

Source file QDDSSRC Name, *PRV

 Library HELLO Name, *LIBL, *CURLIB, *PRV

Source member *PRV Name, *PRV, *SELECT

Source type *SAME Name, *SAME, BAS, BASP...

Option *BLANK *BLANK, ' ', 2, 5, 6

Text 'description' *BLANK

 Bottom F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to

use this display F24=More keys

160 The iSeries Pocket Developer’s Guide

Start SEU Panel

No matter how you got here, from STRSEU, STRPDM or from the

Main menu, the Stat SEU panel is where you are at. From the

STRSEU panel as shown in Figure G-5, type in your source file

(QDDSSRC) and your library (HELLO), and press the ENTER key

to continue. You will be taken to the Work With Members Using

SEU panel as shown in Figure G-6.

Figure G-6 Work With Members Using SEU Panel
 Work with Members Using SEU

Source file QDDSSRC Library HELLO

Position to .

New member . VENDORP

 Type for new member . TXT

 Text

Type options, press Enter.

 2=Edit 4=Delete 5=Browse 6=Print

Opt Member Type Text

 (No members in the file)

 F3=Exit F5=Refresh F12=Cancel F14=Display date

 F15=Sort by date F17=Subset

 ©) COPYRIGHT IBM CORP. 1981, 2000.

Notice that there are no source members in the file. To create the

new source member, which will be needed in our examples, type the

file name VENDORP for the new member. You will then get a new

SEU work panel which is shown in Figure G-7.

What is SEU?

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 161

On the System/38, System/36, AS/400, and now the iSeries, the

native source editing tool is called the Source Entry Utility or SEU.

It is a very nice, full screen editor with some very powerful features.

It is shipped by IBM as part of the WebSphere Development Studio

for iSeries in the Application Development Tool Set

(ADTS)category. It is full of nice features including the following:

1. Full screen editor

2. Built-in syntax checker for CL/ CLP, DDS, RPGII/ RPGIII/

RPGIV, COBOL, BASIC, PL/I, C, C++, Java, Commands

etc.

3. Language prompt lines

4. Language format lines to place formats on line preceding

lines being edited.

5. Full variety of line commands - COPY, MOVE, INSERT,

DELETE, etc.

6. Variety of SEU commands - TOP, Bottom, Find, etc.

7. Pop-up system command line - command functions without

leaving SEU.

SEU the Editor

SEU is a full screen editor, which enables a programmer to type

anywhere on the screen. Once SEU is invoked for example, and you

have typed your source into the system, a panel, such as that shown

in G-7, can be modified by typing over any of the lines.

In the panel shown in Figure G-7 for example, suppose you had

originally misspelled the two highlighted fields at statements 6 and

10. As you can see, you need only type over these fields to change

them. Multiple lines may be changed at once. All changes are

reflected in the SEU session with the depression of the ENTER key.

To write the changed file back, you would need to issue a SAVE

command or exit SEU. These are demonstrated in the CASE Study.

162 The iSeries Pocket Developer’s Guide

Figure G-7 SEU Full Screen Main Edit Panel
SEU Edit screen

 Columns: 1 71 Edit HELLO/QDDSSRC

 SEU==> __ VENDORP

 FMT A*A*. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7

 *************** Beginning of data ************************************

 0001.00 A* VENDOR MASTER PHYSICAL FILE

 0002.00 A REF(FIELDREF)

 0003.00 A R VNDMSTR TEXT('VENDMAST DB FORMAT')

 0004.00 A VNDNBR R

 0005.00 A NAME R

 0006.00 A ADDR1 R

 0007.00 A CITY R

 0008.00 A STATE R

 0009.00 A ZIPCD R

 0010.00 A VNDCLS R

 0011.00 A VNDSTS R

 0012.00 A BALOWE R

 0013.00 A SRVRTG R

 ****************** End of data ***************************************

 F3=Exit F4=Prompt F5=Refresh F9=Retrieve F10=Cursor

 F16=Repeat find F17=Repeat change F24=More keys

Syntax Checking

One of the most powerful features of SEU is its syntax checker.

SEU provides extensive syntax checking of source statements. The

syntax checker uses the same rules as the compiler. This can save

you many compiles trying to catch syntax errors.

There is a syntax checker for all languages within SEU. The

languages include CL and the S/36 and S/38 versions of RPG and

COBOL and others. The syntax checking rules to be applied are

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 163

determined by the SEU source type. It’s that easy to get a syntax-

checked, clean source.

You can see in the example shown in Figure G-8 how the syntax

checker does its work. If, for example, you free-form typed line 8

and you were off by just one position, the syntax checker would

stop you dead in your tracks and make you change the line before

continuing. As you can see in Figure G-8, the error line is

highlighted, and a message describing the error is displayed at the

bottom of the panel.

164 The iSeries Pocket Developer’s Guide

 Figure G-8 SEU Syntax Checking
 Columns . . . : 1 71 Edit HELLO/QDDSSRC

 SEU==> VENDORP

 FMT PFA..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++

 *************** Beginning of data *************************************

0001.00 A REF(HELLO/VENDORPA)

0002.00 A R VNDMSTR TEXT('VENDMAST DB FORMAT')

F003.00 A VNDNBR R

0004.00 A NAME R

0005.00 A ADDR1 R

P006.00 A CITY R

0007.00 A STATE R

0008.00 A ZIPCD R

0009.00 A VNDCLS R

0010.00 A VNDSTS R

0011.00 A BALOWE R

0012.00 A SRVRTG R

 ****************** End of data **

 F3=Exit F4=Prompt F5=Refresh F9=Retrieve F10=Cursor F11=Toggle

 F16=Repeat find F17=Repeat change F24=More keys

Position 18 must be blank. +

Prompting and Formatting

SEU provides prompting and format lines for the different types of

source on the system. Prompts for different languages and types of

source allow the programmer to key column-sensitive source code

without trying to align columns. SEU provides labeled spaces for

keying in the data and aligns it into the correct columns after entry.

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 165

In Figure G-8, you may have noticed that we slipped in two line

commands without describing line commands at all as of yet. They

are coming up next. The command “F” typed on statement 3 of

Figure G-8 is the Format command and the command “P,” which is

typed on statement 6, is the Prompt command. When you repair the

statement caught by the syntax checker and you press ENTER, you

will get the panel as shown in Figure G-9.

Figure G-9 SEU Formatting and Prompting
 Columns . . . : 1 71 Edit HELLO/QDDSSRC

 SEU==> VENDORP

 FMT PFA..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++

 *************** Beginning of data *************************************

W23 .00 A REF(HELLO/VENDORPA)

0002.00 A R VNDMSTR TEXT('VENDMAST DB FORMAT')

FMT PF A..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++

0003.00 A VNDNBR R

0004.00 A NAME R

0005.00 A ADDR1 R

0006.00 A CITY R

0007.00 A STATE R

0008.00 A ZIPCD R

 Prompt type . . . PF Sequence number . . . 0006.00

 Name Data Decimal

 Type Name Ref Length Type Positions Use

 CITY 30

 Functions

 F3=Exit F4=Prompt F5=Refresh F11=Previous record

 F12=Cancel F23=Select prompt F24=More keys

As you can see in Figure G-9, immediately above line 3, the editor

has placed a Format line. This line provides hints for column

166 The iSeries Pocket Developer’s Guide

placement, and is a favorite of those who like to use the full screen

capabilities of the editor. You can place as many format lines as you

like in your source. To get rid of one, place a “D” over the “F” and

press ENTER. The line command DELETE (D) causes the format

line or any other line to be deleted.

Near the bottom of the screen, you can notice that line 6 has been

brought down for some fully prompted editing. In this example, for

demonstration purposes, we change the length from 20, to 30, and

remove the “R,” so that the field no longer is defined by a reference

field. This is further explained in the case study. After we change

the field as shown in Figure G-9, we changed it back as to not affect

the case study results.

Not only does this help you remember the layout of the form and

prevent you from field misalignments, it also provides context-

sensitive help. When working in a prompted field, press the Help

key or F1. SEU will give you information about the type of data you

should be entering in that particular area of the form. It is extremely

helpful and saves lots of manual lookup time. For example, if you

position your cursor to the REF field and hit F1, you will see the

following text:

Type R in this field to use the reference function to

copy attributes of a previously defined named field to

the field you are now defining.

That’s quite nice!

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 167

168 The iSeries Pocket Developer’s Guide

QuikCourse G.

Part II: SEU Commands

and Functions

Line Editing Commands

There is a comprehensive set of line commands provided to do such

functions for copying, moving, inserting and deleting lines. Some of

the more commonly used line commands are shown below.

Why Line Commands?

Because SEU is a full screen editor, you may be asking why line

commands are needed. With a full-screen editor, you can change

any line on the screen. If you can see it, you can change it.

However, the nature of programming languages is statement-at-a

time functionality. SEU’s line commands add powerful individual

line and block line command functions to help the programmer

work naturally with source.

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 169

List of Line Commands

When you open up an SEU session, you will note a sequence

number on the left side of the screen. Line commands are typed

right over the sequence numbers. The whole bevy of powerful SEU

line commands are shown in the list below:

1. Vertical positioning: +n, -n, absolute (n.n)

2. Skeleton: S, IS, ISn

3. Tabs line: TABS

4. Columns scale: COLS

5. Insert lines: I, In

6. Delete lines: D, Dn, DD

7. Repeat lines: RP, RPn, RPP, RRPn

8. Copy lines: C, Cn, CC, CR, CRn, CCR

9. Move lines: M, Mn, MM

10. Destinations: A, An, B, Bn, O, On, OO

11. Horizontal positioning: W, Wn

12. Shift right: R, Rn, RR, RRn, RT, RTn, RRT, RRTn

13. Shift left: L, Ln, LL, LLn, LT, LTn, LLT, LLTn

14. Exclude: X, Xn, XX

15. Show: SF, SFn, SL, SLn

16. Prompt: P, Pxx, IP, IPxx, IP?

17. Format: F, Fxx, F?, IF, IFn, IFxx, IFxxnn,

18. IF?, IF?nn

Types of Line Commands

The above list contains most of the line commands available in

SEU. The most commonly used are versions of the copy, move,

insert, delete, and prompting commands. Let's take an example of

the copy line command to describe the different variations of using

line commands. A single "C" copies a single line from one place to

another. The destination of the copied line is designated by either

an "A" for after, "B" for before, "O" for an overlay.

170 The iSeries Pocket Developer’s Guide

"C5" copies the current line and the four following lines to the

destination. "CC" copies the current line through the line containing

the next "CC" in a block to the destination. A "CR" (and its number

and block versions) copies the line(s) to multiple destinations and

leaves the CR line command in place so that it can be copied again.

It always helps to remember that PF5 removes the outstanding

(incomplete) line commands.

Most of these line commands with AS/400 were available in S/38

SEU. There have been no new commands added with iSeries. The

line commands that are not available on S/38 include the following:

A. TABS (any character on the TABS line becomes a tab

location)

B. RP (repeat a line or lines immediately following this line)

C. O (overlay destination line command)

D. X (exclude line or lines from viewing in SEU)

E. Sx (shows the lines excluded using the exclude command)

Window Line Command

We have already shown you a few line commands such as

FORMAT and PROMPT, and we discussed how to delete a format

line. Now, let’s use a different command which comes in very

handy when you want to look at parts of a statement that do not fit

in the 80 character window. In Figure G-9, you may have noticed

that we slipped in a “W20" line command at statement 1.00. When

you hit ENTER with this command on any line, you get a panel

such as that shown in Figure G-10.

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 171

Figure G-10 Windowing At Column Position 23
 Columns . . . : 23 80 Edit HELLO/QDDSSRC

 SEU==> SAVE VENDORP

 FMT PF ++++++RLen++TDpB......Functions+++++++++++++++++++++++++++

 *************** Beginning of data *************************************

0001.00 REF(HELLO/VENDORPA) 020505

0002.00 STR TEXT('VENDMAST DB FORMAT') 020505

FMT PF ++++++RLen++TDpB......Functions+++++++++++++++++++++++++++

0003.00 BR R 020505

0004.00 R 020505

0005.00 1 R 020505

0006.00 R 020505

0007.00 E R 020505

0008.00 D R 020614

 Prompt type . . . PF Sequence number . . . 0006.00

 Name Data Decimal

 Type Name Ref Length Type Positions Use

 CITY R 30

 Functions

 F3=Exit F4=Prompt F5=Refresh F11=Previous record

 F12=Cancel F23=Select prompt F24=More keys

You may notice that the text now starts at position 20 of the

statement. This lets you see the far right side of the record. In SEU,

this area stores the date of change for a given line. In this case, the

code was built on February 5, 2002. I bet it was cold that day in the

Northeast!

SEU Top-Line Commands

172 The iSeries Pocket Developer’s Guide

Beginning with V1 R3 (some may think of this time frame - late

1980's and early 1990's as the Dark Ages), SEU was enhanced with

a command line at the top of each screen. The special SEU

commands that can be entered on this command line, provide a

shortcut to the functions found on the Change Session Defaults,

Find/Change options, Find options and Exit screens. The beauty is

that you can do more things without ever leaving the work screen.

To run an SEU command, type it on the command line. Later we

will further discuss SEU commands. As of V1 R3, function key F21

 provides a pop-up window for entering system commands directly

while browsing or editing SEU source.

The following is a list of SEU commands which can be entered in

the top input line above the text which is being edited:

1. FIND - “F” searches for character strings

2. CHANGE - “C” change character strings

3. SAVE - save without exit

4. CANCEL - “CAN” exit immediately without save

5. FILE - exit and save

6. TOP - go to top of source member

7. BOTTOM - go to bottom of source member

8. SET - changes editing environment -“S” to set tabs on, set

roll key operation, set full screen mode on/off, set caps

on/off, etc.

To use an SEU command, type it on the command line. Command

parameters are either required, positional, or optional. The help key

can be pressed after keying a command to get a list of the

parameters. To quickly jump from the body of the Edit panel to the

command line, press F10. It is almost faster than a mouse click.

Once again we slipped in something on a panel to help us describe a

function we were about to describe. If you would be so kind as to

check back to Figure G-10, you can see the “SAVE” command on

the SEU Command Line. Notice that it does not have to be typed on

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 173

the far left. It can be placed anywhere on the line. When you hit

ENTER with SAVE on the command line, if you are very quick,

you will see a message flash at the bottom of the screen which says

the following:

Member is being saved

174 The iSeries Pocket Developer’s Guide

The SEU Main Edit Panel

Let’s keep our keyboards and mouse still for awhile as we take a

more detailed look at the SEU main editing screen in Figure G-11A.

Figure G-11A SEU Main Edit Panel
Columns . . . : 1 71 Edit HELLO/QDDSSRC

 SEU==> __ VENDORP

 FMT A*A*. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7

 *************** Beginning of data ************************************

 0001.00 A* VENDOR MASTER PHYSICAL FILE

 0002.00 A REF(FIELDREF)

 0003.00 A R VNDMSTR TEXT('VENDMAST DB FORMAT')

 0004.00 A VNDNBR R

 0005.00 A NAME R

 0006.00 A ADDR1 R

 0007.00 A CITY R

 0008.00 A STATE R

 0009.00 A ZIPCD R

 0010.00 A VNDCLS R

 0011.00 A VNDSTS R

 0012.00 A BALOWE R

 0013.00 A SRVRTG R

 ****************** End of data ***************************************

F3=Exit F4=Prompt F5=Refresh F9=Retrieve F10=Cursor F11=Toggle

F16=Repeat find F17=Repeat change F24=More keys

As you can see in Figure G-11A, at the very top center of the screen,

is the Screen Title “Edit.” This is the SEU Main Edit panel. To the

left in this 80-column SEU Window is an indication that columns 1

to 71 are displayed. To the right is the name of the library and

source file of the source member being edited.

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 175

On line 2, from left to right, you see the prompt for the SEU

Command Line followed by 60 spaces in which to place the SEU

command. To the right is the source member name being edited.

On the third line, SEU provides a format line for physical file “PF”

DDS to help display the code in a meaningful fashion. On the fourth

line the body begins with a begin data marker, followed by 13 lines

of DDS statements, and the end data marker.

As you will see, these data markers can be used as targets for copy

and move commands. For example, you can place an “A” on the

begin data marker and copy or moved data will flow following the

marker. You can also place a “B” on the End Data marker and

copied or moved text will flow above it.

SEU Command Keys

Now, we have progressed to the bottom of Figure G-11A. Here we

see the command key prompts. There are really more command

keys than those displayed in Figure G-11A. To get a look at more of

them, press F24. The bottom 2 lines of the panel, after F24 is

depressed once, appears as follows:

 F13=Change session defaults F14=Find/Change options

 F15=Browse/Copy options F24=More keys

The bottom 2 lines after F24 is pressed again with the above

functions displayed, looks as follows:

 F19=Left F20=Right F21=System command

 F23=Select prompt F24=More keys

As noted above, Figure G-11A shows the main SEU edit screen.

The function keys listed at the bottom of the screen change as F24 is

depressed. The extra function keys are shown above. The second set

is from pressing F24 two times.

176 The iSeries Pocket Developer’s Guide

The meanings of most of the command keys may be self-evident.

However, we present the following list and short description to help

you understand what command key functions are available within

the SEU environment:

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 177

Command Key Description

F1=Help Show SEU Main Help panel.
F3=Exit Exit SEU.
F4=Prompt Invoke line prompter at bottom of

screen.
F5=Refresh Redisplay the current

display.
F9=Retrieve Bring back the last command

typed on the command line.
F10=Cursor Move cursor to command line and

back to data area.
F11=Toggle Toggle left and right to show the

source field on the left side and
the comment field on the right
side.

F13=Change defaults. Set SEU environment values such as amt.
to roll.

F14=Find/Change opt. Set Find and Replace options.
F15=Browse/Copy opt. Set Browse and Copy options - Can

copy spool files and other members
to bottom split screen window.

F16=Repeat find Perform the last Find operation
again.

F17=Repeat change Perform last Find and Replace
again.

F19=Left View the information to the left of current
display.

F20=Right View the information to the right of current
display.

F21=System command Display a window in which OS/400
commands
can be
entered

F23=Select prompt Go to the Select Prompt display.
After you select a prompt, such as
PF for database physical or I for
RPG input SEU returns to the Edit

178 The iSeries Pocket Developer’s Guide

session and displays the new
prompt.

F24=More keys Displays two additional sets of command
key prompts at
bottom of
screen as shown
above.

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 179

Special Panels: Defaults,

Find/Change, Browse/Copy

SEU has a few special panels which you can evoke as you can see

by reading the list of command keys above. These are (1) the

Session Defaults panel, (2) The Find/Replace options panel, and the

Browse/Copy options panel. Because these can come in quite handy

in your productive use of SEU, we provide details on each below:

Figure G-11B SEU Change Defaults Panel - Roll Amalgamation
 Change Session Defaults

 Type choices, press Enter.

 Amount to roll 15 H=Half, F=Full

 C=Cursor, D=Data

 1-999

 Uppercase input only Y Y=Yes, N=No

 Tabs on N Y=Yes, N=No

 Increment of insert record 0.01 0.01-999.99

 Full screen mode N Y=Yes, N=No

 Source type PF

 Syntax checking:

 When added/modified Y Y=Yes, N=No

 From sequence number 0000.00-9999.99

 To sequence number 0000.00-9999.99

 Set records to date / / YY/MM/DD or YYMMDD

 More...

 Resequence member default P Y=Yes, N=No

 P=Previous

180 The iSeries Pocket Developer’s Guide

 Default to uppercase input

 for this source type Y Y=Yes, N=No

 User exit program *REGFAC *REGFAC, *NONE, Name

 Program selection filter *ALL *ALL, *USRPRF, String

 F3=Exit F5=Refresh F12=Cancel

 F14=Find/Change options F15=Browse/Copy options

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 181

SEU Defaults (F13)

There are lots of SEU defaults which you can change. These

defaults are like the system values in OS/400. They control your

editing environment. If you look at the panel in Figure G-11B,

which is all of the SEU defaults, including the defaults after one

roll, you can see the many values that can be set. As soon as you get

to an SEU Edit panel in this QuikCourse, don’t forget to hit F13 so

you can set your default sessions to those which are right for you.

The default values as set in Figure G-11B are as follows:

Value Meaning

Amt to roll How many lines to roll when

roll key is pressed. Can be set to

15 as in this example, or other

numeric values. Can also be set to

half, full, from the cursor, or all

the data on a screen minus the last

line.

Uppercase input only Y or N determines whether

you can type lower case or not.

Tabs on Determines whether tabs you set

with the TABS line are operative or

not.

Increment of insert Controls how the statements are

numbered - Default is 0.01. Range

is 0.01-999.99

182 The iSeries Pocket Developer’s Guide

Full screen mode Determines whether the command key

prompts are displayed at the

bottom. Gives a chance for four

more lines in the edit window.

Source type Prompt type which SEU is currently

using to syntax check. In this

example we are using a PF (Physical

file)

Syntax checking Determines when, what and whether

syntax checking is done. The

default is as follows:

When added/modified

. . . Y From sequence number .

. __

 To sequence number

. . .

 (Not specified)

Set records to date Type the date you want all records

to be reset to.

Re-sequence member Determines whether you want members

re-sequenced when saved.

Default to uppercase Specify a value for the

default case setting used for

source members with the same

source type that are edited in

subsequent sessions.

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 183

User exit program Used for user defined line commands

Program selection filter Helps determine which exit

program gets picked for user

command keys.

 To move back and forth between the first and second pages (more)

of the defaults panels, use the roll key. When you have your defaults

set correctly, press ENTER to continue.

184 The iSeries Pocket Developer’s Guide

SEU Find/Change Options

(F14)

During an edit session, you can look for (FIND) a

string of characters in a source member which you are

editing. You can also optionally change that string to

a new string, by using the Find/Change Options display

as shown in Figure G-11C.

To get the Find/Change Options display, press F14

while on the main SEU Edit display. You can do the

following on the Find/Change Options display as shown

in Figure G-XB:

1. Find a specified string

2. Change a specified string

3. Find records with a specified date

4. Find syntax errors

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 185

 Figure G-11C SEU Find/Change Options
 Find/Change Options

 Type choices, press Enter.

 Find Catnip

 Change catnip for the cat

 From column number 1 1-80

 To column number 80 1-80 or blank

 Occurrences to process 1 1=Next, 2=All, 3=Previous

 4=First, 5=Last

 Records to search 1 1=All, 2=Excluded

 3=Non-excluded

 Kind of match 2 1=Same case

 2=Ignore case

 Allow data shift Y Y=Yes, N=No

 Search for date 02/06/16 YY/MM/DD or YYMMDD

 Compare 1=Less than

 2=Equal to

 3=Greater than

 F3=Exit F5=Refresh F12=Cancel F13=Change session defaults

 F15=Browse/Copy options F16=Find F17=Change

 ©) COPYRIGHT IBM CORP. 1981, 2000.

As you can see in the sample in Figure G-11C, we have

typed a “find” string of “Catnip,” ignoring the case.

When the Change option is invoked (F17), this string

will be replaced by “catnip for the cat.” The other

Find/Change parameter options in Figure G-11C are

self-explanatory, except for the second to last -

“allow days shift.” This parameter defaults to “NO.”

With it set to yes, as we have changed it, the 19-

character string is inserted wherever the 6-character

string exists. The other data on the line is shifted

accordingly to accommodate the larger replacement

string.

186 The iSeries Pocket Developer’s Guide

Finding and Changing Strings

To “find” a string of characters in an SEU source

member, perform the following tasks:

1. Type the character string you want to locate in

the “Find” prompt of the Find Options display or
the Find/Change Options display.

2. Change any of the other parameter prompts, as

necessary.

3. Press F16 (Find). The string is found if it

exists in the member.

To find a character string and replace it with a

different string, perform the following tasks:

1. Type the string you want to change in the “Find”

prompt of the Find/Change Options display.

2. Type the string you want to replace it with into

the Change prompt display.

3. Change any of the other parameter prompts, as

necessary.

4. Press F17 (Change). Each time the string is
found, the occurrence of the string that you

specified is replaced with the string you typed

in the Change prompt.

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 187

☺ Hint: For help on any of the prompts on the

display, press F1 (Help) to display the

online help information. If the string, you

type for the Find or Change prompt, is

enclosed in quotation marks or apostrophes,

the quotation marks and apostrophes are

ignored for the search. Otherwise, the

string begins in the first position and

includes all characters up to and including

the last nonblank character. Enclose the

string in quotation marks or apostrophes to

include beginning and ending quotation marks,

apostrophes, and trailing blanks. Two

quotation marks adjacently to each other

define the null string.

Finding Records by Date

To find a source statement line last changed on a

specified date, perform the following tasks:

1. Press F14 (Find options) to access the Find

Options display (Figure G-11C).

2. Specify the date in the Search, using the date

prompt.

3. Specify 1, 2, or 3 in the Compare prompt based

upon (LT GT EQ).

188 The iSeries Pocket Developer’s Guide

4. Press F16 (Find). The record with the specified

date is found. Use F16 (Repeat Find) to find the

next record with the specified date. Searching

for a date and searching for the “find” string

are mutually exclusive.

The Compare prompt determines which type of find is

performed when you press F16 (Find). If the Compare

prompt is blank, SEU searches for the “find” string. If

the compare prompt is not blank, SEU searches for the

date.

Browse / Copy Options (F15)

Use the Browse/Copy display as in Figure G-11D to select another

member or even a spooled file to be shown on the bottom portion of

your display in split screen mode. You get there by pressing F15

from the Edit display.

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 189

Figure G-11D SEU Browse /Copy Options
 Browse/Copy Options

Type choices, press Enter.

 Selection 1 1=Member

 2=Spool file

 3=Output queue

 Copy all records N Y=Yes, N=No

 Browse/copy member VENDORPA Name, F4 for list

 File QDDSSRC Name, F4 for list

 Library HELLO Name, *CURLIB, *LIBL

 Browse/copy spool file VENDORP Name, F4 for list

 Job VENDORP Name

 User BKELLY Name, F4 for list

 Job number *LAST Number, *LAST

 Spool number *LAST Number, *LAST, *ONLY

 Display output queue QPRINT Name, *ALL

 Library *LIBL Name, *CURLIB, *LIBL

F3=Exit F4=Prompt F5=Refresh F12=Cancel

F13=Change session defaults F14=Find/Change options

Split Screen Mode

Split Screen mode is a very powerful feature of SEU. You fill in the

options and bring in the member or spool file that you want to view

or copy. This comes in handy, especially when typing in programs

with externally described files. You can edit a program in the main

edit window, for example, and you can be checking out the DDS

with the field names you need in the program in the lower window.

190 The iSeries Pocket Developer’s Guide

Another popular use of the split screen is, to copy code into your

member from another member you bring into the bottom of the

screen. For example, you may be working on a source member,

which needs code from other modules. Once the source is brought

to the bottom of your edit screen, you can use line commands to

selectively copy the statements that you want into the module you

are editing.

One of the most powerful uses of the Browse/Copy feature is that

you can place a spool file listing in the bottom display window.

Consider the typical development cycle of edit, compile, and error

review. You can review the latest compile on the bottom of your

screen, while you are making the changes to the source at the top of

the screen. You get to make the changes that reflect the corrections

needed by the compile listing – without having to leave your session

or get a printout.

Member / Spool File Options

The first three choices on the panel in Figure G-11D are Member,

Spool file, or Output queue, respectively. Here you decide whether

you want a source member (option 1) , or a spool file (option 2)

brought into the bottom panel. If you feel you really want a full

screen look at the output queue, you can also pick the output queue

(option 3) with this selection.

The next set of options pertains just to members, and is ignored for

spool files. The first parameter asks whether you want all of the

records from the member copied into your edit window. If so, SEU

copies all records at once into the source member being edited. In

the next three parameters, you tell SEU in which Library / File /

Member to get the new source.

The next set of options has to do with spool files. In this section,

you give the job information about the spool file so that SEU can

locate the printout. For recent compiles, as you can see in Figure F-

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 191

11D, SEU very nicely copies most of the information into this area

for you from your current job. The last two lines of the panel are

where you specify the output queue you want displayed if you have

selected option 3 at the top.

On the panel in Figure G-11D, we selected the member

VENDORPA, which is the field reference file for VENDORP. We

might do this in a real development mode so we could be assured

that all of the field definitions are proper, and we can also copy any

information we choose into the edit session. After you fill in the

panel as in Figure G-11D, Press ENTER, and the EDIT panel splits

to look like the screen shown in Figure G-11E.

Figure G-11E Split Screen Copy Block
 Columns . . . : 1 71 Edit HELLO/QDDSSRC

 SEU==> VENDORP

 FMT A*A*. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7

 *************** Beginning of data *************************************

0001.00 A* VENDOR MASTER PHYSICAL FILE

A 02.00 A REF(HELLO/VENDORPA)

0003.00 A R VNDMSTR TEXT('VENDMAST DB FORMAT')

0004.00 A VNDNBR R

0005.00 A NAME R

0006.00 A ADDR1 R

 Columns . . . : 1 71 Browse HELLO/QDDSSRC

 SEU==> VENDORPA

 *************** Beginning of data *************************************

CC 1.00 A R VNDMSTR TEXT('VENDORP DB FORMAT')

0002.00 A VNDNBR 5S 0 COLHDG('VENDOR' 'NUMBER')

CC 3.00 A ALIAS(VENDOR_NUMBER)

0004.00 A NAME 25 COLHDG('NAME')

0005.00 A ADDR1 25 COLHDG('ADDRESS LINE 1')

0006.00 A ALIAS(ADDRESS_LINE_1)

192 The iSeries Pocket Developer’s Guide

 F3=Exit F4=Prompt F5=Refresh F9=Retrieve F11=Toggle F12=Cancel

 F16=Repeat find F17=Repeat change F24=More keys

When you get to the panel in Figure G-11E, press F24 until you see

the option for F6. This option lets you change the split line. Position

your cursor on the line at which you want the split to occur and

press F6. This changes the split line accordingly.

As you can see in the panel in Figure G-11E, we primed the panel

with a block copy. When you hit ENTER, after typing the block

copy command, SEU will copy the blocked statements from one

member to the other. As you would expect, this feature really comes

in handy when you are trying to get work done in a productive

fashion - by stealing from your past work, or that of a colleague.

Line Command Exercises

Before we wrap up this primer on SEU with a comprehensive

summary of line commands, and we move on to the Case Study,

let’s do a few COPY / DELETE / MOVE line command exercises.

Copy One Line

Take a look at Figure G-12A. In this figure, we demonstrate the use

of the COPY line command as representative of SEU line

commands. When you want to copy just one line of code, as in

Figure 12-A and Figure 12-B (before and after), place a “C” next to

the line you want to copy. Place an “A” for After or a “B” for

Before, or an “O” for Overlay, on the line to which you want to

begin to place the copy.

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 193

 Figure G-12A SEU Copy Line Command - Before
 Columns: 1 71 Edit HELLO/QDDSSRC

 SEU==> __ VENDORP

 FMT A*A*. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7

 *************** Beginning of data *************************************

>C A* VENDOR MASTER PHYSICAL FILE

 0002.00 A REF(FIELDREF)

 0003.00 A R VNDMSTR TEXT('VENDMAST DB FORMAT')

 0004.00 A VNDNBR R

 0005.00 A NAME R

 0006.00 A ADDR1 R

 0007.00 A CITY R

 0008.00 A STATE R

 0009.00 A ZIPCD R

 0010.00 A VNDCLS R

 0011.00 A VNDSTS R

 0012.00 A BALOWE R

>A A SRVRTG R

 ****************** End of data **

 F3=Exit F4=Prompt F5=Refresh F9=Retrieve F10=Cursor

 F16=Repeat find F17=Repeat change F24=More keys

194 The iSeries Pocket Developer’s Guide

 Figure G-12B SEU Copy Line Command - After
 Columns: 1 71 Edit HELLO/QDDSSRC

 SEU==> __ VENDORP

 FMT A*A*. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7

 *************** Beginning of data *************************************

0001.00 A* VENDOR MASTER PHYSICAL FILE

0002.00 A REF(FIELDREF)

0003.00 A R VNDMSTR TEXT('VENDMAST DB FORMAT')

0004.00 A VNDNBR R

0005.00 A NAME R

0006.00 A ADDR1 R

0007.00 A CITY R

0008.00 A STATE R

0009.00 A ZIPCD R

0010.00 A VNDCLS R

0011.00 A VNDSTS R

0012.00 A BALOWE R

0013.00 A SRVRTG R

0014.00 A* VENDOR MASTER PHYSICAL FILE

 ****************** End of data **

 F3=Exit F4=Prompt F5=Refresh F9=Retrieve F10=Cursor

 F16=Repeat find F17=Repeat change F24=More keys

The COPY Results

As you can see in Figure G-12B, there is a definite difference

between the FROM-panel (Figure G-12A) and the TO-panel (Figure

G-12B). There is an extra line – # Fourteen in Figure G-12B. It was

copied right where we said to copy it. If we had executed a move

command (M, MM), the FROM lines would have been deleted

during the move to the new location.

Delete Operations

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 195

Before we issue the block copy commands, let’s delete one line

from the source member. The first line is just a comment and

removing it will give more room to manipulate the member as

shown in Figures G12B through G12D. The delete is simple. Place a

single “D” on the line as in Figure G-12C and press Enter. You will

then see a panel similar to that in Figure G-12D (without the already

typed block copy commands). The member in Figure 12-D, of

course, has already been renumbered. Therefore, to get

these results, the SEU session would have ended and

was restarted.

 Figure G-12C SEU Delete Line Command
 Columns . . . : 1 71 Edit HELLO/QDDSSRC

 SEU==> VENDORP

 FMT A*A*. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7

 *************** Beginning of data *************************************

D 1.00 A* VENDOR MASTER PHYSICAL FILE

0002.00 A REF(HELLO/VENDORPA)

0003.00 A R VNDMSTR TEXT('VENDMAST DB FORMAT')

0004.00 A VNDNBR R

0005.00 A NAME R

0006.00 A ADDR1 R

0007.00 A CITY R

0008.00 A STATE R

0009.00 A ZIPCD R

0010.00 A VNDCLS R

0011.00 A VNDSTS R

0012.00 A BALOWE R

0013.00 A SRVRTG R

 ****************** End of data **

 F3=Exit F4=Prompt F5=Refresh F9=Retrieve F10=Cursor F11=Toggle

 F16=Repeat find F17=Repeat change F24=More

If you want to delete a number of lines, you can use the Dn form in

which you specify “n” as the number of lines to delete. If you had

more than one line to delete, you could use the block delete “DD”

command in the first line and another “DD” block command in the

last line to be deleted.

196 The iSeries Pocket Developer’s Guide

When you press ENTER with these commands in place, SEU gets

rid of the deleted statements. Poof! They are gone. There is no

UNDO. Thus there is risk in all forms of the DELETE line

commands. While you are in an SEU session it is good to save your

work regularly, so that, by mistake, you do not make it disappear.

☺ Hint: Your SEU editing is done in a work file so if
you don’t really want what you have done since the
last save, you can theoretically undo it. Here’s how: If
you would like to revert to the saved version after you
mistakenly delete good statements, you can exit SEU
and choose not to update the member. Then you can
start SEU again and the old form of the source
member will be brought to your edit window.

Copy Blocks

To copy blocks of lines, as in Figures G-12D and G-12E (before and

after), place “CC” on the lowest sequence # of the from-block and

place another “CC” on the highest sequence number of the from-

block. For the receiving (target) location, position yourself to the

line that you have selected (to-location). On that line, type an “A,” a

“B,” or an “O” (for write over blanks) to tell SEU where to put the

copied text. The “O” says not to destroy the existing text but instead

to copy the characters in the “from” area to blank positions in the

“to” area. The “A” or “B” says to create a new area for the copied

text. It is very powerful.

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 197

 Figure G-12D SEU Post Delete Pre Block Copy
 Columns . . . : 1 71 Edit HELLO/QDDSSRC

 SEU==> VENDORP

 FMT PFA..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++

 *************** Beginning of data *************************************

B 01.00 A REF(HELLO/VENDORPA)

0002.00 A R VNDMSTR TEXT('VENDMAST DB FORMAT')

0003.00 A VNDNBR R

0004.00 A NAME R

0005.00 A ADDR1 R

0006.00 A CITY R

0007.00 A STATE R

0008.00 A ZIPCD R

0009.00 A VNDCLS R

CC 0.00 A VNDSTS R

0011.00 A BALOWE R

CC 2.00 A SRVRTG R

 ****************** End of data **

 F3=Exit F4=Prompt F5=Refresh F9=Retrieve F10=Cursor F11=Toggle

 F16=Repeat find F17=Repeat change F24=More keys

 ©) COPYRIGHT IBM CORP. 1981, 2000.

198 The iSeries Pocket Developer’s Guide

 Figure G-12E SEU Block Copy Line Command - After
 Columns . . . : 1 71 Edit HELLO/QDDSSRC

 SEU==> VENDORP

 FMT PFA..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++

 *************** Beginning of data *************************************

DD 0.01 A VNDSTS R

0000.02 A BALOWE R

DD 0.03 A SRVRTG R

0001.00 A REF(HELLO/VENDORPA)

0002.00 A R VNDMSTR TEXT('VENDMAST DB FORMAT')

0003.00 A VNDNBR R

0004.00 A NAME R

0005.00 A ADDR1 R

0006.00 A CITY R

0007.00 A STATE R

0008.00 A ZIPCD R

0009.00 A VNDCLS R

0010.00 A VNDSTS R

0011.00 A BALOWE R

0012.00 A SRVRTG R

 ****************** End of data **

 F3=Exit F4=Prompt F5=Refresh F9=Retrieve F10=Cursor F11=Toggle

 F16=Repeat find F17=Repeat change F24=More keys

As you can see in Figure G-12E, the block COPY was

completed successfully. It is probably a good idea to

delete the copied lines as we do in this display

(Block Delete), since they are of no value and will

cause an error. When you press ENTER after the block

delete, you will no longer have the lines before line

1 of Figure G-12E.

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 199

The line commands “C” and “A” are in action in Figure G-12A and

G-12B. The block line commands “CC” and “B” are in action in

Figures G-12D and G-12E, as you can see. The single line Delete is

shown in Figure G-12C, and the block Delete (DD) is shown in

Figure G-12E..

More Command Line Tricks -Move,

Insert, and Repeat

We outdid ourselves with the example panels shown in Figures G-

13A (Before) and G-13B(After). Yet, this is very valid. It

demonstrates how you can supply multiple line commands to SEU,

at the same time, and it will get them all done with just one ENTER

Key.

In Figure G-13A, we start with a block move of lines 1 to 3 to the

line after line 12. At line 6, we then ask for two lines to open up (I

Command) so we can insert some code. The last command is to

repeat line 8 (RP Command) and make a duplicate of it as the

following statement. When you press ENTER on the panel in Figure

G-13A, you will see the changes reflected in the panel in Figure G-

13B.

200 The iSeries Pocket Developer’s Guide

 Figure G-13A SEU Combination Line Command Panel - Before
 Columns . . . : 1 71 Edit HELLO/QDDSSRC

 SEU==> VENDORP

 FMT PFA..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++

 *************** Beginning of data *************************************

MM 1.00 A REF(HELLO/VENDORPA)

0002.00 A R VNDMSTR TEXT('VENDMAST DB FORMAT')

MM 3.00 A VNDNBR R

0004.00 A NAME R

0005.00 A ADDR1 R

I2 6.00 A CITY R

0007.00 A STATE R

RP 8.00 A ZIPCD R

0009.00 A VNDCLS R

0010.00 A VNDSTS R

0011.00 A BALOWE R

A 12.00 A SRVRTG R

 ****************** End of data **

 F3=Exit F4=Prompt F5=Refresh F9=Retrieve F10=Cursor F11=Toggle

 F16=Repeat find F17=Repeat change F24=More keys

 ©) COPYRIGHT IBM CORP. 1981, 2000.

