

Dear Reader: Thank you for downloading this free book from
Brian W. Kelly’s finished book catalog. I finished the book titled
The AS/400 & IBM I Pocket SQL Guide at
https://letsgopublish.com/technology/pocketsql.pdf in
October 2016. SQL Concepts, Coding Examples & Exercises.

Most of my books had previously been published on
Amazon.

Click below if you would like to donate to help the free book cause:
https://www.letsgopublish.com/books/donate.pdf

Enjoy!

https://letsgopublish.com/technology/pocketsql.pdf
https://www.letsgopublish.com/books/donate.pdf

LETS GO i5 SQL!

The IBM i

Pocket SQL
Guide

AS/400 and IBM i SQL Concepts, Coding
Examples & Exercises

– A Comprehensive Book of updated Database Information and
SQL examples for the new and experienced AS/400 and IBM i
Application Developer –

B R I A N W . K E L L Y

Original Copyright © 2005, Brian W. Kelly as

The IBM i Pocket SQL Guide

Author Brian W. Kelly

All rights reserved: No part of this book may be

reproduced or transmitted in any form, or by any means,

electronic or mechanical, including photocopying,

recording, scanning, faxing, or by any information storage

and retrieval system, without permission from the

publisher, LETS GO PUBLISH, in writing.

Disclaimer: Though judicious care was taken throughout

the writing and the publication of this work that the

information contained herein is accurate, there is no

expressed or implied warranty that all information in this

book is 100% correct. Therefore, neither LETS GO

PUBLISH, nor the author accepts liability for any use of

this work.

Trademarks: A number of products and names referenced

in this book are trade names and trademarks of their

respective companies. For example, NetBurst is a

trademarks of Intel Corporation; MirrorBit is a trademark

of AMD Corporation and Power Everywhere is a

trademark of IBM Corporation. A list of a number of

trademarks is included following the front matter.

Referenced Material : The information in this book has been obtained through

personal and third party observations, interviews, and copious research and analysis. Where
unique information has been provided or extracted from other sources, those sources are
acknowledged within the text of the book itself. Thus, there are no formal footnotes nor is
there a bibliography section. Any picture that does not have a source was taken from various
sites on the Internet with no credit attached. If any picture owner would like credit in the next
printing, please email the publisher.

Published by: LETS GO PUBLISH!

 Joseph McDonald, Publisher

 ... P.O Box 425

 .. Scranton, PA 18503

 ...jmac@letsgopublish.com

 .. www.letsgopublish.com

Library of Congress Copyright Information Pending

Book Cover Design by Michele Thomas

ISBN Information: The International Standard Book

Number (ISBN) is a unique machine-readable

identification number, which marks any book

unmistakably. The ISBN is the clear standard in the book

industry. 159 countries and territories are officially ISBN

members. The Official ISBN For this book is:

0

0-9745852-6-2

__

The price for this work is : ... $59.00 USD

10 9 8 7 6 5 4

3 2

Release Date: .. March, 2006

Trademarks

Intel, Itanium, Pentium, Xeon, NetBurst are registered trademarks
of Intel Corporation or its subsidiaries in the United States and
other countries.

AMD, Athlon and Opteron, MirrorBit, are registered trademarks
of AMD Corporation.

IBM, iSeries, pSeries, eServer, PowerPC, POWER5, System/3,
System/32, System/36, System/38, AS/400, .iSeries, and Cell are
registered trademarks of IBM Corporation

Microsoft, Windows, Windows XP, and Windows NT are
registered trademarks of Microsoft Corporation

Note: Any vendor wishing that a trademark citation be placed in a
subsequent printing of this book is asked to email the publisher.

Dedication

To my wonderful wife Patricia, and our loving children,

Brian, Michael, and Katie as well as the greatest pack of

brothers and sisters, aunts and uncles, cousins, nieces and

nephews that any person could ever hope to have in just

one life.

Acknowledgments

To sum up my acknowledgments, as I do in every book

that I have written, I am compelled to offer that I am truly

convinced that "the only thing you can do alone in life is

fail." Thanks to my family, good friends, and a helping

team, I was not alone.

Table of Contents at a Glance
Modified for King’s DB Course

Chapter 1 What is a Database? 1
Chapter 2 Distributed Relational Databases with SQL 19

Chapter 3 What is SQL? ... 27
Chapter 4 SQL Concepts & Facilities 47

Chapter 5 Introduction to RUNSQLSTM 65
Chapter 6 Creating and Understanding Schema etc ... 79

Chapter 7 Libraries, Native Objects SQL Devel.. 87
Chapter 8 Creating and Dropping SQL Objects 117

Chapter 9 Interactive SQL (ISQL) 163

Chapter 10 Relational Database Operations 177
Chapter 11 The Basic Select Statement 193

Chapter 12 Query Manager 213
Chapter 13 Embedded SQL High Level Language .. 251

Chapter 14 Advanced SQL, Join, Sub-Qry, Insert, .. 267
Chapter 15 AS/400 and iSeries Database Concepts 299
Chapter 16 Relational Database Theory 325

Chapter 17 Advanced SQL ? Constraints, Isolation 345
Chapter 18 Re-engineerPF & LF Objects SQL DDL.377

Index. ... 391

Table of Contents xi

Table of Contents

Chapter 1 What is a Database? 1

 The Database Concept .. 1
 What is Database Management? 2

 Data Organization ... 2
 Data Access .. 2

 Data Integrity .. 2
 Data Control ... 3

 What If There Were No Database? 3
 DBMS Types: Function and Structure 4
 Databases Characterized by Function 4

 Operational Databases ... 4
 Analytical Databases ... 5

 Data Bases Characterized by Function/Model 5
 Flat-file Database Model: 6

 Hierarchical Database Model 7
 Network Database Model 9
 Relational Database Model 10

 Object-Oriented Database Model 12
 Object Database Model .. 12

 Client/Server Database Model 13
 XML Database Model ... 13

 Dimensional Database Model 14
 Relational DB ... 15
 Benefits of a Database Management System (DBMS) 15

 Chapter Summary ... 15
 Exercises ... 17

Chapter 2 Distributed Relational Databases with SQL 19

 What Is a Distributed Database? 19
 Distributed Database Architectures and Protocols .. 20

 What is DRDA? .. 21

 Benefits of DRDA .. 21
 What is JDBC? .. 22

 What is ODBC? ... 22
 What is DB2 Connect? ... 23

 What is DB2 UDB CLI (Call Level Interface)? 23
 What is Embedded Dynamic SQL ? 24

 How Does Embedded SQL Compare to DB2 UDB CLI? 24
 Chapter Summary ... 25
 Many Solutions ? One SQL Language 25

 Key Terms... 26
 Exercises 26

Chapter 3 What is SQL? ... 27

 Powerful Database Development Language 27
 Why SQL in the First Place? 28

 HAS SQL?s Time Come on the iSeries? 29
 IBM SQL / Relational Database Leadership30 Codd?s Vision 31

 April 18, 2003 - Tedd Codd Passes Away 31 Proven by Math 33
 SQL and IBM .. 34

 Deficiencies of Hierarchical and Network Databases 34
 Relational Technology Is the Best 35
 What Can SQL do? .. 35

 IBM Provides a Database Referee 36
 No Patent on RDBMS or SQL 39

 Support for Database and SQL Standards 40 Today?s SQL
Standards .. 41

 What is iSeries Database and SQL Conformance? 42
 Two Components to AS/400 SQL 42
 1. DB2 UDB for iSeries - DB2/400 Database Manager 42

 2. DB2 Query Manager and SQL Development Kit for
iSeries 5722-ST1) ... 43

 AS/400 Standards Met ... 43
 Chapter Summary .. 44

 Key Terms .. 45
 Exercises .. 46

Table of Contents xiii

Chapter 4 SQL Concepts & Facilities 47

 Is SQL an End User Tool? 47

 AS/400 ANSI SQL Advanced Facilities 48
 Declarative Referential Integrity 48

 Triggers ... 49
 Stored Procedures .. 49
 SQL Basic Facilities .. 50

 Table Facility .. 50
 Table Editor .. 50

 Query Facility: .. 50
 Basic SQL Data Definition Language 51

 Sample SQL Table ? Mini-Vendorp 52
 Creating a Tables/File with CRTPF and DDS: ... 53
 Basic SQL Data Manipulation Language 56

 Basic SQL Select Statement 56
 Command Function ... 56

 Basic SQL Insert Statement 59
 Basic SQL Update Statement 59

 Basic SQL Delete Statement 59
 Basic SQL Data Control Language (DCL) 60
 The Granting ... 61

 The Revoking .. 61
 Chapter Summary ... 62

 Key Terms .. 62
 Exercises ... 63

Chapter 5 Introduction to RUNSQLSTM 65

 Two Major SQL Environments 65
 Running SQL Applications on iSeries 65

 Creating SQL Applications on iSeries 65
 The Four Faces of iSeries SQL 66

 SQL Statement Processor RUNSQLSTM 66
 What is RUNSQLSTM? 67

 Is RUNSQLSTM Free? .. 68
 What Does RUNSQLSTM Enable? 68

 RUNSQLSTM Create Person Table 70
 Executing SQL Statements with RUNSQLSTM 71 ..

 RUNSQLSTM Command -- Other Details 72
 Source Continuation .. 72

 Execution Printouts ... 73
 Pre-Run Syntax Checking 73
 Naming Parameter ... 74

 Chapter Summary ... 74
 Key Terms... 76

 Exercises ... 76

Chapter 6 Creating and Understanding Schema 79

 SQL Objects .. 79

 Collection / Schema .. 79
 Chapter Summary ... 84

 Key Terms... 84
 Exercises .. 85

Chapter 7 Libraries and Native Objects Used for SQL
Development ... 87

 What is a Library? .. 87

 System Storage Genesis ... 88
 Create a Library .. 89

 Library, Collection, Schema 91
 System-Wide Catalog... 91
 Create a Native Database ... 93

 Database Structures ... 94
 DB With No Structure ... 95

 Creating and Using Source DB Files 96
 Q & A - Data Description Specifications96

 File / Member Commands 101
 DSPLIB .. 102

Table of Contents xv

 DSPFD Display File Description 103
 Exploring the SQL Catalog with SQL 110

 Development Environment 112
 Chapter Summary ... 113

 Key Terms .. 115
 Exercises ... 116

Chapter 8 Creating and Dropping SQL Objects 117

 SQL Object Review ... 117
 Building and Working with SQL Table Objects 117

 What Does the SQL Create Table Statement Do? .. 118
 Data Types.. 118

 Syntax ? Create Table ... 119
 A Close Look at SQL Data Types 119
 Date Data Types ... 122

 Field Reference File / Dictionary 123
 SQL Based Field Reference Files 124

 No Reference in the Object 126
 System and SQL Table Names 126

 Creating an Alias ... 128
 Alias for Selecting Specific Members 129
 Column Names ... 130

 Adding Column Headings and Field Text 131
 Column Headers ... 133

 Column Text ... 134
 Creating an Index .. 135

 SQL Table Indexes are Structurally Native L Files . 137
 The SQL View and the Create View Statement 138
 Create a View ? Syntax .. 140

 The Essence of a View ... 141
 Order By Clause ? A Projection / Selection View 143

 Dropping (Deleting) SQL objects 144
 Collection / Schema Considerations 145

 SQL Object Naming Guidelines 146
 Qualifying SQL Object Names 148

 Current Library.. 149
 All Libraries Are Not Schemas 149

 When an SQL Table Is Created 149
 The Primary Key Constraint 150

 The Notion of ?Null? ... 151
 The Library Search List ... 152

 Display Library List ... 153
 Three Parts to a Library List 153
 Current Library .. 154

 The Library Qualifier ... 154
 Proper Naming SYS or SQL? 154

 The CL Override Command. 155
 Multiple Member Files and SQL 155

 Chapter Summary ... 156
 Key Terms... 158
 Exercises ... 159

Chapter 9 Interactive SQL (ISQL) 163

 Interactive v. Batch .. 163

 Static SQL vs. Dynamic SQL 164
 Static SQL ... 164
 Dynamic SQL ... 165

 Start Interactive SQL ISQL 166
 Commitment Control... 167

 Naming Convention .. 167
 Statement Processing ... 168

 The ISQL Main Panel ... 168
 Select Distinct ... 172
 Preventing Duplicate Rows (Distinct) 172 Save Session

Caveat... 174
 Chapter Summary ... 174

 Key Terms... 175
 Exercises ... 176

Chapter 10 Relational Database Operations 177

Table of Contents xvii

 Integrated Relational Database 177

 Database Operators ... 178
 Information on the Internet 179

 Looking Closer at Relational Operators179 Order .. 180
 Union .. 180

 Projection .. 180
 Selection .. 181
 Join ... 182

 Difference.. 184
 Intersection ... 186

 Product (Cartesian Product) 187
 Division .. 188

 To SQL or Not to SQL? .. 189
 The DDS Factor! ... 189
 Chapter Summary ... 190

 Key Terms .. 190
 Exercises ... 191

Chapter 11 The Basic Select Statement 193

 Function of SELECT Statement 193
 Where Does SQL Put the New Table? 193

 The Basic Nits and the Grits 195
 The From Clause of the Select Statement196

 The Select ... 197
 The Where Clause ... 197

 The Group By ... 197
 The Having Clause .. 198
 The Order By .. 198

 The For Update Of Clause-- Select Statement 198
 Forward-only Cursors .. 199

 Union with Another Select 199
 Specify Additional Options 200

 Number of Records to Optimize 200
 For Read Only .. 200

 With Isolation Level .. 201
 Derived Fields ... 201

 Closer Look at Where Clause................................. 202
 And Conjunction ... 203

 Or Conjunction.. 203
 Between Test ... 204

 The NOT Modifier .. 204
 List of Values ? IN ... 204
 Exercise 1 .. 205

 Exercise 2 .. 205
 Exercise 3 .. 207

 Exercise 4 .. 208
 Chapter Summary ... 209

 Key Terms... 210
 Exercises .. 210

Chapter 12 Query Manager 213

 What is Query Manager for iSeries? 213
 Queries & SQL language in Query Manager........... 215

 Prompted Queries in Query Manager 215
 Report Forms in Query Manager 215
 Making Reports Easier to Read in Query Manager 215

 Using Level Breaks in the Report in Query Manager 216
 How Does QM Query work? 218

 A. Producing a Default Query with SQL 219
 B. Creating a Report Form Query Rpt w/ SQL.... 222

 Starting Over ... 222
 Enter From Query F13 223
 C. Modifying in Process Rpt Form Query w/SQL 226

 Edit Column .. 227
 Edit Heading ... 228

 D. Producing a Default Query w/ Q Prompter. ... 233
 Using Prompted Input .. 234

 E. Using the QM Edit Facility to Create and Maintain
Databases .. 239

Table of Contents xix

 Working with QM Tables 241
 Chapter Summary .. 248

 Key Terms .. 249
 Exercises ... 249

Chapter 13 Embedded SQL in HLL Programs 251

 SQL Works with iSeries Languages 251
 Create SQL Program Commands 252

 CRTSQLCBLI .. 252
 CRTSQLCI ... 253

 CRTSQLCBL ... 253
 CRTSQLCPPI .. 253

 CRTSQLPKG ... 253
 CRTSQLPLI ... 254
 CRTSQLRPG ... 254

 CRTSQLRPGI.. 254
 Writing SQL Code in Application Programs 254

 Set Processing Only ... 257
 Select and Process Multiple Rows 258

 Chapter Summary ... 263
 Key Terms .. 264
 Exercises ... 265

Chapter 14 Advanced SQL, Special Facilities,

 Select, Join, Sub-Qry, Update, Ins, Del 267

 SQL Special Facilities ... 267
 Like Operator .. 267
 Null Fields .. 270

 Concat ? Concatenate Two or More Strings 271
 Substr ? Substring .. 271

 Select Exercise 1 .. 271
 Select Exercise 2 .. 272

 Select Exercise 3 .. 272
 Select Exercise 4 .. 272

 Select Exercise 5 .. 273
 Using SQL Built-In Functions 274

 Scalar Functions .. 274
 Column Functions ... 274

 Using Group By and Having 276
 Select Exercise 6 .. 277

 Select Exercise 7 .. 278
 Select Exercise 8 .. 279
 Select Exercise 9 .. 280

 Select Exercise 10 .. 280
 Select Exercise 11 .. 281

 Sub Query ... 281
 Select Exercise 12 .. 282

 Select Exercise 13 .. 282
 Select Exercise 14 .. 283
 Update Exercise 15 .. 284

 Update Exercise 16 .. 284
 Insert Exercise 17 .. 285

 Insert Exercise 18 .. 286
 Delete Exercise 19 ... 287

 Advanced SQL Exercise 20 288
 Advanced SQL Exercise 21 - Having 288
 Advanced SQL Exercise 22 - SubQuery 289

 Join .. 290
 Inner join using JOIN syntax 292

 Join Exercise 23 ... 292
 Left Outer Join .. 293

 Join Exercise 24 ... 293
 Union Exercise 25 ... 294
 Chapter Summary ... 296

 Key Terms... 297
 Exercises ... 297

Chapter 15 AS/400 and iSeries Database Concepts 299

 AS/400 Basic Nomenclature 299

Table of Contents xxi

 Keyed Access Issues with DDL 300
 Physical Files .. 301

 Members ... 301
 DDS / SQL Is Not Always Needed 302

 Logical Files.. 302
 Data Currency .. 303

 Data and Index Currency 304
 Creating Physical and Logical Files 305
 Interactive Data Definition Utility (IDDU) 305

 SQL Structured Query Language 305
 Data Description Specifications 306

 The CRTPF Command ... 307
 Dissecting CRTPF Parameters 308

 Creating Logical Files .. 308
 Defined with DDS ... 308
 Collecting the Attributes 309

 The CRTLF Command ... 310
 Dissecting CRTLF Parameters 310

 DB2/400 Database Characteristics 312
 Unique DB Characteristics 312

 Defining Behavioral Rules 312
 Records to Force a Write (FRCRATIO) 313
 Virtual Programs and Data 313

 Protecting Data ... 314
 Maximum File Wait Time (WAITFILE) 315

 Maximum Record Wait Time (WAITRCD) 315
 Wait, Don?t Crash! .. 315

 Records Retrieved at Once (NBRRCDS) 315
 OVRDBF NBRRCDS 316
 EOF Retry Delay in Sec (EOFDLY) 316

 No EOF Message .. 316
 Record Format Level Check (LVLCHK) 317

 An Indelible Mark ... 317
 How Do You Get the Levels in Synch? 318

 Share Open Data Path (SHARE) 318
 What is an ODP? ... 318

 Limit to Sequential Only (SEQONLY) 319
 From Disk to Virtual Memory and Back 319

 Chapter Summary ... 320
 Key Terms... 322

 Exercises .. 322

Chapter 16 Relational Database Theory 325

 Theory Behind DB Reality 325

 Database Normalization .. 325
 Objective of Normalization 326

 First Normal Form - Removing Repeating Groups 326
 Problems with Repeating Groups 327

 How to Fix Repeating Groups 327
 Get Rid of Repeaters .. 328
 Second Normal Form - Remove Functional Deps ... 328

 Spotting Functional Dependencies 329
 Solving Functional Dependencies 330

 No Lost Data ... 330
 Less Work ... 330

 Third Normal Form ... 331
 Spotting Transitive Dependencies 331
 Solving Transitive Dependencies 331

 Problems Solved .. 332
 Reaching Third Normal Form 332

 Data Normalization Steps 332
 Entity Relationships / Cardinality 333

 E-R Diagramming ... 335
 Cardinality Relationships 336
 Parent & Child Example 336

 Which Parent? ... 336
 Am I Wrong? ... 336

 Parents Must Go! ... 337
 Cardinality Says ?Go!? 337

 First Normal Form also Says ?Go!? 337

Table of Contents xxiii

 Second and Third Normal Form Say ?Go!?337 Three For
Three ? Gotta Go! ... 338

 What About Divorce? 338
 Give Parents Own File 338

 Many to Many Relationship 339
 Just Make Some Rules? 339

 What Is the DB Design Solution? 339
 What About the Kids? 340
 Linking DB Child to Child 340

 Different Methods Can Be Used 341
 Parent and Child File 341

 Good DB Design Can Tax Your Mind 342
 Chapter Summary ... 342

 Key Terms .. 343
 Exercises ... 343

Chapter 17 Advanced SQL -- Constraints and Isolation Levels
 345

 Powerful Rule-Based Capabilities 345
 Unique constraints ... 345
 Referential Constraints .. 346
 Check Constraints ... 346
 Adding and Using Check Constraints 346
 Referential Integrity Constraints 347
 Adding or Dropping Referential Constraints 348
 Example 1 Adding Referential Constraints 349
 Example 1A... 349
 Example 1B ... 350
 Removing Referential Constraints 351
 Example 2 Removing Constraints 351
 Example 2A... 352
 Example 2B ... 352
 Update Considerations with Referential Constraints 352
 Update Rules ... 352
 Example 3 UPDATE Rules 353
 Deleting from Tables with Referential Constraints . 354
 Example 4 DELETE Cascade Rule 356

 Example 4A ... 356
 DB2 UDB for iSeries Trigger Support 358
 SQL Triggers ... 360
 Creating an SQL Trigger 360
 Example 5 BEFORE SQL triggers 360
 Example 5A ... 361
 Example 6 AFTER SQL Triggers 362
 Example 6A ... 363
 Example 6B ... 364
 Isolation level .. 365
 Repeatable Read .. 366
 Read stability ... 367
 Cursor Stability .. 368
 Uncommitted Read.. 368
 No Commit ... 369
 Setting the Default Isolation Level 369
 Share ... 370
 Exclusive ... 370
 Chapter Summary ... 371
 Key Terms... 373
 Exercises .. 374

Chapter 18 Re-eng PF & LF Objects to SQL DDL. . 377

 IBM Likes SQL .. 377
 Advantages of Tables vs PFs 379
 Disadvantages of Tables Vs. PFs 379
 Advantages of SQL Indexes v. Logical Files: 380
 Disadvantages of Indexes v. Logical Files:3 380
 Advantages of SQL Views v. Logical Files 381
 Disadvantages of Views v. Logical Files 381
 Commentary 381
 DDS to SQL Conversion Tool 382
 Additional Information Sources 388
 Trademarks & Disclaimers 38

Index .. 391

Preface xxv

Preface:

This is both a textbook for college and university level Database
courses and a learn by example guide for IBM i SQL-based application
development

Finally, there is a Pocket Developer’s Guide for IBM i SQL database
development. Yes, it is in big pocket guide form and it is both
textbook and tutorial in nature. You’ll be pleased with all the valuable
explanations regarding theory and practice and you’ll love the
examples. You won’t want to put down this comprehensive guide to
learning IBM i SQL now that you’ve got your hands on it. This book
is 15 years overdue.

In today’s IT landscape, most shops support heterogeneous systems
with numerous client and server PCs, and even Unix boxes. Ironically,
all of these non-IBM i platforms, from the smallest to the largest have
one thing in common in the relational database area. They all use SQL
as their data language. That’s a big change in the database landscape.
Nobody even tries to deny that SQL is now the industry data / query
language standard. IBM backs SQL 100%. A quick look at the SQL
function list for V5R4 gives a good indication that SQL has an even
more important role for IBM i in the future. IBM has been chipping
away at all the little issues and the annoying things over the years that
precluded SQL from the DDS world. Thus, this new SQL is no
longer a lesser function cousin on IBM i to DDS.

I am not suggesting in any way that it is the time to throw in the DDS
towel but the new SQL functions are more and more compelling with
each release. So, today, it makes little sense for an iSeries professional
to not be on board by warming up to SQL – at least for functions that
return sets of data.

In addition to a number of chapters in support of the theoretical
nature of database for the academic classroom environment, this
Guide has an example for just about every type of common SQL
function you can imagine – from creating tables & views with
columns and large field descriptions to performing simple as well as
complex selections, column and scalar functions, sub-queries, all the
way to big time unions and joins.

Your author, Brian W. Kelly has designed this book to show you how
to use SQL by working with rich examples that you’ll use over and
over again. Additionally, for each example, Kelly provides the
explanation you need to get a head start on being an SQL guru. This is

the first book to hand to your new developers and it is a natural for
the veteran development team. More importantly, rather than seeing
Oracle as the only database taught at your local Community Colleges,
Colleges, and Universities, finally there is an up-to-date SQL Guide as
the right sized text to use as a teaching vehicle for a modern iSeries
database course.

Both entry level and existing programmers will enjoy the easy to read,
down home style of this pocket guide. The book also gives a general
notion of how file systems work and / or how DBMS systems tick to
get you started in learning SQL. Even if you are new to AS/400 and
IBM i, and you want to understand how to use SQL initially just for
DDL or for functions that you now use IBM’s powerful OPNQRY
tool for, you can learn all you need to get the job done right from this
pocket book. It is written in a way that assumes very little prior
database knowledge.

There is no CD but you can get any of the save files for this book by
coming to the Lets Go Publish Web site at www.letsgopublish.com If
the files are not posted yet, or if you have a problem downloading,
please send me an email, jmac@letsgopublish.com. Feel free to send
an email to me at my private email also at jmac160@verizon.net. I
would love to hear from you.

Go ahead and leaf through this book now. You’ll see it is chocked full
of examples. Many screen shots are included so you can play SQL
right along with your AS/400 or IBM i server.

Who Should Read this book?

New programmers, existing programmers, supervisors, operation
personnel, advanced end-users and even IT management should all
read this QuikCourse on SQL. IT managers today are looking for
ways to educate the staff in SQL. Database knowledge and SQL can
save a wealth of high level language (HLL) coding. Look no further.
If you plan to train operations people or PC people as AS/400
developers, or you want to help your staff better understand the
marvels of the IBM i SQL, this is the right book.