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 201

 Figure G-13B SEU Combination Line Command Panel - After
 Columns . . . : 1 71 Edit HELLO/QDDSSRC

 SEU==> VENDORP

 FMT PFA..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++

 *************** Beginning of data *************************************

0004.00 A NAME R

0005.00 A ADDR1 R

0006.00 A CITY R

'''''''

'''''''

0007.00 A STATE R

0008.00 A ZIPCD R

0008.01 A ZIPCD R

0009.00 A VNDCLS R

0010.00 A VNDSTS R

0011.00 A BALOWE R

0012.00 A SRVRTG R

0013.00 A REF(HELLO/VENDORPA)

0014.00 A R VNDMSTR TEXT('VENDMAST DB FORMAT')

0015.00 A VNDNBR R

 ****************** End of data **

 F3=Exit F4=Prompt F5=Refresh F9=Retrieve F10=Cursor F11=Toggle

 F16=Repeat find F17=Repeat change F24=More keys

202 The iSeries Pocket Developer’s Guide

Operation Results

As you can see, there is a definite difference between

the FROM-panel (Figure G-13A) and the TO-panel (Figure

G-13B). For one thing, lines 1 to 3 have been moved

and now appear as lines 13 to 15. Lines 1 to 3, their

prior location, have been deleted. and are no longer

visible in the panel. Additionally, two insertion

lines have been added between statements 6 and 7. The

last notable accomplishment is that statement 8 has

been repeated and its clone now appears at statement

8.01.

The intention of this little SEU primer in this

QuikCourse is to give you a good-enough feeling about

SEU to go out and try it. The Help text is very good,

and the IBM SEU manual is also very comprehensive.

Both can help advance your SEU studies even further.

This next last segment, before we get into the SEU

Case Study section, is a rehash of line commands,

which we have already demonstrated. Additionally, this

segment contains information about a number of line

commands which are not covered elsewhere in this

QuikCourse.

Line Command Summary

To copy, delete, insert, move, or print records from the SEU main

edit panel, use the following line commands:

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 203

Command Description

A, B, O After, Before, and Overlay (target commands)

C, CC Copy, Copy block

CR Copy Repeat

D, DD Delete, Delete block

I Insert

M, MM Move, Move block

R Repeat

LP Line Print

Target Command Summary

As noted above, the After (A), Before (B), and Overlay (O)

commands are the target commands you use to tell SEU where to

copy the identified lines. You are specifying the to-area which you

can also think of as the receiving area.

How to Specify the Target Area

You specify either an After (A) , Before (B), or Overlay (O, OO)

command as a target for a Copy ©), Copy Repeat (CR), or move

Move (M) command. The block versions of these commands - CC,

CCR, and MM, also work with the same target commands - A, B,

O, or OO. For the target line, you select a statement (line)

representing the receiving line for the command, and you place the

target command on that line, to the left side, over the numbers.

The Overlay command replaces blank data in the selected line with

nonblank data from another line. It will not wipe out any text in the

target area. The Overlay command selects the target, or the line

whose blanks are replaced. The Copy, Copy Repeat, and Move

commands select the line that replaces the blanks.

204 The iSeries Pocket Developer’s Guide

You can use any of the following line commands to specify a target:

Command Description

A Place the specified records after this record.

A n Place the specified records after this record and

repeat the lines –1 times.

B Place the specified records before this record.

B n Place the specified records before this record and

repeat the lines –1 times.

O Overlay this record with the first record specified

by the Copy, Copy Repeat, or Move line command.

O n Overlay this record and the next –1 lines with the

records specified by the Copy, Copy Repeat, or

Move line command.

OO Overlay all records in this block (defined by a set of

OO commands - one for overlay block begin and

one for overlay block end) with the records defined

by the Copy, Copy Repeat, or Move line

commands.

☺ Hint: Using Overlay lines is really tricky. I have

found little use for them over the years. When you use

the Overlay line commands, you should keep the

following in mind:

1. If you specify more records to overlay than you are

copying or moving, SEU reuses the moved or copied

records to complete the overlay.

2. The records to be moved (not copied) are deleted

from their original location after the overlay is

performed, unless one of the following is true:

A. There are more records to overlay than to move.

B. Not all nonblank characters from the move records

are copied to the overlay records.

In either situation, SEU retains the records in their

original position and issues a message.

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 205

Copy Command Summary

You can copy a record or block of records to another location in a

member or to another member using the following line commands:

Command Description

C Copy this record to the target specified by A, B, O,

or OO.

CC Copy this block of records (defined by a pair of CC

commands - once for copy block begin and one for

copy block end) to the target specified by A, B, O,

or OO.

C n Copy n records, starting with this record, to the

target specified by A, B, O, or OO.

When typing COPY commands, you can type the line commands in

any sequence you choose. For example, you can type the target (A,

B, or O) line command before or after typing the CC and CC line

commands that identify the block of records to be copied. In all

cases, as you would expect, the target must be outside the range of

the block command.

Copying Records Repeatedly Summary

You can repeatedly copy a line or block of lines to one or more

locations by using the powerful Copy Repeat (CR) command. This

command is used with the target commands (A, B, O), in much the

same way you use the Copy command. After processing the

command, SEU removes the target commands, but keeps the CR

command on the display, right where you had specified them. To do

the COPY again, you do not have to specify the from-location. Just

enter the new target for the records to repeat the copy operation as

many times as you need.

206 The iSeries Pocket Developer’s Guide

Of course, the CR command will hang around forever unless you

get rid of it from the SEU work screen. To cancel the command,

type over it or press F5 (Refresh).

The following line commands can be used to repeatedly copy the

same records:

Command Description

CR Copy this record to the targets specified by A, B, O,

or OO, and retain this command.

CR n Copy n records, starting with this record, to the

targets specified by A, B, O, or OO, and retain this

command.

CCR Copy this block of records (defined by a pair of

CCR commands - one for copy block repeated

begin and one for copy block repeated end) to the

targets specified by A, B, O, or OO, and retain these

commands.

☺ Hint: There are always little things to consider

when using these powerful operators, For the Copy

Repeat commands, you should keep the following in

mind: 1. Do not use the Copy Repeat line command in

conjunction with the Copy or Move line commands. If

you do, SEU issues an error message. 2. Specify just

one block of records to be copied. If you specify more

than one block of records, SEU issues an error

message.

Deleting Records Summary

You can delete a line, or a block of lines, from a source member, by

using any of the following Delete line commands:

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 207

Command Description

D Delete this record.

DD Delete this block of lines (defined by a set of DD

commands).

D n Delete n lines, starting with this record.

☺ Hint: There are a few caveats when using the

DELETE command. When you are using DELETE,

keep the following in mind: 1. To delete all the

records following (and including) the record where

the D n line command is typed, use a large value for n

in a D n line command. 2. You can process more than

one Delete line command at the same time.

Inserting Blank Records Summary

The primary way of getting new lines into a source member is the

insert command. You can insert blank lines in a member to add

new records. You can add one or more blank lines by using the

following line commands:

Command Description

I Place a blank line below this record. Each time you

type data on the blank line and press Enter, SEU

adds another blank line.

I n Place n blank lines below this record. When you

type data on the last inserted line and press Enter,

SEU adds another blank line.

☺ Hint: The Prompt command (P) can also be used

with the insert command to designate a type of

prompt to display for the inserted record. For

example, suppose you were typing an RPG program,

and you were working on File Descriptions. If you

208 The iSeries Pocket Developer’s Guide

wanted to insert a calculation specification with a

prompt, you would type a command such as IPC

(insert with calculation prompt). The line would open

up, and a calculation prompt would appear at the

bottom of the screen.

☺ Hint: When you use the Insert commands, be sure

to keep the following in mind:

1. The I line commands are repeating commands.

Each time you type data including a blank, on the

blank line of an I line command, or the last blank line

of an I n command, and press Enter, SEU inserts

another blank line. This continues until you:

A. Press F5 (Refresh).

B. Press Enter without changing the newly

inserted line.

C. Move the cursor off the line.

2. If the value of n in an I n line command is greater

than the number of spaces below the I n line

command, SEU supplies only the number of blank

lines that can fit on the display.

3. If you press F19 (Left) or F20 (Right), SEU shifts

the display left or right, but does not insert a new line

until you press ENTER.

Moving Records Summary

If you can copy, you should be able to Move. A Move is a copy in

which the “from” line(s) are deleted. You can move a record or

block of records, to another location in a member, or to another

member by using the following line commands:

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 209

Command Description

M Move this record to the target specified by A, B, O,

or OO.

MM Move this block of records (defined by a pair of

MM commands - one for begin move block and the

other for end move block) to the target specified by

A, B, O, or OO.

Mn Move n records, starting with this record, to the

target specified by A, B, O, or OO.

Just as with a COPY, you can type the line commands for a MOVE

operation in any order. For example, you can type the target (A, B,

O, or OO) line command before or after typing the MM (begin

block) and MM (end block) line commands that identify the records

to be moved.

Repeating Records Summary

The SEU REPEAT command is a more productive, special purpose

version of the COPY command. It is a COPY without a target.

Actually, it is a COPY with an implied target. It saves lots of keying

if it fits. You can repeat a record or block of records on the display

one or more times. Again, the REPEAT command is similar to the

Copy command, but does not require a target command (A, B, O, or

OO). The Repeat command automatically repeats the line or block

of lines immediately below the specified line or lines.

You can use the following line commands to repeat a record on the

display:

210 The iSeries Pocket Developer’s Guide

Command Description

RP Repeat this record immediately below the current

record.

RP n Repeat this record immediately below the current

record n times.

RPP Repeat a block of records (defined by a pair of RPP

commands) immediately below the current block.

RPP n Repeat a block of records (defined by a pair of RPP

commands) n times immediately below the current

block.

Printing Records Summary

The last line command we discuss in this QuikCourse is the PRINT

command. You can use a line command to print records during an

edit session or a full-display browse session by using the following

Line Print commands:

Command Description

LP Prints one record.

LP n Prints the next n records, starting with this record.

LLP Prints a block of records (defined by a pair of LLP

commands).

☺ Hint: When you use the Line Print command, you

should keep the following in mind: 1. Lines already

selected with the Exclude command are not printed,

but remain in the member as a special record. The

special record prints with a message stating how

many records are excluded. 2. Lines already selected

with the Hide command are not printed in the full

screen browse session.

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 211

212 The iSeries Pocket Developer’s Guide

QuikCourse G.

Part III:

SEU Case Study Lab

Making SEU Work for You

In the rest of this QuikCourse, you will enter the DDS

source statements necessary to create a physical file,

VENDORP, and a logical file, VENDMST. It would be

helpful to the learning process for you to examine the

IBM AS/400 database manuals, as well the SEU, DFU, and

PDM manuals referenced in the Appendix. Another tool

is the LETS GO PUBLISH The iSeries Pocket Database

Guide. Moreover, The other QuikCourses in this Pocket

Developer’s Guide should also come in handy. Having

said that, there is a tremendous amount of SEU

knowledge and even some database knowledge that can be

gained if you just follow along in the text and you

choose to do none of the above

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 213

We certainly do not purport that you can learn all

there is to know about these topics in these

QuikCourses. However, you certainly can learn an awful

lot. Moreover, by simplifying the initial learning

process, these courses stage you for even more

learning. One of the nice things about SEU is that

understanding the actual source statements, which you

are keying, is not a prerequisite to learning it.

☺Note: In this Lab, you will be asked to type

statements which we do not explain. The whole

idea of database and DDS coding is covered in

a 350 page LETS GO Publish iSeries Pocket

Database Guide.

Even though we tell you that we cannot fully

explain the statements that are being keyed,

we do attempt to include enough information

to give you a general idea of what you are

keying. Please remember that this is an SEU

exercise, not a database exercise. To make it

real, we include real DDS, and we create a

real file. However, if the explanations make

it more difficult for you to understand the

SEU concepts that we are enforcing with this

Lab, then we would suggest that you treat

each statement lightly, and do not worry

about the fact that it represents a part of

something bigger.

In this QuikCourse, our objective is to teach

SEU, not database, and not anything else. To

the extent that it may help some developers,

we have made our examples real. In addition

to SEU, for example, we also create the

214 The iSeries Pocket Developer’s Guide

database, and we use DFU (covered in the

QuikCourse I) to enter data into the physical

file object that is created from the DDS,

that is typed using SEU. Again, we do this to

help you see the whole picture, not because

it is essential for your understanding of

SEU.

The general agenda for the remainder of this

QuikCourse is as follows:

1. Introduction to Basic database DDS

2. Introduction to Source Entry Utility

3. Introduction to Data File Utility

4. Lab Exercises using the ADTS tools

5. Start PDM (via STRPDM command or menus)

6. Work with members in source file QDDSSRC in

HELLO library

7. Create a new member, VENDORP

8. Use SEU to build source DDS

9. Compile the DDS

10. Work With Objects

11. Use Option 18 for DFU to enter data into the

VENDORP file, then VENDMST

Starting the Lab Exercises

To start this process, sign on and get to an AS/400 command line.

PDM will be your entre’ to SEU in this section, though you

certainly can use the Start SEU STRSEU command to get there

directly. From a command line, enter the following command to

begin PDM:

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 215

STRPDM

As you know from the PDM QuikCourse, the main PDM menu

typically has just three main options. Regardless of how many

options yours has, continue by typing a “3" – the option number for

Work with members as shown in Figure G-14A.

 Figure G-14A Specify the members to Work With
 AS/400 Programming Development Manager (PDM)

Select one of the following:

 1. Work with libraries

 2. Work with objects

 3. Work with members

 9. Work with user-defined options

Selection or command

===> 3

F3=Exit F4=Prompt F9=Retrieve F10=Command entry

F12=Cancel

The next panel you see will look similar to that shown in

Figure G-14B.

216 The iSeries Pocket Developer’s Guide

Figure G-14B Specify the Members to Work With
 Specify Members to Work With

 Type choices, press Enter.

 File qddssrc___ Name, F4 for list

 Library HELLO____ *LIBL, *CURLIB, name

 Member:

 Name *ALL______ *ALL, name, *generic*

 Type *ALL______ *ALL, type, *generic*,

 *BLANK

 F3=Exit F4=Prompt F5=Refresh F12=Cancel

Specify File and Library

Specify source file QDDSSRC in the HELLO Library. For the

member name and type, in order to get a full list of the members,

use *ALL. If you want to subset your list, as your QDDSSRC file

grows in members, you might want to use a generic name such as

pan* or g* in the name field. Then, when you are ready to proceed,

press the ENTER key. If you leave the name field as *ALL, you

will see a panel similar to that in Figure G-15.

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 217

Figure G-15 Work with Members Using PDM
 Work with Members Using PDM HELLO

File QDDSSRC

 Library HELLO Position to

Type options, press Enter.

 2=Edit 3=Copy 4=Delete 5=Display 6=Print 7=Rename

 8=Display description 9=Save 13=Change text 14=Compile 15=Create module..

Opt Member Type Text

 (No members in file)

Parameters or command

===>

F3=Exit F4=Prompt F5=Refresh F6=Create

F9=Retrieve F10=Command entry F23=More options F24=More keys

Create New Source Member

Using the “Work with Members Using PDM: screen in Figure G-15,

create a new member in your QDDSSRC file in library HELLO.

Press F6 to create a new member.

218 The iSeries Pocket Developer’s Guide

Figure G-16 STRSEU Specify New Member to Be Created
 Start Source Entry Utility (STRSEU)

 Type choices, press Enter.

 Source file > QDDSSRC Name, *PRV

 Library > HELLO Name, *LIBL, *CURLIB, *PRV

 Source member *PRV Name, *PRV, *SELECT

 Source type *SAME Name, *SAME, BAS, BASP...

 Text 'description' *BLANK

 Bottom

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

SEU is always primed to use the last member that you typed as the

member for the current editing session (Figure G-16.) That is why it

shows the term *PRV (previous) for Source member to start with.

Type “VENDORP” for the source member and type “PF” for the

Source type. For the Text, use “Vendor Master File.” Text is

optional in SEU, but recommended.

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 219

Figure G-17 Initial SEU Entry Screen
 Columns . . . : 1 71 Edit HELLO/QDDSSRC

 SEU==> VENDORP

 FMT PFA..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++

 *************** Beginning of data *************************************

IPPF'''

'''''''

'''''''

'''''''

'''''''

'''''''

 ****************** End of data **

 F3=Exit F4=Prompt F5=Refresh F9=Retrieve F10=Cursor F11=Toggle

 F16=Repeat find F17=Repeat change F24=More keys

Member VENDORP added to file HELLO/QDDSSRC. +

Insert with Prompting to Begin

This is the initial edit screen (Figure G-17.) Other than the IPPF in

the left-hand area under Beginning of data, this is how the panel will

look. You enter IP as the SEU command. It means insert with

prompt. For the type “physical file”use “PF.” Thus, the full line

command is IPPF. DDS will then be prompted, and the DDS syntax

checker will be invoked for physical file source statement checking.

This puts you into insert with prompting mode. You will remain in

this mode until you press ENTER without keying any new data.

220 The iSeries Pocket Developer’s Guide

Figure G-18 Main SEU Edit Panel
 Columns . . . : 1 71 Edit HELLO/QDDSSRC

 SEU==> VENDORP

 FMT PFA..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++

 *************** Beginning of data *************************************

0001.00

'''''''

 ****************** End of data **

 Prompt type . . . PF Sequence number . . . '''''''

 Name Data Decimal

 Type Name Ref Length Type Positions Use

 Functions

 REF(HELLO/FIELDREF)

 F3=Exit F4=Prompt F5=Refresh F11=Previous record

 F12=Cancel F23=Select prompt F24=More keys

Using Field Reference File

If you decide to use a “data dictionary,” which is called a field

reference file on an AS/400 and iSeries, the first DDS statement in

the source you are typing would be a REF keyword. The statement

is shown in Figure G-18. It tells the DDS compiler to go to the

HELLO library into the Field Reference File named FIELDREF, in

order to find the referenced fields for file VENDORP. REF is the

file level DDS keyword specifying FIELDREF, as the reference file

to be used during the compilation of the DDS to create the database

file object.

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 221

Figure G-19 Entering Field Definitions with Field Ref
 Columns . . . : 1 71 Edit HELLO/QDDSSRC

 SEU==> VENDORP

 FMT PFA..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++

 *************** Beginning of data *************************************

0001.00 A REF(HELLO/FIELDREF)

'''''''

 ****************** End of data **

 Prompt type . . . PF Sequence number . . . '''''''

 Name Data Decimal

 Type Name Ref Length Type Positions Use

 R VNDMSTR

 Functions

 TEXT('VENDMAST DB FORMAT')

 F3=Exit F4=Prompt F5=Refresh F11=Previous record F12=Cancel F23=Select prompt

F24=More keys

Entering DDS

The statement in Figure G-19 would be the first statement of the DB

source if we were not using a field reference file. The R stands for

record format definition. It represents the name (VNDMSTR) that

we give to all of the fields in the file structure.

222 The iSeries Pocket Developer’s Guide

Figure G-20 Adding the First Field to The Database
 Columns . . . : 1 71 Edit HELLO/QDDSSRC

 SEU==> VENDORP

 FMT PFA..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++

 *************** Beginning of data *************************************

0001.00 A REF(HELLO/FIELDREF)

0002.00 A R VNDMSTR TEXT('VENDMAST DB FORMAT')

'''''''

 ****************** End of data **

 Prompt type . . . PF Sequence number . . . '''''''

 Name Data Decimal

 Type Name Ref Length Type Positions Use

 VNDNBR R

 Functions

 F3=Exit F4=Prompt F5=Refresh F11=Previous record

 F12=Cancel F23=Select prompt F24=More keys

Since we are demonstrating the way you complete DDS

specifications for databases using field reference files, place an R in

the REF column of the field you are defining. This tells the

database compiler that the field uses the reference file, defined in

the REF keyword, at the beginning of the DDS specifications.

If using the option for the field reference file, you simply place an R

in the Reference column of the prompt following the field name as

we have done in Figure G-20. The field attributes will then be

derived from the field reference file.

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 223

Figure G-21 Full VENDORP File With Field References
 Columns . . . : 1 71 Edit HELLO/QDDSSRC

 SEU==> VENDORP

 FMT PFA..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++

 *************** Beginning of data *************************************

0001.00 A REF(HELLO/FIELDREF)

0002.00 A R VNDMSTR TEXT('VENDMAST DB FORMAT')

0003.00 A VNDNBR R

0004.00 A NAME R

0005.00 A ADDR1 R

0006.00 A CITY R

0007.00 A STATE R

0008.00 A ZIPCD R

0009.00 A VNDCLS R

0010.00 A VNDSTS R

0011.00 A BALOWE R

0012.00 A SRVRTG R

 ****************** End of data **

 F3=Exit F4=Prompt F5=Refresh F9=Retrieve F10=Cursor F11=Toggle

 F16=Repeat find F17=Repeat change F24=More keys

To complete the description for VENDORP, continue entering the

field definitions using the reference file as illustrated above. When

you have completed defining all fields, you press F3 to save your

work and exit SEU.

224 The iSeries Pocket Developer’s Guide

Creating a Starter Field

Reference file

Figure G-24 (VENDORPA) shows the DDS for the same file,

without using the field reference file (FIELDREF). However, since

you have already keyed the source in Figure G-21, which depends

on a field reference file, you do not have to rekey the whole member

in order to create a mini field reference.

By the way, you would not build a dependent file before you built a

field reference file. The Field Reference File is used as a dictionary

for database files. It should be built first. By defining the words

(fields) in the dictionary, you do not have to declare their lengths

and attributes when you use the referenced fields in your database

files. You just use the referenced information. Therefore, you would

always build the dictionary first. In this case, we did it backwards

using extreme educational (poetic) license.

Instead of re-keying to create the mini reference, you need only use

PDM to copy the VENDORP member and create a new member as a

base. One more thing: Since you already have a VENDORP member

in the QDDSSRC source file in HELLO, when you copy this file,

you cannot name it VENDORP, so pick a different name such as

FIELDREF. We chose VENDORPA for this educational example.

In this example, you will learn how the VENDORP source member

looks without using a reference file. Additionally, by naming the

member VENDORPA, you can compile it and use it as a database

file or as a field reference file for VENDORP.

To make this transition, you would change statement 1 of

VENDORP as shown in Figure F-18 to look like the following:

0001.00 A ... REF(HELLO/VENDORPA)

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 225

There really is nothing that says that an AS/400 field reference file

must be called FIELDREF. Therefore, by changing the statement

above in VENDORP, if you were to compile VENDORPA first, to

create the reference file, and then you compiled VENDORP with the

change as above, VENDORP would be the database file and would

use the definition of all the fields as defined in VENDORPA.

VENDORP would use the definitions just as if VENDORPA were a

more commonly-named field reference file, such as FIELDREF.

Though VENDORPA can theoretically contain data, since it is

compiled as a physical database file, it is not a good convention to

have reference files used as database files. Therefore, in this case

study, it remains a physical file with no data, used solely as a

reference file.

You probably have guessed by now that any AS/400 file can be a

reference file for any other file, as long as it has field definitions

(externally described). Now let’s finish up what is needed to get out

of Figure G-21 and hustle us off to Figure G-24.

Copy VENDORP to VENDORPA

When you exit SEU from Figure G-21, by pressing CF03, you will

come back to the Work With Members panel, such as in Figure

G-22.

226 The iSeries Pocket Developer’s Guide

Figure G-22 Work with Members Using PDM
 Work with Members Using PDM HELLO

File QDDSSRC

 Library HELLOA Position to

Type options, press Enter.

 2=Edit 3=Copy 4=Delete 5=Display 6=Print 7=Rename

 8=Display description 9=Save 13=Change text 14=Compile 15=Create module..

Opt Member Type Text

 3 VENDORP PF Vendor Master File

Parameters or command

===>

F3=Exit F4=Prompt F5=Refresh F6=Create

F9=Retrieve F10=Command entry F23=More options F24=More keys

To start the COPY process, place a 3 next to the VENDORP file in

the Work With members list in Figure G-22, then press ENTER, and

you will see a panel similar to that in Figure G-23.

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 227

Figure G-23 COPY VENDORP Source to VENDORPA Member
 Copy Members

 From file : QDDSSRC

 From library : HELLO

 Type the file name and library name to receive the copied members.

 To file QDDSSRC Name, F4 for list

 To library HELLO

 To rename copied member, type New Name, press Enter.

 Member New Name

 VENDORP VENDORPA

 Bottom

 F3=Exit F4=Prompt F5=Refresh F12=Cancel

 F19=Submit to batch

Type VENDORPA for the name of the new member as in Figure G-

23, and press the ENTER key.

228 The iSeries Pocket Developer’s Guide

Figure G-24 VENDORPA - Full Descriptions
 Columns . . . : 13 80 Edit HELLO/QDDSSRC

 SEU==> VENDORPA

 FMT PFT.Name++++++RLen++TDpB......Functions+++++++++++++++++++++++++++

0001.00 A R FREF TEXT('Field Reference File’)

0002.00 A VNDNBR 5S 0 COLHDG('VENDOR' 'NUMBER')

0003.00 A ALIAS(VENDOR_NUMBER)

0004.00 A NAME 25 COLHDG('NAME')

0005.00 A ADDR1 25 COLHDG('ADDRESS LINE 1')

0006.00 A ALIAS(ADDRESS_LINE_1)

0007.00 A CITY 15 COLHDG('CITY')

0008.00 A STATE 2 COLHDG('STATE')

0009.00 A ZIPCD 5 0 COLHDG('ZIP''CODE')

0010.00 A ALIAS(ZIP_CODE)

0011.00 A VNDCLS 2 0 COLHDG('VENDOR' 'CLASS')

0012.00 A ALIAS(VENDOR_CLASS)

0013.00 A VNDSTS 1 COLHDG('ACTIVE' 'CODE')

0014.00 A ALIAS(ACTIVE_CODE)

0015.00 A TEXT('A=ACTIVE, D=DELETE, +

0016.00 A S=SUSPEND')

0017.00 A BALOWE 9 2 COLHDG('BALANCE' 'OWED')

0018.00 A ALIAS(BALANCE_OWED)

0019.00 A SRVRTG 1 COLHDG('SERVICE' 'RATING')

0020.00 A ALIAS(SERVICE_RATING)

0021.00 A TEXT('G=GOOD, A=AVERAGE, +

0022.0 A B=BAD, P=PREFERRED')

 F3=Exit F4=Prompt F5=Refresh F9=Retrieve F10=Cursor F11=Toggle

 F16=Repeat find F17=Repeat change F24=More keys

Adding Field Definitions to

VENDORPA

After you copy the member, the member VENDORPA would
appear in the PDM member list along with VENDORP
(Similar to Figure G-26). Place a 2 next to VENDORPA,

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 229

in the Work With members panel to edit it using SEU.
You must add the records and the text and the column

headings as shown in Figure G-24 to the member as it

is shown in Figure G-11. The objective is for the new

member to look like that in Figure G-24.

You will find that it sure is easier typing up a new

DDS member that uses a field reference file, than it

is to type up a new member without a field reference

file. There would be even more detailed keying in

Figure G-24 if we had not copied in the field names

first.

One look at Figure G-24, which represents what VENDORP
would look like if it were built without a field

reference file, and you can see that there is a lot

more work in Figure G-24, compared to Figure G-21.

Most shops build a field reference file for

standardization and programmer productivity. Then,

when they need to define fields in a new database,

they merely reference the fields from the field

reference, so that the new field attributes come into

each new database the same way each time without

having to be remembered, and without having to be

typed.

Exiting to Save

When you finish typing VENDORP and VENDORPA, you will

press F3 to exit SEU. You then get the Exit SEU panel

as shown in Figure G-25.

230 The iSeries Pocket Developer’s Guide

Figure G-25 Exit SEU Exit Session
 Exit

 Type choices, press Enter.

 Change/create member Y Y=Yes, N=No

 Member VENDORPA___ Name, F4 for list

 File QDDSSRC___ Name, F4 for list

 Library HELLO____ Name

 Text Vendor Physical File__________

 Resequence member Y Y=Yes, N=No

 Start 0001.00 0000.01 - 9999.99

 Increment 01.00 00.01 - 99.99

 Print member N Y=Yes, N=No

 Return to editing N Y=Yes, N=No

 Go to member list N Y=Yes,N=No

 F3=Exit F4=Prompt F5=Refresh F12=Cancel

On the SEU Exit panel, as in Figure G-25, you can

often take the defaults and the results will be what

you want. In the example in Figure G-25, SEU will

update the member, with the source statements as keyed

in the session, as long as there are no outstanding

syntax errors. If there are no errors, SEU returns you

 to the PDM member list screen. If there are errors,

you would, by default, return to editing the member in

SEU.

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 231

Compile Two DDS Members

Now that we have created two SEU members, let’s compile

them both. You must remember however, that the

VENDORPA must be compiled before the VENDORP file,

since it serves as its reference. To compile these

members, let’s back go to the Work with Members Using
PDM panel as shown in Figure G-26.

Figure G-26 Compile the PF Objects
 Work with Members Using PDM HELLO

 File QDDSSRC

 Library HELLO Position to

 Type options, press Enter.

 2=Edit 3=Copy 4=Delete 5=Display 6=Print 7=Rename

 8=Display description 9=Save 13=Change text 14=Compile 15=Create module...

 Opt Member Type Text

 VENDORP PF Vendor Master File

 14 VENDORPA PF Vendor Master File

 Bottom

 Parameters or command

 ===>

 F3=Exit F4=Prompt F5=Refresh F6=Create

 F9=Retrieve F10=Command entry F23=More options F24=More keys

To first compile the VENDORPA file, enter the compile

option (14) next to the member name as shown in

232 The iSeries Pocket Developer’s Guide

Figure G-26. Depending on your PDM defaults, The

compile may be submitted to run in a background job.

If you submit the job, you will need to check for

completion messages after the compile, to ensure

successful creation of the reference physical file,

before compiling the database physical file and the

logical file in subsequent steps.

Getting Batch Messages

To check for completion messages, you can press the

ATTENTION key on your keyboard, to invoke Operational

Assistant, as shown in

Figure G-27.

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 233

Figure G-27 Display Messages Using Operational
Assistant

 ASSIST AS/400 Operational Assistant

System: KELLY

 To select one of the following, type its number below and press

Enter:

 1. Work with printer output

 2. Work with jobs

 3. Work with messages

 4. Send message

 5. Change your password

 10. Manage your system, users, and devices

 75. Documentation and problem handling

 80. Temporary sign-off

 Type a menu option below

 ===> 3

 F1=Help F3=Exit F9=Command line F12=Cancel

Take option 3 (Work with messages) on the Operational

Assistant screen, and check for a successful

completion message. You would be looking for a message

such as the following:

234 The iSeries Pocket Developer’s Guide

Job 014135/BKELLY/VENDORPA completed normally on

05/05/02 at 17:15:48.

Once you get the reference file VENDORPA compiled, it
is ok to compile the Vendor Master physical file -

VENDORP. You do this the same exact way as you did the
VENDORP file in Figures G-26 and G-27 with one

exception. This time, you place the 14 next to

VENDORP, not VENDORPA. When you check the messages

again, you should see something similar to the message

immediately below:

Job 014141/BKELLY/VENDORP completed normally on

05/05/02 at 18:12:38...

Data File Utility DFU

Example

Now that the physical file is created, we can enter

data into it using the Data File Utility. DFU can be

invoked with a STRDFU command, or right from the Work
With Objects PDM option. Let’s do it the easy way with

PDM by getting back to the PDM main menu, and
selecting option 2, Work With Objects. Select the

HELLO library, and you should see a list of objects

which includes both file VENDORP and VENDORPA. Place

an 18 for STRDFU next to VENDORP, and press ENTER.
You will be taken to a panel which looks very much

like that in Figure G-28.

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 235

Figure G-28 DFU Default Program PDM Option 18
WORK WITH DATA IN A FILE Mode : ENTRY

Format : VNDMSTR File : VENDORP

VENDOR NUMBER:

NAME:

ADDRESS LINE 1:

CITY:

STATE:

ZIP'CODE

VENDOR CLASS:

ACTIVE CODE:

BALANCE OWED:

SERVICE RATING:

F3=Exit F5=Refresh F6=Select format F9=Insert F10=Entry

F11 Change

Entering Data with DFU

Using the DFU panel in Figure G-28, you can now enter

records into the VENDORP file. You can also recall

records for update or you can choose to just look at

records. Moreover, if you get sick of looking at them,

you can delete them with impunity. Together with

DSPPFM (display physical file member), which gives a

full record look at physical data files, the option 18

DFU is a marvelous tool for making sure your programs

did the right thing, before you turn them over to

production.

236 The iSeries Pocket Developer’s Guide

It surely can’t be any easier than option 18. When

entering data, just make sure that you press ENTER

after entering each record. You can recheck a few

times to be sure the data is there, but once you get

it right, it’s a breeze. To see your data in rapid

fire, you can also roll through the records with the

ROLL and/or PAGE/UP PAGE/DOWN keys.

Creating Logical File Over

VENDORP

We have just built physical file source statements

with SEU, compiled them with a field reference file

(VENDORPA), creating a database object. We have also

entered data into the file (VENDORP) with DFU. Now,

let’s create a Logical File (VENDMST) over this file

(VENDORP). This will help us see if we can put a few

records into the physical file through the logical

file.

As with all other great source adventures, the place

to start is PDM. By now, you should be getting good at

this. Select Work With Members from the main PDM menu.
Then, choose the QDDSSRC source file in the HELLO
library. When you get the source member list, remember

that the source has not been built yet for the logical

file VENDMST. You are about to create it.

Press the F6 key to create a new member. Key the name

as VENDMST, and the type as LF. Then, press ENTER. You

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 237

should now be into SEU with a big blank screen waiting

for your first keystroke.

238 The iSeries Pocket Developer’s Guide

Figure G-29 Typing in The Logical File VENDMST Panel 1

 Columns . . . : 1 71 Edit HELLO/QDDSSRC

 SEU==> VENDMST

 FMT LFA..........T.Name++++++.Len++TDpB......Functions++++++++++++++++++

 *************** Beginning of data *************************************

'''''''

'''''''

‘’'''''

 ****************** End of data **

 F3=Exit F4=Prompt F5=Refresh F9=Retrieve F10=Cursor F11=Toggle

 F16=Repeat find F17=Repeat change F24=More keys

Member VENDMST added to file HELLO/QDDSSRC. +

Figure G-29 is the initial edit screen. This is the

same type panel we saw in Figure G-17 earlier in this

Case Study. Just like then, to begin entering the

source statements, it is good to start with the Insert

With Prompting command on the top line of the panel in
the sequence # area. Place the IPLF (insert with

prompting for logical file) line command at the

beginning line and press ENTER and you will get the

panel as shown in Figure G-30.

You can follow along in the that you executed SEU from

Figure G14 to G-18, when you originally entered the

physical file source. Our objective is to produce a

panel which looks like that in Figure G-32.

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 239

Figure G-30 Entering LF DDS Panel 2

 Columns: 1 71 Edit TEAMxx/QDDSSRC

 SEU==> __ VENDMST

 FMT LF

.....A..........T.Name++++++.Len++TDpB......Functions++++++++++++

++++++

 *************** Beginning of data**********************************

 ****************** End of data *************************************

 Prompt type . . . LF Sequence number . . . 0001.00

 Name Data Decimal

 Type Name Length Type Positions Use

 _ __________ ____ _ ___ _

 Functions

 UNIQUE

 F3=Exit F4=Prompt F5=Refresh F11=Previous record

 F12=Cancel F23=Select prompt F24=More keys

Since you want the logical file to have unique keys

(no duplicates), type the file level keyword (UNIQUE),

as shown in Figure G-30, which instructs the database

not to permit duplicates in the to-be-created file.

When you hit ENTER, the panel will look like Figure G-

31.

Figure G-31 Entering LF DDS Panel 3
 Columns: 1 71 Edit TEAMxx/QDDSSRC

 SEU==> __ VENDORPM

 FMT LF

.....A..........T.Name++++++.Len++TDpB......Functions++++++++++++

++++++

 *************** Beginning of data **********************************

 0001.00 A UNIQUE

240 The iSeries Pocket Developer’s Guide

 ****************** End of data *************************************

 Prompt type . . . LF Sequence number . . . 0002.00

 Name Data Decimal

 Type Name Length Type Positions Use

 R VNDMSTR___ ____ _ ___ _

 Functions

 PFILE(VENDORP)______________________

 F3=Exit F4=Prompt F5=Refresh F11=Previous

record

 F12=Cancel F23=Select prompt F24=More keys

Staying in Prompt mode, in Figure G-31, now define the
record format of the logical file by giving it an “R”

code and naming it, VNDMSTR. After entering the PFILE

keyword, telling the system which physical file the

logical file is based upon, and pressing ENTER, type

the other source records for the logical file . . .

until the source looks like the panel as shown in

Figure G-32.

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 241

Figure G-32 Logical File DDS Panel 4
 Columns: 1 71 Edit TEAMxx/QDDSSRC

 SEU==> __ VENDORPM

 FMT LF

.....A..........T.Name++++++.Len++TDpB......Functions+++++++++++++

 *************** Beginning of data************************

 0001.00 A UNIQUE

 0002.00 A R VNDMSTR PFILE(VENDORP)

 0003.00 A K VNDNBR

 ****************** End of data****************************

 F3=Exit F4=Prompt F5=Refresh F9=Retrieve F10=Cursor

 F16=Repeat find F17=Repeat change F24=More keys

Since no data fields are specified in the DDS shown in

Figure G-32, this logical file uses each and every

field, from the physical file, for the logical file

definition. Thus, the record layout, provided by the

logical file, is the same exact layout as the physical

file

As you can see in Figure G-32, after the DDS statement

that we added in the panel shown in Figure G-31, there

was only one additional DDS statement needed to

complete the source for the logical file. It is the

key statement as shown in statement 0003. Through this

statement, the file maintains an index against the

VENDORP file in vendor number sequence. It uses this

index to help programs randomly access the file by

vendor number, and to provide the underlying records

in VNDNBR sequence to requesting programs.

242 The iSeries Pocket Developer’s Guide

Thus, this new logical file, when created, will

present the records from VENDORP to a program or Query

facility in VNDNBR sequence, regardless of the

sequence of the underlying data. Moreover, an RPG or

COBOL HLL program can randomly access the VENDORP file

by key (CHAIN etc.) merely by specifying the name of

this logical file in the program instead of the name

of the physical file.

Exit SEU, Compile Logical File

After entering the source statement for the key by

VNDNBR, your logical file source is finished. You can

press F3 to exit, and assure that on the EXIT prompt

you save the member as VENDMST in the QDDSSRC source

file in the HELLO library.

After you exit SEU and the logical file source is

complete, it is time to compile the logical file. This

is done exactly the same as you would compile a

physical file or a program. You place a 14 (Compile)

next to member VENDMST in the member list and press

ENTER.

When the file passes syntax checking, if you are

compiling interactively, and you have data in the

physical file, you can sometimes see the system

message about building the index for the logical file.

If you do not compile interactively, you can use the

Operational Assistant to check the messages for

successful completion as you did in Figure G-17.

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 243

Whether you compile the database interactively or in

batch, you can then use DFU to enter data into the

VENDORP physical file using the VENDMST logical file.

You use DFU for the logical file in the same fashion

as you already did for the physical file. The DFU will

behave the same as when you built it for the physical

file. There will be no perceptible difference.

Summary and Conclusions:

There have not been substantial SEU enhancements since

Version 1, Release 3 of OS/400 back in the early

1990s. If you checked IBM’s revenue stream from the

green screen ADTS components, since SEU is not a

separate product, you would more than likely find that

SEU is extremely profitable. IBM executives joke about

not enhancing SEU and other green screen tools, while

those of us out where the rubber meets the road,

continue to use them.

IBM thinks we are using client server tools. I guess

if 5250 emulation from Client Access qualifies as a

client server development tool, then IBM is probably

right. As noted on the cover, however, recent

published statistics show that 39 of 40 of us,

continue to persist in our use of the ADTS interactive

tools. These are now shipped with the WebSphere

Development Studio for iSeries.

244 The iSeries Pocket Developer’s Guide

Somehow IBM has an identity crisis with its own green

screen tools, yet those of us who use them regularly

find them quite nice, but in need of some updates.

Next chance you get, ask IBM to spend some (just a

little) of the SEU proceeds on SEU and other things we

use, rather than things IBM would like us to use.

Enough of that!

In this QuikCourse, we studied the Source Entry

Utility (SEU), the editor used by all developers on

the AS/400 and iSeries. Since a developer uses SEU as

a tool to enter the source for objects such as

programs and data files, we chose a simple database

example in the Case Study. In the process, we lightly

reviewed AS/400 database technology, including

physical and logical files, so that what was done in

SEU made sense. Near the end of this QuikCourse, we

also took a look at DFU as seen through option 18 of

PDM. This helped us in seeing real data appear in the

VENDORP file object whose source was originally built

with SEU.

During this QuikCourse, we presented the facts about

SEU first in lecture format, and then we followed this

with machine exercises to augment the learning. You

created source, changed defaults, copied and moved

lines, created databases, entered data, displayed

data, and then, again using SEU, you created a logical

file as part of the learning process. Hopefully, you

were able to use this hands-on approach as an

effective learning tool, whether you were following

along step-by-step at the office with your own AS/400,

or just reading the material for self enrichment.

QuikCourse G. AS/400 & iSeries Source Entry Utility (SEU) 245

There is still lots more SEU work, which you can do.

For example, you may want to go back to the section on

copies, moves, inserts, and deletes, and run through a

few more exercises of your own against a copy of the

DDS file. This can only strengthen your appreciation

of the wonders of SEU. Don’t forget to make syntax

mistakes so that you can see how nicely SEU catches

them and allows you to correct them on the spot.

Now that you have completed this QuikCourse, you are

armed with the green-screen development tool of the

champions, SEU. The concepts you learned here will

also help you if you choose to take IBM’s advice and

move to the CODE/400 GUI editor. This is now included

with the client portion of the AS/400 developer’s

package, called the WebSphere Development Studio for

iSeries. The last name change for the client package

announced with V5R2 was The WebSphere Development

Studio Client, Version 4.0.

Regardless of your tool choice in the future, SEU can

provide you with immediate benefit today.

Congratulations and best wishes in all of your future

editing projects.

246 The iSeries Pocket Developer’s Guide

QuikCourse H.

AS/400 and iSeries

Screen Design Aid

(SDA)

What is AS/400 SDA?

SDA allows a programmer or analyst to interactively

design, create, and maintain display screen panels and

menus for applications.

When designing screen panels for programs, SDA allows

the user to:

1. Define fields and constants for the screen

2. Select a data base file and fields from that

file

QuikCourse H. AS/400 & iSeries Screen Design Aid (SDA)

247

3. Change attributes (blinking, highlighted,

colors, etc.) for fields and constants

4. Move, copy, or remove a field from the screen

5. Display or change the conditions that control

when a field will be displayed

6. Define cursor-sensitive help areas for the

screen

248 The iSeries Pocket Developer’s Guide

Menus

Menus are a tremendous aid to building applications.

SDA has a powerful menu build capability which takes

all of the heavy work from this important task.

AS/400 menus are very similar to a menu in a

restaurant. They tell you what you can have. In

essence, they present a list of options. The

workstation operator can then make a selection from

the available options, and the system does the work of

getting that application alive and ready for the user.

 Online help information can also be built for menus,

making it even that much easier to navigate through

the options.

Display Panels

Display panels (a.k.a screens or panels) define the

screens a user works with when using interactive

application programs. The display files which are

produced by SDA have a natural affinity to inclusion

in RPG, COBOL, and other high level language programs.

Moreover, with the introduction of the WebSphere

Development Studio and the Workstation Client, the DDS

source produced by SDA for display files can be

readily WebFaced into java server pages. This provides

the same function for the web as the display file does

for interactive green screen applications. Just as

with SDA menus, you can also build online help

information for your SDA-created displays.

QuikCourse H. AS/400 & iSeries Screen Design Aid (SDA) 249

In this QuikCourse, we will demonstrate that you do

not need extensive knowledge of DDS coding, its forms,

keywords or syntax to use SDA. In fact, with a few

simple commands, You will be able to move fields

and/or constants or groups of fields and/or groups of

constants around on the screen to suit your end user’s

needs – even before even creating the screen or menu.

250 The iSeries Pocket Developer’s Guide

SDA Features

In a nutshell, SDA provides tremendous facility for

programmers. Some of its major features are as

follows:

1. Generate data description specifications (DDS)

2. Create menus with message files

3. Present displays in functional groups at file,

record and field level

4. Test displays with data and status of condition

indicators

5. See the display being designed and changes as work

is being done.

Not only does SDA remove the burden of creating DDS

from the back of the programmer, but it also provides

a very nice testing facility. Using the test display

option, a developer can test different data inputs,

provide specific status conditions for indicators,

and observe the look, feel, and overall behavior of

the display file object, even before linking the

display with a program. This not only provides the

developer with a way of quickly assuring his or her

work, but it also serves as a powerful prototyping

facility, permitting users to approve, disapprove, or

modify panel design before programs are even written.

Getting Started

QuikCourse H. AS/400 & iSeries Screen Design Aid (SDA) 251

You begin using SDA by invoking the STRSDA command

from an AS/400 or iSeries command line. If you press

F4 with the command, you will be presented with a

fill-in screen. The last option is your first major

decision. Do you want to create your display panels or

menus in AS/400 mode (*STD), System/38 mode (*S38), or

System/36 mode (*S36)? For different reasons, you may

choose any of these options. As you would probably

expect, AS/400 mode is the default, and there is no

iSeries mode. For iSeries systems, you can use any of

the provided options . . . but there is no specific

iSeries choice.

252 The iSeries Pocket Developer’s Guide

The first SDA panel you see then, is shown in Figure

H-1.

Figure H-1 SDA Prompt Panel
 Start SDA (STRSDA)

Type choices, press Enter.

SDA option *SELECT *SELECT, 1, 2, 3

Source file *PRV Name, *PRV

 Library *PRV Name, *PRV, *LIBL, *CURLIB

Source member *PRV Name, *PRV, *SELECT

Object library *PRV Name, *PRV, *CURLIB

Job description *PRV Name, *PRV, *USRPRF

 Library *PRV Name, *PRV, *LIBL, *CURLIB

Test file *PRV Name, *PRV

 Library *PRV Name, *PRV, *LIBL, *CURLIB

Mode *STD *STD, *S38, *S36

 Bottom

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

F24=More keys

If you make no choices on this panel, it will be as if you just typed

in STRSDA and did not hit the F4 prompter. You can see in Figure

H-1 that almost all of the options are defaulted to *PRV. This

specifies that SDA is to use the name of the source file and library

used in your last SDA session for the AS/400 system. There is

actually a little item on the AS/400 which the system keeps for each

user. It is called your interactive profile, and the system uses it to

remember what parameters you may have used the last time you

were in an interactive session with a product. This comes in very

QuikCourse H. AS/400 & iSeries Screen Design Aid (SDA) 253

handy. For our purposes at this time, let’s assume you changed no

option on the display panel selected.

 Screen Design Aid Menus

When you hit ENTER on this panel or after typing STRSDA, you

will see the main SDA Menu. When you examine Figure H-2, you

will notice that it looks a lot like the standard PDM panel but,

believe me it is much different.

Figure H-2 Main Screen Design Panel
 AS/400 Screen Design Aid (SDA)

Select one of the following:

 1. Design screens

 2. Design menus

 3. Test display files

Selection or command

===>2

F1=Help F3=Exit F4=Prompt F9=Retrieve F12=Cancel

 ©) COPYRIGHT IBM CORP. 1981, 2000.

Main SDA Menu

In Figure H-1, you are presented with the main SDA Menu. It is

good to remember when using SDA that just as many other of the

Application Development Tool Set utilities, SDA comes with

significant help facilities. In fact, cursor-sensitive help is always

available. This means that whatever field or option you have the

cursor on, when you press the help key, detail help text will be

displayed. To proceed with the next SDA menu, let’s pick the

254 The iSeries Pocket Developer’s Guide

option of creating a menu. I would recommend at this point that

you press the help key just to display the definitions of all the

function keys. This will help immensely as you begin designing

menus and screen panels. For now, select option 2 and press

ENTER. You will be taken to a panel similar to that in Figure H-3

Figure H-3 SDA Design Menu Initial Panel
 Design Menus

 Type choices, press enter.

 Source File QDDSSRC___ Name, F4 for list

 Library HELLO_____ Name, *LIBL, *CURLIB

 Menu MENUX_____ Name, F4 for list

 F3=Exit F4=Prompt F12=Cancel

SDA Initiation

In Figure H-3, you specify the name of your source file, your

library, and the name you want to give your menu.

SDA Build Menu Process:

The SDA Build menu process is as follows:

1. SDA looks for the name of the menu's menu source

member in the file.

2. If the source is there, it brings it up for you to work with

and to update.

3. If the source is not there, SDA creates it upon completion.

QuikCourse H. AS/400 & iSeries Screen Design Aid (SDA) 255

Note well that the member name always has the same name as the

compiled *menu object as created by SDA, but they may be in

different libraries. When updating a menu, and you don't know the

name, press F4 with the cursor on the Menu prompt. The Select

Menu Using SDA display appears. It lists all the menu
image source members for the specified library.

Take the Defaults

After you hit the ENTER key from the panel in Figure

H-3, you will see a panel primed with the two SDA

defaults as shown in

Figure H-4.

Figure H-4 Specify Menu Functions Panel
 Specify Menu Functions

File : QDDSSRC Menu : MENUX

 Library : HELLO

Type choices, press Enter.

 Work with menu image and commands Y Y=Yes, N=No

 Work with menu help N Y=Yes, N=No

F3=Exit F12=Cancel Menu MENUX is new.

For this introductory SDA QuikCourse, take the defaults by keeping

the “Y” selection to the Work with menu image and commands

option while also keeping the “N” selection for the Work with menu

help option. We are not going to add help text to this menu. The

responses in Figure H-4 are completed accordingly.

Menu Design Panel

The next panel you see will be the standard designing menus panel

as shown in Figure H-5.

256 The iSeries Pocket Developer’s Guide

Figure H-5 Menu Design Panel
 MENUX MENUX Menu

 Select one of the following:

 1.

 2.

 3.

 4.

 5.

 6.

 7.

 8.

 9.

 10.

 Selection or command

 F3=Exit F10=Work with commands F12=Cancel

 F13=Command area F20=Reverse F24=More keys

It is a good idea to press HELP early on in your session to get a list

of valid options with this panel. Before you can really deal with this

“blank” menu, you must have an appreciation for what it is

supposed to look like when completed. Go ahead and take a peak at

Figure H-6 now, and then come back to this panel description. Here,

in the panel shown in Figure H-5, you actually type in those nice

menu options you saw in Figure H-6. Remember that

cursor-sensitive help can be added to your menu if you choose to do

so.

Let’s take a hard look at the work panel in Figure H-5:

1. Row one is for the title. (You can change the default title.)

2. Rows 2 through 20 are for the menu skeleton. (Can be

changed or replaced.)

3. Rows 21 and 22 are blank when you are creating a menu.

4. If you want uppercase only, press F13. This will only affect

new input to the display, not already existing source.

5. To find out in which areas of the display you can input text,

press F11 for underlining. This will really help.

QuikCourse H. AS/400 & iSeries Screen Design Aid (SDA) 257

Now, let’s see just what our menu will look like when we finish

typing in our text options. See Figure H-6.

Figure H-6 SDA Completed Menu Image
MENUX MENUX Menu

Select one of the following:

 1. Display messages

 2. Display library list

 3. Work with all output queues

 4. Call RPG vendor inquiry program

 5. Sign off workstation

Selection or command

F3=Exit F10=Work with commands F12=Cancel

F13=Command area F20=Reverse F24=More keys

In Figure H-6, the example shows text description entered for

options 1through 5 of the menu. We pressed the FIELD EXIT key

(RIGHT ENTER in CA400) to remove the options 6 through 10,

which were not used in this menu.

The nest step from here is to press F10 so that you can enter the

command information for the options which you typed.

258 The iSeries Pocket Developer’s Guide

Command Source Definition Panel

For each specific menu option used, you type the command or

program call you want the system to process when you select that

numbered menu option. If you have more than six or seven items

on a menu, you can use page down or page up to page through the

commands for your menu. The MenuX menu has only five visible

options so paging is not an issue for this example. As you can see

with option 6, you can also place commands or programs for

options which are not visible on the menu (STRPDM).

Figure H-7 Define Your Menu Commands
 Define Menu Commands

 Menu : MENUX Position to menu option ___

 Type commands, press Enter.

 Option Command

 01 DSPMSG___

__

 02 DSPLIBL__

__

 03 WRKOUTQ__

__

 04 CALL HELLO/VENDINQ___

__

 05 SIGNOFF__

__

 06 STRPDM___

__

 07 ___

__

 More...

 F3=Exit F11=Defined only options F12=Cancel F24=More keys

QuikCourse H. AS/400 & iSeries Screen Design Aid (SDA) 259

As you look at the executables for this menu, you will notice that

the menu can also contain user programs. The whole gamut of

AS/400 executable objects can be specified, from DFUs to Queries

to other AS/400 commands.

When you are entering the executable information for the menu

option, depending on the type, you can get a lot of help from the

system. For example, commands can be prompted by pressing F4.

You can also use nested prompting within commands as permitted.

However, it is easy to get trapped in a “bad prompt.” In these

instances it is helpful to remember that you can press ENTER to

exit prompting. If that is not enough for your escape, pressing

ENTER returns you to the Menu Design screen. Hit F3 or F12, and,

prior to the exit, you will again get the Specify Menu Functions

panel, from which you can resume design or exit SDA.

Exit SDA Menu Creation

To get the SDA exit panel from here, press ENTER or F3 or F12

from the Specify Menu Functions panel. That should be enough to

get you to the exit panel. You will then be presented with an exit

screen showing options for saving the generated source code, and

for creating the menu objects. You can see these in Figure H-8.

From here, you should be able to get out.

In Figure H-8, select the options to create your menu. If you are

replacing an existing menu of the same name, you can specify that

the old menu is to be deleted. As you can see from the options, both

menu source and menu objects get created in this process. You have

the option of replacing one, the other, or neither. To save your

source and build the SDA, press ENTER from this Exit panel. You

will return to the SDA initial Design Menus panel from which you

can specify another menu to work with.

260 The iSeries Pocket Developer’s Guide

Figure H-8 Exit SDA Menus
 EXIT SDA MENUS

 File QDDSSRC DDS Member MENUX

 Library TEAMxx Commands Member . . MENUXQQ

 Type choices, press Enter.

 Save new or updated menu source . . . Y Y=Yes, N=No

 For choice Y=Yes:

 Source File QDDSSRC___ Name

 F4 for list

 Library HELLO_____ Name, *LIBL, *CURLIB

 Text. X menu _________________________

 Replace menu members Y Y=Yes, N=No

 Create menu objects Y Y=Yes, N=No

 For choice Y=Yes:

 Prompt for parameters N Y=Yes, N=No

 Object Library HELLO_____ Name, *CURLIB

 Replace Menu Objects Y Y=Yes, N=No

 F3=Exit F4=Prompt F12=Cancel

Do not press F3 from this panel (Figure H-8), unless you do not

want to save your work, and create your menu objects. If you

accidentally hit F3, the system will ask if you really meant to exit

without saving (Source not saved. Press F3 again to confirm exit).

Pressing ENTER with this message gets you back to the SDA Exit

panel. Pressing F12 from the Exit panel cancels the exit and brings

you back to the Specify Menu Functions to permit you to make

additional changes.

As noted above, the correct option from the SDA Exit panel is an

ENTER key. This assumes that you are finished, and want to save

your work. You will then see the Design Menus menu, as in Figure

H-3, along with the following message at the bottom of the panel:

QuikCourse H. AS/400 & iSeries Screen Design Aid (SDA) 261

Menu MENUX saved in HELLO/QDDSSRC and

compiled in HELLO.

Running From the Menu

Now that you have a menu, it would be nice to execute it and then

pick some options from it. To get this process going, you use the

MENU command from the AS/400 command line as follows:

GO MENUX

or

GO HELLO/MENUX

This will bring you your newly created menu as shown in

Figure H-9.

262 The iSeries Pocket Developer’s Guide

Figure H-9 Newly Created Menu Built by SDA
MENUX MENUX Menu

Select one of the following:

 1. Display messages

 2. Display library list

 3. Work with all output queues

 4. Call RPG vendor inquiry program

 5. Sign off workstation

Selection or command

===>

F3=Exit F4=Prompt F9=Retrieve F12=Cancel

F13=Information Assistant F16=AS/400 main menu

Figure H-9 is your menu example. Please note that errors will occur

if option 4 is selected prior to the creating and compiling of the

RPG/400 VENDINQ program and display file.

Creating a Display File

Now, let’s create a panel for a display file. Assume you are at the

SDA main menu as seen in Figure H-2. From here, pick option 1 to

design screens and press ENTER. You will then get a panel similar

to that shown in Figure H-10.

QuikCourse H. AS/400 & iSeries Screen Design Aid (SDA) 263

Figure H-10 Design Screens Initial Panel
 Design Screens

 Type choices, press Enter.

 Source file QDDSSRC___ Name, F4 for list

 Library HELLO_____ Name, *LIBL, *CURLIB

 Member NEW_______ Name, F4 for list

 F3=Exit F4=Prompt F12 = Cancel

Screen Panel Exercise Objectives

In Figure H-10, specify the new member name, source file , and

library where the generated DDS resides (or will reside when

generated). As you attempt to create the member named NEW in the

QDDSSRC file in the HELLO library, let’s suppose it is already

there. On your systems, this will not happen to you. But, for this

exercise, let’s just suppose that somebody before you has created

this display file object. Let’s also say that later you learn that it is an

unnecessary, bogus object and you are authorized to delete it. Then,

you will be able to create your own version of NEW from scratch.

That’s exactly what this coming display file exercise is all about.

You are about to find (in this book exercise) that the file NEW

already exists. Then, you will bring up the NEW member and take a

look at it with SDA’s full screen panel editor.. From here, you will

try to delete it and you will discover that there is no easy way to get

all the pieces. Along the way, you will be shown the tools you need

to delete all of the entrails of the SDA application, and you will

begin again from scratch.

Before we get into the thick of the exercise, let’s review a few items

that will help put display file DDS in perspective. After all, SDA

creates DDS on its way to building the display file object from the

264 The iSeries Pocket Developer’s Guide

DDS that it generates. Sometimes DDS operations can be designed

to relate to certain portions of a display file. Some operations

pertain to all the panels in a the display file; some pertain to one file,

while others may pertain to just one field.

The following brief section is designed to put this in perspective as

well as present the nature and consistency of a display file object

and its relationship to a calling program.. Then we resume the case

study.

Levels: Files, Records, Fields

It is important to remember the relationship between Files, Record

Formats, and Fields. These important relationships have even more

bearing in display formats than in database. This material is covered

in detail, in both the IBM database manuals as well as in the new

LETS GO Publish Book: The iSeries Pocket Database Guide.

Each record in the display file specifies all the characteristics of one

display panel. Thus, operations occurring on one panel are known as

Record Level operations. A record is composed of fields, which

exist within a panel and are designated as input, output or both(input

and output). Operations on individual fields are known as Field

Level operations. Operations that occur in all records within a file

are referred to as File Level operations. The sum total of all of the

screens (record formats, panels etc.), with all of the associated fields

and attributes, is referred to as the display file object.

The name of the file is important. The HLL programs reference the

display file by name. Therefore the link from program to display file

is through the display file name as specified in the file section of the

HLL program. In RPG for example the display file name would

appear in the File Description Specifications as a WORKSTN

device file.

That’s it for the diversion. Now, let’s get back on te case study.

When you have your panel from Figure H-10 completed, press

QuikCourse H. AS/400 & iSeries Screen Design Aid (SDA) 265

ENTER to get to the Work with Display Records panel as shown in

Figure H-11.

Figure H-11 Work with Display Records SDA Panel
 Work with Display Records

 File : QDDSSRC Member : NEW

 Library : HELLO Source type : DSPF

 Type options, press Enter.

 1=Add 2=Edit comments 3=Copy 4=Remove

 7=Rename 8=Select keywords 12=Design image

 Opt Order Record Type Related Subfile Date DDS Error

 __ __________

 __ ___10 VENDFMT RECORD 10/04/90

 F3=Exit F12=Cancel F14=File-level keywords

 F15=File-level comments F17=Subset F24=More keys

266 The iSeries Pocket Developer’s Guide

Working with an Existing Source

Member

The NEW member already exists. Therefore, SDA goes

inside the member and picks up the information about

the one record format within the DDS that has been

previously built. As you can see in Figure H-11, the

record format name is VENDFMT.

To add a new format (display panel), from this panel,

you would specify the option(OPT) to add (1) and

specify the name of the record format. If you want to

update the existing format, type the appropriate

option number (12) next to the record format name.

For this example, upon arriving at this panel the

first time, there would not be a record format

(VENDFMT). But, in this educational example, we have

one.

The panel in Figure H-11demonstrates how an existing

record format in a display file member would look as

you enter SDA. Again, for you to add a new format, or

create your first one, you would use option 1 next to

the blank record format space (No Order #) and type

the name of the new format (panel name), which you are

about to build.

As you can see by looking at the options, including

option 12, you can use this panel to change

information about an existing format, add or change

comments, select record level keywords (option 8), or

QuikCourse H. AS/400 & iSeries Screen Design Aid (SDA) 267

file level keywords (F14), etc. You can also change

the image itself.

Look at an Existing Screen Image

As noted above, to work with the actual screen image for the

existing panel, you would use option 12. Let’s take that option now

to see just what the heck is already there. Press ENTER with option

12 specified and you will see the panel in Figure H-12.

Figure H-12 Screen Image Existing Format
 1 2 3 4 5 6 7 ...

 2 Vendor Inquiry

 3

 4

 5 Enter Vendor Number:

 6

 7 Name and Address Balance Owed

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20 F3 End of Job

 21

 22

 23

 24

In order to get your work panel to look like the panel in Figure H-

12, you must press PF14. This brings up the “rule.” The ruler will

give you a numeric columnar grid on the left and top so you have an

idea on which row and which column you are placing your design.

268 The iSeries Pocket Developer’s Guide

It should be no surprise that the VENDFMT panel defined in Figure

H-12 looks an awful lot like the panel that we hope to build, as

shown in Figure H-24. If you want to go take a peak at what the

panel will ultimately look like, feel free to look at Figure H-24 right

now. The image in Figure H-12, at this point is just the prompts.

Regardless, of what it is, our mission is to scratch it and start over.

Cleaning Up Old Entrails

When you begin your SDA experience in designing panels, for your

first screen panel, as you know by now, you will not have the luxury

of already having an already-built panel in your display file. You

will have to start from scratch. To start from-scratch now, you first

have to delete the DDS for this panel as well as the display file

which was created from this panel. To get this done, first you will

try the SDA Delete.

Since you do not really care about the panel in Figure H-12, and

since neither do I, let’s delete it now. To delete a panel which is in

your design window, you must first exit the design panel. Press F12

or F3 to return to the Work with Display Records screen. You will

see a line in the body of the panel similar to the line below:

 10 VENDFMT RECORD

Type a “4" right next to the sequence # 10 record as above, so that

the line looks like that immediately below:

 4 10 VENDFMT RECORD

QuikCourse H. AS/400 & iSeries Screen Design Aid (SDA) 269

Now, press ENTER. As soon as you press ENTER, you will see a

message such as:

Record VENDFMT deleted from member NEW.

Now, the Work with Display Records screen has no display records.

If you went through a normal exit at this point and you asked for a

display file to be built, none would be built for you.

No Real Content

There is not a single record format in the NEW source file which

was generated by SDA for the “panel-less” file which we left

behind. We deleted the only format above. For your information, we

have brought up an SEU panel in Figure H-13. This shows the DDS

for this “record-less” file. Though there are no panels defined, it is

not gone. I would suggest to IBM that SDA would be better off not

creating such a “nothing” member.

Figure H-13 Source for Display File NEW After Format Deletion
 Columns . . . : 1 71 Browse HELLO/QDDSSRC

 SEU==> NEW

 FMT A*A*. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+...

 *************** Beginning of data ************************************

0000.10 A*%%TS SD 20020512 150636 BKELLY REL-V5R1M0 5722-WDS

0000.20 A*%%EC

0000.30 A DSPSIZ(24 80 *DS3)

 ****************** End of data**

 F3=Exit F5=Refresh F9=Retrieve F10=Cursor F11=Toggle F12=Cancel

 F16=Repeat find F24=More keys ©) COPYRIGHT IBM CORP. 1981,

For the record, the source in Figure H-13 will never compile as it

exists.. There are two comments and a display size parameter. Yet,

SDA saves this source anyway under the member name, NEW,

270 The iSeries Pocket Developer’s Guide

which is the member we intended to create. So, SDA will not bring

us back to the point of having nothing in the member. Moreover,

since the new source has no record format and therefore it cannot

compile, using SDA, we cannot wipe out the old display file object

which existed before we began this modification process. So what

do we do to delete this “crap” if SDA gives us no tools?

Deleting Bogus SDA Source

How do we get rid of the entrails of a display file object and display

file member when we want to start over? There are two answers:

1. Not with SDA

2. With PDM

Both answers are equally important since, if you did not know

answer one, you would not look for answer two. Use your PDM

knowledge to reset the files to how they would be if a member NEW

and a display file NEW never existed. From the Work with members

panel for QDDSSRC in HELLO, place a “4" for DELETE right next

to member NEW and press ENTER. This gets rid of the SDA-built

source.

You’re only half finished. The next thing to do is to get rid of the

display file object. From the Work with Objects Using PDM panel

find NEW, the file object. Place a “4" for DELETE right next to the

Display File object named NEW and press ENTER. At this point,

there would be no entrails left for the member and the file named

NEW, so you can now build a new member and a new panel and a

new object from scratch.

Building SDA Image From Scratch

Start your session by typing the start SDA command (STRSDA).

The SDA main menu would appear as in Figure H-2. Type “1" for

Design screens. The Design Screens option panel is presented as

shown in Figure H-10 and filled in as in Figure H-10. After

completing the panel in H-10 and pressing ENTER, you will see a

QuikCourse H. AS/400 & iSeries Screen Design Aid (SDA) 271

panel as in Figure H-11 with one big difference. There is no record

format in the file. In fact when you arrive, it says very clearly, as

shown near the bottom of Figure H-14: (No records in file).

Figure H-14 Creating The First Display Panel for the Display File
 Work with Display Records

 File : QDDSSRC Member : NEW

 Library : HELLO Source type . . . : DSPF

 Type options, press Enter.

 1=Add 2=Edit comments 3=Copy 4=Delete

 7=Rename 8=Select keywords 12=Design image

 Opt Order Record Type Related Subfile Date DDS Error 1 VENDFMT

 (No records in file) Bottom

 F3=Exit F12=Cancel F14=File-level keywords

 F15=File-level comments F17=Subset F24=More keys

In this from-scratch effort, your mission is to create one record

format for this display file. In the end, the panel you create will look

like that in Figure H-24. To begin this process, place a “1" in the

options column and place the name of the new format (VENDFMT)

in the Record column. This is already done for you in Figure H-14.

Press the ENTER key to get the process under way. You will then

be asked what type of record to add to the display file. This question

is shown in Figure H-15.

Figure H-15 Add a New Record Selection
 Add New Record

File : QDDSSRC Member : NEW

 Library : HELLO Source type . . . : DSPF

272 The iSeries Pocket Developer’s Guide

Type choices, press Enter.

 New record VENDFMT Name

 Type RECORD RECORD, USRDFN

 SFL, SFLMSG

 WINDOW, WDWSFL

 PULDWN, PDNSFL

 MNUBAR

F3=Exit F5=Refresh F12=Cancel

Specify Record Format Type

You can see in Figure H-15 that we answered the question by filling

in the word RECORD for the type. There are nine choices for the

record type, from which you can choose. A normal display file is

known as a record. That’s what you want to create for this case

study. That’s what you pick. When you pick RECORD and hit

ENTER, SDA makes that panel image part of the display file SDA

source.

SDA is most helpful in being able to build most, if not all of the

powerful display facilities supported by DDS. The panel types in

Figure H-15, include record type keywords for subfiles, windows,

pull-down menus, and menu bars. We are keeping the examples

simple in this introductory QuikCourse. As noted, the correct choice

for a regular display panel, such as that, which we are selecting is

RECORD. After making this selection, press the ENTER key.

QuikCourse H. AS/400 & iSeries Screen Design Aid (SDA) 273

The No-Nonsense Design Image Panel

You will immediately be taken to a completely black design screen

with no hints at all as to what you should do next. The closest thing

to help you at this point is a little message at the bottom of the black

void which says:

Work screen for record VENDFMT: Press Help

for function keys.

If you follow the message and hit either the Help key or the F1

(Help) key, you will get a ton of help. Among other things, this

Help text will “help” you know what to do next. As soon as you get

into the design panel, on your own, take the Help trip and study how

much text is available. Then, when you need to get a question

answered, you know where to find the Help text. Roll through all

the Help if you can spare the time. Everything you are about to do in

this exercise is covered in the Help text after a “few’ rolls.

Typing Your Screen Constants

When you are finished with the HELP text review, press F14 so that

you can see the reference lines on the top and left as shown in

Figure H-12. After you see the lines, type up the constant

information onto the display as shown in Figure H-12.

When you have this typing done, you have one more task to do

before this phase is completed. On your design panel, after it looks

exactly as Figure H-12, place a single quote around (in front of and

after) each set of constant text. Do not place quotes around each

individual word. When you finish, you should have ten single

quotes in total, in five pairs, surrounding the five different clumps of

text on the panel. When your display looks like this, press the

ENTER key.

274 The iSeries Pocket Developer’s Guide

You will notice that the quotes disappear. The purpose for the

quotes is to define blocks of text to be treated in the same fashion.

If, for example, you wanted to highlight just the title text, Vendor

Inquiry, you could do so by placing the highlight (h) code

immediately to the left of the text such as:

hVendor Inquiry

When you press the ENTER key from the design panel,

immediately, you would see this text highlighted, such as the

following:

 Vendor Inquiry

QuikCourse H. AS/400 & iSeries Screen Design Aid (SDA) 275

Instantaneous Feedback Upon ENTER

You may also notice that after you press ENTER, any SDA

commands on the design screen, such as the quotes to block text

together or the “h” command to highlight a block of text, are all

gone. ENTER causes a design panel interaction with SDA. SDA

does its work during these interactions. The panel returns to a

WYSIWYG form so that you know what the effect of your change

has been immediately. For example, your highlighted field will

immediately appear highlighted

If you are here with me at this point, then, you are just about done

with the panel as it existed prior to deleting it and starting over. It’s

back! You keyed the constants at the desired locations. As you can

see from your own work in getting the panel to look like that in H-

12. the panel is really incomplete. It does not yet include any

variable fields - either input or output. You are about to add fields

from the database to this panel shortly.

Intermediate Exit and Creation

To know which command keys to hit for ending the database design

session (F3 or F12) and to know the various attribute commands,

such as “h” for highlight, you already toured the Help text earlier in

this QuikCourse by hitting the Help key or F1. During the tour, the

Help text told you about using F14 for the ruler and it also told you

that the F10 key is to be used to bring in field descriptions from the

data base file – for both prompt and field reference purposes.

As a final review point before moving on, we also discussed the

motion of multi word constants, and we suggested enclosing them in

quotes. Overall, blocking constant text in this fashion, results in

fewer DDS statements, and it makes working with / examining the

SDA-created DDS substantially easier.

Before we add to the display file DDS that SDA is about to create,

let’s exit SDA from the display panel, without adding any variables.

276 The iSeries Pocket Developer’s Guide

Do this by pressing F12 twice. Then hit ENTER after reviewing the

“defaults” specified on the SDA exit panel. When you get to a

command line, the file NEW has been created, though it is

incomplete. Moreover, SDA has created DDS specs for you in a

source member. Take a look at the DDS which exists now before

you proceed to complete the panel.

Figure H-16 NEW Source with Only Constant DDS
Columns . . . : 1 71 Edit HELLO/QDDSSRC

SEU==> NEW

FMT A*A*. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7

 *************** Beginning of data *************************************

000.10 A*%%TS SD 20020512 171200 BKELLY REL-V5R1M0 5722-WDS

000.20 A*%%EC

000.30 A DSPSIZ(24 80 *DS3)

000.40 A R VENDFMT

000.50 A*%%TS SD 20020512 171012 BKELLY REL-V5R1M0 5722-WDS

000.60 A 2 24'Vendor Inquiry'

000.70 A 5 9'Enter Vendor Number:'

000.80 A 7 9'Name and Address'

000.90 A 7 51'Balance Owed'

001.00 A 20 29'F3 End of Job'

 ****************** End of data **

F3=Exit F4=Prompt F5=Refresh F9=Retrieve F10=Cursor F11=Toggle

F16=Repeat find F17=Repeat change F24=More keys

 ©) COPYRIGHT IBM CORP. 1981, 2000.

Checking Intermediate DDS with SEU

The quick way to check your DDS is as follows:

Use PDM to Work with members; select QDDSSRC in the HELLO

library. Press ENTER to get the list of SDA members. Display

QuikCourse H. AS/400 & iSeries Screen Design Aid (SDA)

277

member NEW (PDM option 5), which is the newly created DDS

from SDA. Yes. It is incomplete, but let’s see it in its

incompleteness. The source should look similar to that in Figure H-

16. Notice the big chunks of text. If you had not used the quotes

around the constant text blocks as suggested, there would be many

more, but smaller DDS statements. SDA would make each word a

statement by default.

Incremental DDS from SDA

If you contrast the source of Figure H-13, and Figure H-16, you can

see that six lines have been added. There is one line for each quoted

block of constant text and there is a record format (“R” in column

17) statement line in which the screen panel is named. The same file

level keyword DSPSIZ which existed in the shell in Figure H-13 is

recreated and there are no other keywords. Moreover, as predicted,

there are no variable fields defined in DDS.

The numbers you see prior to the text represent the screen panel

location information for the row and column starting positions. This

is where you placed the text on the screen. These positions are

determined based on where you keyed the text on the design panel.

This is one of the major timesaving benefits of SDA. Can you

imagine manually coding these DDS statements in such detail, as

well as having to specify the exact “from” and “to” positions? The

panels would just be lovely! Wouldn’t they now?

Adding Variable Fields From the Database

Let’s exit SEU and PDM and bring back our SDA design panel as it

was in Figure H-12. We get there by the following:

1. F3 from PDM

2. STRSDA

3. Design Screens - option 1

278 The iSeries Pocket Developer’s Guide

4. Specify QDDSSRC in HELLO, member NEW

5. Place a 12 next to New in the record list.

Adding Fields With Database References to Display File Panels

Now, let us begin to add input and output information to this panel.

First press F10 to get at the database. Pick the VENDORP file

created in an earlier QuikCourse. You will see a panel similar to that

in Figure H-17.

Figure H-17 Select Database Files For Screen Reference
 Select Database Files

 Type options and names, press Enter.

 1=Display database field list

 2=Select all fields for input (I)

 3=Select all fields for output (O)

 4=Select all fields for both (B) input and output

 Option Database File Library Record

 1 VENDORP HELLO VNDMSTR

 F3=Exit F4=Prompt F12=Cancel

To get a look at all of the fields in the VENDORP file, which you

might choose to use as input or output references, select option 1,

and specify the location for the VENDORP database file as shown

in Figure H-17. In this panel, select the data base file, library and

the specific record format, to serve as a reference for the fields

being defined on the screen image panel.

Of course, this all depends on the VENDORP database file already

having been created in a prior QuikCourse.

QuikCourse H. AS/400 & iSeries Screen Design Aid (SDA) 279

Figure H-17 Select Database Fields for use on Design Display
 Select Data Base Fields

 Record . . . : VNDMSTR

 Type information, press Enter.

 Number of fields to roll __8

 Name of field to search for ________

 Type options, press Enter.

 1=Display extended field description

 2=Select for input (I), 3=Select for output (O), 4=Select for both(B)

 Option Field Length Type Column Heading

 4 VNDNBR 5,0 P VENDOR NUMBER

 3 NAME 25 A NAME

 3 ADDR1 25 A ADDRESS LINE 1

 3 CITY 15 A CITY

 3 STATE 2 A STATE

 3 ZIPCD 5,0 P ZIP CODE

 _ VNDCLS 2,0 P VENDOR CLASS

 _ VNDSTS 1 A ACTIVE CODE

 More...

 ...

 3 BALOWE 9,2 P BALANCE OWED

 F3=Exit F12=Cancel

Selecting Database Fields for Use

Before you see the panel in Figure H-17, you must have an idea of

what you want to do. In this panel, you take what you want to do,

and you ask the AS/400 database to make your job easier in

defining the fields that will be on the display. Knowing what data,

from what files, you need for your panel, makes it easier to select

the fields. This is the right time in the process. After picking F10

from the image panel, it is time to pick the fields that should appear

in the particular image panel that you are building with SDA..

As you pick the fields, you also must tell SDA to select the field for

use on the panel for input, output or both purposes. Both is short for

both input and output. Fore each database field that you want to be

280 The iSeries Pocket Developer’s Guide

used in the panel, Enter a “2" to select it for input, a “3" for

output, and a “4" for both (input and output). Notice that in the

panel shown in Figure H-17, we have already selected the

VNDNBR field as both (option 4), and we have selected six other

fields as output only (3).

To get to see field six, BALOWE on this panel, you must hit Page

down or Roll Down. Then, select the field as an output field (3). In

Figure H-17, we superimposed field BALOWE at the bottom of the

panel, so you could see it in better context.

The idea with this application as you may have already surmised is

that this one panel is to be used to enter a vendor number. The

program will then look up the vendor information, and redisplay the

vendor number as an output field. Additionally, after looking up the

vendor information, the program writes the data to the same display

panel with the same “write” operation. Because the vendor

information is sent to the screen as output, it cannot be read in.

Since it cannot be read, it cannot be changed. In fact, SDA produces

DDS which will send the data out, but will lock the keyboard if the

user tries to change one of the output fields.

When you are done with this panel hit F3 or ENTER to return to the

design panel. When you get back to the design panel, you should be

pleased to see that the selected fields are displayed on the bottom

row of the work screen where you design your display. Press page

down (Roll on some terminals) to display more data base fields if all

of them are not visible.

Exiting the Data Base Option

Press ENTER on the display shown in Figure H-17 to return to the

Select data base files display if you want to reference another file

for input, or if you are on your way to exiting. In this example, press

F3 or ENTER again from the database files display, to return to the

design panel. You will see a screen similar to that shown in Figure

H-18.

QuikCourse H. AS/400 & iSeries Screen Design Aid (SDA) 281

Figure H-18 Vendor Inquiry Panel With Fields in On-Deck Circle
 1 2 3 4 5 6 78

 2 Vendor Inquiry

 3

 4

 5 Enter Vendor Number:

 6

 7 Name and Address Balance Owed

 8

 9

10

11

12

13

14

15

16

17

18

19

20 F3 End of Job

21

22

23

 1:VNDNBR 2:NAME 3:ADDR1 4:CITY 5:STATE 6:ZIPCD 7:BALOWE

When you are looking for a field and it is not in the list, remember

that the bottom line holds only so many. The fields are inserted and

appear in a multiple-field mode at the bottom of the work screen as

shown in Figure H-18. This is what we referred to as the “On-Deck

Circle.” A “+” at the end of the field name list indicates there are

more field names. Just press page down to display more field

names.

SDA Image Commands

Notice in Figure H-18 that the text fields are in tact, and the design

panel is in somewhat of a wait state. It is waiting for you to do

something with these fields. They don’t just pop up into the screen

panel. You have to place them. To do this, SDA has given some

handy commands. The first command is the “&.” With this

command, you tell SDA to “place a database field right here!”

282 The iSeries Pocket Developer’s Guide

Following the “&” command, you then tell SDA which database

field number to place. We already pre-typed the SDA database

commands “&” in the panel in Figure H-19. These reference by

number the on-deck fields that SDA lsts at the bottom of the panel

after you select them in the panel shown in Figure H-17. You may

also notice that we did one more thing with Figure H-19.

In real life, you would not split your design by (1) implementing the

constant fields, (2) saving the panel, (3) creating the file, and (4)

coming back in update mode to add the variables with database

fields, as we did for this training example. Thus, Figure H-19 shows

how the panel as it should look when you build it with all the

necessary information specified at once. In other words, the quote

commands surround the text as they should have at the time we built

the constants-only panel.