With all of the smart, yet sometimes clueless PC technicians running
around every business and institution, there are many who would
appreciate the opportunity to learn the AS/400 SQL interface to the
native database and who would do well if redeployed. This book can
be all you need to move them off the mark.

http://www.letsgopublish.com/
mailto:jmac@letsgopublish.com
mailto:jmac160@verizon.net

Preface xxvii

While many larger AS/400 and IBM i shops may have had SQL on their

boxes for some time and may have even used it to solve business problems,

more and more IBM i shops are now taking the plunge to SQL. Even small

i5 shops have SQL on their machines since it is bundled with the Express

systems. There are not many IBM i shops out there anymore that are

disenfranchised from the SQL data / query language environment.

IBM thinks the time is now for SQL and Big Blue has said many times that

SQL is its strategic database language. In fact IBM built a new Query

Engine on the iSeries just for SQL and it is substantially better and faster

than the classical query engine. Though IBM does not recommend a

wholesale abandonment of DDS, it is certainly the right time for a good

look at SQL. And there is no better way to do that than to learn it by

example.

If you’ve always wanted to be able to tell your team what you know
about database and SQL on the AS/400 and iSeries, but you did not
have the time, rest assured that Brian W. Kelly has done it for you.
He’s said what you would have said if you had the time to say it.
Moreover, the folks at LETS GO PUBLISH think you’ll like what
you would have said.

Consider creating a home-made SQL knowledgeable programmer with
some nice database knowledge. It may be a good deal for you and for
your company.

As you may know, there typically is no DB Administrator position in
AS/400 shops. The database job is up to you - the AS/400 and iSeries
Application Developer. Though rich in content, IBM’s reference
manuals are not built to teach you. They are for reference. There is too
much in IBM’s manuals to learn from but they are great references.
This Pocket Guide for SQL uses a different approach. It is your
teaching / learning vehicle to SQL. It is your new tool to help you
solve programming problems efficiently with SQL coding – rather
than having to work harder building program code.

The Step Often Forgotten

It helps to remember that before anybody can work on their first
program at your shop, they have to understand the AD environment
and the tools that are in the shop’s development kit. The next thing
they need to know is how the database works. That’s how we once
taught formal development and database courses. First the AD tools;
then the database. By supplying sample databases and plenty of SQL
examples in this QuikCourse, this pocket guide can prepare your team

to effectively engage the AS/400 and IBM i database with the SQL
language without spending thousands on computer based training or
classroom education.

When prospective developers learn the AD tools, and the database
with SQL, they can then move on, to learning or using, a IBM i
programming language, such as RPG/400, ILE RPG (RPGIV), or
even COBOL. Unfortunately, most IT shops do it the other way
around. The student is sent to programming school or assigned to a
real project long before he or she learns the iSeries system, the
system’s essential AD tools, SQL, and the database. This book can
help you get things done in the right sequence.

I wish you well in your database endeavors, and I hope to see you
again reading another Lets Go Publish Pocket Guide.

Joseph J. McDonald, Publisher
Scranton, Pennsylvania

Chapter 1 What is a Database? 29

About the Author

Brian W. Kelly retired as a 30-year IBM Midrange Systems Engineer in
1999. While with IBM, he was also a Certified Instructor and a Mid-Atlantic
Area Designated Specialist. When IBM began to move its sales and support
to Business Partners, he formed Kelly Consulting in 1992 as an IT
education and consulting firm. Kelly developed numerous AS/400
professional courses over the years that range from soup to nuts.

He has written twenty-six books and numerous magazine articles about
current IT topics, including articles for The Four Hundred, Midrange
Computing, Showcase, News/400, AS/400 Systems Management, AS/400 Internet
Expert, Computer Business News, Search400, and others. Kelly has also
developed and taught a number of college courses and is currently a
member of the Business / IT faculty at Marywood University in Scranton,
Pennsylvania, where he also serves as iSeries technical advisor to the IT
faculty.

30 The IBM i Pocket SQL Guide

Chapter 1 What is a Database? 31

Chapter 1

What is a Database?

The Database Concept

Since SQL depends on there being a relational database management
system (RDBMS) on the server in order to use all of its features, let’s define
the notion of database and look at a number of databases, both old and
new to put the relational database as used by SQL in perspective. In the
later chapters of this book we delve deeper into database theory and we
discuss the physical and logical structure of the files that are produced by
SQL and the native database language on the IBM i. The first step in
defining the notion of database is to define the elusive term, data.

The word data is the plural of the Latin word, datum , which simply means
something given. However, for the word to make more sense in computer
systems, it is often defined as one or a series of unorganized facts. The
word data, despite its origins is not always treated as a plural noun in
English. More and more scientists and researchers think of data as a
singular mass entity like information, and most people now follow this in
general usage. So, data is actually now used as the singular and plural.

The term “raw data” is used to differentiate the notion of data from the
notion of information. The term “raw” accentuates the idea of the
unorganized nature of the facts. Information, a term often misused in place
of data, means data organized for decision making. Through processes
such as classification, sorting, and manipulation acting on database
structures, data becomes information.

A database then is an organized collection of data necessary to perform a
task which, as a by-product creates information. Related data fields are
grouped together to form a record. Similar records are grouped together
into a file. One or more related data files are grouped to form a database.

32 The IBM i Pocket SQL Guide

What is Database Management?

Database management is the process of managing data. It is the underlying
software which enables the database to function. Some of the basic
capabilities for database functionality are often provided through the native
data management portion of the operating system, upon which the database
software is built. The rest is provided by the database software itself. Data
management is needed to provide organization, access, and control of the
data that is stored in a computer system.

Besides being a necessary component of a database, database management
provides benefits by providing and maintaining structures, enabling data
actions, and enforcing data rules. It is substantially more productive for a
given computer to perform functions with the database than for a
programmer to code the same functions in every program that uses the
database.

Data Organization

Data organization facilities in a database must provide for a flexible data
structure which meets the organization’s application needs, yet can adapt to
changing business requirements. Additionally, a database should be able to
handle ad hoc requests for information as a by-product.

Data Access

Data access facilities in a database determine how you get at the data. They
provide the ability to retrieve data, format data, and sequence data. It is
through this software that the database is able to provide its data services to
other constituent parts of the computer system, as well as to user programs.

Data Integrity

Data integrity control facilities in a database are also very important. They
provide data independence from programs and assure the maintenance of

Chapter 1 What is a Database? 33

data integrity such that, among other things, all database fields contain the
correct data types.

Data Control

When referring to SQL, the term data control most often refers to the
notion of security. Through the SQL Data Control languages (DCL), for
example security officers are able to grant and revoke authority of users to
see or manipulate data within a database.

What If There Were No Database?

Without a database, there is no flexible data structure, and data access is
done by application programs. Security and control are provided by
programmers through their individual programming efforts (very costly and
time consuming, inconsistent, and not very secure). Additionally, without a
database, many more programs need to be written. For example, something
as simple as a new data selection would need to be programmed.

Therefore, without a database, each reordering and each new selection
increases the programming backlog. Another common example of how
data bases help operations is when a change is required to a file’s record
layout. Without a database, input and output definitions must be hard
coded into all programs which need to access the file. Thus, even a simple
change to a record layout, such as a field addition or field deletion, or even
a field change in field length or an attribute means that each dependent
program must be changed.

In summary, programs written without the help of a database, must do lots
more work, and thus they contain more lines of code, are more expensive
to build, are slower to develop, and are more difficult to maintain. Overall,
they are not a good deal for the long term. Besides the impact on
programmers, systems without database make it very difficult for end users
to construct queries that depend on the availability of data definitions to
end users.

34 The IBM i Pocket SQL Guide

DBMS Types: Function and Structure

Since all of the features of SQL work only with relational databases, we will
forego any major description of the other database types. But it is a
worthwhile exercise to identify and briefly explain the other forms.

Just like everything else that you encounter in life, there are many types of
databases. Moreover, there are also a number of ways to classify databases.
The two most popular ways to classify databases today are by function and
by structure (data model). Let’s look first at function.

Databases Characterized by Function

Database experts have classified two major forms of functional databases.
These are as follows:

✓ Operational Database

✓ Analytical Database

Operational Databases

Let’s first look at operational databases. In another word, operational
databases are also known as production databases. This means that these
databases are used in the normal computer processing of the business. So,
if the company takes orders, sends out bills, collects money, and keeps track
of all its finances, the databases used to store all of this valuable data are
known as operational / production databases. Through the normal
operations of the business, these databases are updated and maintained by
the computer applications in support of business functions.

In simple English, operational databases let you actually change and
manipulate the data. You can modify data in any way that is necessary. For
example, you can add data, delete data, or even change the data.

Because these applications process business transactions, a more recent
term to describe these databases has been fashioned -- Online Transaction
Processing (OLTP) databases. These databases then are the master,
transaction, and archive data repositories for operational data.

Chapter 1 What is a Database? 35

Analytical Databases

One of the problems with operational data is that it is designed to support
operations and, though the data is quite valuable for decision making, it is
not formatted well for end user access. Ironically, one of the problems that
database implementation was supposed to solve is data redundancy.
However, the recommended way today of providing databases that are
shaped for informational purposes v. operational purposes is to construct
analytical databases. These databases in most cases do not use the typical
relational structure. Instead, the data is built into a data warehouse and the
type of functional database that is ideal for this is called an On Line
Analytical Processing (OLAP) database.

So, these OLAP databases are primarily used to keep track of statistics,
rather than to record operational events as they occur. They are most often
read-only, meaning that you can only retrieve and view data, but you can't
modify the data in any way. OLAP databases keep track of important data
and make it readily available for further analysis for information queries.
The data in an OLAP database gets updated by systems processes that take
the operational data and reformat it for analytical use.

For example, the company's sales data can be read and analyzed to
determine how and when more products are sold. The analytical databases
hold much more descriptive information about important data in the
company that it is easier for management to access the data in an ad hoc
manner to gain information on the fly.

Data Bases Characterized by Function / Model

Another way of classifying databases is by the way the data is structured
within the database itself. You might ask, so, what's a data model? A simple
answer is that it is the intangible form in which data is stored. It is kind of
like the internal structure of a database. However, data models have often
been just theoretical ideas that are made practical through implementation.
They are abstract concepts that you cannot touch. Data models are used to
describe how the data is stored and retrieved in a database. Now, let’s list
and discuss a few of the types of data models so you see what they are all
about.

36 The IBM i Pocket SQL Guide

These are the most popular types of database management systems
(DBMS):

✓ Flat file model

✓ Hierarchical model

✓ Network model

✓ Relational model

✓ Object-oriented database model

✓ Object database model

✓ Client / server database model

✓ XML database model

✓ Dimensional database model

The earliest databases were flat-file, hierarchical, and network oriented. In
general terms, these types of database organizations and management
systems are far more complex and less flexible than a relational database
management system (RDBMS). Moreover, both the hierarchical and the
network models rely on address pointers being embedded in database
records making the navigation of the database and the maintenance of the
database structure an effort of major consequence for DB administrators
and programmers. The other five models listed above are more recent
additions to the list. In one way or another, these five are additions and
combinations to address the need for more function. In most cases, they
use the relational model as their base. Each of these are generally described
below and the relational model and its implementation on the IBM IBM i is
further explained in the later chapters of this book.

Flat-file Database Model:

The flat-file data model is the model that was used before databases were
invented in the 1970’s. Thus, it can be argued that such models are used by
the old paper-based databases. In this system, data was stored in numerous
data files. There were no links captured within the files so any relationships
that the data had in common, such as a customer file and an order file, were
not stored in the files. The files were not linked, so programs had to be
used to bring the data from multiple files together. Good programmers
were able to emulate the linkage functions of good database systems but it
was far more difficult to do than with database systems designed to provide
this function.

Chapter 1 What is a Database? 37

Because file systems were very dependent on the speed of the systems of
the day, data would often be repeated in more than one file so that the
system would not have to access multiple files to provide data for
programs. In many ways this created an environment in which there was
significant redundancy. The problems with these original “flat-file
databases” inspired scientists and mathematicians to find a way to link files
so that they would not be repetitive, and that the database work could be
done in the database rather than in each program.

Hierarchical Database Model

One of the arguments for relational database was always that, unlike a
hierarchical style database, its model was based in sound mathematics. The
hierarchical database is not based on a mathematical model, but rather a
database implementation called the Information Management System (IMS)
developed in the early 1970’s by IBM.

The hierarchical database model made many improvements over the flat file
approach to help get rid of the repetitiveness of flat files and other
shortcomings. Although it was somewhat successful, it did not completely
succeed. Redundant data was still needed in the hierarchical databases.

The most noted issues with hierarchical databases always include these:

✓ Each file relates only to one above or below

✓ No lateral links

✓ Requires repeat data

✓ Hard to search (query)

A hierarchical database consists of a series of databases that are grouped
together to resemble a family tree as seen I Figure 1-1.

38 The IBM i Pocket SQL Guide

Figure 1-1 Hierarchical DB Model

Each of the circles in the diagram represents one database. The top circle in
the hierarchical model is called the "parent." The databases under it are
called "child" databases. One "parent" can have many "children," but a
"child" can only have one "parent." The child databases are all connected to
the parent database via hard links in the records called "pointers." This
arrangement created a nightmare for programmers. For example, to access
child records from a parent, a programmer had to devise navigational
programming algorithms to read the disk pointers and then access the next
record in the pointer chain until the potentially lengthy chain was complete.

So, to get to a child database in the hierarchical database model, the
programmer had to first go to the parent database, after navigating all the
levels above the parent. Notice in the diagram above that the child
databases on the same level are not connected. This makes it even tougher

Chapter 1 What is a Database? 39

to use this style database. It presents a problem in the hierarchical database
model and makes searching for data (running queries) extremely difficult.

Another problem is that data cannot be entered into the child databases
until data has been added to the parent database. So, the reality is that the
hierarchical database model reduced data redundancy, but it created its own
share of new problems. Because there were so many issues with the new
database technologies of the 1970’s, large companies hired expensive
database administrators, who learned the software and were able to assist
the company in using this new technology (for the 70’s) – the hierarchical
database as well as possible.

Network Database Model

The network database model was designed to solve the issues identified as
being caused by the hierarchical “model, and it did. For example, it allowed
for links between the child databases. This not only helped reduce
redundant data, but it also makes searching for data much easier than the
hierarchical model. So network databases provided the following:

✓ Improvement over hierarchical

✓ Each file with multiple owners

✓ Still can’t relate files to each other

40 The IBM i Pocket SQL Guide

Figure 1-2 Network DB Model

There are plusses and minuses in the list. A major plus of the network
database model is that while in the hierarchical model a child database can
only have one parent, in the network model, a child database can have more
than one parent! But, there never were many other reasons to choose the
Network Model. If it had solved all the problems, there would be no more
models to study. But, it did not. In fact, it brought its own share of
problems to the forefront. Network databases were simply difficult to
operate and maintain. You needed bona fide database experts to
successfully use these databases. It was difficult for the general public to use
network databases for real-life applications. So, they were short lived.

Relational Database Model

The relational database model is a real model based on mathematics
(relational algebra and tuple calculus)

The relational database model became extremely popular because it solved
most of the problems presented by the hierarchical and network database
models.

Chapter 1 What is a Database? 41

In many ways, the relational database model is like the flat file model, which
at a minimum is very easy to understand. It is much different from the
hierarchical and network database models in that there are no "parent" and
"child" databases. All of the databases in the relational database model are
equal.

Figure 1-3 Relational Model

Just as with the “flat file model,” data can be stored in any number of
separate databases. Unlike The flat file model, however, these databases can
be linked by “key" fields which are managed by the DBMS. A key field is a
field or set of fields that is found in all the other databases that are being
brought together. All of the databases can be used to hold different types
of data.

42 The IBM i Pocket SQL Guide

For example, let's suppose that we have a customer address book, which
was once a “paper-based database.” If we were to use the relational
database model, then we could store all of the data in separate databases.
One database could hold a company’s address; another could hold the
company phone number, etc. However, all of the databases might have one
field that is the same like, for example, customer number.

Relational database technology makes it far easier to search for and extract
data from databases. It is also very efficient and easy to use. Though it is as
easy to understand as a flat file system, it has many facilities not found in
these primitive file organizations. One might conclude from this that it is
no wonder why this database model is so popular! And, one would be
correct in that conclusion.

Object-Oriented Database Model

In the 1990’s with the advent of multi-media, spatial engineering data and
repositories of all kinds, the traditional notion of data and databases no
longer applied. Databases were originally designed to store text and
numeric values, and there were no special features to store photos, sounds,
videos, and all sorts of graphics and other renderings. To meet these needs,
special purpose companies evolved to build and market what were called
object-oriented database models.

These models let databases store and manipulate not only text, but also
sounds, images, and all sorts of media clips! They were extremely useful,
but they never really became mainstream. Soon, as the major relational
vendors realized this facility was necessary, they began to add new data
types into the relational model so that besides traditional data, the non
traditional could be stored and made available.

Object Database Model

Over the last several years this object oriented notion has been further
applied to database technology. From the demands for more facility and a
structure that better matches some of the new object oriented progrmaming
languages, a new type of database built on the “object database model” has
been developed. The purpose for this database model is to bring the

Chapter 1 What is a Database? 43

database world and the newest application programming world closer
together.

Just as in object programming systems, object databases are beginniing to
introduce key ideas, such as encapsulation and polymorphism, into the
world of databases. It is far beyond the scope of this book to describe this
phenomenon in any more detail.

Client/Server Database Model

With the proliferation of personal computers, the Internet is now one of
the most popular usages of a computer. Besides the phenomenon of client
server on a PC and a server model in which the client runs the application
and fetches data from a network server, the databases used for the Internet
and the WWW are often referred to as client server.

In many ways, the database structure for client server is the same structure
that we have described as relational. The difference is not in structure but
in use. Regardless of whether the program runs natively on a PC or comes
in from a Java applet, or is initiated as a servlet, many applications today are
written as if the database is not located on the system making the data
request.

For example, assume that you pull down a menu from one of your vendors
that permits you to see all of the transactions that you have completed in
the past month. You pick the function that you want from a little menu that
might be driven by html or xml and it goes ahead and calls a Java servlet
from a servlet server such as WebSphere. Since java does not have any
notion of native database access, it uses a special client server interface
known as Java Database Connectivity (JDBC) to access the database. With
companies sporting hundreds of Internet servers, this is a good technique
since the database can be moved from system to system with minimal
changes to servlets since the servlets do not expect the database to be
resident on the same machine as the database. So, the servlet as a client
fetches data from a database server which more than likely stores its data in
relational format.

44 The IBM i Pocket SQL Guide

XML Database Model

Over the last several years, more and more advances have been made in the
XML database area. Like HTML, xml is a tag level language that many of
us have used or at least seen when we click the view source item on our
browsers. XML databases contain a definition of the data within the data
itself and this makes the use of XML as portable as any database that has
ever been developed. XML databases are often linked to client server
databases over the internet to permit xml forms and local databases to
easily update the relational databases in the back end. From the early
successes with XML, some key ideas are being integrated into the
established relational products.

The objective of XML databases is to remove the traditional divide between
documents and data, allowing all of an organization's information resources
to be held in one place, whether they are highly structured or not. Whether
this idea will be achieved in practice is for the future to determine. But
XML databases are here today and the links that are being built with
traditional relational databases have made working with data on the Web
substantially easier.

Dimensional Database Model

Though we suggested earlier in this chapter that OLAP databases were used
for analytical processing, the structrure of many OLAP databases is
implmented in what is called the dimensional model. This model is a
specialized adaptation of the relational model used to represent data in data
warehouses in a way that data can be easily summarized using OLAP
queries.

A dimensional model separates data into measures, those things that a user
needs to track, count and upon which otherwise perform analysis. The
dimensions are the “factors” that contribute to the value of a measure, such
as the customer to whom you sell, the products that you sell, the locations
in which you sell and the time periods in which you operate. Dimensions
have hierarchies, reflecting the way in which you group and aggregate
dimension members. They also have attributes, allowing you to filter and
make selections. Dimensions and measures are eventually brought together
into logical containers affectionately known as cubes.

Chapter 1 What is a Database? 45

In the dimensional model, a database consists of a single large table of facts
that are described using dimensions and measures. Many aspects of
business activities can be well described using dimensional data. Take sales
for example. How many dimensions of sales are there? The answer is that
hopefully there are as many as you need. Using the many dimensions of
sales, for example, there is value to knowing sales by customer, product,
channel, promotion, time etc. Of course country, state, salesman, and
terrritory may also be valid data sales dimensions. The dimensional
database notion is thus used to provide information to users who have a
need to understand data ove multiple dimensions.

Relational DB

The idea of a relational database was conceived and published by Edgar
Frank (E. F.) Codd, who is known historically as Tedd Codd of IBM’s
Almaden Center in San Jose. His work was highlighted in the ACM Journal
during the 1970 time frame. It was titled: “A Relational Model of Data for
Large Shared Data Banks.” A co-worker at IBM Almaden, Don
Chamberlin, is credited as being the co-inventor of the SQL language.

Codd’s idea was to create a database system, simple in concept, yet founded
in sound mathematical principles.

Benefits of a Database Management System
(DBMS)

Database management systems of all varieties provide certain benefits to
their users. The generic benefits of all database software are as follows:

46 The IBM i Pocket SQL Guide

Figure 1-4 Features and Benefits of an RDBMS

Feature Benefit
Data Sharing Many simultaneous users of the same data
Data Currency Changes to data reflected immediately in

all sequences
Data Security Data guarded by the DBMS
Data Backup/Recovery Facilities built into DBMS
Programmer Productivity

Standardization of data definitions.
Database does record selection /ordering.
Less duplicate work

Chapter Summary

A database is a set of computer files used to store business data. Database
Management is the software function that enables you to create databases,
insert, add, or update its contents. A database comes with facilities and
commands to provide for data organization, data access, and data control
while assuring data integrity.

Without a database, programming and end user tasks would be much more
difficult since data would have to be described by programmers and
administrators before it could be used.

Databases can be characterized across two different categories: function
and structure. The two types of functional databases are operational
databases and analytical databases.

Data Bases characterized by function are referred to as database models.
The first four models on the list below have been used for many years
whereas the last five are more recent entries into the world of database. The
list of database models includes the following:

• Flat-file Database Model

• Hierarchical Database Model

• Network Database Model

• Relational Database Model

• Object-Oriented Database Model

Chapter 1 What is a Database? 47

• Object Database Model

• Client/Server Database Model

• XML Database Model

• Dimensional Database Model

There are number of features in all databases that provide the “can’t live
‘without’ benefits. These features include the following

• Data Sharing

• Data Currency

• Data Security

• Data Backup/Recovery

• Programmer Productivity

Key Terms:

ACM Journal
Analytical database
Attribute
Chamberlin, Don
Client server database
Codd, Tedd
Data access
Data backup/recovery
Data control
Data currency
Data integrity
Data manipulation

Data models
Data organization
Data security
Data sharing
Database
Database management
DBMS types

DCL
Dimensional database
Dimensional model
Field addition
Field change
Field deletion
Flat file model
Hierarchical model
Information
IMS
Java applet
Java servlet
Network database model
Object database model
Object-oriented database model
OLAP
OLTP
Operational database
Pointer
Programmer productivity
Programs
RDBMS
Record

48 The IBM i Pocket SQL Guide

Relational
Relational model
Servlet

Servlet server
Structures

Exercises

1. Is it less or more difficult to program a System i with a database than to
ignore the database and use program definitions? Why?

2. What is the earliest form of database model used in the 1960’s and 1970’s
before databases came into being?

3. Which database model carries the definition of the data along with the
data?

4. What are the advantages and disadvantages of a database?

5. The database language used for data control is?

6. What is the term for a Java program that runs on the server? Client?

7. What is database management?

8. Why is the relational model superior to the other models?

9. Which database model is based on relational algebra and tuple calculus?

10. Describe the major differences between the hierarchical and network
databases compared to the relational DB?

Chapter 2 Distributed Relational Database 49

Chapter 2

Distributed Relational Databases with
SQL Underpinnings

What Is a Distributed Database?

In addition to host specific SQL implementations, there are a number of
distributed database protocols that depend on the SQL language to provide
the database command language function.

A distributed relational database consists of a set of tables and other objects
that are spread across different but interconnected computer systems. Each
computer system has a relational database manager, such as DB2 UDB for
IBM i to manage the tables in its environment. The database manager
software facilities communicate and cooperate with each other in a way that
allows a given database manager to execute SQL statements on another
computer system.

Distributed relational databases are built on formal requester-server
protocols and functions. This is client server without necessarily having a
PC workstation. An application requester supports the application end of a
connection. It transforms a database request from the application into the
correct communication protocols suitable for use in the distributed
database network. These requests are received and processed by a database
server at the other end of the connection. Working together, the application
requester and the database server handle communication and location
considerations, so that the application can operate as if it were accessing a
local database.

50 The IBM i Pocket SQL Guide

A picture is worth a thousand words. The chart in Figure 2-1, courtesy of
IBM shows the many distributed database protocols that can be used today
with an IBM i.

Figure 2-1 Multi-platform connectivity to IBM i

Distributed Database Architectures and
Protocols

Some of the most important protocols that are used in this distributed
database environment are as follows:

✓ DRDA -- Distributed Relational Database Architecture

✓ JDBC -- Java Database Connectivity

✓ ODBC -- Open Database Connectivity

✓ DB2 Connect

✓ DB2 UDB CLI (Call Level Interface)

✓ Embedded Dynamic SQL

Chapter 2 Distributed Relational Database 51

What is DRDA?

DRDA stands for Distributed Relational Database Architecture. It is a set
of protocols, or rules, that enable a user to access distributed data regardless
of where it physically resides. As a distributed architecture, when protocols
are implemented accordingly, it provides an open, robust heterogeneous
distributed database environment. DRDA provides methods of
coordinating communication among distributed locations. This allows
applications to access multiple remote tables at various and separate
locations and has them appear to the end user as if they are a logical whole,
existing on one system.