QuikCourse H. AS/400 & iSeries Screen Design Aid (SDA) 283

Figure H-19 Database Fields Selected for Action
 1 2 3 4 5 6 7

 2 ‘Vendor Inquiry’

 3

 4

 5'Enter Vendor Number:’ &1

 6

 7'Name and Address’ ‘Balance Owed’

 8

 9 &2 &7

 10 &3

 11 &4 &5 &6

 12

 13

 14

 15

 16

 17

 18

 19

 20 ‘F3 End of Job’

 21

 22

 23

 1 VNDNBR 2 NAME 3 ADDR1 4 CITY 5 STATE 6 ZIPCD 7 BALOWE

Getting Column Headings From the Database

As you can see in Figure H-19, in addition to the blocked text

shown with quotes, we have placed the “&” command plus the field

number at the location desired for each field. If you want to be more

productive than this, or perhaps you are feeling a little lazy during

your design trip, SDA gives you a few more tools to eliminate even

more keying and more guesswork.

284 The iSeries Pocket Developer’s Guide

You can ask SDA to get you the column headings from the database

and you can then use them as your prompts. If you have good

column headings, the idea is that there should be lots less keying

and lots less opportunity for misinterpretation of field meanings.

Moreover, you can tell SDA to place the prompt text to the left or to

the right of the inserted database input or output field, so you have

initial design flexibility. Additionally, you can tell SDA to place the

column heading right on top of the field being defined.

You add the column heading and provide its placement with one-

letter commands. You place the letter “L” for left, or the letter “R”

for right or the letter “C” for center, along with the “&” command

and the field number. This is how you tell SDA to grab the column

heading, along with the field definition, and place them on your

design panel – based on the specific command you used.

When you press ENTER on the display, you see how nice or how

ugly the text prompts appear in the work display. If they are not so

nice, without re-keying or excess typing, you can simply change

them and move them accordingly.

After hitting ENTER on Figure H-19, your display panel should

look similar to that in Figure H-20.

QuikCourse H. AS/400 & iSeries Screen Design Aid (SDA) 285

Figure H-20 The Resulting Display Panel
 1 2 3 4 5 6 7

 2 Vendor Inquiry

 3

 4

 5 Enter Vendor Number:*99999-

 6

 7 Name and Address Balance Owed

 8

 9 OOOOOOOOOOOOOOOOOOOOOOOOO *666666666

 10 OOOOOOOOOOOOOOOOOOOOOOOOO

 11 OOOOOOOOOOOOOOO OO*66666

 12

 13

 14

 15

 16

 17

 18

 19

 20 F3 End of Job

 21

 22

 23

 24

The field Vendor Number, which is represented by all 99999s, is an

output/input (both) field, and it is defined as numeric. The fields

defined at lines 9 to 11 are a combination of alphabetic output (O)

and numeric output(6). If you were not using SDA database

referencing to supply the field attributes and lengths, you would

have had to count field spaces and assure that your coding lined up

properly. This would be another thing you would have to do that

would not be much fun! SDA helps keep it light-hearted. The

database referencing ability is just another way that SDA saves this

286 The iSeries Pocket Developer’s Guide

type of drudgery, and in so doing, it saves time. Who wants to be

counting O’s as you are hitting the O key, hoping not to have one

too many or one too few?

Adding Fields and Changing Field

Attributes

Oh! It’s not that you can’t make a mistake with SDA. You can make

as many as you please, and you can fix them just as fast – long

before you’d know you’d made them if you were dealing just with

DDS. You can add fields and/or change the attributes of fields after

they are on your work display — years after you’ve first created

your display file. As you can see in Figure H-20, we are doing

exactly that for the vendor number field and the balance owed field.

 By placing asterisks “*” next to fields to be edited for highlighting

or perhaps to display their attributes. The “*” is just another tool

that enables you to open the fields up for many different

combinations of changes, without once having to refer to your DDS

manual.

Field Manipulation Commands

There are also one-character commands which immediately

highlight a field. You have already seen the highlight command. A

few more examples include the “r” for reverse image, and the “u”

for an underline.

Delete Field Command

Some one-character commands do more than just highlight. They

are much more powerful. The “d” command, for example, is for

dangerous. OK, it is not. But it is dangerous! You can place a “d”

next to any field you want to delete from the panel. It’s that easy.

Press ENTER and it’s gone.

QuikCourse H. AS/400 & iSeries Screen Design Aid (SDA) 287

Two Forms of Move Commands

Two other powerhouse commands are the two forms of “move.” To

move fields you have two choices. And, they are both good! To

move them a little, use the symbols “ >>>>” and “<<<<.” There is

a one-to-one relationship between symbols used and characters

moved. These field move commands move fields, and blocks of

fields, to the left (<) or to the right(>) as many positions as symbols

you type. If you type four “>>>>” signs, for example, and you

place them next to the rightmost character of text to be moved,

when you press ENTER, the text will be four positions over to the

right. Likewise if you wanted to move to the left, you would type

the “<“ symbols to the left of the text to be moved.

Another tremendous tool is the “block move” operation. To move

fields a lot, use this command. This move command is a simple

dash “-” preceding the field or text block to be moved. Just like

SEU, it needs a corresponding to-position indicator to get its job

done. SDA has chosen the equal sign “=” for this. An example of

the way this works is as follows: If you place a dash on text at, say

line 23, and you put an equal sign in some column on say, line 5,

after you hit the ENTER key, the block of text from line 23 is now

on line 5, starting at your designated column position. It is no longer

on line 23. The move operations make it so easy to redesign the

work panel on the fly that it actually isn’t any fun getting it right the

first time.

288 The iSeries Pocket Developer’s Guide

Adding a New Field to Your Display

There will also be times that you must add a field to the panel which

is not in a database. For example, if your program is calculating a

result which goes nowhere else but the screen panel, your panel

must know about that field somehow. SDA handles it. You can

easily add your own fields to the work screen. Just key a “+” to

specify a user-defined field. For numeric, “3" is input, “6" is output

and “9" is both. For alphabetic, “I” is input, “O” is output, and “B”

is both. For example: +6(8,2) creates a field named FLD001 (default

field name) with a length of eight, and with two decimals for output

only.

Changing Display attributes

It’s been so long, we would like to remind you that, in our example

panel in Figure H-20, we have placed asterisks “*” next to the

vendor number field (VNDNBR), the balance owed field

(BALOWE), and the zip code (ZIPCD) field . When you hit

ENTER, with these asterisks positioned where they are, you will

first see a panel similar to that in Figure H-21.

QuikCourse H. AS/400 & iSeries Screen Design Aid (SDA) 289

Figure H-21 Select Field Keywords
 Select Field Keywords

 Field : VNDNBR Usage . . : B

 Length : 5,0 Row . . . : 5 Column . . . : 31

 Type choices, press Enter.

 Y=Yes For Field Type

 Display attributes Y All except Hidden

 Colors All except Hidden

 Keying options Hidden, Input or Both

 Validity check Input or Both, not float

 Input keywords Input or Both

 General keywords All types

 Editing keywords Y Numeric Output or Both

 Database reference Hidden, Input, Output, Both

 Error messages Input, Output, Both

 Message ID (MSGID) Output or Both

 TEXT keyword VENDOR NUMBER

 F3=Exit F4=Display Selected Keywords F12=Cancel

You will see a panel similar to Figure H-21 once for each of the

fields selected with the “*” command. From this panel, for

VNDNBR, change the Display attributes and Editing keywords by

placing “Y” responses in this panel. For BALOWE and ZIPCD,

change just the Editing keywords by typing a “Y.” To proceed from

this panel for the field VNDNBR, type “Y” in the appropriate

columns as shown in Figure H-21. You will first be taken to a panel

similar to the Select Display Attributes panel as in Figure H-22.

290 The iSeries Pocket Developer’s Guide

Figure H-22 Select Display Attributes
 Select Display Attributes

 Field : VNDNBR Usage . . : B

 Length : 5,0 Row . . . : 5 Column . . . : 26

 Type choices, press Enter.

 Keyword Y=Yes Indicators/+

 Field conditioning

 Display attributes: DSPATR

 High intensity HI _ ___ ___ ___

 Reverse image RI Y _44 ___ ___

 Column separators CS _ ___ ___ ___

 Blink BL _ ___ ___ ___

 Nondisplay ND _ ___ ___ ___

 Underline UL _ ___ ___ ___

 Position cursor PC _ ___ ___ ___

 Set modified data tag MDT _ ___ ___ ___

 Protect field PR _ ___ ___ ___

 Operator ID magnetic card OID _ ___ ___ ___

 Select by light pen SP _ ___ ___ ___

 F3=Exit F12 = Cancel

By placing the “*” next to the vendor number field (VNDNBR),

you first get the panel in Figure H-21. From there, you determine

which type of attribute you want to change. By selecting a “Y” for

Display Attributes, you get to work with the panel in Figure H-22.

By selecting a “Y” for editing keywords, you get to work with a

panel similar to that in Figure H-23.

Changing Attributes

QuikCourse H. AS/400 & iSeries Screen Design Aid (SDA) 291

Our display objective for the VNDNBR field is to make it a reverse-

image, if a certain condition occurs in the program. To display the

field in reverse-image (like a negative) under certain conditions,

specify the attributes as shown in the panel in Figure H-22. When

you come back to the design work panel, the field VNDNBR will

show in reverse-image.

Conditional Attributes Using Indicators

However, it will not be shown in reverse-image when put out by the

program unless indicator 44 is on in the controlling program at the

time of the output operation. You set the condition (indicator 44 in

this case) for the field to be shown in reverse-image within the high-

level language program. If the indicator is on, the VNDNBR field

will be lit up in reverse-image when the program sends out this

screen panel. Field conditioning and un-conditioning can be

achieved by entering a “Y” by the desired display attribute (

DSPATR) when you select an indicator to condition the attribute.

Adding Editing Keywords

When you have changed the attributes in Figure H-22 to your

satisfaction, press the ENTER key until the display changes to

Select Editing Keywords for VNDNBR. This panel is shown in

Figure H-23. Notice that we used the “3" edit-code for the field

since, for this field type, we found it desirable to edit it so that zero

value vendor numbers will show, and there will be no commas, and

no decimals in the vendor number field.

292 The iSeries Pocket Developer’s Guide

Figure H-23 Selecting Editing Keywords or Codes.
 Select Editing Keywords

 Field : VNDNBR Usage . . : B

 Length : 5,0 Row . . . : 5 Column . . . : 31

 Type choices, press Enter.

 Keyword More

 Edit code EDTCDE 3 A-D, J-Q, W, Y, Z, 1-9

 Replace leading zeros with *, $

 Edit word EDTWRD

 Edit mask EDTMSK

 F3=Exit F12=Cancel

After you finish with the VNDNBR field for both attributes and

editing, keep pressing the ENTER key until the field name changes

to BALOWE. It should be right away. By having placed the “*”

next to the balance owed field, you also get a panel similar to that in

Figure H-21. However, the field name is primed with BALOWE

instead of VNDNBR, since that is the field you now want to adjust.

Since it is a nice big numeric field, it would be nice for it to show up

edited on the final display.

You do not need a Y for Display Attributes, as in VNDNBR, since

the attributes are fine. However, to make the field look right, you

need to do some editing of the output. If you look down, near the

bottom of the panel in Figure H-21, you will notice Editing

Keywords. Place your “Y” in this field. Make sure there is not a “Y“

in any of the other attributes, and press ENTER. You will see a

panel similar to that in Figure H-23. Instead of VNDNBR, however,

the field name will be BALOWE.

If you hit Help on the Edit-codes field, it will tell you which code

produces which level of editing. This is very handy. I like to show

dollar fields with commas and have zero balances appear on the

report rather than be hidden. Also, I like to have a minus sign show

QuikCourse H. AS/400 & iSeries Screen Design Aid (SDA) 293

to the right of the number if the value is negative. If you hit the Help

or F1 key now, you will see that the edit-code to do all of that is a

“J.” To select “J,” type it into the Edit-code instead of the “3" as in

Figure H-23 and press Enter.

You should see the panel as in Figure H-21 again, except this time,

the field name should be ZIPCD. Follow the same process for

editing this field as you did for VNDNBR, but leave the attributes

alone. Change the edit-code to “3". When you have made all of your

editing and attribute changes for the asterisked “*” fields, you

should return to the SDA work panel. Your display should no longer

show the “-“ sign to the right of VNDNBR and ZIPCD and the

BALOWE field should appear nicely edited. See Figure H-24 for the

final display panel.

Figure H-24 Final Version of Display Panel
 1 2 3 4 5 6 7

 2 Vendor Inquiry

 3

 4

 5 Enter Vendor Number: 99999

 6

 7 Name and Address Balance Owed

 8

 9 OOOOOOOOOOOOOOOOOOOOOOOOO $6,666,666.66-

 10 OOOOOOOOOOOOOOOOOOOOOOOOO

 11 OOOOOOOOOOOOOOO OO 66666

 12

 13

 14

 15

 16

 17

 18

 19

 20 F3 End of Job

 21

294 The iSeries Pocket Developer’s Guide

 22

 23

 24

The example in Figure H-24 shows the final form of the screen just

designed. This is the screen in its completed form. Remember, even

now, you can move any of the fields around, delete fields, or add

more fields and more constants.

Assigning End-of-Job Indicator

Before you close this out, there is one more job to do. You need to

enable a command key (CF03) and assign an indicator (switch)

value to the command key so that the program can get a signal from

the display panel when the operator decides that it is time to end it.

Since there is only one display panel, and since other panels, if

added, may very well want to end the program in the same fashion,

add the CF03 function key at the file level.

From Figure H-24, press F24 to return to the Work with Display

Records panel similar to that in Figure H-14. From this screen, if

you were assigning the indicator to just this one panel design, you

would type an “8" next to the format name. You would then press

ENTER, and select Indicator keywords by placing a “Y,” next to the

prompt. You would then see a panel similar to Figure H-25. On this

panel, you would type CF03 for keyword. You would pick response

indicator 03. And, you would type “end-of-job” for text. This would

create the indicator reference at the record format (display panel)

level.

Indicator at File Level

However, you would want this command key to work for all display

panels, even those not yet built. To do this, from the panel shown in

Figure H-14, you would press F14 for “File-level keywords.” You

would then select “Indicator keywords” as above for the record

QuikCourse H. AS/400 & iSeries Screen Design Aid (SDA) 295

level. After all that, you would get a panel, which looks the same as

the panel used for record function keys, as shown in Figure F-25.

Figure H-25 Defining Command Keys and Indicators
 Define Indicator Keywords

Member . . . : NEW

Type keywords and parameters, press Enter.

 Conditioned keywords: CFnn CAnn CLEAR PAGEDOWN/ROLLUP PAGEUP/ROLLDOWN

 HOME HELP HLPRTN

 Unconditioned keywords: INDTXT VLDCMDKEY

Keyword Indicators/+ Resp Text

CF03 03 end-of-job

 ...

 Bottom

F3=Exit F12=Cancel

Press ENTER to return to the Work with Display Records panel.

After defining the command keys, we have no more design work to

do. From here then, it is time to compile and test your display file.

Press F3 to exit. You will get the SDA exit panel similar to that in

Figure H-8. Take the same options. The source will be saved and

your updated file will be created. At this point of success, you now

have a display file to test.

Testing Display Files

296 The iSeries Pocket Developer’s Guide

The third option from the SDA main menu is to test display files.

Take option 3 and you will see a panel similar to that in Figure H-

26.

Figure H-26 Testing Display Files
 Test Display File

Type choices, press Enter.

 Display file NEW Name, F4 for list

 Library HELLO Name, *LIBL ...

 Record to be tested VENDFMT Name, F4 for list

 Additional records to display Name, F4 for list

F3=Exit F4=Prompt F12=Cancel

In Figure H-26, you put the name of the file, the library and the

screen panel to be tested, and then you come to the test data panel as

shown in Figure H-27.

Figure H-27 Setting Output Values for Panel Test
 Set Test Output Data

Record . . . : VENDFMT

Type indicators and output field values, press Enter.

Field Value

*IN44 0:

VNDNBR 00028:

NAME C ENGRAVING CO :

BALOWE 000010000:

ADDR1 932 Wright :

QuikCourse H. AS/400 & iSeries Screen Design Aid (SDA) 297

CITY Chicago :

STATE IL:

ZIPCD 60615:

 Bottom

F3=Exit F12=Cancel

298 The iSeries Pocket Developer’s Guide

Test Data

In the panel in Figure H-27, you specify the test data which the

panel tester will use to display your screen as if it were put out by a

program. This lets you fix problems even before you hit the

program phase. In this example, we put in some vendor information

as in Figure H-27, as well as the status of indicator 44 (1 for on and

0 for off).

Figure H-28 Output of SDA Display Panel Test
 Vendor Inquiry

 Enter Vendor Number: 28

 Name and Address Balance Owed

 C ENGRAVING CO 100.00

 932 Wright

 Chicago IL 60615

 F3 End of Job

As you can see in Figure H-28, the panel reflects the test data which

we used. If we had set indicator 44 to a “1" then the field would

have been shown in reverse-image. Notice that there is no sign in

VNDNBR and ZIPCD and that the “hundred dollars” in BALOWE is

nicely edited as we prescribed.

Display File in a Program

QuikCourse H. AS/400 & iSeries Screen Design Aid (SDA) 299

The next step is to merge the file with a program. For your

edification, Figure H-29 shows an RPG program, which sends out a

display of vendor information from the database using this panel

The logic of the program is as follows:.

Figure H-29 RPG program (NEW) for Display File (NEW)
 Columns . . . : 1 71 Browse HELLO/QRPGSRC

 SEU==> NEW

 FMT FX.....FFilenameIPEAF........L..I........Device+......KExit++Entry+A....U

 *************** Beginning of data *************************************

0001.00 FNEW CF E WORKSTN

0002.00 F* LOGICAL FILE VENDMST BUILT OVER VENDORP WITH KEY

0003.00 FVENDMST IF E K DISK

0004.00 I 'VENDOR NOT FOUND 'C ERRMSG

0005.00 C *IN03 DOWEQ*OFF CF03 = 03

0006.00 C EXFMTVENDFMT

0007.00 C VNDNBR CHAINVENDMST 90 90 = NOT FOU

0008.00 C *IN90 IFEQ *ON

0009.00 C MOVELERRMSG NAME

0010.00 C ENDIF

0011.00 C ENDDO

0012.00 C MOVE *ON *INLR

 ****************** End of data **

 F3=Exit F5=Refresh F9=Retrieve F10=Cursor F11=Toggle F12=Cancel F16=Repeat find F24=More

keys ©) COPYRIGHT IBM CORP. 1981, 2000.

RPG Display File Program Logic

The program starts with a Do-While-Equal (DOWEQ) statement.

This tells the compiler to keep running the same set of statements,

from 0005 to 0010 until something happens. That “something”

300 The iSeries Pocket Developer’s Guide

occurs if indicator 03 (a switch that gets tested) has turned to the

ON state from the OFF state.

You may recall that in our SDA display panel, we assigned

Command Key 3 to the indicator 03. Thus, when indicator 03

(*IN03) is turned on by the display file, it is a signal to the program

that the program user wants to end the program. The DOWEQ then

moves to statement 0012 and sets on LR (last record), which is how

RPG programs end.

Within the repeating Do-Loop, at statement 0006, the program

sends out the VENDFMT panel from our SDA-built display file.

The EXFMT operation in RPG sends a panel and then waits in the

program for a user to enter data and hit ENTER. When the user

types the vendor number and hits ENTER, the typed information

becomes available in the program, inside the field VNDNBR.

In the next statement, 0007, the program uses the VNDNBR data to

 CHAIN to (access) the vendor file. If the vendor number entered is

on file, the database information for that vendor is available to the

program immediately after the CHAIN operation. If the record is

not found, the operation turns on switch # 90 (indicator 90) to let the

program know that a record was not found.

At statement 0008, the program tests the status of indicator 90 to see

if it is on - meaning that a record was not found. At statement 0009,

if the record was not found, the program loads an error message into

the Vendor Name field of the display panel. Statement 10 ends this

not-found error routine that began at statement 0009.

The next statement at 0011 is the ENDO. This works with the

DOWEQ in statement 0005 to define the part of the program which

repeats until the user hits Command Key 3. The ENDDO passes

control back to statement 0005 and if the user has not hit Command

Key 3, control is passed to the “loop” at statement 6.

QuikCourse H. AS/400 & iSeries Screen Design Aid (SDA) 301

At statement 6, the second and subsequent times through the

DOWEQ loop, the output part of the operation sends out the data

from the database, or the error message in NAME, while the input

part of the operation brings in the next VENDOR number as well as

an indication that the ENTER key or Command key 03 has been

pressed. The program continues in the loop until the user takes the

appropriate ending action - by pressing Command key 03.

Simple RPG Inquiry Program with

Display File

In this inquiry example, the input is vendor number and the output is

name and address information, as defined on the panel, which you

built in this QuikCourse. After you, or a programmer in your

organization, have compiled your RPG program, you call the

program, (CALL NEW) enter a vendor number, and press enter.

The name, address and balanced-owed information are then

displayed.

When this happens, you have been successful.

Summary and Conclusions

In this SDA QuikCourse, we covered just about every SDA main

menu option in a brief tutorial fashion. You can now use the results

of your efforts in this chapter to move on to bigger and more

sophisticated programming examples, using subfiles and other

different advanced tools such as pop-up windows. You’ve now got

the basic tools you need to move forward. Best wishes at your next

stop in creating interactive iSeries applications.

☺ Good News: SDA Subfiles are covered in

QuikCourse S which is included in this book

302 The iSeries Pocket Developer’s Guide

QuikCourse I. AS/400 & iSeries Data File Utility (DFU)

303

QuikCourse I.

AS/400 Data File

Utility (DFU)

What is DFU?

I thought you’d never ask: “What is the Data File

Utility?” Shall I say, “Oh, That’s DFU?” No, you’d get

mad and I’d feel like I had not given you a scrap of

information.

In fact, DFU is a utility for defining, creating, and

maintaining data base applications. It is primarily

oriented to data entry, inquiry or file maintenance.

DFU allows you to update files without creating a

program . . . and it works with every file type of

304 The iSeries Pocket Developer’s Guide

file in the AS/400 Library File System. The files can

be sequential, indexed, or direct.

DFU Is Database Aware

DFU is aware that the AS/400 is an integrated database

machine. Yet, not only can it get its definition

information from database objects, it can also use

definitions from RPG II File and Input (F&I)

specifications or Interactive Data Definition Utility

(IDDU) definitions. The latter two methods are so that

DFU works nicely with the System/36 way of doing

things on the AS/400 and iSeries.

Great for Programmers

This utility is very convenient for programmers and

more technically oriented end-users who want to

quickly develop data entry, inquiry or file

maintenance functions within applications. DFU,

however, does have some limitations as far as data

validation and verification that might be provided in

more sophisticated high-level language (HLL) programs.

 However, the utility is also very good for general

entry and update of data and for those times when

'fixing' data requires only simple maintenance.

Though an AS/400 shop may not necessarily turn DFU

over to its user community in all of its regalia and

ad-hoc-icy, many pre-create what they call DFUs, to

add additional / missing functionality to application

menus. Other shops build DFU menus for personnel who

QuikCourse I. AS/400 & iSeries Data File Utility (DFU) 305

must enter data on a regular basis. If IBM ever chose

to rid itself of DFU for any reason, there would be a

scream from the gallery loud enough to get IBM to

change its mind.

Auditing at its Best

DFU also creates a very nice paper log of all your

file changes, so you can keep track of any and all

changes to your data bases. This comes in handy when

the auditors drop by for a look-see.

DFU Case Study

To get DFU going on your system, type STRDFU from a

command prompt. As with most WebSphere Development

Studio traditional development utilities, you are

immediately taken to a main menu for the product, in

this case - DFU. The menu is shown if Figure I-1

306 The iSeries Pocket Developer’s Guide

Figure I-1 iSeries and AS/400 Data File Utility
 AS/400 Data File Utility (DFU)

 Select one of the following:

 1. Run a DFU program

 2. Create a DFU program

 3. Change a DFU program

 4. Delete a DFU program

 5. Update data using temporary program

 Selection or command

 ===> 2___

 F3=Exit F4=Prompt F9=Retrieve F12=Cancel

 C) COPYRIGHT IBM CORP. 2000, 2000.

Create a DFU Program

From the Main DFU Menu, you just select an option (2 in this case)

and press the ENTER key. You will be happy to know that there is

lots of HELP available with DFU. If you forget how to use it, the

Help panels will basically teach you what to do. In fact, there are

even cursor-sensitive help text always available by pressing the

Help key

The DFU Main Menu

So, what does the DFU menu enable you to do? (1) You can run a

DFU program that has already been created by taking option “1" on

the menu. (2) You can create a new DFU program by taking option

“2" on the menu. (2)You can change an already existing DFU

QuikCourse I. AS/400 & iSeries Data File Utility (DFU) 307

program by taking option “3" on the menu. (4)You can delete (if

you have the authority) an existing DFU program by taking option

“4" on the menu.

308 The iSeries Pocket Developer’s Guide

What Are We Going to Do?

In this QuikCourse, you will learn how to create and run a DFU.

The process of changing a DFU program or deleting a DFU

program flows smoothly from this menu. Once you create your own

DFU and you understand how to use it against data files, dressing it

up with the Change option, or deleting a DFU, to clean up your

library, become second nature.

Additionally, you can update a file without defining anything to the

system. The DFU will create a temporary program based upon

utility defaults and data base definitions. If you select this powerful

option, no customization can be done to the DFU program. This “no

options” DFU is available from PDM’s Work with Objects panel, by

placing an 18 next to a file object.

To be honest, this (18 from PDM) is my favorite function of DFU

since it helps in program testing. It is a very quick and easy way to

change data without burdening yourself with creating a program.

After you have completed the updating of your data, the temporary

program is deleted.

If you want to create a new DFU, from the main menu, you would

select option 2 as in the Figure I-1, and then press the ENTER key.

The Steps to Creation

Let’s create a simple DFU program by taking option 2 on the main

panel.

QuikCourse I. AS/400 & iSeries Data File Utility (DFU) 309

Figure I-2 Create a DFU Program
 Create a DFU Program

 Type choices, press Enter.

 Program DFUQUIK___ Name, F4 for list

 Library HELLO_____ Name, *CURLIB

 Data file VENDORP___ Name, F4 for list

 Library HELLO_____ Name, *LIBL, *CURLIB

 F3=Exit F4=Prompt F12=Cancel

The to-do list for the panel shown in Figure I-2 is as follows:

1. Select a name for your DFU

2. Select the file that you want to use

3. Press F4 to see a list of existing files or DFU programs

Name the DFU

In order to create a new DFU program, you must enter a program

name and library where that DFU program is to be placed. If you

want to see a list of the existing DFU programs in a library, place

the cursor in the DFU program name position on the screen, and

press F4. You will see a list of DFU programs in that library. This is

helpful when you are trying to create a new DFU program and you

need a unique name.

Pick the Database File

You will need to enter a database file that you want to use for the

DFU program. If you do not remember the name of the file, place

310 The iSeries Pocket Developer’s Guide

the cursor in the Data File name position on the screen and press F4.

This will show you a list of files in the library you entered in the

Data File Library line. You may then select one of these files to be

used by your DFU program.

After you have entered the DFU program name & library and the

Data File name & library, press the ENTER key.

Figure I-3 General Information for Create DFU
 Define General Information/Nonindexed File

Type choices, press Enter.

 Job title DFUQUIK

 Display format 2 1=Single, 2=Multiple

 3=Maximum, 4=Row oriented

 Audit report N Y=Yes, N=No

 S/36 style N Y=Yes, N=No

 Suppress errors N Y=Yes, N=No

 Edit numerics N Y=Yes, N=No

 Allow updates on roll Y Y=Yes, N=No

 Record numbers:

 Generate N Y=Yes, N=No

 Store in a field N Y=Yes, N=No

 Heading *RECNBR

 Processing 2 1=Direct

 2=Sequential

F3=Exit F12=Cancel F14=Display definition

Providing General Information

QuikCourse I. AS/400 & iSeries Data File Utility (DFU) 311

There are two different shapes to the type of panel shown in Figure

I-3. If you were working with an indexed file, or a logical file with a

key, the heading would say indexed file. Moreover, the record

number generator as seen in Figure I-3, would not be present on the

panel. DFU can work with indexed, direct and sequential files. The

indexed label is one of the ways it differentiates these types.

On this General Information panel, you specify information about

how you want your DFU program to work. There are lots of options

as you can see. You can also select to produce an audit report

showing the work done against a file during this session. You

should always enter a job title that is relevant to the DFU program

we are describing.

312 The iSeries Pocket Developer’s Guide

One or Two Columns? Multiple or Maximum?

You have a number of options as to how you want the display to

look. A display format of single, for example, will design the

display such that the prompting for fields will all be along the left

side of the display in a single column. All entry fields will also be

aligned in a single column.

A display format of multiple will design the display such that data

on the screen can be formatted into 1, 2, 3, or 4 columns depending

on the number and size of the fields. A display format of maximum

will design the display such that as many fields as possible will

appear on the data display. The fields may or may not line up in

columns.

Row Oriented - Power Record Keying.

The fourth (4= Row oriented) display format option allows the user

to further define how the data entry screen appears. This option

must be taken if multiple record processing is desired. Data fields

will appear in a left-to-right row orientation rather than in a top-to-

bottom columnar fashion. This option is very powerful, especially

when a row of data fits across the screen. DFU will produce a screen

with as many as sixteen records, which you can view and update at

one time.

Give Me an Audit Report!

If you specify 'Y' to Audit report, a report will be produced after

each run of the DFU program. This report will show all changes,

additions and deletions to the data file that is used by the DFU

program.

QuikCourse I. AS/400 & iSeries Data File Utility (DFU) 313

Make My DFU Display System/36 Style!

If you specify 'Y' to S/36 style, then the DFU will format the display

with S/36 structure and command key implementation. If you wish

to suppress decimal data errors, then answer 'Y' to the ‘suppress

errors’ prompt. Typing a 'Y' to “edit numerics,” allows you to use

numeric editing for the fields. Also, specifying a 'Y' for "Allow

updates on roll" permits the roll keys to update data records, without

a prior Enter key.

Generate Record Numbers!

If you are using a sequential or direct access data file, then you can

generate record numbers. These can be stored in a field in the file.

Sometimes they are and sometimes they are not. If the record

number represents the relative record number of a record, it is not

stored as a field within a record.

The processing prompt allows you to distinguish between direct or

sequential processing of a non-indexed file. After completing the

general information screen, press the ENTER key to continue with

Panel I-4.

Figure I-4 Select Record Formats
 Work with Record Formats

File . . . : VENDORP Library : HELLO

Type options, press Enter. Press F21 to select all.

 2=Specify 4=Delete

Opt Format Defined Description

 2 VNDMSTR N VENDMAST DB FORMAT

314 The iSeries Pocket Developer’s Guide

 Bottom

F3=Exit F5=Refresh F12=Cancel

F14=Display definition F21=Select all

Selecting Database Record Formats

In the panel in Figure I-4, select which record format to use. In this

case, the file contains only one record format. A physical database

file contains only one format. A logical file may contain more than

one record format, all of which DFU can process. The database file

record format is a set of fields establishing the layout of a record for

DFU to process. After selecting the record format, press ENTER.

Select and Sequence Fields

Figure I-5 Select and Sequence Fields - DFU
 Select and Sequence Fields

 File : VENDORP Library : HELLO

 Record Format : VNDMSTR

 Select fields and their sequence or press F21 to select all; press Enter.

 Sequence Field Attr Length Type Description

 ______ VNDNBR 5,0 PACK VENDOR NUMBER

 ______ NAME 25 CHAR NAME

 ______ ADDR1 25 CHAR ADDRESS LINE 1

 ______ CITY 15 CHAR CITY

 ______ STATE 2 CHAR STATE

 ______ ZIPCD 5,0 PACK ZIP CODE

 ______ VNDCLS 2,0 PACK VENDOR CLASS

 ______ VNDSTS 1 CHAR A=ACTIVE,D=DELETE,S=SUSPEN

QuikCourse I. AS/400 & iSeries Data File Utility (DFU) 315

 ______ BALOWE 9,2 PACK BALANCE OWED

 ______ SRVRTG 1 CHAR G=GOOD,A=AVERAGE,B=BAD, P=

 Bottom

 F3=Exit F5=Refresh F12=Cancel F14=Display definition

 F20=Renumber F21=Select all

In Figure I-5, select which fields you want to include for your DFU

program by typing a number under "Sequence.” The number you

type indicates the order of the fields on the display. You can also

press F21 to select all fields. If “select all” is a viable option for

you, it makes the selection task that much easier. After selecting the

fields you want for your DFU program, press ENTER.

Along the way to the panel in Figure I-6, you will be asked to

confirm your selections. If you have selected option 21, DFU will

bring back a panel with each field, numbered in sequence from

which you would press ENTER. If you are happy with the

selections, press ENTER to accept them and you will then get the

Extended Definitions panel in Figure I-6.

Figure I-6 Extended Definitions - Work With Fields
 Define Fields

 Work with Fields

 File : VENDORP Library : Sample

 Record Format : VNDMSTR

 Type options, press Enter. Press F21 to select all.

 2=Specify extended definition

 4=Delete extended definition

 Extended

 Opt Field Definition Heading

 _ VNDNBR N VENDOR______________

316 The iSeries Pocket Developer’s Guide

 _ NAME N NAME________________

 _ ADDR1 N ADDRESS LINE 1______

 _ CITY N CITY________________

 _ STATE N STATE_______________

 _ ZIPCD N ZIP_________________

 _ VNDCLS N VENDOR______________

 _ VNDSTS N ACTIVE______________

 More...

 F3=Exit F5=Refresh F12=Cancel

 F14=Display definition F21=Select all

Working with Fields

On the panel in Figure I-6, you can define different headings than

the DB defaults for the fields selected, or indicate that any field

requires an extended definition. Extended definitions give the

opportunity to provide additional information for editing and

displaying fields.

Select option 2 for each field, for extended definitions and heading

information. If you want extended definitions for all fields, press

F21. After you have selected the fields, press ENTER. Since all the

work you must do, has been completed, you are taken to the DFU

Exit panel as in Figure I-7 in which you will have several decisions

to make including (1) whether to save your DFU program, and (2)

whether to run the program before leaving the DFU environment.

Exit DFU

Figure I-7 Exit DFU Prompt

 Exit DFU Program Definition

Type choices, press Enter.

 Save program Y Y=Yes, N=No

QuikCourse I. AS/400 & iSeries Data File Utility (DFU) 317

 Run program Y Y=Yes, N=No

 For choice Y=Yes:

 Type of run 1 1=Change, 2=Display

 Modify program N Y=Yes, N=No

 Save DDS source N Y=Yes, N=No

 For Save program Y=Yes:

 Program DFUQUIK Name

 Library HELLO Name, *CURLIB, . . .

 Authority *LIBCRTAUT Name, *LIBCRTAUT, . . .

 Text DFUQUIK

 For Save DDS source Y=Yes:

 Source file Name

 Library *CURLIB Name, *CURLIB, . . .

 Source member DFUQUIK Name

F3=Exit F14=Display definition F17=Fast path

In the Exit DFU prompt, enter 'Y' at the Save program entry to save

the DFU program in the library you specified when you started

defining the DFU. Optionally, you may also save the DDS for the

display file which DFU creates for you. You may then alter this

DDS to allow for customization of the screen. The default is NOT to

save the DDS.

Save DDS?

If you choose to save the DDS to modify the DFU display file later,

enter the name of the DDS source file in which you would like the

DDS created.

Enter 'Y' for the Run Program entry if you want to run the DFU

immediately after creating the program. The type of DFU run

should be “Change,” so that the data in the fields can be changed

and not just viewed. Recheck your work to be sure that you entered

318 The iSeries Pocket Developer’s Guide

the proper DFU program name and library. Default public authority

to the newly created DFU program will be *CHANGE. You should

enter descriptive text in the program to help identify it for the future.

When you have completed, press ENTER.

Running Your DFU Program

If you choose to immediately run your DFU program, you will get a

prompt with all of the particulars you entered at DFU start time–

program name, file name, libraries. Press ENTER and you will see a

DFU ENTRY panel similar to that of Figure I-8. If you fully exited

the DFU process, you can execute your newly created DFU by

entering the DFU change data command as follows:

CHGDTA DFUPGM(HELLO/DFUQUIK)

FILE(HELLO/VENDORP)

Whichever way you get to DFU– either via the exit panel or via the

CHGDTA command– you will see the DFU entry panel, only if

your file contains no data records. If, on the other hand, you come in

after having entered some data in a previous session, you will not

see the DFU ENTRY panel. Instead you will be presented with the

DFU CHANGE panel as shown in Figure I-9.

QuikCourse I. AS/400 & iSeries Data File Utility (DFU) 319

Figure I-8 DFU ENTRY Panel
DFUQUIK Mode : ENTRY

Format : VNDMSTR File : VENDORP

VENDOR NUMBER:

NAME:

ADDRESS LINE 1:

CITY:

STATE:

ZIP'CODE:

VENDOR CLASS:

ACTIVE CODE:

BALANCE OWED:

SERVICE RATING:

F3=Exit F5=Refresh F6=Select format

F9=Insert F10=Entry F11=Change

Entry DFU Panel

Note that the mode shown in the upper right corner in Figure I-8 is

"ENTRY." Enter the values in the fields as shown. Note, that you

are in Entry mode. After you have keyed the information, press

Enter. Key as many records as you wish, while in ENTRY mode. To

Exit, press F3. If you have multiple formats from a logical file and

you want to enter into a different format, press F5.

Change DFU Panel

To switch to CHANGE mode, press F11. You will see a panel

similar to that in Figure I-9.

320 The iSeries Pocket Developer’s Guide

Figure I-9, DFU Change Panel.
DFUQUIK Mode : CHANGE

Format : VNDMSTR File : VENDORP

*RECNBR:

F3=Exit F5=Refresh F6=Select format

F9=Insert F10=Entry F11=Change

 ©) COPYRIGHT IBM CORP. 1980, 2000.

Note, from the upper right corner of the panel in Figure I-9, that you

 are in DFU CHANGE mode. To change a record, type in the

number of the record, and it is displayed for update. For keyed

(indexed) files, the record key may be entered instead of the record

number. To change to Entry mode, from Change mode, press F10.

You can also Press F9 to add a record. This option also takes you to

ENTRY mode. In all cases, when you have typed or changed the

data in the displayed record, hit ENTER to add or to update the data.

End Data Entry

When you decide that you have had enough entering and

maintaining data, press F3 to exit, and you will be taken to the End

Data Entry screen as seen in Figure I-10. This panel shows the

number of records added, changed or deleted. It also asks you if

you really want to end data entry. If you answer “Y,” DFU will

gracefully end.

That’s a wrap!

Figure I-10 End Data Entry
 End Data Entry

 Number of records processed

 Added : 1

QuikCourse I. AS/400 & iSeries Data File Utility (DFU) 321

 Changed : 0

 Deleted : 0

Type choice, press Enter.

 End data entry Y Y=Yes, N=No

F3=Exit F12=Cancel

322 The iSeries Pocket Developer’s Guide

Summary and Conclusions

Well, there you have it. We created our own DFU from

scratch and used it to update the APOPENP data file.

Congratulations.

In this QuikCourse you learned the power of the data

file utility (DFU) program generator, and you used it

to create a program which enabled you to enter data,

update files, and make file inquiries. You did not

need a programming language to use DFU. You created

the program by merely responding to a series of

displays. DFU then created a program for you based on

your input.

DFU also provides you with a quick way of updating a

file using a temporary program. You do not have to

define a DFU program first. Because it is so easy to

use, and so database-aware DFU enables you to create

database maintenance programs significantly faster

than you could by using a programming languages (for

example, RPG).

One DFU program can perform several jobs. For example,

a single DFU program can allow you to enter new

records into a file, update fields within existing

records, or perform file inquiry tasks. It does this

by creating data entry programs from definitions based

on the descriptions of existing database files. These

descriptions are used during the definition of your

DFU program. After you have defined a program, as you

learned, you can recall and run that program as often

as required.

DFUs can be run from the main DFU menu, or they can be

placed in user menus, to augment application packages

and/or home-grown code. The program fills in the gaps

that are always present in business applications. It

is a very powerful tool and as you learned, it is

reasonably easy to master.

Best wishes as you enter, display, and update your

files to your heart’s content!

324 The iSeries Pocket Developer’s Guide

QuikCourse S.

AS/400 and iSeries

Subfile Programming

Case Study

Subfiles: an Advanced

Topic?

Now, you have arrived at a QuikCourse which some may

argue presents an advanced subject. Subfiles are

certainly an advanced topic. There is no denying that.

However, there is little need for concern. You will

not be exposed in this section to all of the

wonderment of subfiles. It would be too overwhelming.

QuikCourse S. : AS/400 & iSeries Subfile Programming 325

But, you will learn how to build an inquiry subfile

and you will be exposed to how to drive database

update operations from subfiles.

The treatment of the topic in this QuikCourse is a

combination of a succinct and pithy lecture with a

presentation style which is mostly tutorial in nature.

We hope you enjoy this brief Case Study and that you

emerge with some good tools to help you become a

master of subfiles.

326 The iSeries Pocket Developer’s Guide

What Is a Subfile?

In a nutshell, a subfile is a memory file. The part

that you can see on the screen is like a window into a

part of memory. Though a subfile is implemented via a

display file, it is not a display file. Again, it

really is a memory file. You declare a subfile record

with “display file DDS,” and with DDS, you link it to a

control record format, which you must also declare in

the display file. The control record format performs

special functions such as initializing and clearing

all records in the memory file. Additionally, it

provides a special keyword (SFLDSP) which, when

enabled, causes the records in the subfile to be

displayed one section or window at a time on your

display.

Subfile Size and Page Size

Subfiles may contain a few or a few thousand records.

The case study subfile, which you build in this

section is to be set at 500 records and it is to have

a window space (a subfile page) of ten records. In

this case study then, the “sliding” window into the

memory file (subfile) can hold just 10 records.

Subfile Productivity

Benefits

QuikCourse S. : AS/400 & iSeries Subfile Programming 327

When subfiles work with programs, they provide a

number of productivity benefits. For example,

programmers need only define one record line, and SDA

builds all of the rest. If a subfile has four fields,

for example, and ten records are what needs to be

shown on the display, the programmer saves keying 36

screen panel field definitions into the makeup of the

display file. That is big time productivity.

328 The iSeries Pocket Developer’s Guide

No Drudge Coding

Besides the elimination of this drudge coding, the

subfile mechanism also saves on sophisticated design

and coding time. As an example, the internal subfile

code knows how to deal with multiple records on one

display panel. In fact, for the most part, you not

only do not have to code for multiple records on the

display, but you don’t even have to do much coding all

to get the benefit of what the subfile does for you.

More Than You Would Expect

When you send a subfile to a screen, the subfile does

the screen manipulation work itself. It enables the

roll keys so that, without coding any special keys or

rolling functions, once a panel is on a display, the

user can roll backward and forward to his heart’s

content. Your program does not even know it is

happening. You don’t need any program code at all. You

can roll up. You can roll down. You can even change

records while you are rolling them by. When the user

finally hits the ENTER key, or another key besides

ROLL, your program gets control again. But, the

subfile itself remembers any records in memory which

the user may have changed.

Language Support for

Subfiles

QuikCourse S. : AS/400 & iSeries Subfile Programming 329

High Level Languages (HLL) have some special

operations to work with the nuances of subfiles. For

example, RPG has the READC operation (Read Changed)

and COBOL has the “READ-SUBFILE- NEXT-MODIFIED”

operation. These are used to read changed subfile

records. When a user hits ENTER after editing a

subfile, control comes back to the program. The READC

opcode then directs the system to read, from the

subfile, only the records that were changed by the

user during the roll period.

330 The iSeries Pocket Developer’s Guide

 Note: Since RPG’s READC is shorter than

COBOL’s READ-SUBFILE-NEXT-MODIFIED, we will

use READC in this QuikCourse to refer to the

facilities in both languages.

Suppose there are 500 records in the subfile – as in

this case study, and the user has changed just five of

them. The READC is satisfied just five times, until it

receives an end-of-file indication telling the program

that there are no more changed records to be read. The

program reads only those five records, using five read

operations, and it tells the READC operation when

there are no more changed records to read. It is a

very powerful operator. Similar function is also

provided for the COBOL programmer.

How Does a Subfile Get

Loaded?

We have already briefly discussed initializing,

clearing, and displaying the records in a subfile, but

we have not talked yet about how to get records into a

subfile. Our example case study is a type 1 subfile:

Inquiry for multiple records. In order to use a

subfile for inquiry, of course, you first have to get

the records into the subfile; otherwise, you won’t have

meaningful records to display when the subfile is

viewed / shown.

There are four simple steps to loading and processing

a subfile:

QuikCourse S. : AS/400 & iSeries Subfile Programming 331

1. Activating

2. Loading

3. Displaying

4. Processing

Activation is simply the process of performing a write

operation to the subfile. There is a DDS keyword

SFLINZ which is typically used to initialize a subfile

to prepare it for action. In sample and actual code,

you will typically see this function occurring before

other subfile activity.

Loading is the process of writing records to a

subfile. First, data must be accessed from databases

to get the data records which are being requested. In

this case study, the records come from the Vendor

Master file. Imagine an input variable that represents

the relative record number of the to-be-written record
in the subfile. This tells the database-read program
which record number to write to the subfile. As you

would expect, when loading the subfile, this variable

 is set to one and then incremented with each subfile

write operation until the record number is equal to

the size of the subfile.

So, records are read from the database file, and are

written to the memory file until the memory file is

full or until all records have been read from the

database file. This program does not have to know the

number of records to write to the subfile. A subfile

load loop will typically continue to read records from

332 The iSeries Pocket Developer’s Guide

a database and write them to the subfile, until one of

two things occurs:

1. The database file (VENDORP in this case study)

reaches an end-of-file condition and will give

no more records.

2. The subfile is full, and a message is returned

to the program indicating no more records can be

written to memory. If the page size is 500, as

is our case study, this would mean that 500

records have been written before the subfile

full indicator would be raised.

Though the write operation to the subfile format name

is typically used to fill a subfile, there is one

trick. A relative record field is associated with the

file description. This field must be primed with the

record number in the subfile which is to be written,

before the record is written. Imagine a loop

incrementing a relative record number, reading from

the Vendor file, writing each relative record, one at

a time to the subfile, and eventually filling the

subfile. Once the subfile is filled (in memory), you

probably want to display it.

Displaying is the process of sending out the control

record for the display file with a request (SFLDSP

keyword) to display the subfile. At the time of this

operation, a disconnect from the program occurs as

discussed above. The Roll keys can then be used to

view records in the subfile. The displayed records can

also be changed in the memory file as they are viewed.

QuikCourse S. : AS/400 & iSeries Subfile Programming 333

Processing occurs when the ENTER, or command key is

pressed, and control is passed back to the program.

All records in the memory subfile can then be accessed

by a relative record number loop using a CHAIN

operation to the file, or by using the very powerful

READC (read changed) operation.

With READC, as noted above, the subfile returns only

those records which have been changed by the user. As

the subfile is providing the changed records, one-at-

a-time, the program can process them. If the AP case

study were enhanced for update, and say the balance

field (BALOWE) was changed, the next likely thing to

happen in the program would be for that specific

master record to be read and updated to reflect the

change.

Purposes for Subfiles

There are three major purposes for subfiles:

1. Inquiry for multiple records

2. Inquiry with update for multiple records

3. Data Entry for multiple records

Subfiles are the perfect medicine if you can envision

a panel with ten or so lines of repetitive data

records. In our simple case study example, the

objective is to display vendor information including

balance owed, for all the vendors whose numbers are

higher than a value which is input to the process.

Take a look at Figure S-1 and you can immediately see

334 The iSeries Pocket Developer’s Guide

which portion of the display represents the subfile

window. Once the panel in Figure S-1 is sent to the

display, the operator can roll through as many records

as are contained in the subfile (500, in this case

study, specified by keyword SFLSIZE).

Figure S-1 VENDSRCH Subfile Program Output

 VENDOR MASTER INQUIRY 18:18:35 6/18/02

 ENTER STARTING VENDOR NO: 25 F3= END OF JOB

 VENDOR NO. VENDOR NAME STATE BALANCE OWED

 00025 A MACHINE CORP. IL 7,500.00

 00026 B MACHINERY OK 1,495.55

 00028 C ENGRAVING CO IL 100.00

 00030 D CONTROLS IL 900.25

 00032 I POWER EQUIPMENT PA 250.00

 00034 ROBIN COMPANY PA 153.00

 00036 F STEEL CO PA 290.00

 00038 J B COMPANY PA 100.00

 00040 SCRANTON INC PA 250.00

 00042 PASS PAX INC PA 300.00

Inquiry for Multiple Records

The subfile in Figure S1 certainly shows multiple records. This is a

simple design for a subfile inquiry program. The static and input

QuikCourse S. : AS/400 & iSeries Subfile Programming 335

information is on the top, and the dynamic subfile information is on

the bottom. This panel has two record formats:

1. Subfile Control The Subfile Control Record is used to

provide the normal prompts for a display

(column headings, etc. as well as for the

control of specific functions for the

memory file. In this case study, it is visible

in the panels shown in Figure S-1. It is

located on the top of the screen before

vendor # 25.

2. Subfile Record The second record format is the definition

of the subfile page itself. You define the

shape of one line and the number of lines,

and the subfile handles the rest.

In this “inquiry for multiple records,” example, the data in the

vendor file is in sequence by vendor number. The user inputs a

vendor number. The program places a file cursor before that

particular vendor in the database and begins to read the file. Each

time it reads a record from the database, it writes a record to the

subfile. When the READ hits end-of-file in the database or when the

subfile is full, the program sends out the control record with the

SFLDSP keyword enabled. This tells the display file to send out

both the top of the screen, as well as the bottom (subfile).

The subfile records are displayed in the subfile page (10 records).

The display file then “disengages” from the program, and its control

from the program. The program waits for the subfile to give it back

control. During the “disengagement,” the display file itself is in

control, independent of the program. The user can roll forward or

backward through the subfile records until the inquiry is completed.

This is an effective way to handle an inquiry with multiple records.

When the user presses the ENTER key or a command key, the

display file passes control back to the program.

336 The iSeries Pocket Developer’s Guide

Inquiry With Update for Multiple

Records

Though we do not show the code for this type of access, it is

reasonably easy to achieve. Let us resume the “Inquiry for multiple

records” scenario, in order to transform it to an update program.

Suppose the user decides to change one of the balances, then

another, and still yet another – each on different pages of the subfile.

As the user rolls through the subfile, which, at the

time is “disconnected” from the program and under the

control of the display file, changes are being

recorded in subfile memory. When finished, the user

hits ENTER, and the subfile contents are ready to be

queried by the program.

How do these changes, which were made only to a memory

file, get reflected back into the database file on

disk, from which the initial values were originally

loaded? The user just assumes it will be done. Here’s

how it works:

When the program gets control back, it goes into a

READC loop, reading against the subfile. In this

example, since the vendor number is in the subfile, it

is returned for each successful READC operation. The

program can then use the vendor number as the search

argument for the CHAIN (random access by key) to the

Vendor file. When the random database read by key is

successful to the Vendor file, and the proper record

has been accessed, the program can then issue an

UPDATE operation to the Vendor file to reflect the new

balance, as changed by the user, and as stored in the

subfile record.

QuikCourse S. : AS/400 & iSeries Subfile Programming 337

What If Vendor # Is Not in

Subfile?

By the way, if the specific vendor number in any of

the READCs, were not stored in the subfile, and if

access by key were essential to the update, you could

still accomplish the update mission. However, as you

filled the subfile, you would have to build a

separate, but related, table by relative record

number. When the changed record were accessed, you

could then access the table by the relative record

number to obtain the vendor number or whatever key you

stored. This key value could then serve as your means

of accessing and updating the Vendor database. Of

course, it is much easier if you can cram the key into

the subfile record.

Data Entry for Multiple Records

In this scenario, there is no need to load the

subfile. However, it must be initialized before being

displayed. The SFLINZ keyword is your best bet for

getting this done. It initializes all records in the

subfile on an output operation to the subfile control

record format. The fields in each subfile record are

initialized to blanks for character type fields, to

nulls for floating-point type fields, to zeros for

other numeric type fields, or to the constant value

specified on input-only fields if the DFT keyword is

specified.

338 The iSeries Pocket Developer’s Guide

☺ Hint: When the operator hits the ENTER

key after typing application information,

you must make sure that your program

processes the data before the SFLINZ is

issued again or the data will be deleted.

Any record previously written or typed

into the subfile as data entry is

overwritten and no longer has its earlier

value.

When the subfile is displayed (on an output operation

to the subfile control record), all records in the

subfile are displayed with the same values (the

initialized defaults). To the user, this should look

like a blank subfile screen. In our case study

example, if the data were to be entered, rather than

displayed, forty fields, four for each line of the

subfile would appear in default state awaiting data

entry. When the user finishes typing one page of data,

he or she could roll to the next page of blank lines

and enter more data.

Subfile Correction

The programming required for correcting data entered

via a subfile can be tricky. There are various changes

that certain program opcodes and options may make to

the status of record. For example, the READC operation

and the UPDAT, with the SFLNXTCHG option affect the

subfile records’ status in exactly the opposite way.

(The SFLNXTCHG record is specifically designed to

QuikCourse S. : AS/400 & iSeries Subfile Programming 339

force users to make corrections). READC turns off the

“changed” flag in each record after a read so that a

subsequent READC does not get those records previously

read. An UPDAT with SFLNXTCHG, turns on the “change”

flag so that the program gets a second look at error

records.

What is SFLNXTCHG?

OK, SFLNXTCHG looks like a mean keyword to me. Let’s

say we don’t have it as a tool to use. Big deal! Right?

Let’s see. Suppose that you want to edit the data,

which was keyed to the Entry subfile. Your program

processes the whole subfile and marks the errors in

each record, but you do not specify the SFLNXTCHG on

the error records when you mark them because the

keyword does not exist.

User Control of Data Quality

If you do not specify the SFLNXTCHG parameter, since

it does not exist, then the work station user can

simply press the ENTER key, and ignore the program’s

request to fix the errors. When the user is presented

with a subfile full of errors, instead of correcting

the program-detected errors, the user can decide to do

nothing. Your program will not read the error records

with a READC the next time through. Since your program

reads with the READC, it gets no records because the

get-next-changed operation (READC) finds no changed

records the second time the ENTER key is pressed. The

user errors persist. The user, not the program was in

340 The iSeries Pocket Developer’s Guide

control of the quality of the data That’s a real

gotcha! Whoa! SFLNXTCHG does exist! Pshaw!

Program Control of Data Quality

So, for corrections, one approach is to use the

SFLNXTCHG keyword since it actually does exist. Well,

what does it do? Basically, it marks a record which is

updated with the keyword operative as “changed.” Thus,

when the error record is displayed, the user must

correct the error before hitting ENTER or the READC

will get the bad records again and keep sending them

for correction. Without SFLNXTCHG, the user can just

decide to make it an early weekend on errors.

It’s simple. After all the records in error have been

updated, the program sends an output/input operation

to the subfile control record format to display the

subfile again. With the subfile displayed again, the

work station user types the data again and presses the

ENTER key. If the data is correct, the program does

not display the subfile again.

So, SFLNXTCHG is good because it forces the user to

deal with and correct errors. It forces the user to

fix any outstanding subfile errors before continuing.

It does this by causing the “changed” attribute to be

on in any subfile record in error. The next READC gets

the record. An ENTER cannot bypass the check because

the next READC will get it.

 Note: OK, so that’s enough for the three

major uses of subfiles. Though we described

QuikCourse S. : AS/400 & iSeries Subfile Programming 341

how to accommodate more complex scenarios

than Inquiry with multiple records, the code

for those more complex scenarios is not in

this QuikCourse. Our belief is that, once you

can light up your display panel with a

multiple record inquiry subfile, you will

feel that the rest is a cake walk other than

the normal RPG coding. You don’t need this

QuikCourse to get you all the way, even

though you may need the start which this

module certainly gives.

Coding Examples:

A picture is worth a thousand words. Let’s start by

showing the record layouts for the two files used in

the case study. The first, in Figure S-2 is the

VENDORP physical file, which has no key. The second

file, in Figure S-3 is the VENDMAST logical file,

which orders the file with its vendor number key.

342 The iSeries Pocket Developer’s Guide

Figure S-2 VENDORP Physical File
 Columns . . . : 1 71 Browse HELLO/QDDSSRC

SEU==> VENDORP

FMT A*A*. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7

 *************** Beginning of data *************************************

001.00 A* VENDOR MASTER PHYSICAL FILE

002.00 A REF(HELLO/VENDORPA)

003.00 A R VNDMSTR TEXT('VENDMAST DB FORMAT')

004.00 A VNDNBR R

005.00 A NAME R

006.00 A ADDR1 R

007.00 A CITY R

008.00 A STATE R

009.00 A ZIPCD R

010.00 A VNDCLS R

011.00 A VNDSTS R

012.00 A BALOWE R

013.00 A SRVRTG R

 ****************** End of data **

F3=Exit F5=Refresh F9=Retrieve F10=Cursor F11=Toggle F12=Cancel

F16=Repeat find F24=More keys

 ©) COPYRIGHT IBM CORP. 1981, 2000.

QuikCourse S. : AS/400 & iSeries Subfile Programming 343

Figure S-3 VENDMAST Logical File (In Subfile Program)
 Columns . . . : 1 71 Browse HELLO/QDDSSRC

 SEU==> VENDMAST

 FMT LFA..........T.Name++++++.Len++TDpB......Functions++++++++++++++++++

 *************** Beginning of data *************************************

0001.00 A R VNDMSTR PFILE(HELLO/VENDORP)

0002.00 A TEXT('VENDMAST DB FORMAT')

0003.00 A K VNDNBR

 ****************** End of data **

 F3=Exit F5=Refresh F9=Retrieve F10=Cursor F11=Toggle F12=Cancel

 F16=Repeat find F24=More keys

 ©) COPYRIGHT IBM CORP. 1981, 2000.

The Final Design Panel

Now, let’s look at the finished SDA design for the display file as

shown in Figure S-4. Notice that it also includes the subfile

definition. That’s the ten lines, which look like records underneath

all of the prompts. As you work through the tutorial, coming up

shortly, you will see that one of the beauties of a subfile, among

others, is that you need only define its first record. The display file

handles the rest of the records. We specified the four fields directly

under the titles and SDA did the rest. You just say there are 500

records and that only ten are visible on the screen at one time, and

the display file worries about how to manage them. Yes, you only

have to define one subfile record — even if your display holds 20 or

more.

344 The iSeries Pocket Developer’s Guide

Figure S-4 SDA Subfile Design Panel for Vendor Case Study

 VENDOR MASTER INQUIRY TT:TT:TT DD/DD/DD

 ENTER STARTING VENDOR NO: 33333- F3= END OF JOB

 VENDOR NO. VENDOR NAME STATE BALANCE OWED

 66666 OOOOOOOOOOOOOOOOOOOOOOOOO OO 6,666,666.66-

 66666 OOOOOOOOOOOOOOOOOOOOOOOOO OO 6,666,666.66-

 66666 OOOOOOOOOOOOOOOOOOOOOOOOO OO 6,666,666.66-

 66666 OOOOOOOOOOOOOOOOOOOOOOOOO OO 6,666,666.66-

 66666 OOOOOOOOOOOOOOOOOOOOOOOOO OO 6,666,666.66-

 66666 OOOOOOOOOOOOOOOOOOOOOOOOO OO 6,666,666.66-

 66666 OOOOOOOOOOOOOOOOOOOOOOOOO OO 6,666,666.66-

 66666 OOOOOOOOOOOOOOOOOOOOOOOOO OO 6,666,666.66-

 66666 OOOOOOOOOOOOOOOOOOOOOOOOO OO 6,666,666.66-

 66666 OOOOOOOOOOOOOOOOOOOOOOOOO OO 6,666,666.66-

Work screen for VENDCTL. VENSUB displayed as additional record.

Show Me the Money!

Now, for the curious at heart, the incessant programmer among us,

show me the money! Show me the code. Here is the DDS first for

the display file with subfile, followed immediately by the RPG

program code, which will drive this subfile. There can be a lot of

learning accomplished between the two Figures S-5 and S-6.

QuikCourse S. : AS/400 & iSeries Subfile Programming 345

346 The iSeries Pocket Developer’s Guide

Figure S-5 Display File DDS for Vendor Subfile
 SUBFILE DDS -- VENDSRCH

 *************** Beginning of data *************************************

0001.00 A*%%TS SD 20020618 180918 BKELLY REL-V5R1M0 5722-WDS

0002.00 A*SUBFILE DDS -- VENDSRCH

0003.00 A*

0004.00 A*%%EC

0005.00 A DSPSIZ(24 80 *DS3)

0006.00 A REF(*LIBL/VENDORP)

0007.00 A PRINT

0008.00 A R VENSUB SFL

0009.00 A*

0010.00 A VNDNBR R O 9 12TEXT('VENDOR NUMBER')

0011.00 A NAME R O 9 23TEXT('NAME')

0012.00 A STATE R O 9 50TEXT('STATE')

0013.00 A BALOWE R O 9 54TEXT('BALANCE OWED ')

0014.00 A EDTCDE(J)

0015.00 A*

0016.00 A R VENDCTL SFLCTL(VENSUB)

0017.00 A*%%TS SD 20020618 180918 BKELLY REL-V5R1M0 5722-WDS

0018.00 A SFLSIZ(0500)

0019.00 A SFLPAG(0010)

0020.00 A CF03(99 'END OF JOB')

0021.00 A 81 SFLDSP

0022.00 A 81 SFLDSPCTL

0023.00 A 88 SFLINZ

0024.00 A N81 SFLCLR

0025.00 A 98 SFLMSG('INVALID VENDOR NO.'

0026.00 A 3 29'VENDOR MASTER INQUIRY'

0027.00 A 3 54TIME

0028.00 A 3 63DATE

0029.00 A EDTCDE(Y)

0030.00 A 5 10'ENTER STARTING VENDOR NO:'

0031.00 A VENDNO 5S 0I 5 38DSPATR(HI)

0032.00 A 5 53'F3= END OF JOB'

QuikCourse S. : AS/400 & iSeries Subfile Programming 347

0033.00 A 7 10'VENDOR NO. VENDOR NAME '

0034.00 A 7 48'STATE BALANCE OWED'

Subfile Definition

The source code for the Vendor subfile screen (DDS) is shown in

Figure S-5. Notice that the subfile is defined at statement eight with

the SFL keyword. Its name, as you can see in the subfile record

format ®), at statement 0008, is VENSUB. Lines 0010 through

0013 define the four fields in the memory file that IBM calls the

subfile. One of the fields, BALOWE, is to be edited with commas

and decimals when it is written. You can see the edit code “J” at line

14. One other thing of note, is that the starting line # (0009) for the

subfile, when displayed, is given in each of the four fields that make

up the subfile. You can see this in statements 0010 to 0013.

Carriage or Horse?

By rule, IBM insists that the subfile record (SFL) must come first in

the DDS – before the subfile control record (SFLCTL). If you can

read DDS, you may think there are an awful lot of keywords on the

record format named VENDCTL. There are, and we’ll talk about

them shortly.

There are only two record formats in this whole display file. That is

the least number of record formats that can exist in a display file

that contains a subfile. There must be a subfile record (SFL), and

there must be a subfile control record (SFLCTL)

Subfile Control Record

The subfile control record is called VENDCTL, and is specified at

line 0016. You can see the link in the SFLCTL keyword which

points the control record to the subfile record, VENSUB. That’s

how VENDCTL knows that it is controlling VENSUB; you tell it

with the VNDCTL keyword and it remembers.

348 The iSeries Pocket Developer’s Guide

Since any read or write operations to the VENSUB subfile record

format are treated as memory file reads and writes, and not display

file reads and writes, there must be a tool to let us control the visible

and invisible parts of the subfile. There is such a tool and that’s why

they call it the control record.

Through the control record, for example, you can specify the size

and the page size of the subfile. You can also initialize the subfile,

clear the subfile, or display the subfile. You can also send out an

error message when things are not completely correct. The control

commands for this are given in statements 0018 thru 0025. Notice

some of these are conditional and some are unconditional. The RPG

program in Figure S-6, does all that is necessary to work with the

display file in Figure S-5. Its job is to turn the indicators on and off

so that the proper functions occur, or do not occur as intended.

Statements 25, to the end of the program, are the constant text for

the top half of the screen. Notice that this text can be specified in the

subfile control record format. At statement 31 the input field is

defined. This is where the vendor number is entered. It serves as the

starting point for the whole program when it is executing.

Figure S-6 RPG Subfile Program-VENDSRCH
 F* VENDSRCH

0001.00 FVENDSRCHCF E WORKSTN

0002.00 F RRN KSFILE VENSUB

0003.00 FVENDMASTIF E K DISK

0004.00 C MOVE *ON *IN88

0005.00 C WRITEVENDCTL

0006.00 C MOVE *OFF *IN88

0007.00 C *IN99 DOWEQ*OFF

0008.00 C MOVE *ON *IN81

0009.00 C EXFMTVENDCTL

0010.00 C MOVE *OFF *IN81

0011.00 C WRITEVENDCTL

QuikCourse S. : AS/400 & iSeries Subfile Programming 349

0012.00 C MOVE *OFF *IN60

0013.00 C Z-ADD0 RRN 50

0014.00 C VENDNO SETLLVENDMAST

0015.00 C *IN60 DOWEQ'0'

0016.00 C READ VENDMAST 60 0017.00 C *IN60 CABEQ'1' FULL

0018.00 C ADD 1 RRN

0019.00 C WRITEVENSUB 82

0020.00 C *IN82 CABEQ'1' FULL

0021.00 C ENDDO

0022.00 C FULL TAG

0023.00 C ENDDO

0024.00 C MOVE '1' *INLR

RPG Program

The RPG program in Figure S-6 is quite small for such

a powerful program. The WORKSTATION file is defined at

statement 1. This links to the name of the compiled

DDS from Figure S-5, which is the display file named

VENDSRCH. The workstation file is set up as a combined

file (“C” in column 15), because it uses both input and

output operations to the display station. On line two,

the additional subfile information is defined to the

program. The RPG compiler finds out that the format

named VENSUB represents the subfile, and that it will

be accessed via the relative record number field

called RRN.

More File Descriptions

350 The iSeries Pocket Developer’s Guide

The next statement is the database file description,

which is a logical file called VENDMAST over a

physical file named VENDORP. It is defined as an input

disk file, which will be processed by key. Both files

have an “E” in column 19, which says that the input

specifications will come from data descriptions in

the database rather than from hard-coded program

specifications.

The Basic Subfile Program Loops

In statements 4 thru 6, the subfile is being

initialized. Indicator 88 is set on to communicate to

the subfile that statement 23 in DDS is to run. This

combination of the RPG write to the subfile control

record at RPG statement 00o5, with indicator 88 on

(statement 0004) , and the SFLINZ keyword in DDS at

statement 23 cause the subfile to be initialized for

action. The DDS is shown in Figure S-6. You will get

an I/O error if you do not activate the subfile,

either by writing records to it, or by using the

SFLINZ operation as we did in the example.

Since indicator 81 is not on during the RPG write at

RPG statement 0005, the clear operation (SFLCLR) at

DDS line 24 is also performed but it is superfluous at

this time since there are no real records in the

subfile. SFLINZ activates the subfile and writes

meaningless default records to it. SFLCLR at DDS

statement 24 empties the subfile immediately after it

is activated and initialized.

QuikCourse S. : AS/400 & iSeries Subfile Programming 351

RPG statement 0006 turns off indicator 88 so that the

subfile will not be initialized again. Since this code

is before the DO-While-Equal loop, it gets executed

just once in this program.

At RPG statement 7, a Do-While-Equal control loop is
established with the RPG operation DOWEQ. This keeps

the program alive and looping through statement 23,

until the F3 key (Command key 3) is pressed. With each

iteration of the DOWEQ loop, from statements 0008

through 0010, the program first sets on indicator 81

to pass to the display file. It then uses an EXFMT to

send out both the subfile control record format,

VENDCTL, and the subfile record format, VENSUB. This

displays the prompts and the subfile records. This RPG

code is executed unconditionally, whether the subfile

is empty or full. The first cycle, of course, the

subfile is empty.

Though the RPG code executes unconditionally, the

program does set on indicator 81 at RPG statement 0008

to trigger the display of both the subfile and the

subfile control record (prompts). The program passes

the indicator status to the display file. The DDS in

Figure S-6 show that indicator 81 controls lines 0021,

0022, and 0024. Lines 21 and 22 use the *ON condition

of indicator 81 to display the subfile and the subfile

prompts..Line 24 in DDS uses the *OFF condition of

indicator 81 to clear the subfile.

At RPG statement 10, indicator 81 is set off so that

the next operation to the subfile does not display the

panel. This permits output operations to be directed

352 The iSeries Pocket Developer’s Guide

to the subfile control record without the panel

displaying for the user. At RPG statement 0011, for

example, the program writes to the subfile control

record with indicator 81 in the *OFF status. This

links with DDS statement 24 to trigger the SFLCLR

operation to clear the subfile.

As the program is looping, each time at statement

0009, it accepts a new vendor number from the prompted

panel. When the user enters the number, the clear

operation is triggered so that the subfile memory

records from the last vendor display are cleared

before the program begins to write new records to the

subfile.

Statements 12 and 13 provide some light housekeeping

to turn off indicator 60, and reinitialize the subfile

counter for the new vendor. At statement 14, the

program sets the file cursor for the VENDMAST file

with the set lower limit (SETLL) operation, so that
subsequent reads will bring in records following the

entered vendor number value. Then, at statement 15,

another Do-While-Equal (DOWEQ) control loop is begun,

which continues looping through statement 21. In this

loop, the Vendor database is read, the relative record

number of the subfile record to be written is

incremented, and the record read is written to the

memory subfile at that relative record position. The

loop ends when the READ operation at statement 16

reaches the end of the vendor file and the program

turns on indicator 60, which controls the loop.

QuikCourse S. : AS/400 & iSeries Subfile Programming 353

Subfile Full, Display

This all goes on merrily until one of two things

happens. Either the READ of the VENDMAST comes back

with an end-of-file (indicator 60), or the subfile is

full (indicator 82). In either case, the outer loop

continues to unmercifully send out the results of the

last subfile load and continues to ask for the next

starting vendor number. When the workstation user

chooses to hit F3, the program leaves its loop, drops

to statement 24, and ends.

SDA Subfile Case Study.

That is probably enough setup work for this case

study. Now for the show! This topic is about subfiles

and SDA. However, we did not spend much time talking

about SDA; we did it on purpose. We did not want to

put the cart before the horse. We introduced a number

of keywords which are really part of DDS. To use SDA

for these, you must specify the DDS keywords

specifically while in the SDA session.

We also explained the type of RPG programming that

must be done in order to accommodate subfiles. This

was all done so that you would have an appreciation

for what subfiles are, how to use them, and how they

look when they are defined in DDS. Now, we can do the

really easy stuff and take you through a semi tutorial

on SDA for subfiles. Let’s not wait another minute.

354 The iSeries Pocket Developer’s Guide

Get SDA Started

To get started with SDA, you type the command STRSDA

(Start SDA) from a command line and hit ENTER. You are

taken to the AS/400 Screen Design Aid (SDA) main
menu. From this menu, take option 1 to Design Screens,

and press ENTER. Fill in the Design Screens menu as
follows:

Source file - QDDSSRC

Library - HELLO

Member - VENDSRCH

When you have finished filling in this preliminary

panel, hit ENTER again, and you will come to the Work
with Display Records panel as shown in Figure S-7.

QuikCourse S. : AS/400 & iSeries Subfile Programming 355

Figure S-7 SDA Work With Display Records
 Work with Display Records

 File : QDDSSRC Member : VENDSRCH

 Library : HELLO Source type . . . : DSPF

 Type options, press Enter.

 1=Add 2=Edit comments 3=Copy 4=Delete

 7=Rename 8=Select keywords 12=Design image

 Opt Order Record Type Related Subfile Date DDS Error

 1 VENSUB

 (No records in file)

 Bottom

 F3=Exit F12=Cancel F14=File-level keywords

 F15=File-level comments F17=Subset F24=More keys

Creating Subfile Record with SDA

Type a “1" in the first option field in the Work With

Display Records panel, as shown in Figure S-7. Type

VENSUB as the name of the subfile you are going to
define. Then press ENTER. You will then come to the

Add New Record panel shown in Figure S-8.

Figure S-8 SDA Add New Record Format
 Add New Record

File : QDDSSRC Member : VENDSRCH

356 The iSeries Pocket Developer’s Guide

 Library : HELLO Source type . . . : DSPF

Type choices, press Enter.

 New record VENSUB Name

 Type SFL RECORD, USRDFN

 SFL, SFLMSG

 WINDOW, WDWSFL

 PULDWN, PDNSFL

 MNUBAR

F3=Exit F5=Refresh F12=Cancel

Since you are defining the subfile, type the keyword

“SFL” in the type column. The panel should already be

primed with VENSUB as the name of the subfile record

you are about to define. Press ENTER

Linking Subfile with Control

Record

When you press ENTER from Figure S-8, the panel does

not change much. You get an added line after the

subfile information, which looks almost exactly like

the following:

Subfile control record. . . VENDCTL Name

It does not have the name filled in. Next to Name,
type VENDCTL, and press ENTER. The next panel you see

will be titled: “Select Subfile Keywords.” This panel

QuikCourse S. : AS/400 & iSeries Subfile Programming 357

asks for two types of keywords for the subfile -

General keywords and Indicator keywords. There are no

keywords necessary for the subfile record (VENSUB) in

this display file; just press ENTER.

On the next panel, as shown in Figure S-9, SDA makes

the link between your subfile record and the name of

the subfile control record which you provided above.

Since there is lots of work to do with this subfile

and we chose no keywords for the subfile record, we

get to do all of our work from the control panel.

Figure S-9 RPG Subfile Program-Vendsrch
 Select Subfile Control Keywords

 Subfile control record : VENDCTL

 Type choices, press Enter.

 Y=Yes

 General keywords Y

 Subfile display layout Y

 Subfile messages Y

 Select record keywords

 TEXT keyword

 F3=Exit F4=Display Selected Keywords F12=Cancel

358 The iSeries Pocket Developer’s Guide

Entering Subfile Keywords with

SDA

Notice in Figure S-9 that the panel record name has

changed from the subfile record name VENSUB, to the

subfile control record named VENDCTL. The first time

you build your subfile, you will be taken to this

panel automatically, to complete the link between the

subfile records and the subfile control record. Answer

“Y” to the first three options as shown in Figure S-9,

and you will be taken first to the Define General

Keywords panel as shown in Figure S-10

QuikCourse S. : AS/400 & iSeries Subfile Programming 359

Figure S-10 RPG Subfile Program-Vendsrch
 Define General Keywords

Subfile control record : VENDCTL

Type choices, press Enter. Keyword

 Related subfile record SFLCTL VENSUB Name

 Subfile cursor relative record . . . SFLCSRRRN Name

 Subfile mode SFLMODE Name

 Y=Yes Indicators/+

 Display subfile records SFLDSP Y 81

 Display control record SFLDSPCTL Y 81

 Initialize subfile fields SFLINZ Y 88

 Delete subfile area SFLDLT

 Clear subfile records SFLCLR N81

 Indicate more records SFLEND

 SFLEND parameter *MORE

 SFLEND parameter *SCRBAR *MORE ...

 Record not active SFLRNA

 More..

The keywords will be associated with the subfile

control record, which is where the memory file is

defined. In Figure S-10, the SFLCTL prompt provides

the link from the control file named VENDCTL, to the

subfile named VENSUB.

Fill in this panel exactly as above and press ENTER.

Select a number of functions, and in all cases,

condition them with indicators. As you can see,

indicator 81 is used to control when the subfile

(memory file) is displayed, and when the control

360 The iSeries Pocket Developer’s Guide

record is to be displayed. Indicator 88 is used to

initialize the memory subfile with default records.

When the program writes the control record and

indicator 81 is not on, the file will not display the

prompts or the subfile. If indicator 81 is not on, and

the display will not be shown, the code in this panel

clears the subfile of any records from the last

interaction. This happens when the control record is

written and indicator 81 is not on.

Press ENTER when you have filled in all parameters as

above. You will move on to define the display and
memory layout for the subfile. The ENTER key will take

you to Figure S-11.

QuikCourse S. : AS/400 & iSeries Subfile Programming 361

Figure S-11 Display and Memory Layout for the Subfile

 Define Display Layout

Subfile control record : VENDCTL

Type values, press Enter.

 Keyword Number

 Records in subfile SFLSIZ 500

 Program-to-system field

 Records per display SFLPAG 10

 Spaces between records SFLLIN

F3=Exit F12=Cancel

Subfile Size and Page Size

As you can see in Figure S-24, you set the subfile to

hold 500 records in memory, and to window the records

through a 10-line portal. When the subfile is

displayed, the display file will put 10 lines out - at

a time - to the screen. Press ENTER, to continue when

you have completed filling in the panel in Figure S-

11.

362 The iSeries Pocket Developer’s Guide

Figure S-12 Define Subfile Messages
 Define Subfile Messages

Subfile control record : VENDCTL

Type values, press Enter.

 Indicators/+ SFLMSG - Message Text More Ind

 98 INVALID VENDOR NO.

 Bottom

__

 Indicators/+ SFLMSGID File Library Ind Name

 Bottom

F3=Exit F12=Cancel

Subfile Messages

Subfile messages are a way of identifying items in the

subfile and displaying error messages. You see the

error and then it goes away. The coding in Figure S-12

says that if indicator 98 is turned on in the program,

QuikCourse S. : AS/400 & iSeries Subfile Programming 363

and this panel (VENDCTL) is sent to the display, the

error message will appear.

When you finish entering the subfile error message

indicator, and message text, hit the ENTER key, and

you will be taken back to a panel, which you have

already seen – Figure S-9 – Select Subfile Control
Keywords. Press the ENTER key once more and you will
be taken to the Work with Display Records panel as
shown in Figure S-13.

364 The iSeries Pocket Developer’s Guide

Figure S-13 SDA Work with Display Records
 Work with Display Records

 File : QDDSSRC Member : VENDSEARCH

 Library : HELLO Source type . . . : DSPF

 Type options, press Enter.

 1=Add 2=Edit comments 3=Copy 4=Delete

 7=Rename 8=Select keywords 12=Design image

 Opt Order Record Type Related Subfile Date DDS Error

 10 VENSUB SFL 06/18/02

 12 20 VENDCTL SFLCTL VENSUB 06/18/02

 Bottom

 F3=Exit F12=Cancel F14=File-level keywords

 F15=File-level comments F17=Subset F24=More keys

 Record VENSUB added to member VENDSEROO. +

Define the Panel Images

We have now given all of the linking and important information,

which is unique to the subfile case study. However, we have not

defined any fields. We have nothing but links and parameters. If we

closed out now, we would have done nothing. Just as with non

subfile display files, you must define the layouts of the screen

panels (a.k.a. record formats).

QuikCourse S. : AS/400 & iSeries Subfile Programming 365

Let’s define the top part of the panel first and make it part of the

subfile control record. It is just constant text to be displayed along

with one input field. Its purpose is to be displayed, and when the

control record is written, this constant text will be written also. In

other words, it is not the memory file / subfile. To define the control

panel, type a 12 for Design image, next to the VENDCTL record in

the VENDSRCH display file, and press ENTER. You will see the

panel as shown in Figure S-14. Well, not exactly! What you see first

is a blank panel. The image in Figure S-14 reflects what it will look

like, after you press ENTER, and type the design image as shown.

Figure S-14 Design Image for Subfile Control Record

 'VENDOR MASTER INQUIRY' TT:TT:TT DD/DD/DD

 'ENTER STARTING VENDOR NO:' +33333 'F3= END OF JOB'

 'VENDOR NO. VENDOR NAME' 'STATE BALANCE OWED'

Input & Constant Image

In Figure S-14, you see just the top half of the screen, since that is

all the information you need to type at this point. You’ll notice that

we place “wads” of text within quotes. We do this so that they will

be treated as a block. For the input field (+33333), you can use the

database trick we taught you in the non-subfile example. With this

“trick,” you can place the vendor number field from the

VENDMAST database on the display image. For this example,

however, we show how the design would be accomplished if the

database were unavailable. Press ENTER, and the panel will

change. But you have to look close in Figure S-15 to see the change.