To better understand DRDA, a distinction should be made, however,
between the architecture and the implementation. DRDA describes the
architecture for distributed data and nothing more. It says how things
should be done. It defines the rules for accessing the distributed data, but it
does not provide the actual application programming interfaces (APIs) to
perform the access. So DRDA is not an actual program, but is more like the
specifications for a program.

In this light, it helps to know that when a DBMS is said to be DRDA-
compliant, all that is implied is that it follows the DRDA specifications. For
example DB2 UDB for IBM i and all other platforms is a DRDA-
compliant RDBMS product.

Benefits of DRDA

DRDA was designed to function with platform-specific extensions to SQL
and one of its major advantages is that static SQL (See Chapter 9) can be
used with DRDA.

DRDA is just one architecture for supporting distributed RDBMS. Of
course, if you are a DB2 user, it is probably the only one that matters.
The biggest benefit provided by DRDA is its clearly stated set of rules for
supporting distributed data access. Any product that follows these rules
can seamlessly integrate with any other DRDA-compliant product. Since all
DB2s are compliant with DRDA, it follows that all IBM systems and non-
IBM systems with DB2 UDB can talk to each other using this architecture.
Furthermore, DRDA-compliant RDBMSs support full data distribution
including multi-site update. The greatest advantage, however, is that it is

52 The IBM i Pocket SQL Guide

available today, and that is one of the reasons why many vendors are
jumping on the DRDA-compliance bandwagon.

What is JDBC?

DB2’s Java support includes JDBC (Java Database Connectivity), a vendor-
neutral dynamic SQL interface that provides data access to your application
through standardized Java methods. JDBC is similar to DB2 CLI (defined
below) in that you do not have to precompile or bind a JDBC program. As
a vendor-neutral standard, JDBC applications offer increased portability.
An application written using JDBC uses only dynamic SQL.

JDBC can be especially useful for accessing DB2 databases across the
Internet. Using the Java programming language, you can develop JDBC
applets and applications that access and manipulate data in remote DB2
databases using a network connection. You can also create JDBC stored
procedures that reside on the server, access the database server, and return
information to a remote client application that calls the stored procedure.
The JDBC API, which is similar to the CLI/ODBC API, provides a
standard way to access databases from Java code. Your Java code passes
SQL statements as method arguments to the DB2 JDBC driver. The driver
then handles the JDBC API calls from your client Java code.
Java's portability enables you to deliver DB2 access to clients on multiple
platforms, requiring only a Java-enabled web browser, or a Java runtime
environment.

What is ODBC?

ODBC (Open Database Connectivity) is a standard application
programming interface (API) for accessing data in both relational and non-
relational database management systems. It is used outside of the Java
world. Using this API, database applications can access data stored in
database management systems on a variety of computers even if each
database management system uses a different data storage format and
programming interface.

ODBC is a standard database access method developed by the SQL Access
group (now part of X/Open) way back in 1992, so it has been around long
enough to be good. The goal of ODBC is to make it possible to access any
data from any application, regardless of which database management system

http://www.webopedia.com/TERM/O/standard.html
http://www.webopedia.com/TERM/O/database.html
http://www.webopedia.com/TERM/O/access.html
http://www.webopedia.com/TERM/O/ODBC.html##
http://www.webopedia.com/TERM/O/ODBC.html##
http://www.webopedia.com/TERM/O/ODBC.html##
http://www.webopedia.com/TERM/O/data.html
http://www.webopedia.com/TERM/O/application.html
http://www.webopedia.com/TERM/O/database_management_system_DBMS.html

Chapter 2 Distributed Relational Database 53

(DBMS) is handling the data. ODBC was one of the earliest client server
DB protocols used successfully to support client PC code accessing server
databases. ODBC manages data access by inserting a middle layer, called a
database driver, between an application and the DBMS. The purpose of this
layer is to translate the application's data queries into SQL-like commands
that the DBMS understands. For this to work, both the application and the
DBMS must be ODBC-compliant -- that is, the application must be capable
of issuing ODBC commands and the DBMS must be capable of
responding to them. Since version 2.0, the ODBC standard supports the
ANSI standard SAG SQL.

What is DB2 Connect?

For DB2 clients on a LAN, a DB2 Connect server enables access to data
that is stored on mainframes and IBM i systems. DB2 Connect provides
transparent access to host or IBM i data through the standard architecture
(DRDA) for managing distributed data. DRDA enables applications to
establish a fast connection to mainframe and IBM i databases without
expensive mainframe or IBM i components or proprietary gateways.

Although DB2 Connect is often installed on an intermediate server
machine to connect DB2 clients to a mainframe or IBM i database, it is also
installed on machines where multiple local users want to access the
mainframe or IBM i servers directly. For example, DB2 Connect may be
installed on a large machine with many local users.

DB2 Connect may also be installed on a Web server, Transaction
Processing (TP) monitor, or other three-tier application server machines
with multiple local SQL application processes and threads.

What is DB2 UDB CLI (Call Level Interface)?

The DB2 UDB Call Level Interface (CLI) is a callable Structured Query
Language (SQL) programming interface that is supported in all DB2
environments except for mainframes (DB2 UDB for zOS and OS/390(R)
and DB2 Server for VSE and VM.) It is basically a callable SQL interface. It
is implemented as a WinSock application program interface (API) for
database access that uses function calls to start dynamic SQL statements.

http://www.webopedia.com/TERM/O/database_management_system_DBMS.html
http://www.webopedia.com/TERM/O/ODBC.html##
http://www.webopedia.com/TERM/O/driver.html
http://www.webopedia.com/TERM/O/query.html
http://www.webopedia.com/TERM/O/command.html
http://www.webopedia.com/TERM/O/support.html
http://www.webopedia.com/TERM/O/SQL.html

54 The IBM i Pocket SQL Guide

DB2 UDB CLI is an alternative to embedded dynamic SQL. The important
difference between embedded dynamic SQL and DB2 UDB CLI is how the
SQL statements are started. On the IBM i, this interface is available to any
of the ILE languages.

DB2 UDB CLI also provides full Level 1 Microsoft Open Database
Connectivity (ODBC) support, plus many Level 2 functions. For the most
part, ODBC is really a superset of the ANS and ISO SQL CLI standard.

What is Embedded Dynamic SQL ?

An application that uses an embedded SQL interface requires a precompiler
to convert the SQL statements into code. Code is compiled, bound to the
database, and executed. However, there is a way using a feature known as
PREPARE, to write your programs so that parts of the SQL statement
(such as the item you are searching for can be supplied during execution
rather than having to be pre-coded for the precompiler)

How Does Embedded SQL Compare to DB2 UDB CLI?

In contrast to embedded dynamic SQL, a DB2 UDB CLI application does
not require precompilation or binding, but instead uses a standard set of
functions to execute real SQL statements and related services at runtime.

This difference is important because, traditionally, precompilers, such as
those provided for RPG and COBOL on IBM i have been specific to a
database product. This is not good for portability. It effectively ties your
applications to that product. On the other hand, DB2 UDB CLI enables
you to write portable applications that are independent of any particular
database product. This independence means that a DB2 UDB CLI
application theoretically at least does not have to be rewritten recompiled or
rebound to access-different database products. An application selects the
appropriate database at runtime.

Despite these differences, there is an important common concept between
embedded dynamic SQL and DB2 UDB CLI: DB2 UDB CLI can execute
any SQL statement that can be prepared dynamically in embedded SQL.
This is guaranteed because DB2 UDB CLI does not actually execute the SQL
statement itself, but passes it to the DBMS for dynamic execution.

Chapter 2 Distributed Relational Database 55

Chapter Summary

A distributed relational database is one that is distributed on multiple like or
unlike computer systems. So that all IBM DB2 database products would
have no trouble working with remote DB2 databases on IBM or non-IBM
systems, IBM defined an architecture or set of detailed specifications and
rules for how this could be accomplished. IBM called its architecture
Distributed Relational Databases Architecture or DRDA for short. Any
database vendor can choose to implement the DRDA standard and some
have done so. When this happens and the vendor holds to the
specifications, the resulting product can communicate with all of the IBM
systems as well as non-IBM systems running DB2.

ODBC is another of these architectures and actually provides the rules for
how diverse databases can talk to one another. In addition to databases
ODBC supports flat file systems.

JDBC is very much like ODBC but it runs only in systems that support he
full range of Java programming.

DB2 Connect and the DB2 UDB CLI are IBM implementations of DRDA.
Embedded dynamic SQL is a facility that gives some of the benefits of
purely dynamic SQL while still having the precompiler disadvantages of
embedded static SQL.

Many Solutions – One SQL Language

Though there are many solutions to accessing distributed databases from /
or to an IBM i, all of the solutions depend on SQL as the language within
the protocol wrappers that actually deliver the data. So, there are really no
ODBC experts or JDBC experts or an expert in any distributed DB
protocol who does not have a solid background in SQL. Even if DDS
(native AS/400 DB access facility) does it for you internally on the IBM i,
once you get off the island or the island must connect to the world, you’ll
find the friendly face of SQL behind all of these protocols.

56 The IBM i Pocket SQL Guide

Key Terms

Application requester
Database server
DB2 clients
DB2 Connect
DB2 UDB CLI
DB2 UDB for IBM i
DBMS
DDS
Distributed database
Distributed Relational Database
DRDA
Embedded Dynamic SQL, 2, 4
IBM systems
Java programming

JDBC
JDBC API
Non-IBM systems
ODBC
Open Database Connectivity
OS/390
Precompiler
PREPARE
RDBMS
Relational
SQL statements
Structured Query Language
Transaction processing

Exercises

Use this chapter or look up information on the Web to answer the
following:

1. What is an application requester?

2. How does a distributed database differ from a local database?

3. What purpose does the PREPARE SQL statement perform?

4. In what ways does the DB2 UDB for IBM i database support distributed
relational database?

5. What is the difference between Embedded SQL and embedded dynamic
SQL?

Chapter 10 Relational Database Operations 57

Chapter 10

Relational Database Operations

Integrated Relational Database

Note to Students: In the normal sequence of activities for the IBM i
technician trying to learn SQL, this chapter was better left deferred to
later in the book. I rearranged it so that it would be able to greet the
new database practitioner without changing its name from Chapter
10. It is more theoretical than practical and so it fits here better for the
new student of database than in the back of the book.

You have learned that AS/400 has an integrated relational database. You
also know that a relational database consists of tables that are perceived to
be stored in flat files, consisting of rows and columns, regardless of their
true underlying structure. Unlike the complicated structures of the 1970's,
records are linked by data, not by imbedded pointers. The database is
conceptually easy to understand, thus making it usable by folks like us, who
prefer to let the rocket science to the rocket scientists. With a relational
database, for example, if you have a set of data in physical structures, you
can create new relationships simply by making a new table (View) and
relating it to existing structures. The database supports all of the powerful
cardinality data relationships: one to one, one to many, and many to many.

A relational file, or table, called a physical file on the AS/400, is composed
of rows, which are made up of columns. In relational database terminology,
rows are called tuples; columns are called attributes; and tables are called
relations. Tuples (records or rows) are logically linked together by the data in
the attributes (fields or columns.) Each record in a relation (file, table) has a
unique key which is called the primary key. A key within the record that is
used to link the file with another file in a join operation is called a foreign key.

58 The IBM i Pocket SQL Guide

Renaming simple notions in IT for special purposes is not unique to the
database realms. Long before database terminology, for example, there was
file system terminology. In file system terminology, rows are called records,
columns are called fields, and relations are called files. Now you know the
big dark secrets of database and file terminology. However, it still may be a
safe bet that you won’t use the term “tuple” again in your AS/400 or IBM i
or i5 career ever again – even if you use SQL..

Database Operators

When Tedd Codd devised his theory for a database structure founded in
mathematical principles, his research was not intended for only the math
inclined. In fact, Codd’s wish was to hide the internal complexity from
users while assuring logical simplicity and correctness within the database
itself. He hoped to have a management facility and a language, based on
proven mathematical principals. In fact, Codd’s wish was that users could
access information from the tables he envisioned, using simple, English-like
commands, as opposed to writing code. He found the following matrix
algebraic operations quite helpful in building the data language which
became SQL:

 UNION
 INTERSECTION
 DIFFERENCE
 DIVISION
 PRODUCT
 SELECT
 PROJECT
 JOIN

We find the most commonly used operations to be Union, Projection,
Selection, and Join. These are supported on the AS/400 in SQL (DB
language invented by Chamberlin and Boyce of IBM) and DDS (DB
Language invented by IBM originally for the System/38.) The other four
operators are functions that are (1) somewhat more difficult to understand,

Chapter 10 Relational Database Operations 59

(2) not as valuable, and (3) not necessarily fully supported by the AS/400
and IBM I, but more are being introduced with each release. We will not
cover these operators in any level of detail in this chapter or this book, but
we will show what they are all about, and if implemented, we will show how
they are implemented. If you would like a better appreciation of these
algebraic relational operators, you may enjoy this Web article at:

http://www.w3schools.com/sql/default.asp

Information on the Internet

There are many SQL lessons to be found on the Internet besides the above
reference. Just go to your favorite search engine and type in SQL and the
SQL command DIFFERENCE or INTERSECTION or any of the above
operators, and you will be greeted by a host of references and facilities to
fill many days of learning. You certainly will have plenty of references to get
you well past the challenge.

There is another relational operator which is very useful, but it is not listed
as algebraic. The Order by operation is most helpful in arranging data in
sequences.

The name Chamberlin and Boyce gave to their database language was
Structured English Query Language (SEQUEL, later changed to SQL). It
consisted of three parts: Data Definition Language (DDL), Data
Manipulation Language (DML), and Data Control Language (DCL). Codd
defined the operators, the structure, the syntax, and all the rules for
manipulating a relational database.

Originally, when IBM came out with its language, it was actually called
SEQUEL for Structured English Query Language, and it quickly received
the nickname “sequel.” However, there was already a company called
Advanced System Concepts, who named their SQL-like SEQUEL product
long before IBM coined the term. Additionally, the acronym SEQUEL was
found to be a trademark held by a company in the UK IBM later dropped
the name in favor of SQL.

Looking Closer at Relational Operators

60 The IBM i Pocket SQL Guide

A more complete explanation of each of the five commonly used operators
is as follows:

Order

As you can see in Figure 10-1, ORDER sequences rows of a table, without
making a second copy

Figure 10-1 Ordered and Unordered Records
 Ordered Unordered

 |--------------------- |---------------------

 | Smith | | Adams |

 | | | |

 | Jones | == | Brown |

 | | == | |

 | Brown | =========== | Jones |

 | | == | |

 | Adams | == | Smith |

 | | | |

 | Thompson | | Thompson |

 | | | |

 *-------------------- *--------------------

Union

As you can see from Figure 10-2, Union takes two similarly shaped files and
creates one complete file from the two.

Projection

Projection allows you to logically rearrange the columns in a table and also
create subsets of the columns, or fields, in a table. As an example, in Figure
10-3, you have a new view of the Payroll Master file, which does not
include the salary. This view of the real data can be given to employees
through relational projection. It is a projected image of a file, which limits
and/or rearranges the columns which are included in the view.

Chapter 10 Relational Database Operations 61

Figure 10-2 Relational Union Operation
 ORDER MASTER1 ORDER MASTER2

 |-----------|--------|-------| |-------- |----------|-------|

 |Order No |Part No |Date | |Order No |Part No |Date |

 |-----------|--------|-------| |---------|----------|-------|

 |159244 |55511 |7/1/94 | |187654 |34567 |4/21/94|

 | | | | | | | |

 |263255 |29999 |7/7/94 | |322456 |23456 |4/24/94|

 | | | | | | | |

 |978121 |64444 |6/9/94 | |457676 |44567 |4/30/94|

 | | | | | | | |

 |. . . |. . . |. . . | |. . . |. . . |. . . |

 *-----------!--------!------- *---------!----------!-------

 V V

 V V

 V V

 UNIONED FILE

 |-----------|---------|------------------|

 |Order No |Part No |Date |

 |-----------¬---------¬------------------|

 |159244 |55511 |7/1/94 |

 |187654 |34567 |4/21/94 |

 |263255 |29999 |7/7/94 |

 |322456 |23456 |4/24/94 |

 |978121 |64444 |6/9/94 |

 |457676 |44567 |4/30/94 |

 |. . . |. . . |. . . |

 *-----------!---------!------------------

Figure 10-3, Relational Projection Operation
 NAME EXT SALARY EXT NAME

 |-------|-------|-------| |-------|-------|

 | | | | | | |

 | Jones | 3677 | 16000 | | 3677 | Jones |

 | | | | | | |

 | Smith | 3605 | 14000 | == | 3605 | Smith |

 | | | | == | | |

 | Adams | 3939 | 17000 | ============ | 3939 | Adams |

 | | | | == | | |

 | Brown | 4200 | 35000 | == | 4200 | Brown |

 | | | | | | |

 | ... | ... | ... | | | |

 | | | | | | |

 *-------!-------!------- *-------!-------

Selection

Just as projection provides a subset of the columns in a table, selection
provides a subset of the rows. If, for example, you wanted a view of all
salaried employees who made more than $100,000 per year, more than
likely, you would receive a subset of the payroll records . . . those which
met that selection criterion. In the selection example in Figure 10-4, (Just

62 The IBM i Pocket SQL Guide

those customers from Michigan), you can see that the image after selection
does not include A B Distributors.

Figure 10-4 Relational Selection Operation
 |----------------------------| |----------------------------|

 | ABC Inc Detroit MI | | ABC Inc Detroit MI |

 | | == | |

 | A B Distrib Lima OH | == | 123 Trucking Alma MI |

 | | ======== | |

 | 123 Trucking Alma MI | == | Allied Ent Detroit MI |

 | | == | |

 | Jones Inc Akron OH | *----------------------------

 | |

 | Allied Ent Detroit MI |

 | |

 | Sun Ind Tucson AZ |

 | |

 *----------------------------

In this process, the database does the record selection. A program would
receive records that have already been selected by the database. Since the
database can fetch and test records substantially faster than a program, in
addition to saving both coding and the associated programmer time, using
the database operators for selection also enhances performance.

Both projection and selection can be used for many purposes, including
security. For example, a user could be authorized to a secure view of
desired payroll data, instead of the entire file.

Join

With the Join operator, data in primary records (first file defined) gets joined
with data from secondary records creating new “virtual” records with both
sets of fields. Of course, more than two files can be joined. In fact, up to 32
files can be joined using the DB2/400 database.

To continue a Join to a third file, and to subsequent files, you would join
the data in the 1st secondary file, to that in the 2nd secondary (tertiary –
third) file. You would continue joining from file n to file n + 1 (where n =
the sequence # of the last file joined, and n + 1 = the sequence # of the
next file to be joined.). You would be able to repeat this until you had no
more joins to specify, or you had reached thirty-one joins using thirty-two
physical files.

Chapter 10 Relational Database Operations 63

There is no reason to include a particular file in a Join logical view unless
one or more fields from that file were going to be in the view provided by
the file. We’ve coined the term “virtual record” to describe the resulting
record format after all of the files are joined and the fields from those files
are picked and placed in the new record format of the new logical file.
Thus, if a Join view consists of thirty-two files, it is safe to say that the
record layout for that view contains at least thirty-two fields - a minimum of
one from each of the Join files.

The Join operator plays upon the relationships of related fields - equal,
greater than, or less than. In the example in Figure 10-5, you can see that
the Order Master file is joined (equal) with the Parts Master file so that the
parts within an order can logically contain the part’s description, which
exists only in the Parts Master file.

Figure 10-5 Relational Join Operation
 ORDER MASTER PARTS MASTER
 |-----------|--------|-------| |--------|-------------|-----|

 |Order No |Part No |Date | |Part No |Description |Loc |

 |-----------|--------|-------| |--------¬-------------¬-----|

 |159244 |55511 |7/1/88 | |66342 |Size 7 Seal |Whs 1|

 | | | | | | | |

 |263255 |29999 |7/7/88 | |18818 |No 12 ring |Whs 3|

 | | | | | | | |

 |978121 |64444 |6/9/88 | |97676 |Brass plate |Whs 1|

 | | | | | | | |

 |. . . |. . . |. . . | |. . . |. . . |. . .|

 *-----------!--------!------- *--------!-------------!-----

 V V

 V V

 V V

 JOINED FILE

 |-----------|---------|------------------|

 |Order No |Part No |Description |

 |-----------¬---------¬------------------|

 |159244 |55511 |CKK Valve |

 | | | |

 |263255 |29999 |Left bracket |

 | | | |

 |978121 |64444 |No 8 washer |

 | | | |

 |. . . |. . . |. . . |

 *-----------!---------!------------------

As shown in Figure F-5, one or more data files can be joined together to
create a view, or “virtual image.” The view is very powerful and presents a
record image to a program or query as if all the data fields were gathered

64 The IBM i Pocket SQL Guide

from one file. With such work being performed by the database itself,
application programs can become much simpler to design and code.

Overall, it is much easier for a programmer, or for a Query user, to work
with a single, joined file, than deal with the complexity of multiple files. As
previously noted, the AS/400 supports up to 32 physical files for a JOIN
and the result is the formation of one new “joined” view of the data.

Difference

The four operations coming up now include the Difference relational
operation as derived from relational algebra is not used that often compared
to those set operations described above. Its purpose is gives a result that
includes all rows in one table that do not appear in another similarly defined
table. See the diagram of difference in Figure 10-6.

As you progress in this book, you will learn that the difference operation is
similar to a left/right outer join since it returns the non-hits. The shorthand
symbol for the difference operation is a minus sign "-" It is implemented on
the AS/400 database in V5R3 SQL as the Except operation.

On the AS/400 and IBM i as of V5R3, the Difference operation is
supported in SQL. The example below “joins or unions” two almost
identical files in terms of record content. Assume there are, say, five records
missing from one of the files. The Difference select format is shown
immediately below and the diagram of the format of a difference selection
is shown in Figure 10-6.

Select *

 From vndp

Except distinct

Select *

 From vndp2

Chapter 10 Relational Database Operations 65

Figure 10-6 Difference Operation
PARTS MASTER 1 PARTS MASTER2

 |--------|-------------|-----| |--------|-------------|-----|

 |Part No |Description |Loc | |Part No |Description |Loc |

 |--------|-------------|-----| |--------¬-------------¬-----|

 |66342 |Size 7 Seal |Whs 1| |66342 |Size 7 Seal |Whs 1|

 | | | | | | | |

 |97676 |Brass plate |Whs 1| |18818 |No 12 ring |Whs 3|

 | | | | | | | |

 |98121 |Ropey Dope |Whs 3| |97676 |Brass plate |Whs 1|

 | | | | | | | |

 |. . . |. . . |. . . |. . . |. . . |. . . |. . .|

 *--------!--------!------- *--------!-------------!-----

 V V

 V V

 V V

 Result of Minus (Except) Operation

 |---------|----------------|-----|

 |Part No |Description |Loc |

 ¬---------¬----------------|-----|

 |98121 |Ropey Dope |Whs 3|

 | | | |

 | | | |

 | | | |

 | | | |

 | | | |

 |. . . |. . . | |

 *---------!----------------!-----|

With a 17 record file VNDP (a subset of the vendor and vendorp files used
throughout this book) sample data for this book, we would receive as a
result the following table noting the 5 differences. In the sample tables,
there are no duplicate records so the distinct operation was unnecessary.

Figure 10-7 Table Results With Difference IBM i Implementation
 Display Data

 Data width . . .

Position to line Shift to column . .

....+....1....+....2....+....3....+....4....+....5....+....6.

VENDOR NAME ADDRESS LINE 1

NUMBER

 7,030 ATG Dynamo 25 First Street

 7,060 WRQ Reflections 1556 Emulation Avenue

 7,090 Fat Brain 65 Books Online

 7,130 McFadyen Consulting 521 Wedoitall Avenue

 7,150 Texas Instruments 45 Jones Rd.

******** End of data ********

Intersection

The Intersection relational operation, also derived from relational algebra, is as
obscure to most SQL advocates as the Difference operation. When
invoked, it returns a list of rows where the exact same row appears in two

66 The IBM i Pocket SQL Guide

similarly defined tables. The shorthand symbol for this operation is an
upside-down "U"

Figure 10-8 Intersection Operation
PARTS MASTER 1 PARTS MASTER2

 |--------|-------------|-----| |--------|-------------|-----|

 |Part No |Description |Loc | |Part No |Description |Loc |

 |--------|-------------|-----| |--------¬-------------¬-----|

 |66342 |Size 7 Seal |Whs 1| |66342 |Size 7 Seal |Whs 1|

 | | | | | | | |

 |97676 |Brass plate |Whs 1| |18818 |No 12 ring |Whs 3|

 | | | | | | | |

 |98121 |Ropey Dope |Whs 3| |97676 |Brass plate |Whs 1|

 | | | | | | | |

 |. . . |. . . |. . . |. . . |. . . |. . . |. . .|

 *--------!--------!------- *--------!-------------!-----

 V V

 V V

 V V4

 Result of Minus (Except) Operation

 |--------|----------------|-----|

 |Part No |Description |Loc |

 ¬--------¬----------------|-----|

 |66342 |Size 7 Seal |Whs 1|

 | | | |

 |97676 |Brass plate |Whs 1|

 | | | |

 | | | |

 | | | |

 | | | |

 |. . . |. . . | |

 *--------!----------------!-----|

Using the same files as above in which five records are different, the
Intersection operation will show us the twelve records in Figure 10-9 that
are exactly the same.

Select *

 From vndp

Intersect distinct

Select *

 From vndp2

Chapter 10 Relational Database Operations 67

In the sample tables, there are no duplicate records so the distinct operation
was unnecessary.