366 The iSeries Pocket Developer’s Guide

Figure S-15 Subfile Control Record Design

 VENDOR MASTER INQUIRY TT:TT:TT DD/DD/DD

 ENTER STARTING VENDOR NO: 33333- F3= END OF JOB

 VENDOR NO. VENDOR NAME STATE BALANCE OWED

Completing the Control Record Image

Notice the subtle changes on the panel. There are no more quotes

around “wads” of text. Additionally, the input field appears as

33333- to indicate that it is a signed numeric output field. Now that

we have designed the control record, let’s design the subfile record.

To go from the Subfile Control Record Design panel, to the Subfile

Design panel, you must go to the Work with Display Records panel,

as shown back in Figure S-13. Press F12 to go back. From there,

place a “12" next to the VENSUB record, and you are on your way

to defining the subfile record.

Typing the Subfile Record Image

The next panel will look almost exactly the same as the panel in

Figure S-16. There is just one big difference. The bottom

information will not be there. Just as you had to type the top part of

the panel, you have to type the four field definitions onto the panel,

just as shown in Figure S-16. When you are finished typing the

subfile line, press ENTER.

QuikCourse S. : AS/400 & iSeries Subfile Programming 367

Figure S-16 Adding the Subfile Display

 VENDOR MASTER INQUIRY TT:TT:TT DD/DD/DD

 ENTER STARTING VENDOR NO: 33333- F3= END OF JOB

 VENDOR NO. VENDOR NAME STATE BALANCE OWED

 +66666 +OOOOOOOOOOOOOOOOOOOOOOOOO +OO +666666666

When you press ENTER, poof! The subfile immediately expands to

10 records, as shown in Figure S-17. You may recall that this is the

size of the SFLPAG parameter given back in Figure S-11.

368 The iSeries Pocket Developer’s Guide

Figure S-17 Subfile Control Record Design

 VENDOR MASTER INQUIRY TT:TT:TT DD/DD/DD

 ENTER STARTING VENDOR NO: 33333- F3= END OF JOB

 VENDOR NO. VENDOR NAME STATE BALANCE OWED

 66666 OOOOOOOOOOOOOOOOOOOOOOOOO OO *666666666

 66666 OOOOOOOOOOOOOOOOOOOOOOOOO OO 666666666

 66666 OOOOOOOOOOOOOOOOOOOOOOOOO OO 666666666

 66666 OOOOOOOOOOOOOOOOOOOOOOOOO OO 666666666

 66666 OOOOOOOOOOOOOOOOOOOOOOOOO OO 666666666

 66666 OOOOOOOOOOOOOOOOOOOOOOOOO OO 666666666

 66666 OOOOOOOOOOOOOOOOOOOOOOOOO OO 666666666

 66666 OOOOOOOOOOOOOOOOOOOOOOOOO OO 666666666

 66666 OOOOOOOOOOOOOOOOOOOOOOOOO OO 666666666

 66666 OOOOOOOOOOOOOOOOOOOOOOOOO OO 666666666

QuikCourse S. : AS/400 & iSeries Subfile Programming 369

Editing Subfile Record with SDA

In Figure S-17, we have added the field command ‘*” next to the

first Balance Owed field in the panel. It is hard to see. This

command enables you to change the attributes of the field. A

numeric dollar amount looks nice edited with commas and decimal

points. If out value for BALOWE were edited, the editing

characteristics would appear in Figure S-17. It is not, however. We

did not tell SDA to edit it. Let’s do that now by leaving the asterisk

and pressing the ENTER key. You will then see the Select Field

Keywords panel in Figure S-18.

370 The iSeries Pocket Developer’s Guide

Figure S-18 Subfile Record Design - Field Editing 1
 Select Field Keywords

 Field : FLD004 Usage . . : O

 Length : 9,0 Row . . . : 9 Column . . . : 57

 Type choices, press Enter.

 Y=Yes For Field Type

 Display attributes All except Hidden

 Colors All except Hidden

 General keywords All types

 Editing keywords Y Numeric Output or Both

 Database reference Hidden, Input, Output, Both

 TEXT keyword

 F3=Exit F4=Display Selected Keywords F12=Cancel

Type a “Y” for Editing Keywords” in the panel if Figure S-18, and

press ENTER. You will then come to the Select Editing Keywords

panel in Figure S-19.

QuikCourse S. : AS/400 & iSeries Subfile Programming 371

Figure S-19 Subfile Record Design Field Editing 2
 Select Editing Keywords

Field : FLD005 Usage . . : O

Length : 9,0 Row . . . : 9 Column . . . : 57

Type choices, press Enter.

 Keyword More

 Edit code EDTCDE J A-D, J-Q, W, Y, Z, 1-9

 Replace leading zeros with *, $

 Edit word EDTWRD

 Edit mask EDTMSK

F3=Exit F12=Cancel

As you can see, select the “J” edit code from the Select Editing

Keywords panel in Figure S-19. This will provide the proper editing

for the BALOWE field in the subfile display. At this point, we have

not renamed the field yet, so it still shows as field name FLD005.

372 The iSeries Pocket Developer’s Guide

End-of-Job Indicator

Press Enter twice from the panel in Figure S-19 to return to the SDA

Work Image panel. It should look like we are all done but the

cooking. It’s not. We have one more thing to do - define the end of

job indicator - F3. For now, press F12 from the image panel and you

will go back to the Work With Display Records panel as shown in

Figure S-20

QuikCourse S. : AS/400 & iSeries Subfile Programming 373

Figure S-20 Subfile Control Record Design
 Work with Display Records

 File : QDDSSRC Member : VENDSCHA

 Library : HELLO Source type . . . : DSPF

 Type options, press Enter.

 1=Add 2=Edit comments 3=Copy 4=Delete

 7=Rename 8=Select keywords 12=Design image

 Opt Order Record Type Related Subfile Date DDS Error

 10 VENSUB SFL 06/18/02

 20 VENDCTL SFLCTL VENSUB 06/18/02

 Bottom

 F3=Exit F12=Cancel F14=File-level keywords

 F15=File-level comments F17=Subset F24=More keys

 Image updated for record VENSUB.

You’ll have a message on the bottom of the screen saying: “Image

updated for record VENSUB.” This means that your work is in the

work file waiting to be saved. Press F14 to add file level keywords,

and you will see come to the panel in Figure S-21.

374 The iSeries Pocket Developer’s Guide

Figure S-21 Select File Keywords for File Indicators
 Select File Keywords

Member . . . : VENDSRCH

Type choices, press Enter.

 Y=Yes

 General keywords

 Indicator keywords Y

 Print keywords

 Help keywords

 Display sizes

 Alternate keywords

 DBCS conversion

 Window Borders

 Menu-bar keywords

F3=Exit F4=Display Selected Keywords F12=Cancel

Place a “Y” in the column marked “Indicator keywords” in the

panel in Figure S-21 and press ENTER. You will get the Define

Indicator Keywords panel in Figure S-22.

QuikCourse S. : AS/400 & iSeries Subfile Programming 375

Figure S-22 Define Indicators Keywords
 Define Indicator Keywords

 Record . . . : VENDCTL

 Type keywords and parameters, press Enter.

 Conditioned keywords: CFnn CAnn CLEAR PAGEDOWN/ROLLUP PAGEUP/ROLLDOWN

 HOME HELP HLPRTN

 Unconditioned keywords: INDTXT VLDCMDKEY SETOF CHANGE

 Keyword Indicators/+ Resp Text

 CF03 99 END OF JOB

 Bottom

 F3=Exit F12=Cancel

Fill in the information for CF03 to turn on indicator 99 and provide

the text “END OF JOB.” Press ENTER three times to return to the

Work with Display Records panel, last shown in Figure S-20.

Exiting SDA, Creating Display File

Now, you should be able to get this thing cooked. Let’s get it done.

When you are finished tuning all the panels, return to the Work with

Display Records panel again, as shown in Figure S-20.

From the panel in Figure S-20, let’s create our display file by hitting

F3 and working through SDA exit beginning with the panel as

shown in Figure S-23.

376 The iSeries Pocket Developer’s Guide

Figure S-23 SDA Exit Panel - Create Display File
 Save DDS - Create Display File

Type choices, press Enter.

 Save DDS source Y Y=Yes

 Source file QDDSSRC F4 for list

 Library HELLO Name, *LIBL ...

 Member VENDSRCH F4 for list

 Text ***

 Create display file Y Y=Yes

 Prompt for parameters Y=Yes

 Display file VENDSRCH F4 for list

 Library HELLO Name, *CURLIB

 Replace existing file Y Y=Yes

 Submit create job in batch Y Y=Yes

 Specify additional

 save or create options Y=Yes

F3=Exit F4=Prompt F12=Cancel

Fill the panel in as above, and hit the ENTER key twice to save the

DDS and to create the Display File. You will then be brought back

to the Design Screens panel, as shown in Figure S-24

QuikCourse S. : AS/400 & iSeries Subfile Programming 377

Figure S-24 Design Screens Panel
 Design Screens

 Type choices, press Enter.

 Source file QDDSSRC Name, F4 for list

 Library HELLO Name, *LIBL, *CURLIB

 Member VENDSRCH Name, F4 for list

 F3=Exit F4=Prompt F12=Cancel

378 The iSeries Pocket Developer’s Guide

From the Design Screens panel in Figure S-24, you have the

opportunity to make the great escape. Press F3 to get to the main

SDA panel as shown in Figure S-25.

Figure S-25 SDA Main Panel
 AS/400 Screen Design Aid (SDA)

 Select one of the following:

 1. Design screens

 2. Design menus

 3. Test display files

 Selection or command

 ===>

 F1=Help F3=Exit F4=Prompt F9=Retrieve F12=Cancel

Checking DDS

If you take F3, in Figure S-25, you will be officially out of SDA

temporarily. Take the chance and leave for a while.

QuikCourse S. : AS/400 & iSeries Subfile Programming 379

Figure S-26 DDS For Subfile
0001.00 A*%%TS SD 20020618 200627 BKELLY REL-V5R1M0 5722-WDS

0002.00 A*%%EC

0003.00 A DSPSIZ(24 80 *DS3)

0004.00 A R VENSUB SFL

0005.00 A*%%TS SD 20020618 200627 BKELLY REL-V5R1M0 5722-WDS

0006.00 A FLD002 5S 0O 9 13

0007.00 A FLD003 25A O 9 24

0008.00 A FLD004 2A O 9 51

0009.00 A FLD005 9Y 0O 9 57EDTCDE(J)

0010.00 A R VENDCTL SFLCTL(VENSUB)

0011.00 A*%%TS SD 20020618 183003 BKELLY REL-V5R1M0 5722-WDS

0012.00 A 81 SFLDSP

0013.00 A 81 SFLDSPCTL

0014.00 A 88 SFLINZ

0015.00 A N81 SFLCLR

0016.00 A SFLSIZ(0500) 0015.00 A N81 SFLCLR

0016.00 A SFLSIZ(0500)

0017.00 A SFLPAG(0010)

0018.00 A 98 SFLMSG('INVALID VENDOR NUMB

0019.00 A 3 30'VENDOR MASTER INQUIRY'

0020.00 A 3 55'TT:TT:TT'

0021.00 A 3 64'DD/DD/DD'

0022.00 A 5 11'ENTER STARTING VENDOR NO:'

0023.00 A 5 54'F3= END OF JOB'

0024.00 A 7 11'VENDOR NO. VENDOR NAME'

0025.00 A 7 49'STATE BALANCE OWED'

0026.00 A FLD001 5 0I 5 39

If you followed the instructions in the tutorial, you will have five

field names to change with SEU. We did not use the database option

with the subfile as we did in the General SDA QuikCourse.

However, we can change the field names with SEU while we look at

the job SDA did for us.

380 The iSeries Pocket Developer’s Guide

Change Field Names with SEU

To get it done, go into PDM, and select VENDSRCH from PDM,

using the SEU option 2. You are about to change the fields with

SEU. It’s easier than going through SDA again. Additionally, it

shows the work that the SDA tool has done. See Figure S-26.

Figure S-26 shows all of the DDS source, which SDA just built for

us. The generic field names built in the source code are displayed

below. Across from each of these “fake” names, is the name you are

to change the source to. Just roll through SEU until you see the

source code and make the changes as noted below:

Statement SDA Real

Number Field Field

Name Name

6. FLD002 VNDNBR

7. FLD003 NAME

8. FLD004 STATE

9. FLD005 BALOWE

26. FLD001 VENDNO

QuikCourse S. : AS/400 & iSeries Subfile Programming 381

Final Steps to Execution

Now, that you have made the changes, you can exit SEU.

Then, you can use option 14 of PDM to compile your new

file. Since the file has changed, to avoid a level

check, you should also recompile the RPG program.

Running the Subfile Program

When it is all compiled, find a command entry panel.

Assure that HELLO is in your library list. Type CALL

VENDSRCH and press ENTER. You will immediately get a

panel similar to that in

Figure S-27.

382 The iSeries Pocket Developer’s Guide

Figure S-27 Running the VENDSRCH Program - Input

 VENDOR MASTER INQUIRY 23:46:33 6/19/02

 ENTER STARTING VENDOR NO: 10 F3= END OF JOB

 VENDOR NO. VENDOR NAME STATE BALANCE OWED

 00000 .00

 00000 .00

 00000 .00

 00000 .00

 00000 .00

 00000 .00

 00000 .00

 00000 .00

 00000 .00

 00000 .00

As you can see in Figure S-27, there is a little editing which we can

do on the first panel to prevent the zeros from showing. We’ll do

that another day. When you type the number 10, as the vendor

number, you will set the panel to the first key since the lowest key

in the file is 25. When you hit ENTER, you will get the filled

subfile page as shown in Figure S-28. At this point, the program has

disconnected from the display file. The display file is now in

control.

QuikCourse S. : AS/400 & iSeries Subfile Programming 383

Figure S-28 VENDSRCH Program - First Panel Output

 VENDOR MASTER INQUIRY 23:47:56 6/19/02

 ENTER STARTING VENDOR NO: F3= END OF JOB

 VENDOR NO. VENDOR NAME STATE BALANCE OWED

 00025 A MACHINE CORP. IL 7,500.00

 00026 B MACHINERY OK 1,495.55

 00028 C ENGRAVING CO IL 100.00

 00030 D CONTROLS IL 900.25

 00032 I POWER EQUIPMENT PA 250.00

 00034 ROBIN COMPANY PA 153.00

 00036 F STEEL CO PA 290.00

 00038 J B COMPANY PA 100.00

 00040 SCRANTON INC PA 250.00

 00042 PASS PAX INC PA 300.00

Roll The Subfile

See how nice the panel looks in Figure S-28 for this simple inquiry

display file case study. Since the program and file are disconnected,

and we did not code for ROLL or Paging keys in the display or

program, let’s test the subfile notion by giving it a ROLL. When

you roll forward, since the sample file has just fourteen records, the

panel which we get on the first roll has the last four records from

VENDMAST displayed.

384 The iSeries Pocket Developer’s Guide

QuikCourse S. : AS/400 & iSeries Subfile Programming 385

Figure S-29 VENDSRCH Program - Roll Panel Output

 VENDOR MASTER INQUIRY 23:47:56 6/19/02

 ENTER STARTING VENDOR NO: F3= END OF JOB

 VENDOR NO. VENDOR NAME STATE BALANCE OWED

 00044 J B EQUIP INC PA 50.00

 00046 K D BUTTS WALLACE INC PA 500.00

 00048 DENTON AND BALL PA 3,500.00

 00049 JOHN STUDIOS PA 325.00

Changing the Displayed Subfile?

If we had coded the subfile record using input rather than output

type fields, then we would be able to type over any of the fields

shown, and the subfile could be changed in disconnected mode.

There are no underlines on the panel other than the starting vendor

input field. Therefore, on this panel, there will be no alteration of

the memory file.

Ending it!

To end our program, it is quite simple. You may recall that we

coded the F3 command key at the file level. This means that it does

not matter whether we are in disconnected mode or we are accepting

more input. We can end the program from either the subfile record

or the subfile control record. Let’s press F3 now and get out of

town.

At this point, you would return to the command screen from which

you started the VENDSRCH program.

386 The iSeries Pocket Developer’s Guide

Summary and Conclusions.

You can’t help liking subfiles. They are powerful, exciting, and they

save lots of time and effort for a common and necessary function.

Whether the objective is inquiry, mass file updates, or even data

entry, there is a subfile program out there just waiting to be written.

Enjoy!

QuikCourse B. AS/400 and iSeries Work Management 387

QuikCourse B.

AS/400 and iSeries

Work Management

Part I: What is Work

Management?

Thought you’d never ask! The idea of how an AS/400 gets its work

done is cleverly referred to as Work Management. To navigate

around an AS/400, it helps to have a basic idea of how it goes about

getting its work done. Operating System/400, a.k.a. OS/400 is the

AS/400 and iSeries component that brings you the notion of work

management.

388 The iSeries Pocket Developer’s Guide

Work management is the topic that answers the question: “How do

it do it?” There is lots to it, but it is all understandable. After this

QuikCourse, you should be smart enough, if you are not already, to

be one lesson away from being dangerous. More importantly, you’ll

be able to share with your friends your work management quips,

and your answers to their work management questions. Of course

your quips and answers will all end in: “...and that’s how it do it!”

☺Note: Originally, this course was presented as one

big chapter. It was also slotted to be placed as the

second QuikCourse in this book. However, because of

its length, and because it is an advanced topic, the

readers recommended, in the beta review, that it be

placed at the end of the book. They also suggested

that it be broken into smaller “chapters” to make it

digestible in smaller chunks.

Same On All Models

If you closely examine all AS/400 system models, regardless of how

many processors they may have, from the smallest model 250 to the

largest Power4 model 890 Regatta – the behemoth mainframe

iSeries, you will see that they basically get all their work done in the

same way. Of course the bigger machines get more done in the same

period, but all systems run the same operating system code -

OS/400.

There is a simple underlying assumption regarding the way work

gets done on the AS/400 (a.k.a. Work Management). When the

system can handle all of the work in total, one particular type of

work, should not cripple the system’s ability to perform other work

by “hogging” system resources.

Work Management then, is a term used for how the AS/400 or

iSeries manages the work (also called Jobs) which runs in the

system. This includes the active allocation of memory, processor,

and other system resources to specific activities called processes or

threads, as necessary.

QuikCourse B. AS/400 and iSeries Work Management 389

What Runs Where?

Everything must run some place. The work management rules on

AS/400 and the configuration you establish, determine what work

runs where, when it runs, and how well it runs, when it runs,

compared to all other competing work on the system. If there is no

competing work on the system, there is little need for work

management. It is the big impresario of a big balancing act. How

well it does its job often determines how pleased you are with the

performance of your system.

Work management depends upon a number of object types, which

we will discuss, and in fact create in this QuikCourse. The king of

work management objects is designed specifically to split up the

system’s resources in a meaningful way. Its function is in its name,

Subsystem. Objects such as user profiles, which we discuss first, as

well as job queues, output queues, classes, and job descriptions, all

have a role in work management. By the time you finish this

QuikCourse, you will be introduced to them all. In fact, some may

even become your friends.

Navigating the AS/400

390 The iSeries Pocket Developer’s Guide

Since you may wish to use this QuikCourse in somewhat of a

tutorial fashion, it helps to know the easiest ways to walk around

inside of the system. Hold off on the run for just awhile! As a

developer, once you sign on to an AS/400, depending on how your

system administrator has set up your profile, you will probably see a

standard AS/400 panel such as the AS/400 Main Menu or the

Program Development Manager (PDM) menu. In either case, unless

your administrator specifically locks you out from being able to

type in system commands (an option in the user profile object),

when you sign on, you should see a two-line area at the bottom of

the screen with a heading that says:

Selection or command

We’ll operate in this QuikCourse as if you have been granted the

appropriate authority from your system administrator. It’s time to

give it a run. Sign on, to your AS/400 now. Hopefully, you will see

a command line as in the main AS./400 menu as shown in

Figure B-1

Getting A Command Line

If you do not see a command line as in Figure B-1, and you cannot

get authority to execute this course on your shop’s AS/400, you can

still gain by taking this course using the book. However, you will

have to envision what happens by following the screen sequences

and the instructions in this QuikCourse.

☺ Hint: For this QuikCourse, you should ask your

administrator to give you special security officer

power for the duration of the course. Life would be

much easier for you, and you would actually be able

to learn more if you can follow along by doing. If you

are the security officer, but you are still an AS/400

neophyte just be careful since you can mess up your

AS/400 using the commands we show you in this

course.

QuikCourse B. AS/400 and iSeries Work Management 391

Figure B-1, AS/400 Main Menu With Command Line(s)
MAIN OS/400 Main Menu

 System: HELLO

Select one of the following:

 1. User tasks

 2. Office tasks

 3. General system tasks

 4. Files, libraries, and folders

 5. Programming

 6. Communications

 7. Define or change the system

 8. Problem handling

 9. Display a menu

 10. Information Assistant options

 11. Client Access/400 tasks 90. Sign off

 Selection or command

===>WRKUSRPRF

F3=Exit F4=Prompt F9=Retrieve F12=Cancel F13=Info Assistant F23=Set initial menu

 ©) COPYRIGHT IBM CORP. 1980, 2000

☺ Tip: Ideally, you should be using a test machine.
Then, you will not have a system integrity risk factor.
Since we have been discussing ways that you may be
excluded from hands-on participation in this course,
before we cover the objects which are typically
associated with Work Management, let’s first look at
one of the most powerful objects involved in the
process - the user profile. If you have been excluded,
the shut-off valve for your activity was applied in
your user profile. The user profile is your gate as to
whether and how you get your work done on the
AS/400. In many ways it is the prime mover.

392 The iSeries Pocket Developer’s Guide

QuikCourse B. AS/400 and iSeries Work Management 393

QuikCourse B.

Part II: The User

Profile

Looking at the User Profile

One of the key work objects on your AS/400 is the user profile

(*USRPRF object). Without a user profile, you simply don’t get in.

Without a password for your user profile, you don’t get in. Without

authority to perform protected or restricted functions, you don’t get

to do them. Without entries such as a functional job description, a

menu, a startup program, and proper coding for a number of other

powerful parameters, you don’t get operational flexibility. With a

well-shaped user profile, however, you are afforded many benefits

as an AS/400 or iSeries user. It’s an important object.

Again. If you don’t have a profile with enough capability, and you

have been shut off from full access, you can follow-along in the

text. Let’s first look at a user profile object in detail so that you

know why it is so powerful. Once you are sure you have a command

line, type in the following command as shown in Figure B-1:

WRKUSRPRF *ALL

394 The iSeries Pocket Developer’s Guide

Then Press ENTER. You will be taken to a panel, which looks very

similar to the one in Figure B-2. If you are following along

on your own machine, when you get a panel similar to

Figure B-2, you can look up your own profile name,

rather than “ARETHAF,” among the many profiles you will

see in the list. Use the Roll keys or Page Up and Page Down keys

to traverse the list.

Figure B-2 Work With User Profiles
 Work with User Profiles

 Type options, press Enter.

 1=Create 2=Change 3=Copy 4=Delete 5=Display

 12=Work with objects by owner

 User

 Opt Profile Text

 2 AREFRAN Aretha Frankspin

 AMMCGIN Amy McGin - Accounting Dept

 APGL AP/GL for Amy McGin

 AMYLETT Amy Letts - IT Dept - Operations

 ANGEDICK Angie Dickinson- Order Entry Dept

 ANGELL Angel Lollonip-- Night Shift

 ANITASO Anita Soleman - Order Entry Dept

 ANHEUSER Bud Man II

 FROG FROG USER PROFILE

 More...

 Parameters for options 1, 2, 3, 4 and 5 or command

 ===>

 F3=Exit F5=Refresh F12=Cancel F16=Repeat pos. to F17=Position F21=Select assistance level

 F24=More keys

QuikCourse B. AS/400 and iSeries Work Management 395

Check Out Your Own Profile

Place a “2" next to any user’s profile or your own

profile, in the panel shown in Figure B-2. Pick the

profile you want to change, and press ENTER. You will

receive a panel similar to the panel in Figure B-3 for

the user you have selected.

Figure B-3 Change User Profile Command Initial Parameters
 Change User Profile (CHGUSRPRF)

Type choices, press Enter.

User profile > ARETHAF Name

User password *SAME Character value,*SAME,*NONE

Set password to expired *NO *SAME, *NO, *YES

Status *DISABLED *SAME, *ENABLED, *DISABLED

User class *USER *SAME, *USER, *SYSOPR...

Assistance level *SYSVAL *SAME, *SYSVAL, *BASIC...

Current library STARS Name, *SAME, *CRTDFT

Initial program to call STARSMN Name, *SAME, *NONE

 Library STARS Name, *LIBL, *CURLIB

Initial menu *SIGNOFF Name, *SAME, *SIGNOFF

 Library Name, *LIBL, *CURLIB

Limit capabilities *YES *SAME, *NO, *PARTIAL, *YES

Text 'description' 'Aretha Frankspin'

 Bottom

F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel

F13=How to use this display F24=More keys

For new AS/400 developers, there are lots of insights, which can be

gained by examining the user profile object. Even for us old timers,

IBM keeps adding items to the object and thus, the shape of the

profile object we may have in our memories, may not be the shape

of the object today or tomorrow. Therefore, it is worthwhile to take

396 The iSeries Pocket Developer’s Guide

a look at the user profile object from time to time, since a capability

that was not there yesterday, may very well be there tomorrow.

With more and more users on Version 5 of OS/400, and with all the

additions since Version 1 (1988), there’s certainly lots to see.

Considering the user profile object was first built for the

System/38's announcement in 1978, over the years the original

object has had plenty of time to grow in power, function, and

completeness.

Roll For More

There are far too many parameters in the user profile object for just

one screen snapshot, such as that in Figure B-3. To get to the rest,

press F10 (Additional Parameters) and you can roll through all of

them. Give it a try. You will see the many settings contained within

the user profile object. If you don’t want to do that right now, that’s

OK. We did it for you already – on our machine. In fact, we took all

of the subsequent roll panels together, and made one oversized

amalgamated panel from them. Don’t expect to find a display on

your system with this many lines. If you did, it would look like the

“panel” shown in Figure B-4.

Figure B-4 Amalgamation of Additional CHGUSRPRF
Parameters
 Additional Parameters

Special authority *SPLCTL *SAME, *USRCLS, *NONE...

 + for more values

Special environment *NONE *SAME, *SYSVAL, *NONE, *S36

Display sign-on information . . *SYSVAL *SAME, *NO, *YES, *SYSVAL

Password expiration interval . . *SYSVAL 1-366, *SAME, *SYSVAL, *NOMAX

Limit device sessions *SYSVAL *SAME, *NO, *YES, *SYSVAL

Keyboard buffering *SYSVAL *SAME, *SYSVAL, *NO...

Maximum allowed storage *NOMAX Kilobytes, *SAME, *NOMAX

Highest schedule priority . . . 3 0-9, *SAME

Job description QDFTJOBD Name, *SAME

 Library QGPL Name, *LIBL, *CURLIB

Group profile STARG Name, *SAME, *NONE

Owner *GRPPRF *SAME, *USRPRF, *GRPPRF

QuikCourse B. AS/400 and iSeries Work Management 397

Group authority *NONE *SAME, *NONE, *ALL...

Group authority type *PRIVATE *PRIVATE, *PGP, *SAME

Supplemental groups *NONE Name, *SAME, *NONE

 + for more values

Accounting code MUSIC

Document password *SAME Name, *SAME, *NONE

Message queue ARETHAF Name, *SAME, *USRPRF

 Library QUSRSYS Name, *LIBL, *CURLIB

Delivery *NOTIFY *SAME, *NOTIFY, *BREAK...

Severity code filter 0 0-99, *SAME

Print device *WRKSTN Name, *SAME, *WRKSTN, *SYSVAL

Output queue *WRKSTN Name, *SAME, *WRKSTN, *DEV

 Library Name, *LIBL, *CURLIB

Attention program *SYSVAL Name, *SAME, *SYSVAL...

 Library Name, *LIBL, *CURLIB

Sort sequence *SYSVAL Name, *SAME, *SYSVAL, *HEX...

 Library Name, *LIBL, *CURLIB

Language ID *SYSVAL *SAME, *SYSVAL...

Country ID *SYSVAL *SAME, *SYSVAL...

Coded character set ID *SYSVAL *SAME, *SYSVAL, *HEX...

Character identifier control . . *SYSVAL *SAME, *SYSVAL, *DEVD...

Locale job attributes *SYSVAL *SAME, *SYSVAL, *NONE...

 + for more values

Locale *SAME

User options *NONE *SAME, *NONE, *CLKWD...

 + for more values

User ID number 754 1-4294967294, *SAME

Group ID number *NONE 1-4294967294, *SAME, *GEN...

Home directory *SAME

 Bottom

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

F24=More keys

Figures B-3 and B-4 together represent the totality of the user

profile object. As we explain some of the more significant

parameters in the profile, we will refer to both of the panels as

shown in Figures B-3 and B-4.

398 The iSeries Pocket Developer’s Guide

User Profile Object

From top to bottom in Figure B-3, you can see that ARETHAF’s

password is not expired, but it is disabled. Profiles get disabled by

the security officer, or after an administrator-specified excessive

number of invalid signon attempts. The number is set by the

security officer and is stored in the system value named

QMAXSIGN. On a new AS/400, this value is typically set to 3. It

should be set low so that hackers do not have all day to crack into

your system by guessing your profile and password by programmed

retries.

☺Hint: To follow along on your AS/400, each time we

provide a system value for you to learn. Go look at it

on your system. If you are on a production box,

please do not change it. You can affect operations

negatively by “messing” with system values. Rather

than using the work with system values command

(WRKSYSVAL) which permits you to change values,

each time we show a nice juicy system value,

substitute the name of the value for QMAXSIGN as

in the following: DSPSYSVAL QMAXSIGN. Type

the command on a command line, press ENTER, and

look at how your system is set.

User Class

This is another important parameter. You get to choose the general

type of user authority that you would like the user profile to possess.

With this parameter, you specify whether the type of user associated

with this user profile is a security officer, security administrator,

programmer, system operator, or a plain old user.

Based on the user class value, different classes of users will see

different options on their IBM menus. For a user to receive all of the

authority that IBM believes should be given to a user of a particular

QuikCourse B. AS/400 and iSeries Work Management 399

class, you need to make sure that you specify the special authority

parameter (SPCAUT) in Figure B-4 as *USRCLS.

Assistance Level

The next parameter shown in Figure B-3, for the profile is

Assistance Level. Based on a selection of *BASIC, *Intermediate,

or *Advanced, this user either gets lots of information and help on

the system panels for a given function, a modest amount, or very

little. Most shops default this to the system value called QASTLVL,

and most system values are set to an intermediate help / assistance

level.

Current-Library

The next parameter is Current-Library. Each user, through their

profile can be assigned a specific, possibly unique library that will

always be accessible in the user’s library search list. When the

system is looking for the location of referenced objects (programs,

files, queues, etc.), it will search the current library prior to any

other libraries in the user library list.

Initial Program

The next parameter is the “Initial program to call (INLPGM).” This

parameter specifies a startup program for the user profile. This

enables the same or a different program to be called for each user at

the time the user signs on, to an interactive job. This program is

often used to tailor the user’s operating environment and begin the

user’s primary application.

400 The iSeries Pocket Developer’s Guide

Initial Menu

The next parameter is the “Initial Menu” parameter. The AS/400

uses a menu object to provide lists of options to users. From the

menu, the user selects various options to perform certain functions,

such as application programs (Payroll, A/R, etc.) The initial menu

allows the system administrator to tailor each user’s profile so that

they will be presented with an initial menu that reflects the type of

work in which they are engaged.

Limited Capabilities

The next parameter is the one, which may have originally prevented

you from getting a command line as we discussed above. The

“Limited Capabilities” parameter in the user profile specifies

whether the user can run commands from a command line. If you

could not run commands from the command line, this parameter

was set to *YES.

Lots of Tuning Available in User Profile

As you can see in the amalgamation panel in Figure B-4, there are

lots of other knobs and switches and bells and whistles that you can

control from the user profile object. This is a critical element in

managing the system– a. k. a. Work Management.

Before you leave the amalgamation in Figure B-4, go down about

1/4 through the parameters. Take a look at Job Description

parameter. The job description object itself will be explained later.

For now, make a note to yourself that there is a job description in

the user profile, and it is a major source of execution attributes for a

user at signon. You will see, as we go on to explain how a job is

routed, that the routing data parameter in the job description

referenced in the user profile has a major role in job initiation.

QuikCourse B. AS/400 and iSeries Work Management 401

To learn more about any of the parameters in the amalgamation,

when you are working with your AS/400, position your cursor to a

given parameter and hit F1 or the HELP key. You will get a ton of

text explaining the item you have selected.

402 The iSeries Pocket Developer’s Guide

QuikCourse B.

Part III: Work

Management Objects -

Subsystem

Checking Out the QINTER

Subsystem

We all know from QuikCourse A that the AS/400 is an object-based

system. When a particular item has a particular purpose, it is

fashioned as a system object for cross system uses. There are six

objects, including the user profile object, along with a number of

object attributes that are used in the work management process.

These object types are highlighted and briefly explained in the list

below. This list is followed by another list of object attributes that

are also very important to the notion of work management.

After each object or attribute is briefly explained, we supply the

commands necessary for you to look at an IBM supplied object of

that type. For this exercise, we have chosen the QINTER subsystem

QuikCourse B. AS/400 and iSeries Work Management 403

and its associated set of objects, since QINTER is supplied by IBM,

and it is not a complicated subsystem. If your system uses IBM’s

QBASE for interactive work, rather than QINTER, feel free to

substitute QBASE for QINTER in the representative commands.

Subsystem Description Object

A Subsystem Description is an AS/400 object (*SBSD type) used to

allocate systems resources among various types of workloads. The

basic work element in the system is a job. Jobs run in subsystems.

No job runs outside a subsystem. An interactive job is initiated

when a user signs on, and is terminated when the user signs off. A

batch job is submitted to a job queue (holding area) until it is first in

line. It is then selected for execution and runs until it ends. Batch

jobs typically end when a file reaches a point in which there are no

more records to read, or a trigger code is read which tells the

program to begin termination.

Subsystem descriptions hold many attributes, which govern, or

facilitate the execution of jobs in one way or another. These include

the attribute types in Table B-1:

Table B-1 Subsystem Attributes

Attribute

Description

Operational
attributes:

Maximum jobs, signon display file, etc.

Pool Definitions:

Shared and private pool definitions and
activity levels

Autostart Job
Entries:

Work entries to start jobs when
susbsystem is started.

Work Station Name
Entries:

Specific or generic terminals to run in
the subsystem

Work Station Type
Entries:

Terminal types to run in subsystem -
3197, *cons, etc.

404 The iSeries Pocket Developer’s Guide

Job Queue Entries:

Job Queue objects attached to this
subsystem, to run jobs

Routing Entries:

Used in job initiation to give a job a
memory pool, class, etc.

Communications
Entries:

Entries which enable SNA jobs to start
in subsystem

Remote Location
Name Entries:

Location attributes for communications
entries

Prestart Job Entries:

Used to speed up program start requests

The best command to display a subsystem to show all that it

contains is the display subsystem description (DSPSBSD) command

as follows:

DSPSBSD QINTER

When you type this command and hit ENTER, the Display

Subsystem Description menu then appears as in Figure B-6A.

QuikCourse B. AS/400 and iSeries Work Management 405

Figure B-6A Ten Parts to a Subsystem
 Display Subsystem Description

 System: S103LR7M

Subsystem description: QINTER Library: QSYS

Status: INACTIVE

Select one of the following:

 1. Operational attributes

 2. Pool definitions

 3. Autostart job entries

 4. Work station name entries

 5. Work station type entries

 6. Job queue entries

 7. Routing entries

 8. Communications entries

 9. Remote location name entries

 10. Prestart job entries

 More...

Selection or command

===>

F3=Exit F4=Prompt F9=Retrieve F12=Cancel

Because a subsystem is a collection of attributes and entries, and to

show them all at once, would be overwhelming, OS/400 presents

this menu of options (Figure B-6A) for you. In order for you to gain

a better appreciation of what is in a subsystem, we recommend that

you take each of these options on your own system. If there are

elements, within the panels, that you do not understand, and you

would like more information, press the HELP key on your terminal

or F1 on your PC to get the Help text that explains the item.

To get a good feel for this very important work management object,

we will examine each of these QINTER options in the following

section. While we are covering these ten parts of a subsystem, we

will also show how the object behind the entry (if there is one) was

created, and how it was added to the subsystem. For now, take

option 1 from the menu and press ENTER. You will see a panel

similar to that in Figure B-6B.

406 The iSeries Pocket Developer’s Guide

Figure B-6B Operational Attributes
 Display Operational Attributes

 System: S103LR7M

 Subsystem description: QINTER Status: INACTIVE

 Subsystem description : QINTER

 Library : QSYS

 Maximum jobs in subsystem : *NOMAX

 Sign-on display file : QDSIGNON

 Library : QSYS

 System library list entry : *NONE

 Press Enter to continue.

 F3=Exit F12=Cancel

Operational Attributes

By looking at the attributes in the panel shown in Figure B-6B, the

first thing you may notice is that the subsystem does not limit the

amount of work that can be processed at once (*NOMAX). The

other piece of information that is important here is that the

QDSIGNON display file in QSYS is established as the sign on

screen panel for the subsystem. The source code for this display

panel is available in the QDDSSRC file in the QGPL library. By

modifying the source, and re-creating this file, you can have a

customized signon display panel for the QINTER subsystem.

After reviewing this panel, take option 2 from the main subsystem

menu to look at the subsystem pool allocations. You will see a panel

similar to that in Figure B-6C.

QuikCourse B. AS/400 and iSeries Work Management 407

Figure B-6C Display Pool Definitions
 Display Pool Definitions

 System: S103LR7M

 Subsystem description: QINTER Status: INACTIVE

 Pool Storage Activity

 ID Size (K) Level

 1 *BASE

 2 *INTERACT

 3 *SHRPOOL2

 Bottom

 Press Enter to continue.

 F3=Exit F12=Cancel

Pool Definitions

As you can see in the panel shown in Figure B-6C, there are three

pools defined in this subsystem description object. They are known

as subsystem pools 1, 2, and 3 respectively. Each subsystem pool

happens to be assigned to a shared pool. Subsystem pools 1, 2, and

3, are assigned to the shared pools, *BASE, *INTERACT, and

SHRPOOL2, respectively.

After reviewing this panel, take option 3 from the subsystem menu

to look at the Autostart Job Entries. You will see a panel similar to

that in Figure B-6D.

Figure B-6D Autostart Job Entries
 Display Autostart Job Entries

 System: S103LR7M

Subsystem description: QINTER Status: INACTIVE

Job Job Description Library

 (No autostart job entries)

408 The iSeries Pocket Developer’s Guide

 Bottom

Press Enter to continue.

F3=Exit F12=Cancel

Autostart Job Entries

As you can see in the panel shown in Figure B-6D, there are no

Autostart Job Entries in the QINTER subsystem. So that you can

see what one of these entries looks like, we copied an entry from

QCTL, the controlling subsystem, as shown immediately below:

Job Job Description Library

QSTRUPJD QSTRUPJD QSYS

If you are a programmer, you may be wondering where the CALL

statement is. There is none. However, an Autostart Job Entry does

provide a spot that lets you specify a job description. In this case,

the job description name is QSTRUPJD and it is in the QSYS

library. IBM created all of the programs that get called when this

job description fires up. You can retrieve the CL source for the main

startup program (QSTRUPJ in QSYS) using the RTVCLSRC

command if you want to customize your signon panel.

In order to use an Autostart Job Entry for a program that you want

to start, each time the system comes up, you must first get the

program working. Then, you create a job description and specify the

CALL program name in the Command section of the job

description. When that is complete, you invoke the Add Autostart

Job Entry command to place the entry in the QINTER subsystem.

Use the following command to accomplish this:

QuikCourse B. AS/400 and iSeries Work Management 409

ADDAJE SBSD(QINTER) JOB(MYSTART)

JOBD(HELLO/MYSTART)

In this command, the name of the job is MYSTART, and the

program we wrote is called MYSTART. It is located in the HELLO

library.

When you have your Autostart Job Entry completed, from the main

subsystem menu, pick option 4 to look at the Workstation Name

Entries. You will see a panel similar to that in Figure B-6E.

Figure B-6E Display Work Station Name Entries
 Display Work Station Name Entries

 System: S103LR7M

Subsystem description: QINTER Status: INACTIVE

Type options, press Enter.

 5=Display work station name details

Opt Name Opt Name Opt Name Opt Name

 BRIAN*

 Bottom

F3=Exit F9=Display all detailed descriptions F12=Cancel

Workstation Name Entries

410 The iSeries Pocket Developer’s Guide

What is a workstation entry? Quite simply, it is a flag and a little

piece of information that get added to the subsystem description. It

enables the subsystem to perform interactive work. Additionally, it

specifies the names or types of the devices that are presented signon

screens from the subsystem.

The QINTER subsystem comes from IBM with no workstation

entries. An interactive subsystem cannot be built that has no Work

Station Name or Type entries. Since QINTER definitely started with

no Work Station Name Entries, when it arrived from IBM, as an

interactive subsystem, you can only conclude that it must have

Workstation Type entries. Otherwise it would be incapable of

interactive work.

We created a generic workstation name entry called BRIAN* in the

QINTER subsystem, as shown in Figure B-6E. This means that any

terminal device or emulated terminal device (Client Access), with a

name that begins with B-R-I-A-N, will automatically be assigned to

the QINTER subsystem at subsystem startup – if there are no name

or type conflicts.

The device description does not have to be created for the entry to

take. If a device description is created with that name, or its name

has the first five letters of this generic entry, it will run in the

QINTER subsystem. When it is varied on, it will get a signon screen

from the QINTER subsystem.

Adding Generic and Specific Entries

Though we demonstrated a generic entry, if you do not put an “*” at

the end, it becomes a specific name entry. The two commands

below add generic and specific workstation name entries

respectively to the QINTER subsystem:

QuikCourse B. AS/400 and iSeries Work Management 411

ADDWSE SBSD(QINTER) WRKSTN(BRIAN*)

JOBD(*USRPRF) MAXACT(*NOMAX)

AT(*SIGNON)

ADDWSE SBSD(QINTER) WRKSTN(BRIANK)

JOBD(*USRPRF) MAXACT(*NOMAX)

AT(*SIGNON)

If a device is created that is named BRIANK, and both of these

name entries (generic and specific) have been added to the QINTER

subsystem, the second is redundant. It is not needed. Any device

starting with B-R-I-A-N is assigned to QINTER by the generic

entry, so the BRIANK entry is not needed. However, if JOEMAC

were substituted for BRIANK, it would take, and it would be useful.

A Note About Work Entries

When you create a subsystem, there is little value to it. You must

add lots of stuff to make it a complete environment. The ADDWSE

command stands for Add Workstation Entry. The entry types that

we have added so far, are all work entries. So, can we conclude that

work management needs work entries? Well, not exactly!

Subsystems need work entries so they can be connected to their

sources of work.

An Autostart Job Entry provides a vehicle to have work started in

the subsystem before anybody signs on. A Workstation Name Entry

412 The iSeries Pocket Developer’s Guide

gives a subsystem, such as QINTER, a means of doing interactive

work. A subsystem with no workstation name or type entries,

cannot have any workstations, real or virtual, attached to do

interactive work.

Does this mean that all I have to do is add a valid workstation name

or type entry to the QBATCH subsystem description, and it

becomes an interactive subsystem? Yes, it does! However, there

may be some other attributes that make QBATCH less than an ideal

environment for interactive work, such as its memory pool

designations and its execution attributes, such as priority and time

slice end.

Are there more sources of work entries that we will be examining?

Yes! These are shown in subsystem options 5, 6, 8, and 10.

For now, if you go back and take option 5 from the main subsystem

menu, and you press ENTER, you can view the Workstation Type

entries for QINTER as shown in Figure B-6F

Figure B-6F Display Work Station Type Entries
 Display Work Station Type Entries

 System: S103LR7M

Subsystem description: QINTER Status: INACTIVE

Type options, press Enter.

 5=Display work station type details

Opt Type Opt Type Opt Type Opt Type

 *CONS

 *ALL

 Bottom

F3=Exit F9=Display all detailed descriptions F12=Cancel

QuikCourse B. AS/400 and iSeries Work Management 413

Workstation Type Entries

As you an see in Figure B-6F, there are two workstation types:

*ALL, and *CONS. The *ALL ENTRY means that all workstation

types will do their work in the QINTER subsystem. They will also

get their signon screen from this subsystem (QINTER). The types of

devices include devices with 5250, ASCII, and 327x device types.

The device type *CONS says that the system console can attach to

this subsystem. This entry overrides the *ALL or a device type

entry that specifies the same device type as the device being used as

the console.

Is there a conflict between the BRIAN* name entry and the *ALL

entry? From a user’s perspective, the answer today is no! Both

entries place the device in the QINTER subsystem. Though it makes

no difference, it is redundant work. However, if later on, you move

the name to another system, there will be a conflict.

It would make a big difference if the *ALL were in QINTER, and

we put the BRIANK entry in another subsystem. IBM says that

unpredictable results will occur. Neither name nor type entries have

priority. If there are conflicting live subsystems, either subsystem

may get the device. I have seen situations in which the device will

not change subsystems. I have seen other situations, in which each

signoff, prompts a signon from the other subsystem to the device.

Creating a Type Entry

The way you would create the *ALL Workstation Type entry in the

QINTER subsystem is as follows:

414 The iSeries Pocket Developer’s Guide

ADDWSE SBSD(QINTER)

WRKSTNTYPE(*ALL) JOBD(*USRPRF)

MAXACT(*NOMAX) AT(*SIGNON)

Now, it’s time to move on to the next item in the subsystem display

menu, Display Job Queue Entries:

Figure B-6G Display Job Queue Entries
 Display Job Queue Entries

 System: S103LR7M

 Subsystem description: QINTER Status: INACTIVE

 Seq Job Max ---------Max by Priority----------

 Nbr Queue Library Active 1 2 3 4 5 6 7 8 9

 10 QINTER QGPL *NOMAX * * * * * * * * *

 20 QS36MRT QGPL *NOMAX * * * * * * * * *

 Bottom

 Press Enter to continue.

F3=Exit F12=Cancel

Job Queue Entries

As you can see in figure B-6G, there are two job queue entries in the

QINTER subsystem. Just as Autostart Job Entries provide a means

of automatically performing work in a subsystem at startup, and

Work Station Name and Type Entries provide a vehicle for

interactive work to be accomplished in a subsystem, a Job Queue

Entry provides a way for regular batch work to be accomplished.

QuikCourse B. AS/400 and iSeries Work Management 415

Before you can have a Job Queue Entry,, you must have a job queue

object, created. As you can see in the panel in Figure B-6G, the

QINTER job queue is in the QGPL library If you want to check the

queue to see if there is anything in it, you can type the following

Display Job Queue command and hit ENTER:

DSPJOBQ QINTER

The system checks the library list and finds the

QINTER job queue object. The DSPJOBQ command then

peeks into the QINTER job queue container to see if

anybody put a job in there, hoping it would execute

someplace. Whether or not you have added a job queue

entry, for a specific job queue object, to a

subsystem, you can still submit jobs to it, and you

can still display them from it. The job queue is an

object independent of all subsystems. However, jobs in

an unattached queue will not execute until you place a

Job Queue Entry in a subsystem. A job queue becomes

capable of feeding work to a subsystem when, and only

when, a Job Queue Entry is added to a subsystem on its

behalf.

Since there are no jobs that have been submitted

recently to the QINTER subsystem, the DSPJOBQ command

replies with a panel with one valuable piece of

information:

416 The iSeries Pocket Developer’s Guide

(No jobs in job queue)

Creating a Job Queue Object

There are no jobs in the Queue. The command we would have used

to create a job queue named QINTER in QGPL, would be as

follows:

CRTJOBQ JOBQ(HELLO/QINTER)

TEXT('QINTER Job Queue')

Submit Jobs to JobQ

Once the Job Queue is built, you can submit jobs to it using the

SBMJOB command as follows:

SBMJOB CMD(DSPLIBL OUTPUT(*PRINT))

JOBQ(QGPL/QINTER)

Add Job Queue Entry to Subsystem

In order for a job queue to actually feed jobs to a subsystem, you

must add it to the job queue entries of the subsystem, using the

following Add Job Queue Entry command:

QuikCourse B. AS/400 and iSeries Work Management 417

ADDJOBQE SBSD(QGPL/QINTER)

JOBQ(QGPL/QINTER)

The QINTER Job Queue is attached to the subsystem, but, unless

QINTER has routing entries, jobs will not be able to be initiated and

routed for execution. Let’s go back again and take option 7 from the

Main Subsystem Menu to see if the QINTER subsystem has any

routing entries. You will be taken to a panel that looks a lot like the

one in Figure B-6H

Figure B-6H Display Routing Entries
 Display Routing Entries

 System: S103LR7M

Subsystem description: QINTER Status: INACTIVE

Type options, press Enter.

 5=Display details

 Start

Opt Seq Nbr Program Library Compare Value Pos

 10 QCMD QSYS 'QCMDI' 1

 15 QCMD QSYS 'QIGC' 1

 20 QCMD QSYS 'QS36MRT' 1

 40 QARDRIVE QSYS '525XTEST' 1

 700 QCL QSYS 'QCMD38' 1

 9999 QCMD QSYS *ANY

 Bottom

F3=Exit F9=Display all detailed descriptions F12=Cancel

Subsystem Routing Entries

I see routing entries. For each job that gets routed to a subsystem, a

routing entry is selected from the routing table in the subsystem

418 The iSeries Pocket Developer’s Guide

description. The selection is based mostly on information that

comes from the job description objects and SBMJOB commands.

The routing entry that gets selected, matches the routing data that is

provided. The entry then gives important execution parameters to

the job. For example, from the routing entry, the job picks up its

memory pool, and its *CLASS object, which gives it its execution

priority.

If a job were routed to the first routing entry (#10) as in Figure B-

6H, it would pick up the attributes associated with the detailed

routing entry. You may ask: “What are these?” Well, Let’s go see!

To look at the detailed routing entry, place a “5" next to the first

entry as shown in Figure B-6H, and press ENTER. You will see the

detailed routing entry as shown in the panel in Figure B-6I

QuikCourse B. AS/400 and iSeries Work Management 419

Figure B-6I Display Routing Entry Detail
 Display Routing Entry Detail

 System: S103LR7M

 Subsystem description: QINTER Status: INACTIVE

 Routing entry sequence number : 10

 Program : QCMD

 Library : QSYS

 Class : QINTER

 Library : QGPL

 Maximum active routing steps : *NOMAX

 Pool identifier : 2

 Compare value : 'QCMDI'

 Compare start position : 1

 Press Enter to continue.

 F3=Exit F12=Cancel F14=Display previous entry

Detailed Routing Entry

As you can see in Figure B-6I, this job will be routed to subsystem

pool 2, it will be able to execute an unlimited number of steps, and

it will use the QINTER class object to get more execution attributes,

such as execution priority.

By the time a job is finished being routed through an entry such as

this, it is in memory, and it is competing with other jobs for machine

resources.

QINTER is QOK!

420 The iSeries Pocket Developer’s Guide

Now, we have verified that QINTER is a potentially functioning

subsystem, since we have assured that it has had all the necessary

ingredients added to the subsystem description object. The next

three subsystem entries are not as important, but we will cover them

briefly. When you complete item seven of the display subsystem

menu, you really have seen all that matters. If you were building the

QINTER subsystem, it would be as complete as you would want,

since it does not need the last three entries.

Communications Entries - Option 8

There are no communications entries in QINTER. If you would like

to see communications entries, you can display the QCMN or

QBASE subsystems and take option 8. IBM pre-loads these

subsystems with SNA entries so that IBM code, such as Client

Access and Remote Support can function as intended. Now that the

world has gone TCP/IP, the need for communications entries, will

more than likely go away.

What you would see are the communications entries defined in the

subsystem description by device name or by device type. For each

one, you would be able to see the name of each device, the mode

name, the job description used, the default user profile, and the

maximum number of jobs allowed.

Remote Location Name Entries- Option 9

Again this is used for SNA communications. The Remote Location

Name Entries display shows the communication entries defined in

the subsystem description by remote location name vs. device. The

information given is the name of each remote location (instead of

the device name), the mode name, the job description used, the

default user profile, and the maximum number of jobs allowed.

Prestart Job Entries - Option 10

QuikCourse B. AS/400 and iSeries Work Management 421

Prestart jobs are typically communications jobs that are waiting to

be used. By starting the jobs ahead of time, the wait time to make a

connection is lessened, since the initial program does not have to be

loaded . The display would shows the Prestart Job entries defined in

the subsystem description. Each Prestart Job entry contains the

program name, user profile, and other information that is needed by

the subsystem to create and manage one pool of identical Prestart

jobs.

The jobs are typically started when the subsystem is started, but

there is a Start Prestart Jobs command (STRPJ) that can be used at

any time. After it is pre-started, and waiting, the job is selected for

execution, when an incoming request has a program name that

matches the Prestart Job program name.

Now that we have examined all of the entries that make up a

subsystem description, there are still a few more items to examine to

complete our discussion of work management objects. Clearly, the

subsystem, and all of its accouterments, is the most important work

management object. Yet, work cannot get done by a subsystem

alone. You need some other objects.

422 The iSeries Pocket Developer’s Guide

QuikCourse B. AS/400 and iSeries Work Management 423

QuikCourse B.

Part IV: Work

Management Objects -

Other Than Subsystem

Getting Class

Let’s re-start our work management object discovery process with

the *CLS object. During the subsystem section, the *CLS object

appeared several times. Each time we treated it lightly, though it is a

very important element in routing and job execution. Let’s take a

little deeper look this time.

Class: *CLS Object

A Class is a work management object used to provide initial

execution attributes to a job being initiated. During the job routing

process, as a job is sent through the subsystems at initiation time, it

424 The iSeries Pocket Developer’s Guide

picks up attributes from the CLASS object that is referenced in the

subsystem detailed routing entry. The class attributes include

priority, time slice, and memory purging characteristics. The

importance of these in understanding work management is

explained as you proceed through this QuikCourse.

To display the QINTER class, type the following and press ENTER:

DSPCLS QINTER

The elements included in the *CLS object are shown in the panel in

Figure B-6J.

Figure B-6J Display Class
 Display Class Information

 System: S103LR7M

 Class . : QINTER

 Library . : QGPL

 Run priority : 20

 Time slice in milliseconds : 1000

 Eligible for purge : *YES

 Default wait time in seconds : 30

 Maximum CPU time in milliseconds : *NOMAX

 Maximum temporary storage in megabytes : *NOMAX

 Maximum threads : *NOMAX

 Text . : Interactive Subsystem Class

 Press Enter to continue.

 F3=Exit F12=Cancel

Job Queue: *JOBQ Object

A Job Queue is an object that provides a holding area or waiting line

for batch type jobs that you intended to execute in a subsystem.

Interactive users’ jobs and other batch jobs submit work to job

queues for batch execution. The jobs wait in these queues or

“waiting lines” until they move up to be first in line. Then they are

QuikCourse B. AS/400 and iSeries Work Management 425

selected for execution. The command which places a job in the job

queue is called submit job or SBMJOB.

Other commands for job queues are as follows:

ADDJOBQE Adds a job queue to a subsystem

description. The queue assigned will then

feed jobs to that particular subsystem.

CRTJOBQ Creates a Job Queue

WRKJOBQ Displays all job queues on the system in

one-line format

WRKJOBQ (name) Displays the jobs in the named job queue

waiting to be executed

To display the QINTER job queue, type the following and press

ENTER:

DSPJOBQ QINTER

Since there are no jobs right now in the QINTER job queue, the best

you would get would be a message telling you that.

426 The iSeries Pocket Developer’s Guide

Output Queue: *OUTQ Object

An output queue is an object that provides a holding area for

printouts produced by jobs while they are executing. The printouts

remain in the queue until they are printed on a printer, or they are

removed from the queue. Just like a job queue is a waiting line for

jobs to run, an output queue is a waiting line for printouts from jobs

that already ran. The print files in an output queue are waiting for a

print writer to print them on a physical printer. The Print Writer or

“Writer” as it is most often called, is the software driver that links

the output queue to the printer.

IBM does not supply an output queue named QINTER in its

standard definitions. There are a number of other standard output

queues supplied, however. One is called QPRINT. Let’s take a look

at this output queue. Just as with the job queue display, when you

issue the display command, it shows you the items in the queue that

are waiting. In job queues, the items waiting are jobs. In output

queues the items waiting are printouts.

To display the QPRINT output queue, type the following and press

ENTER:

DSPOUTQ QPRINT

The meat of an output queue display for QPRINT is shown below:

File User User Data Sts Pages Copies Form Type Pty

QSYSPRT STEVES DBPLSTPR RDY 7 1 *STD 5

MSG0001P QPGMR MSG0001R HLD 1 1 *STD 5

MSG0001P QPGMR MSG0001R HLD 1 1 *STD 5

MSG0001P DAVIDD MSG0001R HLD 1 1 *STD 5

QuikCourse B. AS/400 and iSeries Work Management 427

Job Description: *JOBD Object

Job Description: *JOBD A job description is a specific set of

job-related attributes that can be used by one or more jobs. The

attributes determine how each job is run on the system. The values

in the job description are usually set as the default values of the

corresponding parameters in the Batch Job (BCHJOB) and Submit

Job(SBMJOB) commands when their parameters are not specified.

They can also be overridden by these commands.

There are a number of important job parameters that are typically

supplied by the job description. These include the Job Queue and

Output Queue, as well as routing data, request data or command,

library list, logging level, job switches, and many others.

I like to think of a job description as a container. It is like a cookie

jar for job attributes. Using the job description name (the cookie jar

itself) instead of supplying all of the attributes, one-by-one, makes it

lots easier, and it saves a lot of work in getting jobs going.

The COMMAND parameter in the job description enables a

command to be placed within a job description. If a Submit Job

(SBMJOB) command does not specify a command, the AS/400

command in the COMMAND parameter of the job description is

executed. Of course, it follows the normal route of going through a

job queue prior to being dispatched for execution. A job description

with a command specified is also the way you designate a command

to execute within a subsystem auto-start job entry.

To display the QINTER job description, type the following and

press ENTER:

DSPJOBD QINTER

428 The iSeries Pocket Developer’s Guide

The job description parameters in QINTER are as follows

User profile : *RQD

CL syntax check : *NOCHK

Hold on job queue : *NO

End severity : 30

Job date : *SYSVAL

Job switches : 00000000

Inquiry message reply : *RQD

Job priority (on job queue) : 5

Job queue : QBATCH

 Library : QGPL

Output priority (on output queue) . . : 5

Printer device : *USRPRF

Output queue : *USRPRF

 Library :

Message logging:

 Level : 4

 Severity : 0

 Text : *NOLIST

Log CL program commands : *NO

Accounting code : *USRPRF

Print text : *SYSVAL

Routing data : QCMDI

Request data : *NONE

Device recovery action : *SYSVAL

 Time slice end pool : *SYSVAL Job message queue maximum

size : *SYSVAL Job message queue full action : *SYSVAL

QuikCourse B. AS/400 and iSeries Work Management 429

 Allow multiple threads : *NO Text :

Interactive etc.

User Profile: *USRPRF Object

User Profile: *USRPRF: The User Profile object identifies a user to

the system. We have already exhaustively covered this object.

Through attributes in the profile, you can customize the way the

system appears to a user. Important attributes contained within a

user profile include the user’s password, default job description,

group profile, authorities, startup programs and menus, library list,

current library, output queue, message queue, home directory, etc.

Many of these attributes, such as the routing data supplied by the

referenced job description, are important for work management. See

Figures B-3 and B-4 above.

Work Management Commands

You will learn in QuikCourse D about the CL command structure.

Right now, it would help for a very brief introduction. We have

been discussing work management objects. Later, we will

specifically create some objects in order to demonstrate how this all

works. For now, it is good to understand that all objects can be

created, displayed, worked with, and deleted. If you take the three

characters CRT for create, DSP for display, WRK for work with, and

DLT for delete, and if you merge them with the object type, you

have the commands for creating displaying, working with and

deleting objects. Here is a sampling:

CRTJOBQ Create Job Queue

DSPSBSD Display Subsystem Description

WRKOUTQ Work With Output Queue

DLTCLS Delete a class

430 The iSeries Pocket Developer’s Guide

Other Definitions

Though the following items are not objects, it would help for us to

have these items better defined as we discuss how work

management objects can be used to help optimize your system.

Job

The basic work unit on the system is called a job. Thus, each piece

of work on the system is performed in a job and each

job has a unique name within the system. Jobs start

and end. All jobs, with the exception of system jobs,

run within subsystems. A job can enter the subsystem

from any of the subsystem’s work entries as described

when we dissected the QINTER subsystem. Additionally,

these entries are built from scratch and discussed in

detail in the case study at the end of this

QuikCourse. They are also listed as part of Table B-1.

The subsystem work entries, in review, consist of Job

Queue Entries, Workstation Entries, Communications

Entries, Autostart Job Entries, and Prestart Job

Entries. No job enters an AS/400 subsystem without

going through one of these work doors. The entries

therefore provide a means for work, in the form of jobs, to be

initiated within subsystems.

To display the current job, in which you are engaged, type the

following and press ENTER:

DSPJOB *

QuikCourse B. AS/400 and iSeries Work Management 431

When you think of all of the attributes a job pick up

from the user profile to the job description, to the

routing entry, to the class, it is no wonder that it

takes two screen panels just for the DSPJOB menu. The

following choices appear on the display job menu:

 1. Display job status attributes
 2. Display job definition attributes
 3. Display job run attributes, if active
 4. Display spooled files
10. Display job log, if active or on job queue
11. Display call stack, if active
12. Display locks, if active
13. Display library list, if active
14. Display open files, if active
15. Display file overrides, if active
16. Display commitment control status, if active
17. Display communications status, if active
18. Display activation groups, if active
19. Display mutexes, if active
20. Display threads, if active
21. Display media library attributes, if active
30. All of the above

Because a job is a collection of governing attributes, representing an

execution environment, there is a lot to a job. You can see by the list

above that a job has many parts. The system keeps track of them all

within the job environment itself. Thankfully, like most things on

the AS/400 and iSeries, you do not have to understand all of the

pieces in order to be able to work with the whole. Very few

professionals understand all of the job parts in the above list.

When you display a job, such as your job, OS/400 presents this

menu of options for you. For educational purposes, to give you a

better appreciation of what is in a job, we recommend that you take

each of these options, and see what is behind each. If there are

432 The iSeries Pocket Developer’s Guide

elements, within the panels, that you do not understand, as there will

be, remember how to get Help. Press the Help key on your terminal

or F1 on your PC to get the Help text that explains the item.

Library List

The library list is just one job attribute. It is picked up during job

initiation (routing). As a job runs, the library list can be modified by

the job itself. A common command used for changing a library list

is the Change Library List command (CHGLIBL). However, there

are a number of other commands that can be used to change the list.

The Add Library list entry command (ADDLIBLE), for example,

adds one library to the list. The Remove Library List Entry

command (RMVLIBLE) does just the opposite. It removes one

library from the list.

For interactive users, the favorite library list command is the Edit

Library List (EDTLIBL). Unlike the CHGLIBL, which, when run

interactively, displays all of the libraries in the list, and permits you

to change the list, the EDTLIBL produces a multi-column display of

all the libraries in the list along with sequence numbers and empty

slots to add entries. In addition to accommodating changes,

additions, and removals to the list, this panel also provides a simple

means, via sequence number, of re-sequencing the listed libraries.

A better term for a library list is library search list and it is

somewhat analogous to a PC path. The list for a job can contain as

many as 250 library names. To overtly specify that the list is to be

used, rather than a single library, you can specify the special value

*LIBL, for library list as you would a single library name in a

command. Of course, the default, when neither the *LIBL value, nor

the name of a library is given in a command, is the job’s library list.

The library search list is used when a job is looking for a particular

object that is not qualified by its specific path (library). The system

searches each of the libraries in the list for the object until it either

QuikCourse B. AS/400 and iSeries Work Management 433

finds it, or it completes searching all the libraries in the library list,

without finding the object.

To display the library list for your job, type the following and press

ENTER:

DSPLIBL

Up to 250 libraries can be in a library list. The following is a sample

list from a live AS/400.

434 The iSeries Pocket Developer’s Guide

Library List:

Library Type

MGDSYS SYS

QSYS SYS

QSYS2 SYS

QHLPSYS SYS

QUSRSYS SYS

MGDOBJ USR

MGDDTA USR

MGDSRF USR

MGDS USR

QSYS38 USR

QGPL USR

QTEMP USR

QuikCourse B. AS/400 and iSeries Work Management 435

MGDSMODS USR

QIWS USR

WOFACE USR

HELLO USR

MGDGPL USR

MGDCHK USR

MGD2OBJ USR

DBU60 USR

436 The iSeries Pocket Developer’s Guide

QuikCourse B.

Part V: Job Routing

The Key to Understanding

The key to understanding how jobs get started, and how they run, is

to understand routing. There are two big time attributes used in

routing. One is called routing data. The other is called a routing

entry. They have a key / lock relationship to each other.

Routing Data - The Key

Let’s first examine the key and then we will study the locks.

Routing data is provided as an attribute of a job description. For

interactive jobs, IBM’s job descriptions often provide a value of

“QCMDI” as the routing data. This has no significance by itself.

However, the five letters “QCMDI” are certainly shaped differently

from the five letters “HGDVB.” As five letter terms, they are not

even close.

Try to envision routing data as the shape of a key that opens

something. You would expect that a key shaped like “QCMDI”

would open a different lock than a key shaped like “HGDVB.” It

certainly would.

QuikCourse B. AS/400 and iSeries Work Management 437

Now, that you have the notion of a routing key, known as routing

data, where does it come from? Where do you get this key? At job

initiation, it is always supplied by the job description’s routing data,

It just happens that the routing data attributes for the QINTER job

description, which we discussed above, as shipped by IBM, looks

exactly as the following:

Routing data : QCMDI

With poetic license, we removed some of the dots above so the full

prompt and parameter combination from the job description could

fit on one line. If the job description provides a key of “QCMDI,” as

above, then where are the locks that this key may open?

Routing Entry Compare Value- the Lock

In a word, the locks exist in functioning subsystems. In a

functioning subsystem, there is a “ lock” on each routing entry.

However, when you first create a subsystem, there are no locks at

all. Such subsystems, as they are built, are non-functional until all of

the necessary entries are added. In fact, a new subsystem description

contains nothing but a memory pool allocation. For routing entries

to exist, they must be added to the subsystem using the Add Routing

Entry command (ADDRTGE).

A new subsystem has no means of getting any work done. No, I am

not kidding. If you were to create a new subsystem, right now, it

would contain no entries with locks for job routing. In addition to

having no routing entries, a new subsystem would have no work

entries. Without at least one work entry, such as a Workstation

Entry, a Job Queue Entry, or an Auto Start Job Entry, no work could

ever be done in the subsystem.

438 The iSeries Pocket Developer’s Guide

Subsystem work entries are the means the system uses to get work

started in specific subsystems. Without subsystem work entries,

therefore, no jobs can get started in a subsystem. Without the

routing entries, no jobs can get routed to memory, and no jobs can

pick up the necessary execution attributes in order to be able to run

within the subsystem environment.

You may recall that at the beginning of this section, as we examined

the routing data (QCMDI), in the QINTER job description, we

posed the question:

Where are the locks that this key may open?

For the answer to this question, you must go back to

the QINTER subsystem description that we examined

briefly above, and you must look at the routing

entries. The routing entries are the locks. One

routing entry is selected for each job that is started

in a subsystem.

When you execute a WRKSBSD (work with subsystem

description) command, option 7 lets you look at the

basic portion of all the routing entries (routing
locks) that can fit on a screen. If you were to look

at the routing entries for the QINTER subsystem, they
would appear similar to those in Figure B-7.

QuikCourse B. AS/400 and iSeries Work Management 439

 Figure B-7, Routing Entries for QINTER
 Display Routing Entries

 System: HELLO

 Subsystem description: QINTER Status: INACTIVE

 Type options, press Enter.

 5=Display details

 Opt Seq Nbr Program Library Compare Value Start Pos

 10 QCMD QSYS 'QCMDI' 1

 15 QCMD QSYS 'QIGC' 1

 20 QCMD QSYS 'QS36MRT' 1

 40 QARDRIVE QSYS '525XTEST' 1

 700 QCL QSYS 'QCMD38' 1

 9999 QCMD QSYS *ANY

 F3=Exit F9=Display all detailed descriptions F12=Cancel

The routing locks that you are looking for, are under

the column Compare Value in Figure B-7. You may have
already noticed that there does not seem to be a lock

for “HGDVB.” Thus, a key shaped as “HGDVB” has as much

value in QINTER as an old key on your key ring, which

opens nothing.

Whoops! I spoke too soon. Notice the last compare

value of sequence 9999. It has a value *ANY. This
means that any key shape will open this routing entry

(lock), even good old “HGDVB.”

You’ve probably also noticed that there is a specific

lock for “QCMDI.” at sequence 0010. If you “place” the

“QCMDI” key, from the QINTER job description, into this

440 The iSeries Pocket Developer’s Guide

lock, you will open the specific entry door, which the

“QCMDI” lock protects.

Getting the Right Key

During a process called routing, when an interactive

or a batch job is initiated, one of the first things

that happens is that it picks up its job description.

Since an interactive job exists from signon to

signoff, at signon, system work management typically

goes to the user profile object associated with the

user, who is signing on, to get the job description

for the new job. Once the job description is found,

the job picks up all of the attributes within the job

description object, and adds them to the attribute set

for the job being routed. The routing data attribute

(QCMDI), found in the job description (QINTER) is then

used as the key to unlock the rest of the attributes

during the routing process.

If Not User Profile - Subsystem

Name

In some subsystem configurations, the job description

for an interactive job does not come from the user

profile. How then, you may ask, is this determined? If

the subsystem attributes for the workstation are not

set to use the user profile object, then the

interactive job uses a job description that is

specified in the subsystem.

QuikCourse B. AS/400 and iSeries Work Management 441

Where in the subsystem is this specified, you may

again ask? The answer is that this information is

stored within the workstation type entries and the

work-station name entries in the subsystem. In order

to see a workstation type entry for QINTER, you would

first display the QINTER subsystem with the following

command:

DSPSBSD QINTER

From the Display Subsystem Description panel, take
option 5 for Work Station Type Entries and press
ENTER. From the Display Work Station Type Entries

panel, pick a work station entry, such as *ALL by

placing a “5" next to it as shown immediately below:

Opt Type

 *CONS

 5 *ALL

For an interactive job, the line in the QINTER

subsystem’s workstation type entry, that governs where

the job description for the job is to be found is as

follows:

Job description : *USRPRF

442 The iSeries Pocket Developer’s Guide

Thus, the subsystem QINTER is set to direct

interactive jobs from all terminals to the user

profile object to pick up their job descriptions. If

this were not the case, the job description name

“QINTER” would be used as the name of the job

description. The Workstation type entry you would see

instead of the above would be as follows:

Job description : QINTER

In this case, the job description whose name is the

same as the subsystem name would be used. This was the

only option when the idea of work entries in

subsystems was introduced for the System/38. Over the

years, the operating system became more flexible by

permitting the interactive work entry to defer the job

description to the user profile, rather than forcing

all users within a subsystem to use the same job

description.

QuikCourse B. AS/400 and iSeries Work Management 443

The Default Job Description -

Interactive

If you recall the user profile amalgamation in Figure

B-4, you may remember that the job description for the

profile shown is QDFTJOBD. This is the system default

job description. It happens that, just as with the

QINTER job description, IBM chose ‘QCMDI’ as its

routing data (routing key for the QDFTJOBD job

description. So, for an interactive job, running in

QINTER, for this profile, the routing key again is

“QCMDI.”

Job Description - Batch

For batch jobs, there are no special subsystem entries

required to point to a job description A batch job

typically gets its routing data directly from its job

description. However, it can also get routing data

from the commands, which initiate a batch job. The

most frequently used command for initiating a batch

job is the submit job (SBMJOB) command.

When you issue a SBMJOB command to start a batch job,

you specify the job description name as a parameter of

the command. Thus, the SBMJOB can point to any job

description just by referencing its name – QINTER,

QDFTJOBD, or any other job description. With SBMJOB,

by default, the system supplies routing data “QCMDB.”

This overrides the routing data in the job

description. To defer to the job description, you can

444 The iSeries Pocket Developer’s Guide

change the routing data parameter in your SBMJOB

command by specifying routing data in the SBMJOB

command as follows:

Routing data *JOBD or

RTGDTA(*JOBD)

From the job description or the SBMJOB, the job picks

up its routing data (routing key). If you specify

routing data in the SBMJOB, such as QCMDI, rather than

defer to the job description (*JOBD), the routing data

in the SBMJOB command overrides any routing data that

you may supply in the job description.

Let’s Open the Lock

For this example, let’s say that “QCMDI,” is the

routing data, picked up by the interactive or batch

job, through job description QDFTJOBD. This “key” is

designed to open the routing entry in subsystem QINTER

that has the “QCMDI” compare value (routing lock).

What happens when the lock opens?

If you place a “5" next to the entry that we want to

examine in Figure B-7 (Sequence # 10), you can get a

peak at the goodies available to the job being routed.

These goodies are presented in Figure B-8, showing the

detail within the open “QCMDI” routing entry.

QuikCourse B. AS/400 and iSeries Work Management 445

Figure B-8 Detailed Routing Entry for QCMDI
 Display Routing Entry Detail

 System: HELLO

Subsystem description: QINTER Status: INACTIVE

Routing entry sequence number : 10

Program : QCMD

 Library : QSYS

Class : QINTER

 Library : QGPL

Maximum active routing steps : *NOMAX

Pool identifier : 2

Compare value : 'QCMDI’

Compare start position : 1

Press Enter to continue.

F3=Exit F12=Cancel F14=Display previous entry

If you take a look at the open routing entry in Figure

B-8, you will notice that there are just three new

pieces of information shown. They are as follows:

1. Class – QINTER

2. Max act. routing steps – *NOMAX

3. Pool Identifier – 2

Working from the top, let’s look at all of the

attributes (goodies), one at a time. Through the

process of routing, with the “QCMDI: routing data as

the key, and the routing entry compare value “QCMDI” as

the lock, the job being routed grabs all of the

attributes, at which you are looking in Figure B-8.

446 The iSeries Pocket Developer’s Guide

These are the attributes that your job obtains by

opening the “QCMDI” door in the QINTER subsystem during

job initiation. The first item behind (also in front

of the door) is the program, “QCMD.” This is the

AS/400's command processor. It is the program used to

process the job that is being routed. Please note that

this is not “QCMDI,” our routing data, it is “QCMD,”

the system command processing program. In many ways it

is like the CMD (COMMAND) program in a PC system. It

is the program that analyzes the commands, invokes

syntax checkers, and gets things going. QCMD very

nicely interprets and processes the command language

statements in the job and gets the work done for the

job.

Of course, you do not have to open the door to find

QCMD. It is shown on the Routing Entry display as seen

in Figure B-7.

You’ve Got Class

The next item is the CLASS object reference. The CLASS

used is QINTER. This attribute tells the routing

process to fetch a class object called QINTER. The job

being routed then picks up the QINTER class’s execution

attributes from the object in the QGPL library.

During the routing process, as you are observing, a

job picks up all of its initial values including its

class attributes. These are referred to as initial
values because, after the job is running, these

attributes can be changed to other values.

QuikCourse B. AS/400 and iSeries Work Management 447

You have also seen in this example, that the QINTER

Class object, as shown in Figure B-9, is obtained by
opening the proper routing entry. You know that during

the initial job routing process, QCMDI is the routing

data that selects the QCMDI compare value in the

QINTER subsystem routing table. This key opens the

sequence # 0010 routing entry using the QCMDI routing
data. This selected entry then routes the new job to

the QINTER class, to pick up some more execution

attributes.

Max Routing Steps

Continuing the move down the detailed routing entry

for QCMDI in Figure B-8, you come across the “Maximum

active routing steps” parameter. Notice that it is set

to *NOMAX. This means that a newly routed job won’t be

artificially ended, even if it goes through tons of

different routing steps.

Memory Pool Identifier

The next item in the routing entry, called “Pool

Identifier,” is very important. This points to the

specific subsystem memory pool, in which this job’s

pages will be loaded and managed, when it is active

and executing. Thus, from this little key, you can

route a job into its proper memory pool, and through

the class object, you can assign it a priority, a time

slice, and other execution characteristics, thereby

giving it a full set of attributes for execution.

448 The iSeries Pocket Developer’s Guide

After the trip through the routing entry, the job is

routed and executing in memory.

Figure B-9 Interactive Class Definition
 Display Class Information

 System: HELLO

 Class . : QINTER

 Library . : QGPL

 Run priority : 20

 Time slice in milliseconds : 2000

 Eligible for purge : *YES

 Default wait time in seconds : 30

 Text . : Interactive Subsystem Class

 Press Enter to continue.

 F3=Exit F12=Cancel

Priority

You may notice in Figure B-9, that the class priority

is 20, and the time slice end is 2000 milliseconds.

Priority is relative, with the highest priority being

the lowest number - “1," and the lowest priority being

the highest two-digit number - “99." When a task with

the lowest numbered (highest) priority wants the

processor, it is preemptively dispatched to that task

- even if the processor were doing lower priority work

at the time. Priority provides the divvying rules for

sharing the central processor resource, when jobs are

competing for CPU time.

QuikCourse B. AS/400 and iSeries Work Management 449

Time Slice / Activity Levels

Like all virtual memory management systems, performance

degradation experienced from paging delays is directly related to the

amount of real memory installed in your AS/400 or iSeries. If the

amount of real memory installed is less than the required amount of

memory for the task at hand, a phenomenon called "thrashing" can

occur. This is exhibited when the machine spends most of its time

moving memory pages to and from disk versus doing real work.

Avoid Thrashing

The time slice end attribute and the activity level
attribute have to do with memory. Both of these

attributes, if used properly, help avoid thrashing.

For example, in a subsystem description, you set an

activity level for each memory pool. As its name

implies, an activity level limits the level of

activity in a pool. By overtly limiting the amount of

activity, the rationale is that more jobs than

feasible, say fifty, will not be able to be occupy

memory pages at the same time.

If you can fit five jobs, and fifty want to get in,

you can either let them fight it out, or you can limit

the number that can use storage, to the number that

can fit. If you let them fight it out, thrashing will

rule the day, and you will have pages being brought

into memory and brought back out without even being

used. Your CPU will be close to, or at 100%

utilization, but your programs will not be able to get

any CPU to get work done.

450 The iSeries Pocket Developer’s Guide

On the other hand, if you limit the memory use in a

pool to the number of jobs that can fit on the

average, then you will have a number of jobs that

become ineligible (45) since they are ineligible and

simply can’t get into memory.

Ineligible Queue

On the AS/400, the place where jobs wait for an

activity level slot is called the ineligible queue. It
is where the jobs go that are not allowed in memory,

so that you can avoid thrashing. The Kingston Trio

would ask: “Do they ever return?” The answer is “yes.”

They stay in line and wait for the jobs that are

eligible and in memory, to reach either a time slice
end or a long wait (such as when a job sends out a
panel with input fields).

When a job reaches one of these states, it loses its

activity level, and the job at the top of the

ineligible queue, if it is ready for action, is given

the departing job’s activity level. The newly

dispatched job keeps its activity level until it

eventually reaches time slice end or it enters a long
wait state. Then it gives up its activity level.

It is highly likely that a job at number 45 in the

queue would wait just a few seconds to become eligible

again for memory. Thus, the idea of divvying up

memory, rather than letting jobs fight it out for

pages, conserves system resources. If all the jobs

were competing with no governors, response time would

be much worse than a few seconds, most of the time, in

QuikCourse B. AS/400 and iSeries Work Management 451

a memory constrained system. Moreover, very little

real work would get done.