Figure 10-9 Display Data from IBM i Intersection
 Display Data

 Data width

Position to line Shift to column

....+....1....+....2....+....3....+....4....+....5....+.

VENDOR NAME ADDRESS LINE 1

NUMBER

 7,000 Microsoft Corporation One Microsoft Way

 7,010 Oracle Corporation 1234 Relational Stre

 7,020 Sun MicroSystems 4150 Network Circle

 7,040 Education Direct 925 Oak Street

 7,050 Merant 125 Micro Focus

 7,070 Red Hat 985 Linus Street

 7,080 Thomson Corporation 5664 Publisher Road

 7,100 Office Max 584 Office Supplies

 7,110 Home Depot 5697 Fix It Street

 7,120 American Vending Corp. 5687 Eating Drive

 7,140 Kensington 78 Clean Street

77,777 Left Outer Join 1234 Address Avenue

******** End of data ********

Product (Cartesian Product)

The final set operator is the Cartesian Product. Just as in traditional set theory
in mathematics, the Cartesian Product of two record sets (matrices)
combines every record in one set with every record in the other.

The Cartesian product, or just "product," as noted in the list of relational
functions of two record sets, is returned by a multi-file SELECT statement
with no JOIN clause. This will make more sense when we cover the Join
statement in Chapter 14.

The statement below for example, will return every vendor with every open
voucher.

SELECT VENDORP.VENDNR, NAME, VCHNBR

from VENDORP, VOUCHRP

68 The IBM i Pocket SQL Guide

Cartesian products are occasionally useful for analysis purposes. However, I
must admit I never needed one. They often serve as interim results for
further manipulation as in a Join. The Join, for example, always produces a
Cartesian product of all combinations and then without burdening the user,
selects the tuples that apply and displays only those. .

Division

The final relational operation is Division. The relational divide operator (so
called to distinguish it from mathematical division) returns the records in
one record set that have values that match all the corresponding values in
the second record set. For example, given a record set that shows the
categories of products purchased from each supplier, a relational division
will produce a list of the suppliers that provide products in all categories.
This is not an uncommon situation, but the solution is not straightforward
since the SQL SELECT statement does not directly support relational
division. There are numerous ways to achieve the same results as a
relational division, however.

The easiest method is to rephrase the request.

Instead of "list the suppliers who provide all product categories," which is
difficult to process; try "list all suppliers where the count of their product
categories is equal to the count of all product categories." This is an
example of the extension operation that we'll discuss later in this chapter. It
won't always work, and in situations where it doesn't, you can implement
division using correlated queries. Correlated queries are, however, outside
the scope of this book. Please refer to one of the references listed in the
bibliography.

Chapter 10 Relational Database Operations 69

To SQL or Not to SQL?

Note to students: You may be hired by an Oracle shop, a
Microsoft SQL Server Shop, or an IBM DB2 shop on Power
technology or on the mainframe. As such this discussion is
helpful. Nobody gets hired as a MS Access 2007 database
technician.

Despite its availability, and its acceptance as the industry standard, IBM
chose not to use SQL as its native database language when the company
introduced the AS/400 in 1988, and again when it introduced the iSeries in
2000 and again, when it introduced the IBM i in 2006. Instead, the
company used the same, and only database model native to the System/38
– DDS.

The DDS Factor!

That model was specifically built to help make it easier for IBM’s small
business computer customers to migrate to the System/38 platform. It
helped IBM achieve a major objective of migrating its current users to a
database platform without burdening them by even a modicum of large
system complexity. Because of IBM’s unique design, many who migrated to
the system, never even had to learn about the database.

Changing compilers to use SQL and eliminating native “read and write”
operations in favor of SQL were not in IBM’s interests with either the
AS/400 or IBM i announcements. Without SQL as the default language for
the database, IBM had a number of issues when trying to port AS/400
applications to other database systems that were based on the SQL
language.

DDS is very powerful and intuitive that it enables non-database
professionals to quickly get acquainted with the integrated database. Thus,
it would not have been a good idea then, nor would it be a good idea now
for IBM to eliminate DDS. However, with more and more companies
running multiple system types, SQL has gotten new life in AS/400 shops

70 The IBM i Pocket SQL Guide

and IBM has responded by making the new IBM i SQL more powerful
than ever.

Shortly after the AS/400 was announced in 1988, IBM made SQL available
as an optional database language for a charge. By making it optional and
charging for the package, eventually there were SQL “haves” and “have
nots.” Over the years , however, as IBM software marketing packages
began to include SQL as a feature, more and more users were able to use its
facility in their daily work. Though DDS is still the preferred language for
AS/400 database shops, SQL is becoming more and more popular.

With all IBM AS/400 systems including the newest i5, IBM ships an SQL
runtime environment with the operating system. Thus, software vendors do
not have to depend on SQL being purchased for their SQL-based products
to run.

Chapter Summary

All relational database DML operations are founded in mathematical
theory. The integrated relational database called DB2 UDB on the IBM i is
no exception, with or without SQL. In defining the types of things users
may like to do with data, and proving that they will work in mathematics,
Tedd Codd came up with eight operators that are implemented to one
degree or another in all RDBMS systems, including the IBM i. .

In this chapter, we examined the look and feel of all of these operations by
providing a pictorial representation of data when it was reasonably easy to
accomplish and by providing the new SQL for some of the more esoteric of
Codd’s operations that are just now coming into the SQL operations set of
the IBM i.

Key Terms

Cardinality
Commonly used operations
Difference
Division

Foreign key
Integrated RDBMS
Internet
Intersection

Chapter 10 Relational Database Operations 71

Join
Matrix algebraic operations
Order
Primary key,
Product (Cartesioan)
Project
RDBMS operations,
Relational operators,
SEQUEL
Set theory
Tuples
Union
Unique key

Chapter 11 The Basic Select Statement 73

Exercises

Use this chapter or look up information on the Web to answer the
following:

1. Tedd Codd’s relational database operations were all proven before
implementation because of his reliance on what discipline?

2. Is the Order operation one that Codd would say is founded in
mathematical theory?

3. Describe the Union operation.

4. How is a projection operation implemented in practice?

5. What is Selection and which clause of which SQL statement would you
use to provide it.

6. What is a Join operation?

7. Describe the Difference operation?

8. What is the Intersection operation?

9. What is the Cartesian product operation and how is it developed? What
value may it serve in practice? Give an example of how you can get the
Cartesian product using just two files

10. What is the Division relational DB operation and how is it implemented
on the IBM i?

11. Are any of these operations implemented in DDS? Which ones if any?

74 The IBM i Pocket SQL Guide

Chapter 11

The Basic Select Statement

Note to Students: Just like Chapter 10, in the normal sequence of
activities for the IBM i technician trying to learn SQL, this chapter
was better left deferred to later in the book. I rearranged it so that it
would be able to greet the new database practitioner without
changing its name from Chapter 11. Though it can be argued that
SQL should be approached before the SELECT Statement in this
chapter, I feel that this chapter on theoretical SQL fits here better for
the new student of database than in the back of the book and even
before the introduction to SQL that you will receive in the next
chapter. .

Function of SELECT Statement

The SELECT statement is SQL’s data access statement. In a programming
language, the READ, CHAIN, and READ for UPDATE operations are
how record at a time operations are performed. There is no such thing as
record at a time access and therefore there is no such thing as a “READ”
operation per se in SQL. So, if you plan to read anything for any purpose
using SQL, you will find yourself using the SELECT statement.

The SQL SELECT starts by you specifying a file or files from which to
access data and in the rest of the statement you tell this powerful data
access statement just what data it is that you want to retrieve. It alls starts
by your specifying the columns that you want to see as a result of a database
query. The columns you select may be column names that exist already in
one of the data bases that you are accessing or they may be arithmetic

Chapter 11 The Basic Select Statement 75

expressions in which you create new virtual columns (fields) from other
values in a row (record). Regardless of what you request, if SQL returns
anything to satisfy your query, it is always in the form of a new “table.”

Where Does SQL Put the New Table?

So far, we have studied the RUNSQLSTM and the ISQL methods of
working with SQL. We have yet to study the Query Manager and
embedding SQL in programs. Select works in three out of these four
environments. IBM did not build the RUNSQLSTM command to process
a Select statement so don’t even bother trying.

In all three cases in which a Select statement is supported, the table result is
returned in “memory.” The result that comes back to memory is known as
a result set. Sometimes this result set (memory table) is further analyzed
with additional Select statements in the form of a query within a query a.k.a.
sub-query in order to get the final results. In other cases, further selections
and groupings are performed with the Group By and Having clauses of the
Select statement. In a nutshell, at the end of Select statement processing in
any environment, one of three things is returned to a new area of memory
representing the results of the query. These three possible results are as
follows:

No rows returned

One row returned

Multiple rows returned

Once the lack of data, data, or set of data is built in memory in column and
row format as the result set, it can be used in a variety of ways. For now,
let’s concentrate on the basics. In ISQL, if there are no results, you will get
a panel that looks just like the panel you would get if there were results
except there would be no data included in the panel. At the bottom of the
panel, you would see the following message:

No data selected for output

76 The IBM i Pocket SQL Guide

If there is one row returned or many rows returned, the panel looks the
same and the rows and columns of the memory table are displayed on the
screen. Since most often the number of columns does not fit on the screen,
there are left and right function keys and roll functions for the top to
bottom windows so that you can toggle through the various rows and
columns in the result set of data. There is also a split screen facility using
F21 that is like the freeze spreadsheet function. It permits you to keep an
identifying part of the record visible on the left side while you look at the
rest of the columns on the right side of the window.

If you are using the Query Manager (QM) product Chapter 13), the result
set of your Select run is turned over to the QM function where it can be
better formatted. From here the information included in the resultant data
set is formatted and then either displayed or printed.

If you are using the Select statement for data access in a high level language
program such as RPG and COBOL, or even low level languages such as C
Language, the result of the query is stored in memory that is accessible only
via your program. If there are no records or just one record returned to the
program, the data or lack of data can be processed very similarly to how the
language would process any other record at a time data access function.
However, if the program is to receive a table set of data in memory from a
SELECT query, the programmer must code specific statements within the
program, in much the same way as a subfile, or an OPNQRYF query to be
able to “cursor” through the returned records in memory to process them
one at a time.

In its basic form, the Select Statement specifies to the SQL data manager:

1. What data to retrieve
2. The columns to be returned as result of the Select
3. The Table(s) or View(s) from which data is to be retrieved
4. Optionally – a condition which must be satisfied in order to retrieve the
data record(s).

The Basic Nits and the Grits

The most basic form of the select is as follows

Chapter 11 The Basic Select Statement 77

1. SELECT - the verb or action word for the statement
2. Column Names -- the data you want
3. FROM. -- some source (table or view name(s))
4. WHERE -- conditions which are to be met (if any)

The Where clause in the basic SELECT operation is where lots of work
occurs. This is where logical operators are defined to limit the set of data
returned. The Where clause can also contain another SELECT clause to
further refine the returned data set. This is called a sub-query request.

The best way to take a look at the basic components of the SELECT
statement is to go back to a section of the panel we first showed in
Interactive SQL back in Figure 9-4. The germane parts of this panel are
repeated below as Figure 11-1 to serve as a convenient reference:

Figure 11-1 Specify Select Statement Parameters

 FROM files VENDORP

 SELECT fields NAME, CITY, STATE, VNDCLS, BALOWE

 WHERE conditions BALOWE > 95.00

 GROUP BY fields

 HAVING conditions

 ORDER BY fields

 FOR UPDATE OF fields Bottom

Type choices, press Enter.

 DISTINCT records in result file Y Y=Yes, N=No

 UNION with another SELECT N Y=Yes, N=No

 Specify additional options N Y=Yes, N=No

In Figure 11-1 we get the basics of the SELECT statement and we also get
a method of achieving the advanced capabilities of the SQL language. Let’s
begin our examination of this statement by taking it apart, one clause at a
time. We’ll start by taking a closer look at the three clauses that we have
been using as examples throughout the book, namely the From, Select
Fields, and Where clauses.

The From Clause of the Select Statement

78 The IBM i Pocket SQL Guide

In the FROM Clause, you merely type in the name of the table (physical
file) or tables or the view (logical file) or views from which you want the
result table to be derived.. The files that you call out in the FROM clause
form the full population of data records to be queried. Unless you use an
asterisk in the Select Fields clause, the resulting table that is obtained from
the query in most cases will be smaller (projection) than the combination of
columns and rows in the based-on tables.

The “Select Fields” Clause of the Select

Statement

In this clause, you type the names of the columns (fields) to be used in the
result table (file). The columns (fields) must be separated by commas. You
may also use expressions, such as (balowe * 1.1) to perform math functions
on data and return the results. In this case it can be that we are adding a
10% late charge or something else that is derived form the data.
Expressions also are separated by commas. It is actually the result of the
expression, not the expression itself that will be returned in the resultant
memory table set of data. It is the Select clause via the selection of fields
that the relational database operation of projection is performed. Thus,
fewer columns are typically returned in the result set than are in the queried
tables.

The Where Clause of the Select Statement

In this clause, you type the search condition for each row (record) resulting
from the From clause. The result table contains the rows (records) where
the search condition is true. This is where the SQL operation of selection is
performed. Thus, less rows are typically returned than are in the queried
tables.

The Group By Clause - Select Statement

Chapter 11 The Basic Select Statement 79

When you use the GROUP BY clause of the SELECT statement, you are
signaling that there is more processing that must be done against the
original returned memory table from the memory result set of the
projections and selection operations. The GROUP BY operates on the
returned result set (intermediate) of the initial Select. It then groups this set
of returned rows (records) according to certain specified columns (fields).
The columns (fields) must be separated by commas. The GROUP BY is
typically followed by the HAVING clause.

The Having Clause -- Select Statement

As the Group By examines the initial table and groups and it prepares the
grouping, the Having provides an opportunity to apply additional selection
criteria against the returned and grouped data so far in the query. It is like
“having” another Where clause available to use against the result of the
functions applied earlier in the query that were not available in the original
table. So the Having clause uses the grouped intermediate result table (file)
and produces a final result set by applying a search condition to each group
of the previous clause.

The Order By Clause -- Select Statement

Unless you specifically choose to tell the Select statement that the resulting
table should be sorted in some sequence, the sequence of the returned table
is indeterminate. One time the query may deliver records in one sequence
and the next time the query may deliver the same data in a different
sequence.

The clause in the Select statement that gives you control of the sequence of
the rows returned to your result table is the Order By clause. This clause
orders the rows (records) of the result table (file) according to the column
(field) names you identify. If you identify more than one column (field), the
rows (records) are initially ordered by the column (field) names you
identified first, then by the column (field) names you identified second
within the sequencing of the first column (field), and so on.

80 The IBM i Pocket SQL Guide

The For Update Of Clause-- Select Statement

The For Update Of clause is an optional part of a SELECT statement.
When used in high level language programs, it specifies whether the result
set of a simple SELECT statement that meets the requirements for a cursor
(result table row / record access) is updatable or not. Only simple, single-
table SELECT cursors and FORWARD_ONLY result sets of date can be
updatable

Forward-only Cursors

As many things in SQL, there is a chicken or egg problem in describing the
utility of a function by having to use something that has not been described
yet as a descriptor. In above explanation of For Update Of, we used the
term Forward_Only result sets. Though we are not yet prepared to learn
cursors and embedded SQL, it would help now and then to define this term
since it is a restriction on the For Update Of clause.

In essence, all of this has to do with the returned data set. A forward-only
cursor does not support scrolling. It supports only the fetching of the
returned rows serially, one at a time from the start of the memory table to
the end of the memory table. It basically means that when processing the
returned memory table, the cursor cannot be scrolled backward. You will
see in embedded SQL that you define a way to access the returned data via
a notion called a cursor. Unlike a cursor on a screen that can be moved
backward and forward, this cursor can only be advanced forward.

To satisfy the For Update Of conditions, you type the names of the
columns that can be updated through the cursor. The columns named
must belong to the table (physical file) or view (logical file) named in the
From clause of the Select statement and the columns must be separated by
commas.

Chapter 11 The Basic Select Statement 81

Union with Another Select

At the bottom of the Specify Select Statement there are three more options
for SELECT processing. They are as follows:

✓ DISTINCT records in result file

✓ UNION with another SELECT

✓ Specify additional options

 In Chapter 9, we covered the notion of the distinct option to prevent
duplicates in the result set so we have just two more aspects of the
SELECT statement to cover in this chapter. The first of these two is the
Union with another Select.

This feature gives you the option of performing a Union function to
combine two result tables (files) into one result table (file). If you answer
yes to this prompt, you get another prompt so that you can indicate
whether you want duplicate rows (records).

Specify Additional Options

When you pick this line on the prompter, you are given three more items to
specify:

 1. Number of records to optimize
 2. For Read Only
 3. With isolation level

Let’s look at these individually:

Number of Records to Optimize

The OPTIMIZE for ROWS clause is used to give the perception of better
performance. This is the same facility used with the native OPNQRYF
command that enables the first page of displayed output to display while a
query, expected to be long running, is working on getting the rest of the

82 The IBM i Pocket SQL Guide

result set prepared. You select the number of rows (records) that you want
to show on the first and subsequent panels with the OPTIMIZE FOR
ROWS clause. If this clause is not specified, the database manager assumes
all rows (records) of the result table will be retrieved before any are
displayed.

For Read Only

The For Read Only clause specifies that the result table (file) is read-only. If
the clause is provided, since there is no concern for locking records, it
should significantly improve the performance of FETCH operations.

With Isolation Level :
 :
The With Isolation Level clause of the SELECT statement permits the
developer to specify the level of sharing for updates.

Derived Fields

The SELECT statement can create new virtual fields using the following
operations:

✏ Add

✏ Subtract

✏ Multiply

✏ Divide

✏ Concatenate

✏ Substring

Look at the following example:

SELECT VENDNR, BALOWE- 200,

SUBSTR(name, 1,15) as ShortName FROM

vendorp

Chapter 11 The Basic Select Statement 83

The Results as stored in the memory table or what is commonly called the
result set is as follows:

Figure 11-2 Results of Derived Field Query

 Display Data

 Data width

Position to line ___ Shift to column ___

 ...+....1....+....2....+....3....+....4

VNDNBR BALOWE - 200 SHORTNAME

 38 100.00- John B Stetz Cl

 40 50.00 Scranton Fabric

 42 100.00 Pass Pax Inc

 44 150.00- Cliffy Equipmen

 46 300.00 Butts & Wallace

 48 3,300.00 Denton and Ball

 49 125.00 John Studios

 25 7,300.00 Macone Corp Of

 26 1,295.55 Lockhart Machin

 28 100.00- Charley Engravi

 30 700.25 Detweiller Cont

 32 50.00 Irfing Power Ma

 34 47.00- Blind Robin Cop

 36 90.00 Facile Steel Co

 7,000 190.46- Microsoft Corpo

 7,010 105.00- Oracle Corporat

3=Exit F12=Cancel F19=Left F20=Right

Closer Look at Where Clause

I keep reminding you that there is no order in the results unless we use an
ORDER BY clause. We’ll get to some examples shortly. Let’s first take a
look at some examples using the Where clause to select rows. The Where
clause, in a nutshell, does row selection. Logical operations and keywords
help the user construct the selection criteria. The typical phrases used in the
Where clause are as follows:

84 The IBM i Pocket SQL Guide

Greater than >
Less than <
Equal =
Greater than or equal >=
Less than or equal <=
Not Equal <>
AND, OR, NOT
RANGE inclusive constant range
BETWEEN high and low values
VALUES list of constant values (IN)
Wild Card Constant pattern matching
Like
Etc.

And Conjunction

The term “And” is used to combine more than one Where clause
condition. When “And” is used, the conditions on both sides of the And
need to be true in order for the statement to be true.

Example: AND Fieldname = 56

Or Conjunction

The term “Or” is also used to combine more than one Where clause
conditions to be tested. When “Or” is used, the conditions on either side of
the “Or” need to be true in order for the statement to be evaluated true. If
both are true, the statement is true; if both are false, the statement is
evaluated as false. If one side is false and one side is true, the statement is
evaluated as true.

Example: OR Fieldname = 56

Chapter 11 The Basic Select Statement 85

Between Test

The between function is used to select rows that are between values. When
the conditions are met, the row is selected into the result set..

Example: Select within range of values

Where Fieldname BETWEEN 56 AND 70

Where Fieldname BETWEEN ‘AC’ AND ‘DF’

For numeric values, no quotes are required. For alphabetic vales, quotes are
required.

The NOT Modifier

Not is used to negate a true statement. If we are looking for he negative of
a condition and it is true, the record is selected into the result set.

Let’s take an example in which we want to select if the tested column in the
record is not within a range or list of values.

Example: Select when not in range or list:

Where Fieldname NOT BETWEEN 56 AND 70

List of Values – IN

The IN test gives us a tool to see if the record being processed has a
column value that fits with a list of specified values.

Example: Select if the value is in a list of values

Where Fieldname IN (56, 64, 70)

Where Fieldname IN (‘AC’ ‘AD’ ‘DF’)

86 The IBM i Pocket SQL Guide

Now let’s wrap up this chapter with some fairly simple, sample Selects:

Exercise 1

SELECT * FROM PERSON
This statement retrieves all data from PERSON table as shown in Figure
11-3.

Figure 11-4 Person Data

EMP
NO

FIRST
NME

I
n
i
t

LAST
NAME

E
D
lvl

S
E
X

BIRTH
DATE JOB

HM

999900 John F Jones 12 M 07/26/89 STA 121

999901 Emily A Smith 11 F 01/01/85 STA 122

999902 Caroline M Bayer 12 F 07/05/75 AQS 123

12345 Joseph H Smith 12 m 02/07/80 STA 124

23456 Anny H Jones 14 F 02/01/70 MGR 125

3456 Daniel J Grindick 16 M 03/01/70 MGR 126

001 Kevin F Fiedler 3 M 06/23/79 AQS 127

26913 Ronnie B Beezer 19 F 03/21/82 STA 332

70017 James T Torregard 1 M 08/30/84 AQS 333

12654 Finster Q Fadillo 10 F 12/08/56 STA 334

43298 Nongo D Connie 16 M 08/23/61 RET 335

31856 Gaus V Herndon 10 M 11/16/83 STA 491

83523 Fonnsworth K Nortstommin 12 M 01/30/77 MGR 492

39245 Maryanne X Toole 19 05/22/72 MGR 493

41717 Catherine D Damsforth 12 F 02/12/81 STA 622

41578 Paul A Gollera 11 M 04/11/78 STA 731

34466 Benia A Arflatts 12 F 08/05/87 STA 820

Exercise 2

SELECT * FROM VENDORP

This statement retrieves all data from the VENDORP file in no apparent
sequence. Since the columns of this book are narrow and I wanted you to
see the contents of the file, I split the results into two parts as shown in
Figures 11-4 and 11-5. To relate rows properly, I duplicated the VNDNBR
column in both halves of the output.

Chapter 11 The Basic Select Statement 87

Figure 11-4 Left Half of Vendorp File from Select *
VNDNBR NAME ADDR1 CITY

38 John B Stetz Clothier 3817 N. Pulaski Scranton

40 Scranton Fabrics 2147 S Main St. Old Forge

42 Pass Pax Inc 1539 Oak Hill Old Forge

44 Cliffy Equipment Co. 2232 Fouest Scranton

46 Butts & Wallace Inc 2150 Toughy Scranton

48 Denton and Ball 7934 S Scranton Ave Scranton

49 John Studios 2040 N BELTWAY Scranton

25 Macone Corp Of Chicago 1345 Prill Avenue Chicago

26 Lockhart Machinaws 45 Ginzo Lane Wokegon

28 Charley Engraving Co Pedulllion Avenue Greghert

30 Detweiller Controls 45 Fognetta Place Kernstin

32 Irfing Power Machinery 56 Fineel La Swingder

34 Blind Robin Copany 11 Robin Lane Robin

36 Facile Steel Co 78 Engraved Rd. Mattusic

7000 Microsoft Corporation One Microsoft Way Redmond

7010 Oracle Corporation 1234 Relational St Redwood Shre

7020 Sun MicroSystems 4150 Network Circle Santa Clara

7030 ATG Dynamo 25 First Street Cambridge

7040 Education Direct 925 Oak Street Scranton

7050 Merant Glass Works 125 Micro Focus Phoenix

7060 WRQ Reflections 1556 Emulation Ave Tampa Bay

7070 Red Hat Club 985 Linus Street Albany

7080 Thompson Corporation 5664 Publisher Road Austin

7090 Fat Brain 65 Books Online Cleveland

7100 Office Max 584 Office Supplies Detroit

7110 Home Depot 5697 Fix It Street Jackson

7120 American Vending Corp. 5687 Eating Drive Portland

7130 McFadyen Consulting 521 Wedoitall Ave Indianapolis

7140 Kensington Mines 78 Clean Street Lancaster

7150 Texas Instruments 45 Jones Rd. San Antonio

7777 Left Outer Join 1234 Smirth Ave Scranton

8020 Phillies Phinest 391 Carey Avenue Wilkes-Barre

8020 Bings Music 91 Peeliere Ave Oanoke

88 The IBM i Pocket SQL Guide

Figure 11-5 Right Half of Vendorp File from Select *
VNDNBR STATE ZIPCD VNDCLS VNDSTS BALOWE SRVRTG

38 PA 18503 10 A 100 R

40 PA 18762 20 A 250 R

42 PA 19722 10 A 300 R

44 PA 18503 20 A 50 X

46 PA 18503 30 A 500 R

48 PA 18504 20 A 3500 R

49 PA 18505 10 A 325 X

25 IL 45903 10 A 7500 X

26 OK 23657 20 A 1495.55 R

28 IL 45963 20 A 100 X

30 IL 45793 20 A 900.25 R

32 PA 18503 20 A 250 R

34 PA 18702 20 A 153 A

36 PA 18598 30 A 290 X

7000 WA 98052 10 A 9.54 P

7010 CA 92626 10 A 95 G

7020 CA 95054 10 A 8000 G

7030 MA 2141 20 A 352.56 A

7040 PA 18515 20 A 0.25 A

7050 AZ 19954 30 A 0.56 G

7060 FL 12374 20 A 4.99 G

7070 NY 85743 10 A 7.85 A

7080 TX 98735 20 A 9.65 G

7090 OH 47895 10 A 2.56 G

7100 MI 85742 10 A 19 G

7110 MS 65412 30 S 6.54 B

7120 OR 65478 20 D 0 P

7130 IN 98523 10 A 250 A

7140 PA 65471 20 A 0.25 G

7150 TX 87459 10 A 0.15 G

77777 PA 18515 10 A 5 A

8020 PA 18702 20 A 35700 4

8020 VA 58702 20 A 79700 3

Exercise 3

SELECT FIRSTNME, LASTNAME FROM

PERSON WHERE EDLEVEL = 12

Retrieves the names of those who are seniors

Chapter 11 The Basic Select Statement 89

Figure 11-6 Display the Seniors
 Display Data

 D

Position to line Shift

....+....1....+....2....+....

FIRSTNME LASTNAME

John Jones

Caroline Bayer

Joseph Smith

Fonnsworth Nortstommin

Catherine Damsforth

Benia Arflatts

******** End of data ********

Exercise 4

Select name, balowe, vndcls

from vendorp

where vndcls = 10

This query retrieves selected fields from Vendorp in class 10.

Figure 11-7 Display Vendors of Class 10
 Display Data
 Data
Position to line Shift to
....+....1....+....2....+....3....+....4....+...
NAME BALOWE VNDCLS
John B Stetz Clothier 100.00 10
Pass Pax Inc 300.00 10
John Studios 325.00 10
Macone Corp Of Chicago 7,500.00 10
Microsoft Corporation 9.54 10
Oracle Corporation 95.00 10
Sun MicroSystems 8,000.00 10
Red Hat Club 7.85 10
Fat Brain 2.56 10
Office Max 19.00 10
McFadyen Consulting 250.00 10
Texas Instruments .15 10
Left Outer Join 5.00 10
******** End of data ********

90 The IBM i Pocket SQL Guide

Chapter Summary

In this chapter we completed the examination of the Basic Select statement
that began lightly in the early chapters of this book. When you build a table
with SQL if you qualify the name on the Create Table statement then it
goes into the qualified library. If not, it goes into your current library.
Once you create your tables and have them populated with test data, you
are ready to roll in your SQL learning endeavors. When you do your first
select and a table is retuned, where does that table go? You might want to
check your current library.

For this chapter, the examples continue with the Vendorp file and the
Person file which have been two of our mainstays throughout this book.
Both are located in the SQLBOOK library. Yet, when you do a Select
operation on either of these tables, the resulting table (result set) is not
stored back on disk in SQLBOOK under a different name. It may be held
in memory and then displayed. Sometimes the Select may be complex. The
initial results of a big Select statement may provide results in an intermediate
state, waiting for the second half of an SQL statement to do its thing, which
eventually results in a completed result set – also in memory.

Since SQL fosters set processing, its result also comes back in a set. Unlike
the original set, however, the result set is always in memory. Sometimes
there is an intermediate result set and sometimes there is not, depending on
the nature of the query. At the end of an interactive SQL statement if data
is retuned it is displayed.

One you get past the Where clause in SQL, a consensus of first time SQL
users would say that SQL gets more sticky. We won’t get there until
Chapter 14. There was actually enough in this Chapter to keep us busy in
the Where clause for the whole chapter. There are many predicates that can
be used in the Where clause to select data and we already examined most of
them in this chapter including the following:

• Greater than >

• Less than <

• Equal =

• Greater than or equal >=

Chapter 11 The Basic Select Statement 91

• Less than or equal <=

• Not Equal <>

• AND, OR, NOT

• RANGE inclusive constant range

• BETWEEN high and low values

• VALUES list of constant values (IN)

In Chapter 14 we will pick up with the Wild Card facilities of the Like
predicate and we will move on to multi-file queries with lots of exercises.

Key Terms

And conjunction
Between
C language
Chain
Column names
Cursor
Equal
Expressions
For Read Only
For Update Of clause
Forward_only
From clause
Greater than
Group By
HAVING clause
In
Less than
Like
List of values
Memory table
New table
Not
OPNQRYF
Optimize
Or conjunction

Order By
Range
Read
Result set
RUNSQLSTM,
SELECT statement
SELECT cursor
Split screen
Subfile
Union
Values
Where clause
Wild card

Chapter 16 Relational Database Theory 93

Exercises

Use this chapter or look up information on the Web to answer the
following:

1. What are all the four parts of a basic SELECT statement and explain
each part.

2. What is the purpose for having, group by, and order by?.

3. What are the six operators that can be used in expressions to derive new
columns for output in an SQL query?

4. Write the SQL query to select all the records and all the fields from the
Vendorp table if the BALOWE is less than $1000.00

5. Write the SQL to select the records from Vendorp in which the
VNDNBR is in an inclusive range from 30 to 40.

6. Write the SQL to select all of the records from VENDORP whose
SRVRTG is R, P, or G.

7. Write the SQL to select all of the records From Vendorp whose
VNDNR is greater than 1000, and whose VNDCLS is 20 or 30.

8. Write the SQL to select the records from the Persons file who have yet
to achieve a high school education?

9. What purpose does the FOR UPDATE clause of the select clause
provide? Can this be used in ISQL?

94 The IBM i Pocket SQL Guide

Chapter 16

Relational Database Theory

Theory behind DB Reality

There is a notion in formal relational database design theory called Entity
Relationship Diagramming, E-R. It has great value in helping analysts
design databases without anomalies. We’ll get back to some E-R principles
shortly. First, let’s examine a concept of which most DB practitioners are
aware – Data Normalization. E-R and Data Normalization are
complimentary theories and methodologies.

Database Normalization

Database normalization can be summarized by this one cute phrase:

“Every field in a record design must depend on the key,
the whole key and nothing but the key.”

If you have a design that mirrors this statement, then your data is probably,
at least in third normal form. When a field in a record does not depend on
the primary key, then normalization rules dictate that the field, and other
fields that depend on the same field, should be removed from the record
being built and moved to another or a new file. That is one way in which
files come into being in formal database design

There are three popular forms of database normalization as follows:

Chapter 16 Relational Database Theory 95

 1st Normal Form
 2nd Normal Form
 3rd Normal Form

Objective of Normalization

The objective of normalization is to re-structure data base records in files to
third normal form. Then, once the data is in third normal form, you may
choose a lesser form based on anticipated performance and usability for
queries etc. If you want to be relationally correct, however, at a minimum,
you will take your database design to third normal form before you make
any other decision.

Many IT folks like normalization, but they don’t like normalization at the
same time. Though most of the production database problems are solved
with normalization, developers very soon miss those big, chub-ball sized
records that existed in a small number of files. They remember that it was
not much work once it was set up to get all kinds of good information from
just one file, even though the design may have been a time bomb ticking.
The only real problem besides a possible performance hit is that full
normalization most often results in atomic, single fact, teeny weenie records
and many files. This is great for production data processing but it does not
server end users well. So, a corollary to teeny weenie records is that to
accommodate end user computing, Humpty Dumpty sometimes has to be
put back together again – either in the production database or in an adjunct
data warehouse.

First Normal Form - Removing Repeating Groups

Many new files are created during the normalization process because an
initial first-cut record design most often comes with its share of repeating
groups of fields. The biggest culprit is data that is designed to be processed
in a group such as arrays and various multiple occurrence data structures.
This data most often looks like it is perfectly designed for the repeating
group scenario but the trained DB designer will resist the temptation and
will go ahead and move each repeating group into its own file.

96 The IBM i Pocket SQL Guide

Problems with Repeating Groups

Suppose, for example you have a file that somebody designed years ago that
has twelve sales fields, one for each month. Like it or not, this is a repeating
group. You may see it as an array and as such it should be treated as one
element but the facts do not support that reasoning. Let’s say your
company changes to four week intervals from monthly intervals so that
each period is approximately twenty-eight days. In the “repeating group
scenario,” you would then need a thirteenth field to store the new period’s
sales. But there is no thirteenth spot available. Your database was designed
to supports just twelve fields in a big wad with no concern that legislation
or company decree would disrupt this notion. Thus, without a redesign of
your database and a prior impact analysis of all the programs that depend
on the current design, you cannot accomplish the new requirement. You
must restructure the data to accommodate the company’s dictates because
someone violated the 1st normal form rule.

You have the same problem, but perhaps even worse if the company
decides to go to weekly sales tracking and reporting. In this scenario, you
would need fifty-two-fields to store the weekly data for a year. However,
your database still has only twelve fields. It gets even worse, when the
company decides to keep two years of data in the file for better analysis,
how do you accommodate this? Perhaps even before you get there,
somebody says to management that the company ought to track daily sales
for a five year period and now your single record bucket number is up close
to 2000 buckets If you cannot accommodate all of these changes, then your
data is not in First Normal Form.

How to Fix Repeating Groups

You solve this problem by putting these repeating groups in their own file /
relation. If there would be twelve repeating fields in the original record
design, then the new file would have twelve records, one for each amount,
along with the proper key identifiers. If you needed another sales bucket to
give you thirteen, you would just add another record to the file. No record
re-design is necessary. If you need 40 more to accommodate weekly, just
add more records. If you need 104 records to accommodate a two-year
weekly strategy, just add the records. You are never shut out when you
design to first normal form. There’s always room. Just add another record.

Chapter 16 Relational Database Theory 97

Get Rid of Repeaters

Many database designers design their files with no repeating groups because
they intuitively know that it is wrong. Their intuition more than likely came
from being burned some time in their DB design life and many of us who
toiled in the file systems of the 1970’s and 1980’s had the same problem
with file system record design. This is not really a database phenomenon.
The DB role in this issue is that with virtual files, such as join Views, you
can actually reconstruct some of the good old days when repeating groups
were in, without having to deal with repeating groups.

As you may believe by now, even if the DB designer missed a few repeating
groups here and there in initial design; the process of normalization would
find them. And, that helps the rest of us explain why the great DB designers
do what they do. Normalization is a mental process that all great database
designers pick up as a skill even without formally going through the
process. Otherwise, they would not be great DB designers.

So, a lot of files come into being by their data having been cast off from a
repeating group scenario from initial record designs. Eventually even the
newest DB designer runs out of repeating groups. When all repeating
groups of fields are removed, you have achieved the First Normal Form of
database design.

So, how do you remove repeating groups? First, you have to recognize the
fields as repeating fields, and secondly, you move them to a new file. If the
file in which the group belongs does not already exist, then you create a
new file design for each repeating group.

So, how then do you think files such as an Address Master file or an
Earnings Master file or a Deduction Master file in a payroll application
came into being? If formal database design were used, they would come to
being because of Database Normalization and its first cousin, Entity
Relationship Mapping / Diagramming.

98 The IBM i Pocket SQL Guide

Second Normal Form - Remove Functional
Dependencies

To achieve Second Normal Form, the design objective is to remove
functional dependencies to assure that all of the non-key fields functionally
depend on all of the key fields in those files in which there is more than one
key field (called a composite key). To be in Second Normal Form, data
must first have a composite key.

Spotting Functional Dependencies

To give you a feel for how to spot functional dependencies, we will use an
INVOICE file as an example. Its initial design is shown below: You will
note that it shows several Functional Dependencies. These must be removed to
put the Invoice file in Second Normal Form.

Invoice File:

Field Name Dependent on Action

CUST_NO (Key)

INVOICE_NO (Key)

CUST_NAME Cust# *REMOVE

CUST_ADDR Cust# *REMOVE

AMOUNT Cust#, Inv# *none

DATE_DUE Cust#, Inv# *none

There are two fields in this file that are functionally dependent on just one
of the two fields that are part of the composite primary key. The fields with
functional dependency are the CUST_NAME and CUST_ADDR fields.
They do not depend on the whole key (CUST_NO and INVOICE_NO).
They depend only on part of the key - CUST_NO (customer number).
This field represents just ½ of the composite primary key. The
CUST_NAME and CUST_ADDR fields do not depend on the
INVOICE_ NO field at all so they should exist in some database file, but
not the INVOICE file, regardless of whether there are any invoices for
customers or not. It is somewhat obvious in this example that the removed
fields belong in a file such as a customer master.

Chapter 16 Relational Database Theory 99

As you can see at the bottom, the AMOUNT and DATE_DUE fields
depend on the INVOICE NO for a particular CUST NO. Therefore, these
columns in this design depend on both fields of the composite key. Thus,
they belong in the Invoice file.

Solving Functional Dependencies

To solve the functional dependency anomaly, the customer data fields,
CUST_NAME, and CUST_ADDR need to be placed in a separate file.
Thus, the Customer file is born through normalizing to second normal
form. Of course, there might already be a customer file. You do not want to
create a new customer file for your application if it already exuists. That
may be a worse scenario than the non composite key dependency that you
just eliminated.

No Lost Data

This removal of functional dependencies removes the natural potential for
lost data. For example, if there were no longer open invoices for a
customer, and there were no customer file, there would no longer be a
record in the system that would show that the customer ever existed.

Moreover, there would be more work to process invoices. For example,
each new invoice would require that the customer data be keyed in anew,
rather than be referenced from the customer file.

Less Work

Having a customer file built as a result of the Second Normal Form process
brings other time savings and benefits besides new customers getting keyed
just once or the potential loss of date. Without a customer file, for
example, what happens when customer data changes? If a customer address
changes, for example, with a customer file, the data needs to be changed in
just one place. However, if we held the customer information in an Invoice
file as in the original non-normalized design, if there were twenty-five open
invoices for a customer, the customer-data would exist in 25 invoice
records. To change the customer data in this scenario, twenty-five records
would have to be updated.

100 The IBM i Pocket SQL Guide

Third Normal Form

To achieve Third Normal Form, the objective is to remove all transitive
dependencies to assure that all of the non-key fields in the record design
depend on the primary key, and only the primary key. Those attributes that
are dependent on non key fields are known as transitive dependencies. Let’s
look at a sample of a Parent / Child database as shown below:

Record Structure of Child File

Fields Dependent on Action

Child SS# (key)

Child Data ... Child SS#

Other child data

...

Parent 1 SS# Child SS#

Parent 1 Name Parent SS# **Remove

Other parent data Parent SS# **Remove

Spotting Transitive Dependencies

You can immediately see in the example above, that the Parent’s name is
not dependent on the child’s SSN. It is dependent on the Parent’s SSN. The
parent’s SSN is in the Child File and that is OK. To solve the dependency
a Parent file would be created ad it would relate back to the Parent SSN.
Thus, the Parent SSN would be known as a foreign key, since it would relate
to the primary key of the new Parent’s file. However, the Parent’s key is not
the primary key to the Child file as shown above. From the Child file’s
perspective, the Parent 1 (mom or dad) SS# field is a non key field. Thus.
The Parent 1 (mom or dad) Name field depends on a non key field, thereby
indicating a transitive dependency.

Chapter 16 Relational Database Theory 101

Solving Transitive Dependencies

Thus the parent’s name and other information should be placed in its own
file. By creating a parent file and having a record for each parent, you solve
the transitive dependencies, and the file morphs almost immediately into
Third Normal Form.

Problems Solved

Many of the same problems are solved as noted in the second normal form
example, such as the ability to lose parent information if the child record is
gone. Additionally, if a parent has ten children and changes his or her
address, the parent address information in child records would need to be
changed with the new parent information. By providing a foreign key in
the child record, a change to the one parent record changes all the child
record relations.

Reaching Third Normal Form

In summary, when you have driven out the repeating groups, the functional
dependencies, and the transitive dependencies, you have a situation in
which every field depends on the key, the whole key, and nothing but the
key. The data is then in Third Normal Form.

Data Normalization Steps

The steps that you follow to reach Third Normal Form to achieve
acceptable data normalization are as follows:

1. Create a conceptual data structure
2. Remove any repeating groups -- 1NF
3. Remove any functional dependencies -- 2NF
4. Remove any transitive dependencies -- 3NF

When you’ve done this, you will have a situation that can, again, be
characterized by the cute little phrase that we showed at the beginning of
this section - Author unknown:

102 The IBM i Pocket SQL Guide

“Every field in a record design must depend on the key, the whole key and
nothing but the key.”

Entity Relationships / Cardinality

Now, let’s get a little technical for a little while. I will try to make this as
painless as possible. Though we have not defined too much yet regarding
Entity-Relationship (E-R) diagramming, we have been discussing some
ways in which E-R mapping and diagramming can help us design databases.
These simple notions can help us in our role of DB designer to know what
goes into which file. Let’s define a few things now so that we have a general
notion of E-R techniques.

There are three basic elements in ER models:

Entities are the "things" about which we seek information.

Attributes are the data we collect about the entities.

Relationships provide the structure needed to draw information from
multiple entities.

Entities are the people, places, things, events and concepts of interest to an
organization. In short, anything which an organization needs to store data
about can be called an entity.

An entity can also be defined as an object (not necessarily an IBM i object)
that exists and is distinguishable from other objects. To be less abstract,
let’s say that the term entity represents the people, places, things, events,
and concepts of interest to somebody. For instance, John Smith, with
Social Security Number (SSN) 490-11-2368, is part of some entity. He is
part of the entity called persons. He may also be part of the entity called
food shoppers, and of course from the grocery store’s perspective, he may
also be part of the entity called customers. And, yes if each of these entities
in their respective organizations chose to store data bout John Smith, he
would be nothing more than part of the contents of that entity

Chapter 16 Relational Database Theory 103

An entity may be concrete, such as a person, a car, or a magazine, for
example, or the entity can be abstract, such as a holiday, a concept, or an
event. The actual content of the entities is not as important as how the
entities relate with each other. Thus, it is only necessary that each record in
each entity (e.g., each person or organization) be identifiable by some code,
called a primary key.

An entity is represented by a set of attributes. An attribute can be thought
of as a defining property. Attributes of a person include a name, a social
security number, an employee number, etc. Attributes of a customer include
a customer number, a street, a city, a credit limit, an amount owed, etc. You
may recall in a few sections of this book, we acknowledged another name
for a field or a column in a database table. The name attribute takes on
more meaning the more theoretical we get. The word certainly has
relevance in our study. Thus, a database attribute is a field in a database file.
If entities are represented by attributes, then, it follows that the entities in a
database are files, which some call tables and others call relations. And the
attributes of that relation are stored in the columns which we like to call
fields.

All of this work we are doing in this chapter is conceptualizing a data
model. A data model shows the entities, attributes and the various
relationships between the entities involved. In DB theory there is always a
store of data involved. It's important to realize that a database model is not
a flow chart or a process flow diagram. There is no beginning and there is
no end, there is just a relationship.

It would be reasonably easy to spot that there are really just three types of
models that work in the DB arena. The first may be seen as a conceptual
model. It operates at the top of the DB chain. When it is diagrammed it
shows the basic entities alone and how they relate to each other. It may
even give a general clue as to how the entities are used by management in
the process.

Working your way down the detail chain, the second type of model is the
logical model. When diagrammed, this model contains more detail, and
this kind of diagram often maps nicely to the symbols and processes used
for a logical ERD.

104 The IBM i Pocket SQL Guide

The bottom of the detail chain is where the disk drives are spinning but if
we come up just a bit from there, the final type of DB diagram that we
might examine is the physical ERD. This model cares about whether Linux
or Unix or i5/OS or DB2 or Oracle, or MySQL or SQLServer is dictating
the rules. Thus, there is a great deal of detail. After we add some body to
the logical ERD, it naturally morphs into the physical ERD, and then at
least theoretically, you can create your database.

For the academic purists and for those who actually invented these notions,
an. An Entity Relationship Diagram (ERD) is the formal (neutral) term for
a Chen-Diagram. Peter Chen defined this notion in 1976. He was not alone
as other graphical diagrams such as the Yourdon model developed by Ed
Yourdon shows the shape of the database as well. Regardless of the form
you choose to use, the diagramming is just about the same. Most database
texts give both Chen and Yourdon their stake in the history of this
powerful notion .

E-R Diagramming

In E-R diagramming, as you would expect, the relationships among entities
are diagrammed, in an attempt to make sense of their various relationships
in a relational database. The E-R diagram then can be used as both a design
tool, and a map that shows how to use the data. Many designers believe that
the construction of an Entity Relationship Diagram is essential for the
design of tables, of extracts, and even metadata (data about data). This book
is intended to be a practical, example-oriented tool for you to be able to
learn and to work well with relational databases, using SQL. E-R
diagramming at a detailed level is not the object of this study but it is very
germane to designing proper data records and being able to describe that
design to other interested parties.

A good exercise for students wanting to learn more about the formal notion
of database design would be to take a trip out the world wide web with your
browser. The masters are mostly all published on the subject and you can
get some great diagrams, explanations and practical tips to help you
formalize your approach to database design. Clearly E-R helps us better
present, and therefore better understand, the relationships of files (entities)
in a relational database system. The notion of cardinality is also a great aid
in this study.

Chapter 16 Relational Database Theory 105

Cardinality Relationships

E-R diagrams represent database files and the relationships among files. By
having to diagram your database relationships before your design is
complete, especially their cardinality relationships (one to one, one to many,
etc.) you quickly get a perspective as to the shape your files must take.

Parent & Child Example

Whenever you have a one to one relationship of an attribute with an entity,
not one to many, or many to many, you can expect that the attribute
belongs with at particular entity. We can use a person entity (say a child)
again as an example. A person has one first name. Therefore, there is a one
to one relationship of a person to a name. In database terms now, if we
substitute the primary key (unique identifier), for a personnel record, such
as social security number, then we can say that the name has a one to one
relationship with the primary key of social security number. For each SSN,
you will have just one name.

Which Parent?

OK, now let’s take a look at another attribute. How about parent’s first
name. Uh oh? Which parent? See the problem? There is a one to many
relationship between the primary key (SSN) of the child and the parent’s
first name. You may not like this example. You may say that at worse there
is a one to two relationship - one child SSN to two parent sets of
information. That’s still one too many!

Am I Wrong?

You may challenge me by saying that there would be a one to one
relationship if we had used mother’s first name and father’s first name
instead of parent’s first name. If we have a one to one relationship in
database design, then the attribute belongs in the same record format as the
primary key. If, on the other hand, we have a one to many relationship,
then our data relationship modeling tells us we need to create a new file for
the new entity, which we have discovered — which is Parents. In database

106 The IBM i Pocket SQL Guide

design, we devise a primary key for the parents (perhaps SSN again, though
such use of SSN is getting to be illegal) and we move all of the associated
information about the parents, such as address information, to the parent’s
file.

But, you may say, for a maximum of a one to two relationship, maybe we
are better off keeping the parent’s information in the child file. If this were
a university, we might even call it a student file for universities all have this
DB relation issue big-time. So maybe there are ten new fields we need, to
describe each parent, which adds twenty fields to our database record.
Maybe this is OK? But it is not relationally correct.

Parents Must Go!

No matter which analytical tool you choose, the vote is that the parents
must go from the child (student) record design. Let’s now look at some of
the database design tools, which we have been studying, to see, just why,
mom and dad are o-u-t.

Cardinality Says “Go!”

Using the cardinality relationships, a one to many relationship should be
split into its own files. Now we see how files are called relations in relational
database theory. Based on cardinality, the parents must go.

First Normal Form also Says “Go!”

How about the idea of first normal form, which says that there should be
no repeating groups? Aren’t two-sets of ten fields a repeating group?
According to first normal form, the Parents gotta go!

One would conclude that if the conclusion of a cardinality analysis suggests
a separate file for a one-to- many relationship such as parents, and the first
normal form rule of no repeating groups suggests that a second set of
parents in the student file represents a repeating group, then clearly, the
Parents must go — to their own file. Now, let’s look at some other
relationships.

Chapter 16 Relational Database Theory 107

Second and Third Normal Form Say “Go!”

The second and third normal data normalization form starts looking at each
field, one by one, to be assured that each field in the record design depends
on the primary key. If we were walking through the parent’s attributes in
the child record (doesn’t even sound right - does it?), we might find a
parent’s social security number and a parent’s street address.

Is the street address for the parent an attribute of the child? No, it is not! It
depends on the social security number (primary key - unique identifier) of
the parent, not the social security number of the child. It does not depend
on the primary key of the child entity, the whole key, and nothing but the
key. Therefore, the second and/or third normal form test says that each of
the parents’ fields should be moved to a separate file, so they can depend
on the proper primary key for the proper entity.

Three For Three – Gotta Go!

So far, we are three for three against stuffing parent information in the
child’s file. Let’s say you are stubborn, and you just don’t want a lot of files
cluttering up your application. So, you go ahead and implement, with the
design as is. You do not create a Parent’s file. Will it work? Well . . . maybe!
But, it certainly won’t work well for parent things, since parents remain
non-entities.

What About Divorce?

Now let us move the file into the twentieth century - the century where
divorce became almost as common as marriage. Now what? You have
designed two parent slots into your child record. What about mommy’s new
husband? Do you add ten more fields? What about daddy’s new wife? Do
you add another ten more fields? How many divorces are you going to
permit each parent in your child database design? Can database design be
the next big inhibitor to divorce? If it can, you may soon be on the Oprah
Winfrey show or the Doctor Phil show!

Give Parents Own File

Of course, according to basic DB design principles, parent data wasn’t
supposed to be in the child file in the first place. Maybe you had a one-to-

108 The IBM i Pocket SQL Guide

many relationship all along, and maybe you should have designed for it –
from the start! Give the parents their own file. Make sure that the primary
key of the child is in each parent record. That way the data can be accessed
from child or from parent. It’s relational, right?