Using the governors, a job gets just a certain amount

of time to execute. You set this time to a value that

typically permits at least one interactive transaction

to be completed. If you estimate well, by the time an

interactive job is about to hit the ineligible queue,

it has already sent out a screen panel and it is

waiting for input. When the user hits ENTER, the job

comes off the long wait queue and tries to get back an

activity level. Since many of the other 50 users’ jobs

are also in a long waits, there is a good chance that

the job gets dispatched immediately or after just a

few seconds. That is lots better than indefinite

response time, caused by 90% or more of the system’s

resources being chewed up, to manage thrashing.

Limit the Slots

Thus, by limiting jobs to slots big enough to permit

them to execute without excessive paging, they can get

productive work done. The system also has a mechanism

called time slice end that penalizes jobs that have

taken more than their share since getting an activity

level. When the time slice end clock runs out, jobs go

tot he ineligible queue to fight again with those

waiting.

452 The iSeries Pocket Developer’s Guide

Purge?

The Purge parameter in the CLASS object adds another
dimension to system resource conservation. With this

parameter, you can decide what happens to a job’s

memory pages, when it gets kicked out of an activity

level. The *YES or *NO options, on the Purge
parameter, determine the answer to the question:

“Should the system use demand paging (Purge *NO) to

selectively remove the pages for a job when it loses

an activity level or should it take them all out in

one big swoop (Purge *YES)?

In constantly busy memory situations, Purge(*YES) is

preferred, since it uses less resources to swap

programs than to demand page them. In situations where

there is more memory, Purge(*NO) is the ticket, since

a job’s pages would, more than likely, be in memory

when it comes back from a long wait or a time slice

end. With PURGE(*NO), the system would not have to

load job pages back into memory since, if the system

is not thrashing, there is a likelihood that the

pages would still be there.

As you can see in Figure B-9, jobs routed using the

QINTER class, are eligible to have their pages purged

(Eligible for PURGE *YES), when they lose control of

the CPU.

QuikCourse B. AS/400 and iSeries Work Management 453

Other CLASS Attributes

The next attribute in the CLASS object in B-9 is

Default wait time. This specifies the amount of time,
a process using this CLASS, will wait, until it can

obtain a resource that it needs.

The last set of attributes, picked up from the CLASS

object, are the maximums to set, for the job being

routed (initiated). These are:

 Maximum CPU time in milliseconds

 Maximum temporary storage in megabytes

 Maximum threads

By default, these are set at no maximum (*NOMAX).

Unless you are specifically interested in tuning with

one of these governors, the recommendation is to stick

with the defaults.

So far, you can see that any job routed using the

QINTER job description with the QINTER subsystem, by

now would have already picked up a lot of attributes.

In fact, at this point, it would more than likely

already be executing in subsystem memory pool 2.

If this all sounds like Greek, in a few months, you

may want to read and re-read this section, and maybe

even read a little bit of the IBM Work Management

Guide. Once you “get” the notion of routing, and basic

memory tuning, much of the mystery will be removed

from your notion of the AS/400 and iSeries. You will

454 The iSeries Pocket Developer’s Guide

still be happy that OS/400 is so helpful in getting

things done for you. But things will be different. You

will have a big understanding of just what the system

is doing and how it is doing it. That my even be a

little more scary at first.

Managing Performance

Rather than lump all work in a ball, all together, and

say: “Hey if one thing doesn’t perform well, nothing

will perform well!” ... the AS/400 designers gave us a

way to manage performance. They gave us a way in which

we can divvy up workloads. Therefore, with a finite

amount of processing power, various types of workloads

could be optimized to run as well as possible,

together in the same machine.

QuikCourse B. AS/400 and iSeries Work Management 455

QuikCourse B.

Part VI: Storage

Pools

Defined in the Subsystem

You may recall from Figure B-6C, there are three

memory pools defined in the QINTER subsystem. Pools 1

and 2 are defined by IBM, in its standard subsystem.

We added pool 3 to make the subsystem more

interesting.

The three subsystem pools were assigned to shared

pools, *BASE, *INTERACT, and SHRPOOL2, respectively.

Thus, you can use one subsystem to split up various

workloads and direct them into different memory pools

– up to 10 pools in one subsystem. The memory divvy

can be extensive considering that an AS/400 can have

64 shared memory pools allocated at one time.

456 The iSeries Pocket Developer’s Guide

Divvy Up the Memory

The first memory pool, which the subsystem uses, is

called the *BASE pool. The second is a special

shareable pool called *INTERACT, and the third is a

user shared pool (SHRPOOL2). To make it even more

interesting, let’s assign a private pool of 10000K,

which, when the subsystem starts, will take 10000K of

private, dedicated memory for its use, and only its

use. It will be subsystem pool4.

*Base Memory Pool

The *BASE memory pool is shareable across all

subsystems, so IBM gave it a name which helps us all

know that it is a base requirement of every AS/400.

Work directed into this pool competes for memory with

other jobs from WDS, as well as work from other

subsystems. Additionally, IBM uses it for transient

system routines. Unlike the operating system nucleus

in the Machine pool, the latter are in and out of

memory as needed, and do not have to continually

reside in memory. The *BASE pool is often called

system Pool 2 since it always exists, and it is always

listed in the Work With System Status command
(WRKSYSSTS) output, after Pool 1.

*MACHINE Pool

By the way, System Pool 1 is also very important, but

it does not get allocated to any user subsystems. It

QuikCourse B. AS/400 and iSeries Work Management 457

is known as the Machine pool and it is where the

nucleus of the operating system function resides and

executes, when it is doing its work.

Private Pool

When you divvy up the memory, how do you know where

your job is going to run? The answer to this question

again has to do with the routing data and the routing

entries. A routing entry can point a job to just one

memory pool. For the newly modified (4 pools) QINTER

to be able to route work to all of these pools, there

must be at least four routing entries, each pointing

to a different memory pool. Likewise, to select the

entries, you need jobs to be routed with four

different sets of routing data to open the four

different entry doors.

458 The iSeries Pocket Developer’s Guide

Monitoring Active

Subsystems and Memory Pools

There is a very powerful command on the system, which

keeps track of activity and memory usage. It is

called, WRKSYSSTS. It provides a window into your

system’s performance, and it is often used as a first

basis for system performance tuning. In addition to

showing work, memory, and paging characteristics, it

also permits you to change memory allocations and

activity levels on the fly and to observe the impact

on paging.

To invoke the command, type WRKSYSSTS and press ENTER.

You will come to a panel similar to that in Figure B-

10. We rolled once on our system and pasted the two

additional lines to the panel.

QuikCourse B. AS/400 and iSeries Work Management 459

Figure B-10 Work With System Status
 Work with System Status HELLO

 10/14/02 08:09:11

% CPU used : 26.2 Auxiliary storage:

% DB capability : .0 System ASP : 473.8 G

Elapsed time : 00:00:25 % system ASP used . . : 58.6413

Jobs in system : 2745 Total : 473.8 G

% perm addresses : .047 Current unprotect used : 10417 M

% temp addresses : .280 Maximum unprotect . . : 17442 M

Type changes (if allowed), press Enter.

System Pool Reserved Max -----DB----- ---Non-DB---

 Pool Size (M) Size (M) Active Fault Pages Fault Pages

 1 344.99 199.15 +++++ .0 .0 5.3 7.3

 2 2480.38 6.33 422 .0 .0 3.7 9.7

 3 785.94 .03 74 5.1 14.5 13.2 116.9

 4 40.31 .00 19 .0 .0 .0 .0

 5 81.98 .00 23 .0 .0 .0 .0

 More...

 6 96.37 .00 8 .0 .0 .0 .0

 7 10.00 .00 4 .7 1.1 .3 .9

 Bottom

Command

===>

F3=Exit F4=Prompt F5=Refresh F9=Retrieve F10=Restart

F11=Display transition data F12=Cancel F24=More keys

You may recall a few pages ago, we discussed Activity
Level. The column in the WRKSYSSTS display titled Max
Active, in Figure B-10 shows the activity level of
each memory pool. The Pool Size column represents the
amount of memory allocated to a pool.

The System Pool number shown in Figure B-10, is not as
simple to understand, as you would first presume. For

pools after System Pool # 2, for example, the System

460 The iSeries Pocket Developer’s Guide

Pool ID has to do with the sequence in which the

subsystems are started. When the subsystems are

started, memory is then allocated to their defined

pools. We have learned that pools 1 and 2 are always

the Machine pool and the *BASE pool respectively. The

higher number System Pool IDs (3 to 7) represent

pools that are allocated when the subsystems, in which

they are defined, are started.

For example, pool ID 3 happens to be the *INTERACT

shared pool but you cannot tell from this panel. It is

pool 3 because the system numbered it when the QINTER

subsystem, in which it is defined, was started. System

pools 4 and 5, likewise were allocated when their

associated subsystems were started. Since subsystems

can have up to 10 pools defined, if a subsystem with

three private pools were started before any others,

the system would assign System Pool Ids, 3 to 5 to

these memory pools.

At system startup, the Machine pool gets what it wants

and all other memory is given to the second system

pool known as *Base. As subsystems get started, they

take memory from the *BASE pool (System Pool # 2). It

gets reduced in size by the amount of memory needed by

each new subsystem pool as the subsystem starts.

Auto Tuning

Though you can certainly struggle through the IBM Work

Management Guide, and you can calculate the proper

settings for your machine, manually tuning an AS/400

QuikCourse B. AS/400 and iSeries Work Management 461

has gotten to be very involved. Though it is not

impossible, it is not as necessary as it once was.

There is a system value called QPFRADJ. My

recommendation for tuning is to use the QPFRADJ system

value and set it to a value of 2.

Shared Pools

There are sixty-four total shareable pools on the

system. Besides the machine pool and the base pool,

these are as follows:

*INTERACT The shared memory pool specifically

designated by IBM for interactive jobs.

*SPOOL The shared memory pool specifically

designated for spool readers and

writers.

*SHRPOOL1 Thru *SHRPOOL60. These are generally
available shared memory storage pools

that you can use as your needs dictate.

*INTERACT

The *INTERACT pool exists on all AS/400s. However, a
shop can choose to ignore this pool and use dedicated

(private) pools or other shared pools for interactive

work. However, most shops see the advantage for

defining interactive work using this pool. The

*INTERACT pool is typically defined in subsystems that
perform interactive workloads.

462 The iSeries Pocket Developer’s Guide

Thus, if there were several interactive subsystems on

your AS/400, all could have their interactive programs

run in the shared *INTERACT memory pool.

*SPOOL

The specified pool definition is defined to be the

shared pool used for spooled writers. The size and

activity level of the shared pool are specified using

the CHGSHRPOOL command.

*SHRPOOL1 et al.

This pool definition is defined to be a

general-purpose shared pool. There are sixty

general-purpose shared pools, identified by special

values *SHRPOOL1 to *SHRPOOL60. The size and activity

level of a shared pool are also specified using the

Change Shared Pool (CHGSHRPOOL) command.

Setting the Size of Shared Pools

When you build a subsystem, you must specify at least

one memory pool. If you pick *Base, *Interact, *Spool,

or any shared pool, you cannot set the size of the

pool when creating the subsystem description. Shared

pools are freelance pools, not assigned to subsystems.

Yes, you can set the share pool size and its activity

level with the WRKSYSSTS command, but that is not the

command designed for the purpose.

QuikCourse B. AS/400 and iSeries Work Management 463

In order to set the size of the *INTERACT memory pool,

and all other shared pools; you can use the CHGSHRPOOL

command as noted above. However, there is a special

command called WRKSHRPOOL, which makes the task

easier. To help you visualize the various shared pools

on the system, and how easy it is to set their sizes

and activity levels, the first output panel of a

WRKSHRPOOL command is shown in Figure B-11.

Notice in Figure B-11, that the size of the *INTERACT

pool at the time of the snapshot is 785.94K with an

activity level of 74. It is no coincidence that pool

3, in Figures B-10 is exactly the same size, with the

same activity level.

464 The iSeries Pocket Developer’s Guide

Figure B-11: Work With Shared Pools
 Work with Shared Pools

 System: HELLO

Main storage size (M) . : 3840.00

Type changes (if allowed), press Enter.

 Defined Max Allocated Pool -Paging Option--

Pool Size (M) Active Size (M) ID Defined Current

*MACHINE 344.99 +++++ 344.99 1 *FIXED *FIXED

*BASE 2480.39 422 2480.39 2 *CALC *CALC

*INTERACT 785.94 74 785.94 3 *CALC *CALC

*SPOOL 81.98 23 81.98 5 *CALC *CALC

*SHRPOOL1 96.37 8 96.37 6 *CALC *CALC

*SHRPOOL2 40.31 19 40.31 4 *CALC *CALC

*SHRPOOL3 .00 0 *FIXED

*SHRPOOL4 .00 0 *FIXED

*SHRPOOL5 .00 0 *FIXED

*SHRPOOL6 .00 0 *FIXED
 More...

 Command

 ===>

 F3=Exit F4=Prompt F5=Refresh F9=Retrieve F11=Display tuning data

 F12=Cancel

As a point of note, the underlined fields are

changeable in this panel. In fact, they are input-

capable fields by default on AS/400. That means you

can change the size of the pools right on the status

display. If, for example, you knew that you were about

to have a few big interactive programs hit this pool,

you could bump up the *INTERACT memory numbers shown

in Figure B-11 to accommodate your need. You would

type the changes right from the WRKSHRPOOL panel as

shown above.

QuikCourse B. AS/400 and iSeries Work Management 465

The fourth column under Pool ID refers to system Pool

ID. Thus, this panel gives us another way of seeing

the relationships between the system pool ID #s and

the shared pools.

Another field to examine on this panel is Paging

Option, which for *INTERACT is defined as *CALC. There

is a detailed explanation of this after Figure B-10D

above. In a nutshell, this means that the system

dynamically adjusts the paging characteristics and the

amount of memory associated with the *INTERACT storage

pool for optimum performance. Believe me, there is

nothing you want more than the system balancing

performance rather than you having to do it. Under

this scenario, you set the thermostat and the system

tries to achieve it.

A Look at *Spool

In Figure B-11, you can learn a few other interesting

tidbits besides the size of *INTERACT. You can see the

*MACHINE pool size, the *BASE pool size, and the print

or *SPOOL size. The *SPOOL pool is a convenient way of

assigning a tunable, specially designated shared

memory pool for the system spooling function.

466 The iSeries Pocket Developer’s Guide

A Look at *SHRPOOLS

You can also see that there are more shared pools than

are shown on the screen (More in lower right corner).
In fact, as noted above, in V5RX, there are up to 60

user defined shared pools. With memory available in

gigabytes, IBM is helping OS/400 give you some

exciting ways to divvy up memory to have the system

manage the pools, using the shared pool mechanism. The

user defined shared pools (*SHRPOOLX type pools) are
also available for use with subsystems. Though

sketchily defined by IBM, they are inert until a user

gives them some memory and an activity parameter by

making the pool a part of one or more subsystems that

actually get started.

☺Tip Unless a subsystem is started (STRSBS)

using its subsystem description, no memory

pools defined in a subsystem are ever

allocated.

A Look at the *BASE Pool

You may also notice that *BASE is not changeable using

WRKSHRPOOL or WRKSYSSTS. You can see there is no

underline in Figure B-11. This means that the field is

not input-capable. Though you cannot set the value of

*BASE memory, there is a system value accessible via

the WRKSYSVAL (work with system values) command. It is
called QBASPOOL. Through this value, you set the
minimum size for the *BASE memory pool. You cannot set

QuikCourse B. AS/400 and iSeries Work Management 467

its exact size since *BASE is the pool, from which all

other pools take their memory.

The actual size of *BASE is determined after all

subsystems are started. Starting subsystems causes

them to allocate needed memory in the sequence in

which the subsystems, and the pools within the

subsystems are started. After all the other system

pools have been allocated during subsystem startup

time, *BASE gets whatever is left. However, under no

circumstances will the *BASE pool ever have less

memory than the amount specified in the QBASPOOL

system value.

If during startup, in order for a subsystem to get its

full private memory allocation, *BASE would be taken

below its minimum, the system does not permit this.

*BASE gets its full minimum allocation and the

subsystem that is starting then gets the memory that

remains.

A Look at the *MACHINE Pool

The machine pool, *MACHINE is set by the QMCHPOOL

system value. Unlike the QBASPOOL value, however, this

defines how much memory is given to the nucleus of the

machine when it is powered on. It is not a minimum

setting. It is an actual number. Based on the size of

the system and the number of concurrent processes

expected, IBM makes a recommendation in the Work

Management manual (SC41-5306) for the size of the

pool.

468 The iSeries Pocket Developer’s Guide

If your system is set to not adjust memory based on

workload, the value you specify is what you get. On

the other hand, if the system is set to adjust memory

based upon the various workloads in the subsystems,

then the value of the QMCHPOOL is a startup value and,

just as any other shared pool, it can be auto-adjusted

upwards or downwards to accommodate workload during

system operation.

This is a major advantage of a shared pool since

private memory pools, such as WDS subsystem pool 3

(set at 10000K with an activity level of 2) cannot be

tuned automatically by the system based upon workload.

Without overt action by an operator / implementer, WDS

pool 3 will have 10000K forever.

QuikCourse B. AS/400 and iSeries Work Management 469

QuikCourse B.

Part VII: Case

Study– Building Work

Management Objects

from Scratch

One Object at a Time

By this time in this QuikCourse, you should certainly

know more than you did when you started — . Lots

more! There was probably a time mid-way that you may

have felt that you knew even less than when you began.

Those days are behind us. We are ready to move!

Now, it is time to solidify our gains by creating a

new subsystem and a matching set of work management

objects, from scratch. The agenda for this part of the

QuikCourse is just that. As we proceed, we first

discuss the building task to be performed, and then we

470 The iSeries Pocket Developer’s Guide

show the commands used to build the work management

objects.

Logically Sequenced Exercises

You will find that this exercise is sequenced

logically and in a way that you can understand each

piece along the way. However, our bet is that you will

find a few dependencies that you may not have counted

on. If you get set back in any way as you are building

these objects, because of prerequisite objects being

necessary, feel free to break sequence and go to the

step that shows you the command to build the

prerequisite object, enter the command, and build the

object.

Build Batch and Interactive

Environments

Because batch and interactive subsystems prosper with

different operational characteristics, this exercise

creates both a batch and an interactive environment

and associated objects. The commands used are the

same, but some of the parameters are different. Take a

look at the commands as you use them, so that you can

be able to differentiate the things that are probably

good for batch and the things that are probably good

for interactive. This should help you in tailoring

your own shop.

Use IBM’s Manual

QuikCourse B. AS/400 and iSeries Work Management 471

If after you complete this exercise, and you want to

do more, you can go to the back of the IBM Work

Management guide. All the parameters for the shipped

IBM Work Management objects are there, in an easy to

read format.

Using the shipped objects in the IBM manual as a

guide, one exercise that would be helpful would be to

display the objects on your system and compare them

against what is in the manual (how they shipped). In

this way, you can identify things that your shop has

changed.

Another exercise would be to pick a subsystem

environment that you may recognize, such as QBASE or

QBATCH or QCTL, try to identify all of its associated

objects, and create them with a new name in your

library. For example, you may name the group TESTQ,

instead of QINTER, QBATCH, etc.

Even is you choose not to do any additional exercises,

just looking at the shipped objects in the back of the

IBM Work Management Guide is an educational trip by

itself.

472 The iSeries Pocket Developer’s Guide

Work Management Exercises

The Let’s get on with our own exercise for the present.

For each of the commands in the exercise, type it on

the command line or type the command name and then use

the prompter (F4) to help you fill in the command

parameters. When you are finished, press ENTER to run

the command.

The steps to setting up a Work Management Environment

for both batch and interactive users are as follows:

1. Create a subsystem description

for interactive:

CRTSBSD SBSD(HELLO/WDS)

POOLS((1 *BASE) (2 *INTERACT)

(3 10000 2))

2. Create a CLASS object for

interactive:

QuikCourse B. AS/400 and iSeries Work Management 473

CRTCLS CLS(HELLO/WDS) RUNPTY(20)

TIMESLICE(2000) PURGE(*YES)

DFTWAIT(30)CPUTIME(*NOMAX)

MAXTMPSTG(*NOMAX)

MAXTHD(*NOMAX)

TEXT('Interactive Class for WDS subsystem')

3.Create a subsystem description

for batch:

CRTSBSD SBSD(HELLO/WDSBATCH)

POOLS((1 *BASE) (2 *SHRPOOL1))

TEXT('Batch Subsystem Description For WDS

Case Study')

4. Create a Class object for batch:

474 The iSeries Pocket Developer’s Guide

CRTCLS CLS(HELLO/WDSBATCH)

RUNPTY(50) TIMESLICE(5000)

PURGE(*NO)DFTWAIT(30)

CPUTIME(*NOMAX)

MAXTMPSTG(*NOMAX)

MAXTHD(*NOMAX) TEXT('Batch Class for

WDSBATCH subsystem')

QuikCourse B. AS/400 and iSeries Work Management 475

5. Create a User profile for interactive:

CRTUSRPRF USRPRF(PGMR) PASSWORD()

STATUS(*ENABLED) USRCLS(*PGMR)

INLPGM(HELLO/MYPROG)

JOBD(NEWJOBD) GRPPRF(BIGGRP)

SUPGRPPRF(DEPTGRP) MSGQ(*USRPRF)

PRTDEV(SECPRTR)

OUTQ(HELLO/SECPRTR) TEXT('Interactive')

When you create this profile, and later sign on using it, you can

submit batch jobs without creating a batch user profile. For

example, on the SBMJOB itself, when you submit the job tot he

WDSBATCH job queue, it will run in the WDSBATCH subsystem.

For batch routing data, you can provide the NEWBJOBD job

description if it is already built from having completed this exercise.

You can also directly specify “BATCH” as the routing data for the

SBMJOB. As long as all of the work management objects in this

exercise are built, you should have no problem submitting batch

work with what appears to be an interactive profile.

6. Create a Printer Device for a LAN

attached printer:

476 The iSeries Pocket Developer’s Guide

This is a model for an IBM InfoPrint21. If you’ve got a different

model printer(s), check the printer manual and call IBM support if

you can’t make it work. They often have the unpublished secrets.

CRTDEVPRT DEVD(SECPRTR)

DEVCLS(*LAN) TYPE(3812)MODEL(1)

LANATTACH(*IP) PORT(2501)

ONLINE(*YES) FONT(011)

FORMFEED(*AUTOCUT)

PRTERRMSG(*INFO) MSGQ(QSYSOPR)

ACTTMR(170) INACTTMR(*NOMAX)

PARITY(*TYPE) STOPBITS(1)

TRANSFORM(*YES)

MFRTYPMDL(*INFOPRINT21)

PPRSRC1(*LETTER) PPRSRC2(*LETTER)

ENVELOPE(*NUMBER10)

RMTLOCNAME('192.168.5.200')

QuikCourse B. AS/400 and iSeries Work Management 477

SYSDRVPGM(*IBMSNMPDRV)

TEXT('Security Officers'' Printer')

7. Create an interactive Output Queue:

If you want to use a queue, which is not associated with a printer,

use this command.

CRTOUTQ OUTQ(QUSRSYS/PGMR)

DSPDTA(*NO) JOBSEP(0) OPRCTL(*YES)

TEXT('Programmer' Interactive Output Queue')

8. Create batch Output Queue for batch

work:

CRTOUTQ OUTQ(QUSRSYS/BATCHOUT)

DSPDTA(*NO) JOBSEP(0) OPRCTL(*YES)

TEXT('Batch Output Queue')

9. Create an Interactive Job Description:

Use the same name as referenced in the User profile. You’ll have to

get this created before you sign on.

478 The iSeries Pocket Developer’s Guide

CRTJOBD JOBD(HELLO/NEWJOBD)

JOBQ(HELLO/WDS) RTGDTA(HGDVB)

PRTDEV(*USRPRF) OUTQ(*USRPRF)

INLLIBL(*SYSVAL) ENDSEV(30) LOG(4 0

*NOLIST) LOGCLPGM(*NO)

TEXT('Interactive Jobd')

QuikCourse B. AS/400 and iSeries Work Management 479

10. Create a Batch Job Description:

CRTJOBD JOBD(HELLO/NEWBJOBD)

JOBQ(HELLO/WDSBATCH)

RTGDTA(BATCH)

OUTQ(HELLO/BATCHOUT)

INLLIBL(*SYSVAL) ENDSEV(30) LOG(4 0

*NOLIST) LOGCLPGM(*NO) TEXT('Batch

Job Description')

11. Create an Interactive Job Queue:

Since a job queue is for Batch work, this queue permits the

interactive subsystem to be used for batch work.

CRTJOBQ JOBQ(HELLO/WDS) TEXT('WDS

JOB QUEUE')

12. Add a Job Queue Entry:

Add a Job Queiue Entry to the WDS Interactive Subsystem (WDS).

480 The iSeries Pocket Developer’s Guide

ADDJOBQE SBSD(HELLO/WDS)

JOBQ(HELLO/WDS) SEQNBR(350)

The newly created subsystem WDS would be capable of batch

work, if you execute the above commands – item 11 and item 12. Of

course, it may need a little more work to make it right. That’s why

we created a batch subsystem. For example, you would want a batch

memory pool, so your batch jobs are not stealing your interactive

pages. Moreover, if you submit work, you would want a routing

entry and routing data that would select the batch pool and a batch

class. You might be better off running in WDSBATCH!

13. Create Job Queue for Batch:

The Job Queue enables the WDSBATCH subsystem to perform

batch work (WDSBATCH)

CRTJOBQ JOBQ(HELLO/WDSBATCH)

TEXT('WDSBATCH JOB QUEUE')

14. Add Job Queue Entry for Batch:

ADDJOBQE SBSD(HELLO/WDSBATCH)

JOBQ(HELLO/WDSBATCH) SEQNBR(350)

QuikCourse B. AS/400 and iSeries Work Management 481

The newly created subsystem WDSBATCH is capable of batch

work, if you execute the above commands – item 13 and item 14.

When it gets it s routing entries below, the batch environment

should be fine.

This subsystem can run interactive work if we choose to add some

Work Station Entries. Of course, it may need a little more work to

make it right. That’s why we created the interactive subsystem. For

example, you would want an interactive memory pool or

*INTERACT to be used so your high priority interactive jobs are

not preempting your batch jobs with lower priority. This could

cause thrashing.

Moreover, if you really want interactive in a batch subsystem, you

would want a routing entry and routing data that would select the

interactive pool and an interactive class. The more you think about

it, you might be better off running in WDS!

15 Add Workstation Entry to Interactive

subsystem (WDS):

All displays starting with WS will be connected to this subsystem.

ADDWSE SBSD(HELLO/WDS)

WRKSTN(WS*) JOBD(*USRPRF)

16. Add a Routing Entry to WDS

Subsystem:

(Interactive - HGDVB)

482 The iSeries Pocket Developer’s Guide

ADDRTGE SBSD(HELLO/WDS)

SEQNBR(100) CMPVAL(HGDVB)

PGM(QCMD) CLS(HELLO/WDS)POOLID(2)

17. Add a Routing Entry to WDSBATCH

 Subsystem (Batch - BATCH)

ADDRTGE SBSD(HELLO/WDSBATCH)

SEQNBR(100) CMPVAL(BATCH)

PGM(QCMD)

CLS(HELLO/WDSBATCH)POOLID(2)

Getting Your Printouts

Now that you have a user profile, a printer definition, and an output

queue, how do you get to have your printouts arrive in your output

queue? The answer is through the job description associated with

the user profile (NEWJOBD or NEWBJOBD). The output queue is

a parameter that is specified in the job description

Any printer can print from any output queue if you use the start

print writer (STRPRTWTR) command such as shown below.

Getting from the output queue to the printer is not hard to figure out.

The command to start the system’s main printer, which is often

named PRT01, using the PGMR output queue is as follows:

QuikCourse B. AS/400 and iSeries Work Management 483

STRPRTWTR DEV(PRT01)

OUTQ(HELLO/PGMR)

So far, we have created a user profile, a printer, an output queue, a

job queue, a job description, class, and a subsystem description. We

have taken the subsystem descriptions and we have added a mix of

batch sources of work (Job Queue Entry for WDSBATCH job

queue) and an interactive source of work (WS* work station entry)

for subsystem WDS. As a final step, we supplied routing entries for

the subsystem. We did it all.

Create Your Own Subsystem!

It would serve you well to create a few more subsystems of your

own as suggested in the exercises. You can also create the necessary

work management objects, memory pools, workstation entries, job

queue entries, and routing data to go along with them. Then you can

start your subsystems, and try to get interactive jobs running

(terminal name is important). Then submit jobs to your job queues

and see them run in your subsystems. You will feel smart because

when you can do that, you’ll be way ahead on the work

management game plan.

484 The iSeries Pocket Developer’s Guide

IBM Supplied Objects

IBM does not abandon its new AS/400 and iSeries users with a set

of instructions to build all these objects before you can use your

system. In fact, the collection of objects, which IBM supplies, is

often regarded as must-haves instead of starter sets. Most AS/400

shops persist in using the IBM definitions for one reason or another.

It certainly makes it easier when the replacement players come in to

take your job.

There are three main environments supplied by IBM. One is

System/36-like and uses a controlling subsystem called QBASE.

One is System/38-like. The third is native OS/400. Native is so

much like the System/38 environment that for our purposes in this

QuikCourse, we combine them in the discussion. It uses a

subsystem called QCTL as its controlling subsystem. Additionally,

it uses subsystem QINTER for interactive, subsystem QBATCH for

batch work, and subsystem QCMN for communications work.

With or without using the System/36 environment, some shops use

the QBASE subsystem as their controlling subsystem since IBM

shipped many AS/400 systems with this default. The controlling

subsystem is defined in the system value QCTLSBSD.

Controlling Subsystem Starts Other

Subsystems

At power-on, the AS/400 starts the subsystem whose name is

contained in this system value, as the first subsystem after an IPL. If

you look at your controlling system, you will find that there is an

auto-start job entry for a program that then starts the other user work

on your system, including the other subsystems.

If your environment is QBASE, then the QBASE subsystem itself is

built to support interactive, batch, and communications jobs. It also

QuikCourse B. AS/400 and iSeries Work Management 485

has an Autostart job, which automatically starts the QSPL

(Spooling) subsystem.

If your environment is QINTER, then your controlling subsystem is

QCTL. Your batch work would be designed to run in a subsystem

called QBATCH, and communications jobs would run in QCMN. In

this mix, there are job queues and job descriptions, provided by

IBM and named the same as the subsystem descriptions. Thus,

QINTER would be the JOBQ for QINTER, etc. Additionally, each

subsystem comes chocked full of routing entries, and, depending on

the nature of the subsystem, the workstation entries and job queue

entries are pre-built.

In the back of IBM’s Work Management Guide, in Appendix C, all

of the IBM supplied objects can be found, along with the commands

to create them. Keep this in mind as you begin to explore doing

your own work management setups.

Final Note

This was just a little primer on the subject of work management.

But, if you have been able to follow after one or several reads, you

have come a long way. The beauty of work management is that the

basics have stayed the same since 1978. It was a good idea then, and

continues to be a good idea.

Learn as much as you can, and as changes come about to the

OS/400 operating system, you will find that most of the base

concepts do not change. The starter values for the new mainframe

size AS/400s are much different from the baby AS/400, however.

That’s why IBM wrote the Work Management Guide, to give you

the starter values needed to get you going. If you can’t find the

starter values, then turn on the performance adjuster, and the values

it gives right out of the gate are what you would have had to

calculate.

486 The iSeries Pocket Developer’s Guide

Don’t get locked out. Remember, you can create the key! Enjoy

work management. You’ll be amazed at what you can do with it. It

can be a lot of fun.

Other Sources of Work

Management Information

IBM’s documentation on Work Management is fairly thorough and

it would be a worthwhile read. It can be found on the Web by taking

the following links

www.as400.ibm.com

After you get there, choose as follows:

1. Library

2. iSeries Information Center

3. iSeries Online Library (on the left frame)

4. English, GO

5. V5R1

6. Systems Management (Left frame)

7. Work Management (Left frame)

Introductory Work Management information becomes available in

the right frame

8. Manuals and Redbooks

9. Work Management

When you finally get to the Work Management link, it brings down

the Work Management Guide. When V5R2 was announced, this

manual was still at the V4R5 level. In any case, the guide is very

powerful and can still help you in understanding the details of the

many topics in Work Management. Item seven in the above list is

also helpful to get a simplified view from the Information Center

itself, which can amplify your understanding of the topics presented

in this QuikCourse.

QuikCourse B. AS/400 and iSeries Work Management 487

As much as I’d like to tell you that this Pocket Guide is all you need

to do all you need with Work Management that is not the purpose of

this QuikCourse. In both the Mini Course provided in this iSeries

Pocket Developer’s Guide, or the Full Course in the iSeries Pocket

Work Management Guide, the objective is to help you understand

how work is accomplished in the system and to stage you for

building your own subsystems and tuning systems.

In the Full Course, we carry the hands-on experience and tuning

experience even further, walking you through the building of the

objects necessary to create your Work Management environment,

and giving solid tips for tuning performance.

Neither the Mini Course, nor the Full QuikCourse is as extensive in

content as the IBM Work Management manual. Before you go

digging in the IBM manual for some abstruse concepts, however, go

through one of these pocket-sized QuikCourses. It will save a lot of

time. These are intended to teach whereas the IBM manuals are

intended to amplify your learning with concrete facts. As you learn

Work Management, remember that the bite at a time theory

definitely applies here.

We wish you the best!

488 The iSeries Pocket Developer’s Guide

Appendix A.

IBM Documentation -

How to Find it!

How to Find an IBM AS/400
or iSeries Manual Using
IBM’ S Web-Based
Documentation

Many IBM iSeries manuals are excellent. Though you
will be able to amble somewhat through the wonderment
of iSeries program development after taking these
QuikCourse tutorials, for your details and specifics,
unfortunately, you must access IBM’s wealth of AS/400
manuals and other documentation.

Appendix A. IBM Documentation - How to Find It! 489

There was once a time that every IBM manual had a form
number which was very easy to locate. It was on the
front cover of the book or manual. This was a nice way
of uniquely identifying the manual you needed. Things
have changed, mostly for the better. Now, you don’t
need any manuals at all per se, since all of IBM’s
AS/400 documentation is available on the web in HTML
and/or PDM format. Thus, every manual for AS/400 and
iSeries is just a Web access away. Throw your old
manuals away. Save the trees. Clear up your desks.
How do you find the manual you need? For this book,
you will position yourself to IBM’s iSeries
documentation web site. This will be your entree into
the world of IBM documentation for version 5.X of the
operating system. From here, for certain manuals, you
will take very specific paths to get to the manuals
of your choosing. For others, which are still
referenced by manual number, and there is a ton of
them, you will go to the supplemental manuals’ page, a
sample of the manuals there is shown in Figure AA-1.

Figure AA-1 IBM Supp. Manuals Page - Looking for a
Manual

Title Document
Number

3270 Device Emulation Support SC41-5408
ADTS for AS/400: Report Layout Utility SC09-2635
ADTS for AS/400: Screen Design Aid SC09-2604
ADTS for AS/400: Source Entry Utility SC09-2605
ADTS/400: Application Dev. Manager API Reference SC09-2180
ADTS/400: Application Dev. Manager Intro and GC09-1807

Planning Guide
ADTS/400: Application Dev. Manager Self-Study Guide SC09-2138
ADTS/400: Application Dev. Manager User's Guide SC09-2133
ADTS/400: Application Dictionary Svcs Self-Study Guide SC09-2086
ADTS/400: Application Dictionary Services Users Guide SC09-2087
ADTS/400: Advanced Printer Function SC09-1766
ADTS/400: Data File Utility SC09-1773

490 The iSeries Pocket Developer’s Guide

ADTS/400: File Compare and Merge Utility SC09-1772
ADTS/400: Interactive Source Debugger SC09-1897
ADTS/400: Programming Development Manager SC09-1771
ADTS/400: Screen Design Aid for the S/36 Environment SC09-1893
CL Programming SC41-5721
COBOL/400 Reference SC09-1813
COBOL/400 Users Guide SC09-1812

ILE Application Development Example SC41-5602
ILE C/C++ Compiler Reference SC09-4816
ILE C/C++ for AS/400 MI Library Reference SC09-2418
ILE C/C++ Language Reference SC09-4815
ILE C/C++ Programmer's Guide SC09-2712
ILE C for AS/400 Run-Time Library Reference SC41-5607
ILE COBOL Programmer's Guide SC09-2540
ILE COBOL Reference SC09-2539
ILE COBOL Reference Summary SX09-1317
ILE Concepts SC41-5606
ILE RPG Programmer's Guide SC09-2507
ILE RPG Reference SC09-2508
ILE RPG Reference Summary SX09-1315
Introducing ADTSet for OS/400 and GC09-2088

the AS/400 Server Access Programs
REXX/400 Programmer's Guide SC41-5728
REXX/400 Reference SC41-5729
RPG/400 Reference SC09-1817
RPG/400 User's Guide SC09-1816
Sort Users Guide and Reference SC09-1826
System Operation SC41-4203
System/36-Compatible RPG II User's Guide and Reference SC09-1818
System/38-Compatible COBOL Reference Summary SX09-1286
System/38-Compatible COBOL User's Guide and Reference SC09-1814
VisualAge RPG Language Reference SC09-2451
VisualAge RPG Parts Reference SC09-2450
Work Management SC41-5306

Appendix A. IBM Documentation - How to Find It! 491

Finding a Manual - IBM
Process

Let’s find a couple manuals. As an example, Let’s say you are
looking for database manuals. What is the first thing you do?

You want to go to IBM’s documentation site. The easiest way to get
there is to go to the main AS/400 / iSeries site at
WWW.AS400.IBM.COM

On the left frame, notice a link called Library. Take the link then,
from the right panel, take the iSeries Information Center link. From
there, you will get a panel, which lets you pick the version and
release and the language. Pick V5R1 and English, then click on the
GO button. You are now at IBM’s English documentation site for
V5R1.

To get to the database books, you have a few more links to go. After
you press GO, for Database, 1. click on Database and File Systems,
2. Then click DB2 UDB For iSeries. 3. Then click Manuals and
Redbooks.

In this section, you will find two valuable manuals. The first, DDS
Reference: Concepts, shows how to use DDS, and the second, DDS
Reference: Physical and Logical Files shows how to create physical
and logical database files. When we find these two manuals, we
have found what we are looking for.

When I did my search, I noticed that neither of these manuals,
taking this path, showed up with IBM form numbers. At least I
could not find them. Now, let’s try to find a few books which would
come in handy in some of the QuikCourses you are studying.
Suppose you were looking for books in any of the following topical
areas:

Work Management
PDM - Program Development Manager
SEU - Source Entry Utility
DFU - Data File Utility
SDA - Screen Design Aid

492 The iSeries Pocket Developer’s Guide

As you are going through the main path as we did for database, you
would notice that there is no stopping point for Application
Development. So, how do you find the books above?

Instead of clicking on the Database and File System path, go down
a bit further, until you see: Looking for A Manual? Take this link.
You will then get a new browser window with all AS/400 and
iSeries manuals listed by topical area. Page down this display.
While paging, look at all the manuals you see and make a note of
them for future reference. You will come to a section called
Supplemental Manuals. For your edification, we cut out a sample of
these supplemental manuals and made them available as Figure AA-
1 above.

Please note that the list of five manuals, for which we were
searching, are all available in this list. The SEU, DFU, etc. manuals
are prefixed by ADTS which means the Application Development
Tool Set. As you know, with V5R1, the ADTS is bundled with the
5722-WDS product called WebSphere Development Studio for
iSeries.

As you move through the QuikCourses, especially those teaching a
technical topic such as SEU or PDM, feel free to take a trip out to
the Web and either download your own PDF version of these
manuals or check it out in HTML form right from the Web. Like
me, I would expect that you will be impressed with all that IBM has
made available for your use, and how easy it is to access and find
specific information.

Appendix A. IBM Documentation - How to Find It! 493