Many to Many Relationship

Is this really a many-to-many relationship? Whoah Nelly! That’s one step up
from a one to one relationship. Might a particular parent have more than
one child? (That’s any of the fifteen parents, to which you might have
limited the child record in the prior design.) If this were a doctor’s office, a
hospital, a school or a church database application, would you expect that a
parent might have more than one child involved? That’s a many-to-many
relationship. A parent may have many children and a child may have many
parents. If we split the parents into their own file, this works both ways.
Doesn’t it? The many-to- many relationships are satisfied! Right?

Nope! It is not, and it does not. The design works from child to parent
since the common chord is child SSN. We are sticking it in each parent’s
record - regardless of how many parents. Unfortunately, it does not work
the other way around — from parent to child. If there is a second child, it
messes it up. The second child number cannot be rammed into the one
child SSN slot in the parent record. Oh! Just add another child number to
the parent record! That’s a convenient solution. Whoops – the repeating
group rule applies - No can do! Then what?

Just Make Some Rules?

Well! You could make rules such that the parents and the children have to
use different doctors or go to different schools or hospitals but you know
this would not work. If you do could this, it might make a bad design last
longer. You could use dummy social security numbers for a second set of
records for the same parents - as many parents as there may be. You could
relate the second child to the second set of parents through the new
number. But, then you have data redundancy and you don’t know that the
second child and the first child are related. Wow! This gets complicated!

Chapter 16 Relational Database Theory 109

What Is the DB Design Solution?

How would you solve it? You could create a link file between the parents
and the children. Its key would be a composite of the parents and the
children’s SSN. Each parent would have a field in the link record with his
or her SSN and a child’s SSN. The parent’s number references the key in
the parent information record. The child # references the child information
record. If a parent has four children, that parent would have four records in
the file. Each record in the link file would have the same parent SSN and
the SSN of a different child. The beauty of this scenario is that you never
run out of room. Another kid brings in another record in the link file.
Another parent brings in another link. It’s OK when you design it right.

What About the Kids?

What about the kids? If all the parent link records are completed, then all
the kids’ records are automatically completed! Right? Yes, Indeedy! If you
were to sort the link file on the kids’ SSN, most of them would probably
have two records in the link file provided, one each, from each parent.
Some may have one, some three, etc. depending on how many parents. This
solves the parent child link! But does it do it well?

Linking DB Child to Child

How do we link child to child? This starts to hurt my head at this point.
Can you use the parent/child link file for this? Theoretically you can! You
could join sibling records with parent records.

The view of the Join could have a child’s SSN, parent’s SSN, and a record
in the file for each of the siblings of each parent. For each child in a Join
like this, there would be enough records to handle each parent and all of the
siblings of each parent. Since, by definition, there would be duplicates in the
view, in that a brother would show up under both parents, as would his
sister, there would be some additional DB design tuning necessary. But, the
deed is theoretically accomplishable.

Don’t ask me to code the SQL or DDS for this now. But, it would be fun!
By the way, there are a number of examples that can show how to join a file
to itself. In essence we would be doing this to accommodate the child to
child solution. Don’t worry, we’re not going to do that now.

110 The IBM i Pocket SQL Guide

Since it hurts all of our heads to go there, we will stop here and say that —
if you read all this, you should have a real appreciation for database design
and how important it is – even if you don’t know it all . . . yet!

Different Methods Can Be Used

Just a few more comments now before the pain is over completely. There
are many ways to skin a briefcase. Being bits-and-bytes efficient is not
always the right approach. For example, a Child - Sibling file might be the
best bet in addition to the Parent-Child file. All the machinations to join a
file to itself and then to other records may not be worth the pain and the
performance. In this file, you could have the SSN of each child on the left
and right side of a table. A family of four children would have twelve
records in this table such as the following:

Child Sibling

SSN#1 SSN#2
SSN#1 SSN#3
SSN#1 SSN#4
SSN#2 SSN#1
SSN#2 SSN#3
SSN#2 SSN#4
SSN#3 SSN#1
SSN#3 SSN#2
SSN#3 SSN#4
SSN#4 SSN#1
SSN#4 SSN#2
SSN#4 SSN#3

As the theme from the old TV program suggests: “There are many different
designs available in the Naked Database, this has been one of them.”

Parent and Child File

One final note regarding the parent information file and the child
information file. Theoretically, both sets of data can be in one file, but in
different records. There would be child records and parent records
commingled. Each record would be shaped the same. Parents have SSNs.

Chapter 16 Relational Database Theory 111

Children have SSNs. If SSN is the key, remember that a file can be joined
to itself, and the link file could be joined multiple times to the parent/child
file, as long as all the records are the same.

If we did this, of course, we would no longer have a child or parent entity,
we would have a person entity instead. Moreover, we would have to classify
people as child, parent, or both. It would become so much fun that you
might even say, “Two or three files are better. That idea doesn’t hurt my
head.”

Good DB Design Can Tax Your Mind

Many of the design situations you get into can hurt your head big-time. It is
always best to keep the design simple and understandable. The next time
you look at your own DB work, if it is complex, it may take you a long time
to come up to speed to understand your own design. The other possibility,
of course is that you won’t necessarily see anomalies right away, and if you
implement with unseen data anomalies, you will get big time headaches.

Chapter Summary

An entity is a person, place, or thing that we choose to collect data about.
When we design systems, we initially try to group our data within a
particular entity, when we find that we have things like repeating groups
indicating a cardinality issue or we have functional or transitive
dependencies in some of our first-shot record designs, we now know that
the solution always is to remove the offending group or attribute from the
record design of the entity in question and move it to another file. If there
is no file waiting for that particular attribute, then the rule says we create a
new file.

In many DB designs, that is how new files get created.

Take your design to third normal form and then depending on how your
performance is, you may need to back up a bit. The simple notion about
data normalization is that every attribute should depend on the primary key
and nothing but the key. If it doesn’t, you are not yet in third normal form
and you’ve got more work to do.

112 The IBM i Pocket SQL Guide

Key Terms

1st Normal Form
2nd Normal Form
3rd Normal Form
attribute,
Cardinality
Data normalization steps
DB design
DB theory
Entity
Entity Relationship Diagram
Entity Relationship Diagramming
Entity Relationships

E-R techniques
Foreign key
Functional dependencies
Lost data,
Many to many
MySQL
Objective of normalization
One to one
One to many
Record,
Transitive dependencies

Chapter 3 What is SQL? 113

Exercises

1. What is meant by the term, Relational Database Theory?

2. What is the purpose of Entity Relationship Diagramming?

3. Who are two of the top proponents of ERD?

4. What is database normalization?

5. What is the objective of database normalization 301

6. What is the principle of cardinality?

7. Does cardinality have anything to do with recognizing repeating groups?

8. How can a many to many cardinality relationship be explained?

9. What form of normalization is your database when there are just a few
“necessary” repeating groups?

10. What is First Normal Form?

11. How do you f ix repeating groups in record design?

12. What types of objects increase as the number of attributes are removed
from entities during database normalization?

13 What is a functional dependency?

14. How do you solve functional dependencies?

15. What does it mean to have data in second normal form?

16. What is a transient dependency?

17 How do you solve transient dependencies?

18. How is it that data that is not normalized can have lost data? How can
this happen?

19 What does it mean to have data in third normal form?

20.Should DB design go to fourth or fifth normal form? Explain?

21. Should DB design ever come back to 1st normal form after having
created a DB with atomic records? Explain.

22. Why aren’t production databases in third normal form not appropriate
for end user read-only access?

23. Data warehousing applications like to work with denormalized data.
What does this mean and how far would you go back to provide a
denormalized record design for a data warehouse? Does this mean planned
data redundancy?

24. What is second normal form?

25. What is third normal form?

Chapter 3 What is SQL? 115

Chapter 3

What is SQL?

Powerful Database Development Language

SQL stands for Structured Query Language. This IBM-Invented database
language however is far more powerful than its name suggests. Though, as
its name suggests, it is very useful for database queries, SQL has powerful
facilities built within the language for the creation, control and manipulation
of a relational data base. In addition to providing tools to create and
control database artifacts, the major manipulation facilities that are built
into the SQL language are as follows:

✓ Select data from a database

✓ Insert data to a database

✓ Update data in a database

✓ Delete data from a database

Query as the middle name for SQL does not mean that SQL should be
thought of only as a query tool. SQL is an application development tool
that is used for the following:

✓ Query via Query Manager

✓ Data definition via Data Definition Language (DDL)

✓ Data manipulation via Data Manipulation Language (DML)

✓ Data control via Data Control Language (DCL)

As you will see as we go back in time to the origins of SQL, it was designed
using mathematical set theory as its basis. Therefore, SQL is best for “set
at a time” processing as opposed to single record level access.

Unlike normal programming languages in which the developer must control
all aspects of data access, SQL does not expect the programmer to have to
understand how SQL is going to go ahead and do its thing. Instead of how,
the developer merely tells SQL what to do and SQL obliges. There are not
long instructions sequences. Just about all major functions occur within one
command.

With SQL, a developer has tools that include full data definition facilities.
Therefore, with SQL commands, the developer can build, maintain, secure,
and delete database objects in the form of Schemas, Tables, Views, and
Indexes. With full data manipulation facilities, the developer can retrieve,
update, insert, and delete records in database tables or IBM i physical files.
With full data control facilities using SQL Grant and Revoke commands,
the SQL developer can grant access and authorization or revoke such
privileges.

Why SQL in the First Place?

With the native database language on the AS/400 and IBM i being the Data
Description Specification language or DDS, IT professionals in these shops
have not had to look too far to find very rich function in DDS to satisfy
their database needs. DDS clearly has been key to System/38 and AS/400
database success over the years. So, it is fair to ask why an AS/400
developer would use SQL.

“No man is an island, entire of itself; every man is a piece of the continent,
a part of the main…” This famous passage by John Donne (1573-1631) fits
in here someplace. The fact is that regardless of how powerful DDS
continues to be, SQL is the standard relational database language for the
rest of the universe. It is the standard language for DB serving.

The IBM i is an island of sorts. Though a very rich, bountiful, and self
sustaining island, in the total land of IT, it is an island nonetheless. Those
of us who willfully inhabit the island, however, unlike Gilligan, the
Professor, the Captain, and Mary Ann do not have to exist only on the
island. Yes, the IBM i is like no other machine and yes, IBM has bestowed
on it and its predecessors a plentiful and powerful data language known as
DDS. For ten years before the AS/400 was announced, while the rest of

Chapter 3 What is SQL? 117

the world were honing their SQL skills, inhabitants of the System/38 island
were doing just fine with DDS as their data language. In fact, most still are
doing fine with DDS.

When SQL was made available for the AS/400, the former System/36 users
mostly were indifferent since many avoided database use even with DDS.
Moreover, both System/36 and System/38 shops had a hard time believing
there was value in paying for a data language for a free and integrated
database that had its own highly functional free data language. So, most
chose not to buy the AS/400 SQL from IBM. In many ways, the isolation
of a large part of the IBM i community from SQL came about because this
group felt that IBM had not given them a compelling reason to buy the
language. DDS worked fine.

Now, in the first decade of the 21st century, things have really changed.
Most IBM i shops support heterogeneous systems with numerous client
PCs, even server PCs and many have Unix boxes. Ironically, all of these
non-IBM i platforms, from the smallest to the largest have one thing in
common in the relational database area. They all use SQL as their data
language. That’s a big change in the database landscape.

In my home area of Northeastern Pennsylvania, I now see a number of
small AS/400 shops, who had not found a convincing reason to switch to
IBM’s model 8XX iSeries, moving or planning to move to a new IBM i
Express model. The small AS/400 shops are now re-enfranchised for
affordable IBM software with the low cost I5 systems which just happen to
come with SQL, free of charge with the Express bundle. Many larger
AS/400 and IBM i shops have been adding SQL over the years. However,
even with SQL on the system, none of my clients have replaced DDS and
none expect to any time soon. They have been using SQL on the AS/400
and IBM i as mostly a sidebar database language. Overall, many IBM i
shops now have or will be getting SQL but few have used SQL extensively
because of the good job DDS has done for them.

HAS SQL’s Time Come on the IBM i?

There is another reason why it may be time for SQL. IBM has said many
times, especially recently that SQL is its strategic database language. In fact
IBM invested in its own recommendation over the last five years as the

company introduced a new Query Engine on the IBM i (i5/OS) specifically
for SQL. Though the old (classical) query engine still exists and is used for
many things including OPNQRYF, this new engine is substantially better
and faster than the classical query engine.

Big Blue has already introduced and will continue to introduce newer and
more powerful strategic database facilities that will not be available in the
DDS environment. I would hope that IBM tempers this posture somewhat
in the future, considering that its install base has yet to arrive where it is
leading them. Moreover for those who do not have SQL, it is still not free
and nobody can use a product that company management will not permit
them to acquire We can add to this the AS/400 community's low
propensity to change before it believes it is time. Historically AS/400
heritage users such as the former System/36 community and the AS/400
RPG community have resisted IBM’s call to major change before they were
ready. Look no further than the problems IBM has had over the last few
years in moving its RPG base to Java. So, I would hope and I expect that
IBM will relent and continue to offer advanced function in DDS because
Big Blue is smart and it does not need a Java-like revolt coming from its
IBM i DDS constituents.

Moreover, neither IBM nor I are suggesting that the IBM i community
abandon DDS for SQL anytime soon. However, I happen to agree with
IBM that based on all the other systems out there that exclusively run SQL
as their database language, It is good for IBM i shops to become adept at
SQL sooner, rather than later.

Right now, regardless of whether DDS can do it all for you on the IBM i, it
still makes lots of sense to learn SQL for all the other platforms that you
must service in one way or another. Nobody can deny that SQL is the
industry data / query language standard. Clearly IBM backs it 100% and if
you take a look at the SQL functional enhancements list for V5R4 that
percentage is actually increasing. So, today, it makes little sense for an IT
professional to be an island or to exist only on the island. This is not Java.
It’s not perfect yet for a IBM i shop, but it may very well be necessary for
one reason or another. One thing is for sure. Today even for a IBM i shop,
it is professionally appropriate to become well versed in SQL.

Chapter 3 What is SQL? 119

IBM SQL / Relational Database Leadership

Though Oracle was the company that first publicized the capabilities of
relational database, the Oracle founders had gotten much of their
information from a paper produced by the late Dr. Edgar Frank (Tedd)
Codd ((1924-2003), Dr. Codd almost single-handedly defined the whole
notion of relational database while working for the IBM Corporation in the
IBM San Jose Research Lab in California.

In June 1970 he published an article called 'A relational model of data for
large shared data banks', which appeared in the ACM (=Association for
Computing Machinery) magazine, Vol. 13, No. 6, pp. 377-387. Dr. Codd’s
objective was to create a system in which you could query the database
tables using English like commands. His research and this article laid the
foundations of the theory of relational databases.

Codd’s Vision

Codd saw a relational database as something that was perceived externally
as a table of rows and columns. Since the notion of tables and columns fit
in well with the mathematical notion of relational algebra and relational
calculus, Codd was able to show that a number of functions that would be
useful to manipulate data could be proven with mathematics. Just as matrix
functions in math, Codd saw great similarities with the idea of a relational
database. Both required operations on sets of data. Operating on asset of
data at a time was new to the computer industry. It was not the typical
method of the day for accessing data -- one record at a time through
programming.

The language that Codd roughed out would need to provide operations for
sets of data. Additionally, Codd demanded that the database be free from
implementation details. In other words, the user would specify what they
wanted to do to the database or receive from the database but the user
would not specify how the system was to deliver the function.
Theoretically, this would enable internal relational functions to be
implemented differently on the same or different systems as long as they
provided the same result.

April 18, 2003 - Tedd Codd Passes Away

On April 18, 2003, Tedd Codd passed away. He left behind a true legacy as
an IT industry pioneer. As we have been discussing, Codd was the inventor
of the relational model of data and the concept he proved is today
responsible for the multibillion-dollar relational database industry

One of Tedd Codd’s good friends and peers in the relational database field,
Chris Date, a DB Guru in his own right took the time to write a brief
tribute to Dr. Codd. It was published by the Intelligent Enterprise on April
25, 2003. http://www.intelligententerprise.com/. I have taken the liberty of
including several paragraphs from CJ Date’s tribute to Tedd Codd since
Codd’s passing is historically significant to the entire database industry.
Moreover, Date’s words are very compelling about this true pioneer and
exceptional scientist, who revolutionized the computer world in 1970 with
his conception of the relational database.

Ted Codd was a genuine computing pioneer. He was also an inspiration
to all of us who had the fortune to know him and work with him. He
began his career in 1949 as a programming mathematician for IBM on
the Selective Sequence Electronic Calculator. He subsequently
participated in the development of several important IBM products,
including its first commercial electronic computer (IBM 701) and the
STRETCH machine, which led to IBM's 7090 mainframe technology.
Then, in the 1960's, he turned his attention to the problem of managing
large commercial databases — and over the next few years he created,
single handed, the invention with which his name will forever be
associated: the relational model of data.

The relational model is widely recognized as one of the great technical
innovations of the 20th century. Codd described it and explored its
implications in a series of research papers — staggering in their
originality--which he published throughout the period 1969-1979. The
effect of those papers was twofold: They changed for good the way the
IT world (including the academic component f that world in particular)
perceived the database management problem; and they laid the
foundation for an entire new industry, the relational database industry,
now worth many billions of dollars a year. In fact, not only did Codd's
relational model set the entire discipline of database management on a
solid scientific footing, it also formed the basis for a technology that has
had, and continues to have, a major impact on the very fabric of our
society. It is no exaggeration to say that Ted Codd is the intellectual
father of the modern database field.

Chapter 3 What is SQL? 121

Codd's supreme achievement with the relational model should not be
allowed to eclipse the fact that he made major original contributions in
several other important areas as well, including multiprogramming,
natural language processing, and more recently Enterprise Delta (a
relational approach to business rules management), for which he and his
wife were granted a US patent. The depth and breadth of his
contributions were recognized by the long list of honors and elected
positions that were conferred on him during his lifetime, including IBM
Fellow; elected ACM Fellow; elected Fellow of the Britain Computer
Society; elected member of the National Academy of Engineering; and
elected member of the American Academy of Arts and Sciences. In 1981
he received the ACM Turing Award, the most prestigious award in the
field of computer science. He also received an outstanding recognition
award from IEEE; the very first annual Achievement Award from the
international DB2 Users Group: and another annual achievement award
from DAMA in 2001. Computerworld, in celebration of the 25th
anniversary of its publication, selected him as one of 25 individuals in or
related to the field of computing who have had the most effect on our
society. And Forbes magazine, which in December 2002 published a list
of the most important innovations and contributions for each of the 85
years of its existence, selected for the year 1970 the relational model of
data, by E. F. Codd.

Proven by Math

Along with the use of “relational algebra,” IBM’s Dr. Tedd Codd
introduced a few other important notions including “tuple calculus” and
“domain calculus” to the relational model. This provided a declarative
database query language based on math principles for this data model. It
thus formed the inspiration for the database query languages QUEL and
SQL of which the latter, though far less in accordance to the original
relational model and calculus, is now used in almost all relational database
management systems as the ad-hoc query language. QUEL was developed
as a query language for the groundbreaking relational database project that
became known as Ingres. The project was spearheaded by the University of
California, Berkeley, under the able sponsorship of Professor Michael
Stonebreaker, one of the most influential relational database management
system experts of all time

While Dr. Michael Stonebreaker was off developing QUEL, the original
1970 CODD article had laid the groundwork for a query language that
would be finished by others in IBM. While IBM was testing and testing its

System/R and its SQL languages, it still had no product to announce.
Ironically, it was Honeywell that introduced the first commercial SQL based
product in June 1976.

SQL and IBM

Donald D. Chamberlin, and Raymond F. Boyce, two other IBM employees
took the mathematical work that Codd had layed out and invented the
English keyword-oriented language that today is known as SQL.
Chamberlin and Boyce published papers on SQL in 1974, at about the
some time the IBM Company began its famous relational database project

The project from which SQl was born was called System/R within IBM and
besides the underlying relational database management system; one of the
other deliverables from the effort was the “query language” that IBM
originally named SEQUEL for Structured English Query Language. When the
language was fully implemented, IBM was looking for even more capability
and the company completely rewrote it in 1976–1977 to include multi-table
and multi-user features. IBM briefly named the new version "SEQUEL/2,"
but then re-named it "SQL" for legal reasons. The acronym SEQUEL was
found to be a trademark held by a company in the UK

Deficiencies of Hierarchical and Network Databases

Unlike the popular hierarchical and networking database methodologies of
the 1970’s, relational database was actually designed based upon the sound
mathematical theories of Tedd Codd. The hierarchical “model” and the
networking “models” were never mathematically proven. They were
implementations of how somebody determined a database should be
structured. So, it is easy to see how relational DB theory has endured and
prospered over the years and its future continues to be bright. The rest of
this book will show you how to learn and how to use SQL in your IBM i
shop.

Codd knew that with a proven mathematical theory as the basis for the
database system that he designed, he could avoid the limitations, pitfalls,
and anomalies inherent in hierarchical, networking, and other pointer-
oriented database implementations.

Chapter 3 What is SQL? 123

Relational Technology Is the Best

Relational database software and its natural language SQL have since been a
godsend to the industry. It combines the ease-of-use and ease-of-
implementation characteristics of record-oriented file systems with the
structural and productivity features of database technology. There are no
embedded pointers. Files are brought together (joined) in structured views,
external to the files themselves, based on relationships formed by SQL
among the data elements (fields). Programmers need not know the
implementation details in order to access the data. There is no complex
navigation required for access.

For example, a customer record can be “joined,” or linked, to an order
record using the respective customer number fields in both files. The files
are “combined” when the join fields have an equal “relationship.” The
database software uses the defined SQL relationship to create a virtual link
between the two files. In essence, they are logically united. When accessed,
the database presents a new “joined” record view of the projected fields
that is different from the record layouts of any of the based-on files.

What Can SQL do?

On the IBM i, the SQL "language" allows anyone with a computer terminal
or an emulated Telnet device to interactively access and use relational
databases. Developers can also embed SQL in high level language
programs such as RPG and COBOL. Though anybody can learn to do it, as
a query and data manipulation language, interactive SQL is not designed for
end users. It is extremely powerful and with proper or accidental authority
an end user can create major havoc with the IBM i.

SQL uses about 30 simple "english like" commands such as Create Table,
Grant, Select, and Update to operate the database. For example, the SQL
command shown below could be used to select all database records in the
"Eastern" region.

SELECT * FROM SALES WHERE

USRegion="Eastern"

IBM Provides a Database Referee

Although SQL can be used interactively by simply typing in commands like
this, the SQL language is tricky for non-programmers to learn. One of the
major benefits of SQL is that it provides a more or less standard way to
access and use database systems from a variety of vendors, including IBM.
For example, the SELECT statement listed above would work exactly the
same on IBM i, pSeries, Oracle, Sybase, DB2, Ingres, or any other SQL
based database on any host machine.

In 1985, when the great database wars were well underway, IBM’s offerings
included its integrated S/38 relational database, SQL/DS for DOS
mainframe systems and DB2 for large MVS mainframe systems. Oracle,
and Ingres were out there dueling it out with IBM at the same time for
customer favor. To help matters, Dr. Codd decided to referee the contest
by publishing a list of 12 rules that concisely define an ideal relational
database. These rules have provided a guideline for the design of all
relational database systems ever since. Many, if not all of the rules, when
implemented, are deployed in practice via SQL commands.

Unfortunately or maybe fortunately, Dr. Codd was a tough taskmaster. I
had the privilege of hearing him speak at a Data Base Colloquium along
with Dr. Michael Stonebreaker and Chris Date, another DB guru in San
Francisco in the mid 1980s. There was no question that Codd felt all of his
rules should be implemented. Despite what is theoretically possible, to date,
not one commercial relational database system fully conforms to all 12
rules. The rules, therefore, represent the ideal relational implementation.
There was a time in the mid 1980’s through the mid 1990’s that database
vendors and industry analysts kept scorecards on how feature rich, after the
hype, the various DB offerings stacked up against the rules. In essence they
rated each commercial product's conformity to Codd's rules. Codd’s rules
no longer mean as much as in the 80’s and 90’s but they continue as a goal
for purity in relational database system implementations.

Chapter 3 What is SQL? 125

I have included Codd's 12 database rules in this introductory chapter along
with a simplified description of each rule. There is plenty written about
these rules on the Internet if you need additional information. For those
rules that have been noticeably difficult for vendors to implement over the
years, I have included an indicator as to what level of implementation might
be found on the IBM i.

Codd Rule 1: The Information Rule
All data should be presented to the user in table form – rows and columns
– regardless of the underlying structure

Codd Rule 2: Guaranteed Access Rule
All data should be accessible without ambiguity. This can be accomplished
through a combination of the table name, primary key, and column name.

Codd Rule 3: Systematic Treatment of Null Values
A field should be allowed to remain empty.

Codd Rule 4: Dynamic On-Line Catalog Based on the
Relational Model A relational database must provide access to its
structure through the same tools that are used to access the data. The IBM i
implementation uses a system wide catalog in library QSYS2 as well as
schemas in user libraries.

Codd Rule 5: Comprehensive Data Sublanguage Rule
The database must support at least one clearly defined language that
includes functionality for data definition, data manipulation, data integrity,
and database transaction control. System/38 and AS/400 for years
depended on an IBM-invented non-standard language called DDS. Today,
all commercial relational databases including the IBM i use forms of the
standard SQL (Structured Query Language) as their supported
comprehensive DB language. IBM i continues support for DDS.

Codd Rule 6: View Updating Rule
Data can be presented to the user in different logical combinations, called
views. Each view should support the same full range of data manipulation
that direct-access to a table has available. In practice, providing update and
delete access to logical views is difficult and is not fully supported by any
current database. IBM i permits many views to be updated. Join Views are

not updatable in any language yet. IBM i engineers have been saying that
the database is staged for update views for many years but the update
facility has not come to the product.

Codd Rule 7: High-level Insert, Update, and Delete
Data can be retrieved from a relational database in sets constructed of data
from multiple rows and/or multiple tables. This rule states that insert,
update, and delete operations should be supported for any retrievable set
rather than just for a single row in a single table. Most implementations
support this rule.

Codd Rule 8: Physical Data Independence
The user is isolated from the physical method of storing and retrieving
information from the database. Changes can be made to the underlying
architecture (hardware, disk storage methods) without affecting how the
user accesses it. IBM i, with its single level storage notion has always
implemented this rule.

Codd Rule 9: Logical Data Independence
How a user views data should not change when the logical structure (tables
structure) of the database changes. This rule is particularly difficult to
satisfy. Most databases rely on strong ties between the user view of the data
and the actual structure of the underlying tables. With IBM i, if an attribute
in a based-on file changes, then the view must change

Codd Rule 10: Integrity Independence
The database language (like SQL and DDS) should support constraints on
user input that maintain database integrity. This rule is not fully
implemented by most major vendors. At a minimum, all databases do
preserve two constraints through SQL.

* No component of a primary key can have a null value. (see rule 3)

* If a foreign key is defined in one table, any value in it must exist as a
primary key in another table. IBM i has implemented sophisticated
referential integrity constraints.

Codd Rule 11: Distribution Independence
A user should be totally unaware of whether or not the database is
distributed (whether parts of the database exist in multiple locations). This

Chapter 3 What is SQL? 127

rule is especially difficult to implement. Though it may not take much
effort to change from local to remote databases, it is not transparent.

Codd Rule 12: Nonsubversion Rule
There should be no way to modify the database structure other than
through the multiple row database language (like SQL and DDS). Most
databases today support administrative tools that allow some direct
manipulation of the data structure. Tools such as DFU and DBU on IBM i
violate this rule.

The publication of Codd's original set of rules resulted in a considerable
amount of relational database research done in the early 1970s. By 1974,
IBM had finished its prototype of a relational database called System/R.
This project , completed in 1979, had two significant accomplishments. It
proved the viability of the relational data model and the SQL language was

No Patent on RDBMS or SQL

As noted above, IBM did not patent its ideas for relational database.
Instead, the company through Codd, Chamberlin, Boyce, and others
proudly published their theories for all to see long before IBM products
emerged. IBM engineers were not the only ones watching. Another group
of engineers who had read about IBM’s work and who were closely
watching the System/R project realized relational databases' potential and
formed a company named Relational Software, Inc. Though Honeywell
may have been first with SQL, they did not exploit their lead and never
built a recognizable relational RDBMS upon which to run SQL. So, in
1979, Rational Software took the lead and produced the first commercially
available relational database management system and implemented SQL as
its query language. They called the product Oracle. Later they called the
company Oracle. Soon after, Larry Ellison Oracle’s CEO became a
billionaire.

IBM did not even have clear sailing with SQL. Even this IBM-invented
language SQL had some competitors – most notable was QUEL, used by
the Ingres RDBMS. During the early 1980's, Oracle and Ingres's provider,
Relational Technology, Inc., slugged it out on the commercial market
before Ingres lost and QUEL effectively disappeared in 1986. To survive,
Ingres adopted SQL as its query language. IBM followed up its successful

System/R research project with its own first relational product, the IBM
System/38, which was not beaten by much to market by Oracle. Then IBM
introduced SQL/Data System (SQL/DS) and later its ultimate champion.
Database 2 (DB2). With IBM's weight behind a relational database product
with SQL, the IBM version of SQL became the de facto standard. In the
mid 1990’s IBM renamed the AS/400 integrated relational database as
DB2/400 so now all IBM boxes support DB2. Again in 2000, IBM
renamed its database as DB2 Universal Database or DB2 UDB.

Support for Database and SQL Standards

SQL is now an ANSI (American National Standards Institute) standard
computer language for accessing and manipulating database systems. In this
standard, SQL statements are used to retrieve and update data in a database.
SQL as a language drives database programs such as MS Access, DB2,
Informix, MySQL, SQL Server, Oracle, Sybase, etc.

Unfortunately, there are many different dialects of the SQL language, but to
be in compliance with the ANSI standard, they must support the same
major keywords in a similar manner (such as SELECT, UPDATE,
DELETE, INSERT, WHERE, and others).

Note: Most of the SQL database programs also have their own
proprietary extensions in addition to the SQL standard!

Since the late 1980’s, many relational database management systems have
come to market – all supporting SQL as their primary language. It is a given
Then, after it became apparent that relational databases were not a passing
fancy, and not really wanting IBM to dictate the shape of the language,
ANSI (American National Standards Institute) began work on creating a
standard definition. Today's ANSI SQL standard is based mostly on IBM's
implementation, with a considerable amount of additional defined features
ANSI was so forward looking that their “SQL2” standard contains a
prescription of features that are not yet implemented by any major database
vendor.

Chapter 3 What is SQL? 129

The European technical community also got in the act in preparing its own
standard for SQL. The X/OPEN group has already assembled standards
for a UNIX-based portable application environment. Their standards play
a major role in Europe. As luck would have it, ANSI and X/OPEN do not
agree one everything. Several features differ between the X/OPEN and the
ANSI/ISO standards. Most implementations so far use the ANSI/ISO
standards including IBM’s DB2 systems (IBM i et al), Microsoft SQL
Server, Oracle, Informix, and Sybase. Now that IBM owns Informix, the
DB scenario is even more interesting but since Informix does not run
under IBMI or i5/OS,.most IBM i shops are unaffected.

The intention of standardization, of course is to have all database
implementations support the same code. Although an ANSI standard for
SQL was adopted in 1986, and later revised in 1989, many DB vendors had
already implemented their products by then and it would have been too
costly to wholesale change the specifications. Therefore, even today, almost
twenty years after the first standards attempts, no commercial SQL product
exactly conforms to the ANSI spec. Each product has a slightly different
dialect of the SQL language and almost all DB vendors have added non
standard extensions to the standard SQL language.

Just like there are dialects of human languages that make one group not
completely understand another, the SQL dialects are basically similar but
yet, incompatible in their detail. Therefore, it is very difficult for any vendor
to write applications software using a standard SQL that runs with all
versions of SQL server databases. However, the standardization situation is
improving and over time, more and more applications will be able to work
with more and more SQL servers. In the meantime some vendors have
designed and written their SQL code to make it possible to allow for minor
differences in SQL dialects. Obviously adding to the implementer’s burden
is not in the best interests of the database vendor community so things
should be changing for the better.

Today’s SQL Standards

The American National Standards Institute (ANSI) standardized SQL in
1986 (X3.135) and the International Standards Organization (ISO)
standardized it in 1987. The United States government's Federal
Information Processing Standard (FIPS) adopted the ANSI/ISO standard.

In 1989, a revised standard known commonly as SQL89 or SQL1, was
published.

A disturbing fact about the standards from 1989 is that because of
conflicting interests from commercial vendors, much of the SQL89
standard was intentionally left incomplete. In fact, many features were
labeled implementer-defined, which is code word for no standard. In order
to strengthen the standard, ANSI revised its previous work with the SQL92
standard ratified in 1992 (also called SQL2). This standard addressed a
number of weaknesses in SQL89 and set forth conceptual (future) SQL
features which at that time exceeded the capabilities of any existing
RDBMS implementation. The SQL92 took about six times the amount of
paper to print than its predecessor.

As a result of the original disparity, the standards authors defined three
levels of SQL92 compliance: Entry-level conformance (only the barest
improvements to SQL89), Intermediate-level conformance (a generally
achievable set of major advancements), and Full conformance (total
compliance with the SQL92 features).

More recently, in 1999, the ANSI/ISO released an updated standard called
SQL99 -- also called SQL3. This addresses more of the advanced and
previously ignored areas of modern SQL systems, such as object-relational
database concepts, call level interfaces, and integrity management. SQL99
replaces the SQL92 levels of compliance with its own degrees of
conformance: Core SQL99 and Enhanced SQL99.

What is IBM i Database and SQL Conformance?

To develop and run SQL on an IBM i, there are two components
necessary. These are the following

 Two Components to AS/400 SQL

1. DB2 UDB for IBM i - DB2/400 Database Manager

This is the AS/400 integrated database. It is a part of every AS/400, and
IBM i. It supports the newer, faster SQL engine and its parser and run time
support also supports many advanced database / SQL APIs.

Chapter 3 What is SQL? 131

2. DB2 Query Manager and SQL Development Kit for IBM i
LICPGM (5722-ST1)

This is a product that is separately orderable with the AS/400 and IBM i.
With its Express i5 520 models, for the past two years, IBM has included
the SQL toolkit with each new system. The toolkit brings development
capabilities to the i5/OS environment with the following features:

✓ IBM Query Manager

✓ IBM ISQL (Interactive SQL) interface

✓ SQL Precompilers

✓ Other features

As noted previously, SQL is the standard query language for systems
outside of AS/400 environment. Moreover, SQL is beginning to catch on
such that many shops are getting the product and they are doing some new
AS/400 DB development work with embedded SQL!

The DB2 UDB database running under I5/OS, along with the V5R3 SQL
Development Kit do a nice job of conformance with standards as attested
by the following list:

Note: V5R4 is the newest version of AS/400 SQL facilities and it
conforms even better and offers additional advanced facilities. There are
also some nice additions for using SQL in an RPG environment.

AS/400 Standards Met

✓ ISO (International Standards Organization) 9075: 1992, Database
Language SQL -Entry Level

✓ ISO (International Standards Organization) 9075-4: 1996, Database
Language SQL - Part 4: Persistent Stored Modules (SQL/PSM)

✓ ISO (International Standards Organization) 9075: 1999, Database
Language SQL - Core

✓ ANSI (American National Standards Institute) X3.135-1992,
Database Language -- SQL - Entry Level

✓ ANSI (American National Standards Institute) X3.135–4: 1996,
Database

✓ Language SQL - Part 4: Persistent Stored Modules (SQL/PSM)

✓ ANSI (American National Standards Institute) X3.135-1999,
Database Language -- SQL - Core

Chapter Summary

SQL was invented by IBM and it stands for Structured Query Language.
SQL has powerful facilities built within the language for the creation,
control and manipulation of a relational data base. In addition to providing
tools to create and control database objects, SQL has many tool which a
developer can use to gain productivity in application development

SQL provides the ability to create databases to select, insert, update and
delete records from its database tables. Though IBM i users have their own
native database, the fact that SQL is a standard language for database and
many of the non-IBM systems installed in IT shops use SQL as a primary
database language , more and more IBM i shops are beginning to learn SQL
and deploy it for specific applications.

Dr. Tedd Codd, an IBM Fellow and employee for many years invented
relational database in IBM’s labs in Southern California. IBM permitted
Tedd Codd and others to publish their scientific works in the prestigious
technical publications of the day. It was a personal honor for an IBM
employee to be so recognized by prestigious journals. A few of the journal’s
avid readers took Codd’s ideas and beat IBM to market with a relational
database product. Oracle is the biggest name from today as well as Ingres.

In 1985, at a time when imposters were entering the relational DB field,
Tedd Codd was compelled to codify 12 rules of relational database to
separate the true believers from the imposters. These rules have provided a
guideline for the design of all relational database systems ever since. Many,
if not all of the rules, when implemented, are deployed in practice via SQL
commands.

Codd’s relational theories were proven by math and as the implementations
caught up to the design, relational database worked as well as the math
proved that it would. IBM has continued its SQL leadership and basically

Chapter 3 What is SQL? 133

controls the standard in a de-facto manner, though there are formal
standards bodies such as ANSI and X/OPEN which publish database
standards for the industry at large.

The IBM i as the successor to IBM’s first relational database system, the
System/38 conforms very nicely to all of the many industry standards for
relational database and SQL.

Key Terms

SQL Development Kit
AS/400 standards
Attribute
Authority
Boyce, Raymond,
Catalog,
Chamberlin, Don,
Codd, Tedd
SQL99
Data Manipulation Language
Data Control Language
Data Definition Language,
Data Description Spec
Database language
DB2 Query Manager
DB2 UDB for IBM iDCL, 1
DDL
DDS
DML
Guaranteed Access Rule,
Information Rule
Integrity Independence, 8
International Standards Organization
ISO
ISQL
Logical data independence,

MySQL,
Native database,
Nonsubversion Rule,
OPNQRYF,
Oracle,
Pointer,
Programs,
QUEL
RDBMS
Record,
Relational,
SEQUEL,
Set theory,
SQL Development Kit
SQL Grant
SQL Server
SQL statements
SQL89 standard
SQL92 standard
Stonebreaker, Michael,
Structured Query Language,
System-wide catalog,
System/36
System/38
System/R

Exercises

Use this chapter or look up information on the Web to answer the
following:

1. What is SQL?

2. Why would an IBM i native database developer want to use SQL?

3. Who invented relational database?

4. Who invented SQL?

5. On the theoretical side, what was the big difference between relational
databases and its predecessors?

6. What two branches of mathematics did Ted Codd use to perfect the
relational database theory?

7. What can SQL do?

8. Why did IBM not patent SQL?

9 How many rules did Tedd Codd create and why did he create them?

10. What standards organizations are involved in SQL today?

11 What are the two components of database on the IBM i?

12. To what level does the IBM i conform to database standards?

Chapter 4 SQL Concepts & Facilities 135

Chapter 4

SQL Concepts & Facilities

Is SQL an End User Tool?

When you first look at SQL, each statement makes a lot of sense, and it
would be reasonable to conclude that a sharp knowledge worker (end user)
in an organization ought to be able to use the SQL tool independently of
the IT department. At first brush, you might even look at SQL as a query
language for end users. However, it is not.

It would be a big mistake for any organization to forget that SQL is
designed for IT professionals. Depending on the IT job function, some IT
people might never need to use SQL. Based on the IT function, there
would necessarily be a difference in the level of use and the knowledge
required. The types of positions in an IT shop that would depend on SQL
as a tool include the following:

✓ Application developers

✓ System programmers

✓ Database administrators

One of the leading IBM i database gurus for the past twenty years or more
is a former IBMer, Skip Marchesani. Skip goes way back with the IBM i
product line. In fact, Skip was one of a number of IBM instructors who
conducted IBM internal System/38 database education classes in the 1979 /
1980 time period, even prior to the machine becoming generally available. I
am proud to say that I was an eager-to-learn student in Skip’s System/38
classes.

I mention Skip in this section because I have what is almost an exact quote
(shown below) from him about his perception of end user involvement in
SQL. It is very telling:

“Putting SQL in hands of end users is like giving a razor blade to a 3 year
old to cut pictures out of magazines …Who gets to clean up the mess?”

AS/400 ANSI SQL Advanced Facilities

There is a whole lot more than just a query engine in SQL. In addition to
the basic database facilities expected in any database language, such as table
and view creation with DDL, and query and update capabilities supplied by
DML, and authority supplied by DCL, the SQL language provides the most
advanced facilities available for the IBM i database. For example, the
following advanced database functions are provided in the database and
usable through the SQL interface:

Declarative Referential Integrity

This integrity constraint provides the ability for developers to define
integrity relationships to be enforced at the database level, rather than the
program level. The DB2 UDB for IBM i implemented via SQL provides
support for the following actions when the defined integrity rules are
attempted to be broken:

✓ NO ACTION

✓ RESTRICT

✓ CASCADE

✓ SET NULL

✓ SET DEFAULT

Triggers

Triggers are also implemented via the SQL language and the DB2 UDB
database. When you have defined that certain actions need to occur when

Chapter 4 SQL Concepts & Facilities 137

and if certain database values change, you implement that function with
“Triggers.”

Without triggers, you code these actions into all the programs that touch a
database. And, as you know, in most shops, there are many programs that
cause updates to the same database. That’s where DB Triggers help out.
When a certain action occurs on the database as a result of an insert, or
update, or a delete, a trigger fires and a program that you write gets control.
In this program you can code whatever has to be done to protect your
business at that time.

For example, one of my clients has an order entry program that was
purchased many years ago. The software company no longer supports it
and will not provide the source code. They want this client to buy their
new version but the client is unwilling. DB Triggers are a way of getting
into the logic of a program even if you do not have the source. In my
client’s case, by law they are prohibited from selling certain products in
certain jurisdictions. If they violate the law, they could lose their license to
do business within a particular state. Having their backs to the wall, the
best solution for them was to write an order entry trigger program that
analyzed the DB update to the order file before it was made. In this way,
the client company was able to send the order taker a message and not
permit the bad line item to be written to the transaction database.

Stored Procedures

Stored procedures consist of compiled code residing on an intelligent
database server such as the DB2 UDB for IBM i. The major purpose of
stored procedures is to reduce the processing burden on the client side of
client server as well as to reduce the communication interactions time.
These precompiled SQL routines (and other languages such as RPG and
COBOL on IBM i) are stored on the IBM i.

When implemented, they provide major advantages for client server and
intelligent Web processing. The major benefit is that the application
performs better since the server code is precompiled and because there is
minimal back and forth action over the network between the client and the
server. Additionally, because the code is on the server, one set of code can
be reused for as many clients as necessary.

SQL Basic Facilities

In addition to the advanced facilities noted above, SQL is rich in the type of
ease of use capabilities that are necessary to support relational databases
from the simple to the complex.

Table Facility

First and foremost, SQL provides a table facility that enables a prompted,
intuitive interface for the following functions:

✓ Defining databases

✓ Populating databases with rows

✓ Manipulating databases.

Table Editor

SQL also provides a table editor that makes it easy for you to perform the
following functions against rows in table data that is structured in row and
column format:.

✓ Access

✓ Insert

✓ Update

✓ Delete

Query Facility:

With the Query facility, SQL permits you to interactively define queries and
have results displayed in a variety of report formats including the following:

✓ Tabular

✓ Matrix

✓ Free format

Chapter 4 SQL Concepts & Facilities 139

For those readers who have a IBM i background, you will notice that SQL
brings with it its own naming scheme that is significantly different from
corresponding native objects. See table 4-1 for specifics

 Figure 4-1 The SQL Name Game

SQL Name IBM i Name
Database
Entity
Table
View
Row
Column
Index
Collection
Schema
Log
Isolation Level
Tablespace
Storage group

System Name
File
Unkeyed Physical File
Unkeyed Logical File
Tuple or Record
Attribute or Field
Keyed Logical File
Library w/ SQL info objects
Library w/ SQL info objects
Journal
Commitment Control Level
Not needed in DB2/400
Single Level Storage

Basic SQL Data Definition Language

Let’s start our examination of the SQL language by doing something simple
such as constructing a query against a table that already exists in our
database. This will help us quickly get a flavor for the conciseness and
power of the SQL language syntax. Suppose we have never even defined
an SQL table but on the IBM i, there is a file defined and in use by the
accounts payable application. It’s name is Vendorp. It is a physical file and
it contains data about vendors. It was created using DDS years ago. For
our simple purpose let’s say that it contains just four fields -- a vendor
number (field name VNDNBR), vendor name (field name NAME), the
class of the vendor (field name VNDCLS), and the balance owed to that
vendor (field name BALOWE).

Sample SQL Table – Mini-Vendorp

As you recall from Chapter 3, a relational database is a database that is
perceived by its users to be a collection of tables (and nothing else but tables).
An SQL table is defined as a series of rows and columns where each row
represents a record and each column represents an attribute of the records
contained in the table. With that as a backdrop, let’s look at our first table
in Figure 4-2 after it has been populated by just a few records:

Figure 4-2 SQL, The Basics -- Table - VENDORP
 +----------------------------------+

 |VNDNBR NAME VNDCLS BALOWE|

 | |

 | 001 IBM 01 250 |

ROW | 034 ROBIN COMPANY 04 153 |

----> | 049 JIM STUDIOS 06 0 |

 | 058 LOAD MACHINERY 05 0 |

 | 195 AMERICAN CO 20 100 |

 | 226 H H COMPANY 20 863 |

 ?----------------------------------+

 |

 |

 COLUMN

This simple table in Figure 4-2 with data gives the notion of rows and
columns as used by SQL.

Chapter 4 SQL Concepts & Facilities 141

Creating a Table/File with CRTPF and DDS

Now, that we have a general idea of a file/table, let’s say that we are going
to start all over with Vendorp, since we left out too many fields to make it
worthwhile altering the table. The native coding in DDS for this new,
enhanced Vendorp file is shown in Figure 4-3. Notice we added quite a few
more fields to the Vendorp physical file. The list of fields in Figure 4-3 is
actually the DDS for the Vendorp file. If we were to issue a create physical
file command (CRTPF) against this set of DDS, we would create a database
object named Vendorp in a to-be specified library. A library on the AS/400
is like a big directory that helps us organize objects.

Figure 4-3 DDS for Expanded Vendorp File Definitions
 FMT PFA..........T.Name++++++RLen++TDpB..

 *************** Beginning of data ******

0001.00 A R VENDRF

0002.00 VNDNBR 5S 0

0003.00 NAME 25

0004.00 ADDR1 25

0005.00 CITY 15

0006.00 STATE 2

0007.00 ZIPCD 5 0

0008.00 VNDCLS 2 0

0009.00 VNDSTS 1

0010.00 BALOWE 9 2

0011.00 SRVRTG 1

 ****************** End of data *********

In line 1 (sequence # 1) of the DDS specifications, as you can see, in Figure
4-3, we defined the record format with a name of VENDRF. In high level
programming languages (HLL), such as RPG and COBOL, many of the file
operations such as read and write are directed at the record format name as
opposed to the file name in flat file systems. When the program that
references a database file such as Vendorp is compiled, some of the high
level language compilers, especially RPG/400 require that the DB file’s
record format name is different from the name of the file. When tables are
created with SQL, the default record format name is always used and for its
own reasons, IBM has selected the name of the file for the record format
name in SQL database table objects. This creates issues when trying to use
SQL created database objects in existing high level programs.

IBM wrote a whole book (Redbook) on considerations for moving to an
SQL-only environment and because DDS and SQL’s capabilities are not
completely the same, this book is helpful if you choose to make the move

to SQL from DDS. The Redbook name is Modernizing IBM eServer IBM i
Application Data Access -A Roadmap Cornerstone. The Redbook site is
www.redbooks.ibm.com. From there, search for some words in this title,
and you can download this valuable IBM manual.

In line 2 of Figure 4-3, we defined the vendor number field named as
VNDNBR. RPG/400 demands that no more than 6 character field names
be used so many IBM i databases are defined with very short names as you
can see in the figure. The number five on the line says the field length of
VNDNBR is 5 and the S data type stands for unpacked decimal. This
means that this field takes 5 positions of storage in the disk record. The
zero at the end of the line says that the field is numeric with zero decimal
places.

Contrast this with the BALOWE field in line 10. There is no S. But there is
a 2 in the decimal positions column. This says that the field is numeric, just
as VNDNBR, but without the S for data type, it defaults to a packed
decimal data type. Therefore, for the nine positions defined, with packed
decimal, this large numeric field can be stored in just five positions in the
disk record. That’s the nature of packed decimal as a data type. It saves
space.

Now, look at the NAME field as defined in line 3 of the DDS. It is
barebones, meaning the name NAME, and the field length of 25 are the
only two pieces of information specified for this field. This coding means
that this field is character or alphanumeric as IBM likes to call it. If a DDS
line has no decimals specified, that means the field being defined will hold
character data. When read in a program, no mathematical operations can be
performed against character data.

Now, let’s take the same file as defined in DDS and define it in SQL. SQL
tables become physical file objects on IBM i after they are created – with
either DDS or SQL. The command to create a table in SQL is Create
Table. The full SQL coding for the Vendorp table is shown in Figure 4-4.

Chapter 4 SQL Concepts & Facilities 143

Figure 4-4 Creating a Tables/File with SQL

 CREATE TABLE SQLBOOK/VENDORP

 (VNDNBR NUMERIC(5,0) NOT NULL,

 NAME CHAR(25),

 ADDR1 CHAR(25),

 CITY CHAR(15),

 STATE CHAR(2),

 ZIPCD DEC(5,0),

 VNDCLS DEC(2,0),

 VNDSTS CHAR(1),

 BALOWE DEC(9,2),

 SRVRTG CHAR(1))

Unlike DDS, the SQL data definitions for creation of a table begin after the
command to create them, not in a separate screen panel or program. As
you can see in Figure 4-4, the SQL statement Create Table starts the
processing command. It is going to create the table name specified after
the word “Table.” So following the Create Table, you specify the schema /
collection (SQLBOOK) in which the table will be created, immediately
followed by the name of the table that is being created (Vendorp).

After the Create Table Name, the rest of the SQL statement provides the
data definition. The first element in the data definition is the field name.
This is followed by the data type. Notice that the signed decimal data type
from DDS has an equivalent in SQL. In SQL this is the NUMERIC data
type. The packed decimal data type from SQL (no type specified with
decimals specified) also has its equivalent, as the DECIMAL or DEC data
type. Finally, in this example, though there are many data types in SQL, the
last data type in this example is CHAR type, meaning character. This is the
equivalent of no decimals specified and no data type specified for a field in
DDS.

Basic SQL Data Manipulation Language

As noted in Chapter 3, SQL’s Data Manipulation Language (DML) has four
basic functions provided by four different SQL statements. You may recall
these are as follows:

✓ Select data from a database

✓ Insert data to a database

✓ Update data in a database

✓ Delete data from a database

Now that we have a database defined, let’s assume for the next set of basic
examples that we took it all the way. The Vendorp table is created and it is
pre-loaded with the data necessary to execute the following examples. The
first examples are simple Selects, followed immediately by Insert, Update,
and Delete examples.

Basic SQL Select Statement

The verb, Select is the query verb in SQL. Whenever you use this verb, you
can perform any of the many RDBMS functions such as projection,
selection, intersection, join, etc. as defined by Tedd Codd.

Let’s start with the most basic example of select. The three parts to a basic
select are as follows:

Command Function
Select Select verb starts the statement
[colums] [* for all or column names to select]
From: From clause specifies the library and table

When we want to select all of the columns and all of the rows, the select
statement in its most simple is shown below

Chapter 4 SQL Concepts & Facilities 145

Select *

From SQLBOOK/vendorp

This brings back all of the columns and all of the records in a memory table
and it displays the result table if the user is in interactive mode. If this is
executed in a program, it brings the whole table into the memory of the
program.

Let’s bring back the rows that we explored in Figure 4-2 above.

Select

VNDNBR, NAME, VNDCLS, BALOWE

From SQLBOOK/vendorp

This command provides four fields from the Vendorp table across all of the
rows.

Now, if you refer to the data (6 records) in Figure 4-2 above, let’s add a row
constraint with the SQL Where Clause. Let’s display only those vendors
whose class value VNDCLS is 20.

Here is what this looks like

Select

VNDNBR, NAME, VNDCLS, BALOWE

From SQLBOOK/vendorp

Where VNDCLS = 20

The results of the query from this mini database are in Figure 4-5.

Figure 4-5 SQL, The Basics -- Table – VENDORP VNDCLS 20
 +----------------------------------+

 |VNDNBR NAME VNDCLS BALOWE|

ROW | 195 AMERICAN CO 20 100 |

----> | 226 H H COMPANY 20 863 |

 ?----------------------------------+

 |

 |

 COLUMN

Let’s say you add the fields from Figure 4-4 to the file and that you add a
few more records. If you run the same Select Query again, you will see
results such as those shown in Figure 4-6:

Figure 4-6 Result of Projection and Selection with Larger File
 Display Data

 Data width . .

Position to line Shift to column .

....+....1....+....2....+....3....+....4....+....5....+..

VENDOR NAME VENDOR BALANCE

NUMBER CLASS OWED

 40 SCRANTON INC 20 250.00

 44 J B EQUIP INC 20 50.00

 48 DENTON AND BALL 20 3,500.00

 26 B MACHINERY 20 1,495.55

 28 C ENGRAVING CO 20 100.00

 30 D CONTROLS 20 900.25

 32 I POWER EQUIPMENT 20 250.00

 34 ROBIN COMPANY 20 153.00

 56 Feenala Grund Mfg. 20 4,260.00

******** End of data ********

As you can see in the result table in Figure 4-6, we have a projected view
(not all columns) and a selection view (not all rows – just those with
VNDCLS = 20). We query a set of data and a set of data is returned to us
in memory.

In the next four SQL statements, insert one record into Vendorp, update
several records in Vendorp by increasing the balance owed by 20%, and
then delete all the PA state records from Vendorp. As a final short
exercise, delete all the remaining records from the Vendorp file.

Chapter 4 SQL Concepts & Facilities 147

Basic SQL Insert Statement

INSERT INTO SQLBOOK/VENDORP

(VNDNBR, NAME, ADDR1, CITY, STATE,

ZIPCD, VNDCLS, VNDSTS, BALOWE, SRVRTG)

VALUES(

'8020’, ‘Phillies Phinest’,

‘391 Carey Avenue’,

‘Wilkes-Barre’, ‘PA’, ‘18702’,

‘20’, ‘A’, ‘35700’, 4)

Basic SQL Update Statement

UPDATE SQLBOOK/Vendorp

SET balowe = balowe * 1.2

33 rows updated in VENDORP in SQLBOOK

Basic SQL Delete Statement

DELETE from SQLBOOK/Vendorp

WHERE STATE = 'PA'

14 rows deleted from VENDORP in

SQLBOOK.

DELETE from SQLBOOK/Vendorp

Figure 4-7 Confirm Delete All Records

 Confirm Statement

 You are about to alter (DELETE or UPDATE) all of the records in

your file(s).

 Press Enter to confirm your statement to alter the entire file.

 Press F12=Cancel to return and cancel your statement.

33 rows deleted from VENDORP in

SQLBOOK.

From Figure 4-7, after we hit the enter key all the records In Vendorp are
deleted and the file is empty. So that we can run more SQL statements
against Vendorp data later in the book, we have built a data refresh
program that we call to perform this function.

Basic SQL Data Control Language (DCL)

There are lots of ways to establish security with SQL and with an IBM i
box. Since the IBM i comes standard with capability based addressing,
security is built into the operating system at a low level and has been a
hallmark of the IBM i since it was a System/38. For a number of years,
IBM felt that it was sufficient to use the native security commands such as
Grant Object Authority (GRTOBJAUT) and Revoke Object Authority
(RVKOBJAUT). However, IBM is now focusing on all of its DB2s
functioning in the same way, regardless of innate capabilities or not. So,
several releases ago, IBM created the standard SQL interface for security
and delivered it in the GRANT and REVOKE SQL commands.

In the examples below the GRANT command gives TONYS the full
authority to use the Vendorp database. Yes, TONYS can delete Vendorp if
he chooses. Rethinking TONYS’ ability to delete the Vendorp table, the
next command (REVOKE) revokes all of TONYS’ authority to the
Vendorp object

Chapter 4 SQL Concepts & Facilities 149

The Granting

GRANT UPDATE ON SQLBOOK/VENDORP

 TO TONYS WITH GRANT OPTION

GRANT of authority to VENDORP in

SQLBOOK completed.

The Revoking

REVOKE UPDATE ON SQLBOOK/VENDORP FROM

TONYS

REVOKE of authority to VENDORP in

SQLBOOK completed.

All data control commands in SQL are initiated with a GRANT or a
REVOKE of authority and these commands use the natural AS/400
security within the AS/400 objects to protect them. The PACKAGE
versions (Grant and Revoke authority to packages) as well as the procedure
versions are very similar to the table versions of Grant and Revoke. Their
function is more for program security than data security.

The various iterations and parameters of the Grant and Revoke commands
are available in the IBM IBM i SQL Reference Manual as well as via the
ISQL prompter. We will be studying the ISQL prompter in Chapter 9.

The intention of this book is to enable you to perform SQL functions for
application development. Therefore, we will not devote any more time on
security since that is an issue in itself and should be attacked by the
company’s security officer. In many ways, SQL security for its managed
objects is no different in concept than how security is invoked across all
objects in the native AS/400 environment.

Chapter Summary

Before we took a brief look at some of SQL’s basic capabilities in this
chapter we positioned SQL as a developer’s tool, not an end-user query
product. Sine this book is intended to get you up to speed with SQL in 17
easy chapters, we spend little time on the advanced facilities. In this chapter,
we introduced referential constraints, triggers, and stored procedures as
advanced tools that can take you the extra mile when needed.

To stage us for more to come, we introduced the Table facility of SQL and
then using SQL’s data definition language, DDL, we examined a table
created with DDS and then we performed a Create Table command with
SQL to show the similarities and differences in coding the two. We created
a mini file and a large file with lots of records to test our skills. We used
each of the four major data manipulation language statements to work with
the file after it was populated with data. We saw our Select statement
access data; and our Insert statement insert a record. Then we used the
Update Statement and we saw how it could be used for single or multiple
record updates. Finally, we used the Delete statement and we saw its utility
in deleting single, multiple, or all records in a database file.

Once we had used DDL for creation, DML for manipulation, we moved to
the Data Control Language facilities of SQL and we explored the Grant and
Revoke commands and we demonstrated an example of each.

Key Terms

Access

Authority

CASCADE

CHAR

Data type

Client server

Create Table

CRTPF

DECIMAL

Delete

End User Tool

Grant

Chapter 4 SQL Concepts & Facilities 151

Insert

Marchesani, Skip

Name Game

NO ACTION

NUMERIC

Data type

Programs

Query facility

Query Language

Referential Integrity

RESTRICT

Select

SET DEFAULT

SET NULL

SQL statements

Stored procedures

Table editor

Table facility

Triggers

Update

Where Clause

Exercises

Use this chapter or look up information on the Web to answer the
following:

1. Why is SQL not viewed as an End User Tool?

2. Name each of the three AS/400 ANSI SQL advanced facilities as noted
in this chapter and describe each capability, its use, and its value to a
business.

3. What is Declarative Referential Integrity?

4. What is a Database Trigger?

5. What is a Stored Procedure?

6. Describe SQL’s Table Facility

7. Write a simple select statement to query all of the records in VENDORP
and return just those records in VNDCLS 30.

8. Write an INSERT statement to add a record to Vendorp.

9. Write an Update Statement to change the status of Vendor # 40 from
whatever value it may be to an “A.”

10. Delete vendor 44 from the Vendorp file

Chapter 6 Creating Schemas et al. 153

Chapter 6

Creating and Understanding the
Schema and the Schema-Wide
Catalog

Student Note: In order to explain the notion of a schema and a
Schema wide catalog, we use the IBM I Operating system and
DB2 for examples. Such advanced concepts are not within the
scope of Access2007

SQL Objects

No matter what DDL command you choose to use, the place to run it is
from a source file with RUNSQLSTM a facility that exists only within IBM
i. RUNSQLSTM in some ways is like the SQL View in Access 2007.
However, it would be like you typed the SQL statement in Word and then
told Access to go get it and run it. That is enough for you to know about
RUNSQLSTM

That leads us to our next major topic. In this section we discuss the SQL
objects created with DDL, the purpose of the objects, the DDL statements
that can be run on the IBM i to create these objects, and the parameters
(statement clauses) that are important to understand to assure success.
DDL of course stands for Data Definition Language and is a part of SQL
used to create objects.

Let’s start this off by listing the unique objects that we will cover that are
created with SQL DDL statements.

✓ ALIAS
✓ COLLECTION
✓ INDEX
✓ SCHEMA
✓ TABLE
✓ VIEW

Collection / Schema

The above list is very nicely displayed in alphabetic sequence but we will
cover these objects one at a time in the sequence that they are typically used
by a new SQL user.

A collection is an IBM I unique name that predated the notion of the
schema. Schema has replaced Collection in the IBM i DB2 database
parlance. It is used for the grouping of related SQL objects. The native
structure on IBM i used to store the schema is called a library. So, on IBM i,
if you create a schema with SQL, under the covers DB2 creates a library
structure with a schema wide catalog.

This is the SQL name for a library in the native interface. A schema is
where the tables, views, and indexes are created. With IBM’s acceptance of
the word schema for the IBM i, the company is in the process of
eliminating its notion of a collection from the IBM i SQL. A schema and a
collection are in fact synonymous and so we will no longer use the word
collection. If you see it anywhere else in this book or in the labs, think of
schema. A schema contains SQL objects such as aliases, functions,
procedures, types, and packages.

A Library is a native AS/400 object. It happens to be a directory type
object and it is very handy in pointing to “schemas” consisting of many
objects. It is a way of keeping objects together logically, though with the
IBM i notion of single level store, a concept beyond the scope of this book,
the actual objects are stored all over the place across all of the system’s disk
drives.

A schema / collection is also an object created with the relational database
commands. It is explicitly created using either the CREATE SCHEMA
statement. When you reference objects on the IBM i and other systems, a
schema name is used as the high-order part of a two-part object name. An
object that is contained in a schema is assigned to the schema when the

Chapter 6 Creating Schemas et al. 155

object is created. The schema to which it is assigned is determined by the
name of the object if specifically qualified with a schema name or by the a
default schema name if not qualified.

The Syntax of the Create Schema statement is as follows:

CREATE SCHEMA schema name IN ASP

integer WITH DATA DICTIONARY

On IBM I, the tool that would be used to test this is known as ISQL –
Interactive SQL. It permits straight SQL to be entered and executed in
place and it also has a prompter. Take a look at the prompt panel similar to
that shown in Figure 6-1

Figure 6-1 SQL Collection Prompt
 Specify CREATE COLLECTION Statement

Type choice, press Enter.

 Library Name

 IN ASP 1-32, ASP device name

 WITH DATA DICTIONARY N Y=Yes, N=No

On the prompt, you type the name of the library. The name must not be
the name of an existing library. Then type the Auxiliary Storage Pool (ASP)
number of the system ASP (ASP number 1). If you are using other ASPs,
see your system administrator for advice as to where the collection should
be established. For students, this information is not needed for the course.

Two completed commands follow. The first produces no data dictionary.
The second produces a schema with a data dictionary.

CREATE SCHEMA TEST02 IN ASP 1

Schema TEST02 created.

CREATE SCHEMA TEST04 IN ASP 1 WITH

DATA DICTIONARY

Schema TEST04 created.

There is a native command on IBM i called Display Library. This is what
the contents of the TEST01 library with no dictionary would look like.

Figure 6-2 Display Library TEST01 with no dictionary
Object Type Attr Size Text

QSQJRN0001 *JRNRCV 110592 COLLECTION - created

QSQJRN *JRN 12288 COLLECTION - created

SYSCHKCST *FILE LF 28672 SQL catalog view

SYSCOLUMNS *FILE LF 94208 SQL catalog view

SYSCST *FILE LF 69632 SQL catalog view

SYSCSTCOL *FILE LF 40960 SQL catalog view

SYSCSTDEP *FILE LF 40960 SQL catalog view

SYSINDEXES *FILE LF 73728 SQL catalog view

SYSKEYCST *FILE LF 53248 SQL catalog view

SYSKEYS *FILE LF 53248 SQL catalog view

SYSPACKAGE *FILE LF 77824 SQL catalog view

SYSREFCST *FILE LF 53248 SQL catalog view

SYSTABDEP *FILE LF 77824 SQL catalog view

SYSTABLES *FILE LF 86016 SQL catalog view

SYSTRIGCOL *FILE LF 65536 SQL catalog view

SYSTRIGDEP *FILE LF 69632 SQL catalog view

SYSTRIGGER *FILE LF 94208 SQL catalog view

SYSTRIGUPD *FILE LF 45056 SQL catalog view

SYSVIEWDEP *FILE LF 90112 SQL catalog view

SYSVIEWS *FILE LF 45056 SQL catalog view

Chapter 6 Creating Schemas et al. 157

Figure 6-3 Display Library TEST04 with dictionary
Object Type Attr Size Text

QSQJRN0001 *JRNRCV 110592 COLLECTION - created

QSQJRN *JRN 12288 COLLECTION - created

QIDCTL76 *FILE LF 40960 Data dictionary: List

QIDCTL80 *FILE LF 86016 Data dictionary: List

QIDCTL81 *FILE LF 40960 Data dictionary: List

QIDCTL82 *FILE LF 45056 Data dictionary: List

QIDCTL84 *FILE LF 77824 Data dictionary: List

QIDCTL86 *FILE LF 77824 Data dictionary: List

QIDCTL88 *FILE LF 24576 Data dictionary: List

QIDCTP02 *FILE PF 53248 Data dictionary: Long

QIDCTP10 *FILE PF 241664 Data dictionary: Fiel

QIDCTP20 *FILE PF 61440 Data dictionary: Form

QIDCTP21 *FILE PF 77824 Data dictionary: Form

QIDCTP25 *FILE PF 53248 Data dictionary: Reco

QIDCTP30 *FILE PF 73728 Data dictionary: File

QIDCTP31 *FILE PF 61440 Data dictionary: File

QIDCTP51 *FILE PF 53248 Data dictionary: Reco

QIDCTP52 *FILE PF 77824 Data dictionary: Reco

QIDCTP53 *FILE PF 53248 Data dictionary: Reco

SYSCHKCST *FILE LF 28672 SQL catalog view

SYSCOLUMNS *FILE LF 94208 SQL catalog view

SYSCST *FILE LF 69632 SQL catalog view

SYSCSTCOL *FILE LF 40960 SQL catalog view

SYSCSTDEP *FILE LF 40960 SQL catalog view

SYSINDEXES *FILE LF 73728 SQL catalog view

SYSKEYCST *FILE LF 53248 SQL catalog view

SYSKEYS *FILE LF 53248 SQL catalog view

SYSPACKAGE *FILE LF 77824 SQL catalog view

SYSREFCST *FILE LF 53248 SQL catalog view

SYSTABDEP *FILE LF 77824 SQL catalog view

SYSTABLES *FILE LF 86016 SQL catalog view

SYSTRIGCOL *FILE LF 65536 SQL catalog view

SYSTRIGDEP *FILE LF 69632 SQL catalog view

SYSTRIGGER *FILE LF 94208 SQL catalog view

SYSTRIGUPD *FILE LF 45056 SQL catalog view

SYSVIEWDEP *FILE LF 90112 SQL catalog view

SYSVIEWS *FILE LF 45056 SQL catalog view

TEST04 *DTADCT 4096 COLLECTION - created

The SQL dictionary objects do not have much play in SQL on the IBM i
and are built to support a product known as the Interactive Data Definition
Utility or IDDU. IDDU is a facility that is used with System/36
environment programming and thus is really not germaine in the study of
the DB2 database.

When we view the files that are created via the two forms of the SQL
CREATE SCHEMA statement, what we are looking at in SQL terms is
called a schema wide catalog. When IBM needed to find a nice repository
for holding SQL objects, the IBM i already had a well equipped
“container.” It is the native library object. Thus, when the SQL statement
processor creates schemas, with and without dictionaries, the kluge of files
and the schema journal and the journal receiver (logging mechanism) that it
automatically builds, called a schema wide catalog, are placed in a new
library. The library is also created via the Create Schema statement and it is
given the same name as the schema. In addition to the schema-wide
catalog, in the next chapter, we introduce the notion of the system-wide
catalog which takes the schema-wide catalog notion up one level.

Chapter Summary

The Schema is an SQL object that is based on the IBM i object type known
as a library. When a schema is created with the CREATE SCHEMA SQL
statement, the first object created is the library. In the next step, the
schema-wide catalog is built within the library and an indicator that this
library is a schema is noted in the system-wide catalog.

If an SQL dictionary for the schema is required, then there is an option on
the CREATE SCHEMA command providing the ability to have this
created. The dictionary has little play in IBM i SQL and is more a
compatibility throwback to the System/36 than a real dictionary.

A schema in a past iteration of the IBM i SQL implementation using the
term “collection.” Today a collection and a schema are the same thing.
However, the CREATE SCHEMA command is not yet in the IBM i
command prompter but it is implemented in the overall SQL packaging.

Key Terms

Alias
ASP
Auxiliary Storage Pool
Catalog

Collection
Create Schema
Dictionary
Library

Chapter 6 Creating Schemas et al. 159

Library structure
Logical files
Not qualified
Physical files
Qualified

Schema
Schema Wide Catalog
System Wide Catalog
SQL objects

Exercises

Use this chapter or look up information on the Web to answer the
following:

1. What is a library?

2. What is a schema?

3. What is the difference between a library and a schema?

4. What is an auxiliary storage pool?

5. Do all schemas have dictionaries? Explain.

6. What is a schema-wide catalog?

7. Write the SQL to create a new schema called MYSCHEMA and include
an IDDU data dictionary.

Chapter 7 Libraries & Other Native Objects. 161

Chapter 7

Libraries and Native Objects Used for
SQL Development

What is a Library?

A library is an IBMi object that is used to find other IBMi objects in the
database. Unlike the multi-tiered directory structure of a PC file system or a
Unix file system with directories and subdirectories, a library is organized as
a single-level hierarchy. All IBMi objects are located through the library
structure.

Just as a PC, the IBM i has a file system with a root directory but this was
not always the case. It is called the Integrated File System and it supports
all types of file architectures including Unix with its symbolic directories as
well as the long-time native AS/400 and IBM i File System. The IFS is a
somewhat recent addition to the i5. Today, an IBM entry in the root
directory named QSYS.LIB permits users to access the native file system
when operating in PC or Unix mode.

However, as shipped by IBM, the operating system naturally begins with
the QSYS.LIB file system which in essence points directly to the system
library called QSYS.

To find an IBM i object within the library / file system, you need the name
of the library and the name of the object. The IBM i identifies objects by
their qualified name, which takes the form of LIBRARY/OBJECT. For
example, to find the object BANKCASH in the library PAYROLL you
would reference this as PAYROLL/BANKCASH. The system also

qualifies the object name with the object type. As an object based system,
there are literally tons of objects on an IBM i.

Two or more objects can have the same name but they must be different
types of objects. For example you could have a program named
USEROBJECT and a data space named USEROBJECT, but two programs
named USEROBJECT are not allowed. An object can exist in only one
library. A library cannot reference other libraries except for the one library
called QSYS. This is the system library and it is the only library that can
access other libraries. Until the IFS were introduced, QSYS was always the
genesis or starting point from which all other library file objects could be
located.

System Storage Genesis

Everything starts someplace. The system library is where it starts on the
IBM i. Besides containing the bulk of the operating system code, every
other library type object on the system resides in (is pointed to from)
QSYS. There are no sub-libraries per se, so that you cannot have a library
within a library.

Libraries are objects having a directory-like structure. Library objects are
located only in library QSYS. They provide some of the same facilities as
directories on other system. They point to the objects in the library file
system. There are many different object types on the IBM i that are stored
in libraries such as:

 Object Type System Abbreviation
 Programs *PGM
 Files *FILE
 Output Queues *OUTQ
 Data Communication Lines *LIND
 Data Areas *DTAARA

All objects are located by library, much like the directories on PCs and
Unix systems. No useable object in the library file system exists on the IBM
i that is not "contained in a library"

Chapter 7 Libraries & Other Native Objects. 163

Since it all starts from the QSYS Library, or the system library, you can say
that QSYS is the genesis of the library file system. It is the source from
which all else spawns. Though it is not the root directory, since the AS/400
has a root directory in its Integrated File System, it is the root of the library
file system. As we noted above, QSYS is also the only library on the system
which can contain objects of the type *LIB.

Note: The Integrated File System (IFS) is the underlying file structure of
modern IBM i machines. It was built into the system in 1994 with V3R2
of the operating system. The IFS was built so that the AS/400 could be a
file server for PC and Unix systems with a range of capabilities such as
the NT file system as well as the Unix file system including symbolic
names and all of the Unix nuances. In the Unix environment this helps
the AS/400 and the IBM i run Unix applications in the Unix native
directory structure rather than having to restructure applications to use
the library/file system that we use in this book. SQL applications as well
as DDS applications use the library/file structure instead of the IFS
directory structure. However, the entire library/file system, including
library QSYS is included in the root file system of the basic IBM i. Its
name is QSYS.LIB and it can be seen bt running the WRKLNK
command from an IBM i command line. WRKLNK is very much like a
DIR command in DOS.

Create a Library

Student Note: There is no IBM I operating system for you to run any of
these commands but this section will add to your overall understanding of
computers systems and architectures.

How do you create a library? For the first command in this section, in
Figure 7-1, we show a picture of the IBM i command line from within the
IBM i main menu, and the command to create a library called PAYROLL.

After you type “crtlib payroll” on the AS/400 command line, and you
press the Enter key, the message Library PAYROLL Created appears
right where the IBM copyright is displayed in Figure 7-1. A library object
named PAYROLL now exists in the QSYS library. By the way, AS/400 and
IBM i commands can be upper or lowercase. The system does not care.

The phrase “the object is contained in a library.” is just a figure of speech.
In reality, just as DOS directories on PCs point to files, libraries are

directories that point to locations on the systems disk drives in which
objects are stored. Of course, with a PC, the only object type is a file, so PC
directory entries all point to files.

Figure 7-1 Create Payroll Library
MAIN IBMi Main Menu

 System: HELLO

Select one of the following:

 1. User tasks

 2. Office tasks

 3. General system tasks

 4. Files, libraries, and folders

 5. Programming

 6. Communications

 7. Define or change the system

 8. Problem handling

 9. Display a menu

 10. Information Assistant options

 11. Client Access/400 tasks

 90. Sign off

Selection or command

===> crtlib payroll text('This is the payroll library')

F3=Exit F4=Prompt F9=Retrieve F12=Cancel F13=Information Assistant

F23=Set initial menu

©) COPYRIGHT IBM CORP. 1980, 2000.

For this IBM i example, there would now be a directory entry in library
QSYS, which contains the name PAYROLL. It points to a location in IBM
i single level storage in which the PAYROLL library object (a directory type
structure) actually resides.

When objects are created “in” the PAYROLL library, for each object, a
directory entry will be created in the PAYROLL library object. The entry
will contain the name, object type, and the location in single level storage in
which the object can be located by the system.

Thus objects "placed" in this library are merely located (pointed to) via the
library entries. The objects themselves are physically located anywhere on
any of the IBM i disks that the operating system chooses to put them. They
are referenced by name and found through the library structure.

Since it is just a form of a directory, the amount of space, which a library
occupies, is minimal. Each referenced object within a library consists of not

Chapter 7 Libraries & Other Native Objects. 165

much more than a name and a pointer. It is analogous to the index at the
back of a book.

Library, Schema

So far in this chapter and the last, we have created a schema with and
without a dictionary and we have created a payroll library without a schema.
Is a library the same as a schema? The answer is yes and no. A schema is a
library but a library is not necessarily a schema. For example, when we
created the TEST01 schema, the system created a library named TEST01
for us and populated it with the catalog objects that SQL likes to have in a
library to fully do its thing. These objects plus the library object itself make
up the essence of the schema.

For example among other things, SQL built a journal and a journal receiver
object in TEST01 so that all SQL tables built in that schema (library) are
automatically journaled (have all updates recorded in a log file). If we were
to display the PAYROLL library before we create anything in it, we would
find that it has no objects in it. Thus, a schema is a library with specific
objects preloaded for work in the SQL environment. These objects are
referred to as the schema-wide catalog.

The TEST04 library built from the testo4 Create Schema statement also
contains an IDDU data dictionary because we asked for it. So TEST04 has
seventeen more objects pre-built for it than does a schema built with no
dictionary.

When the test01 and test04 schemas were created, a schema-wide catalog,
journal and journal receiver were also automatically created. All of those
tables collectively are called the schema-wide catalog. This catalog stores
database information particular to the schema where it resides. Objects
from different schemas can interact with each other; thus, tables in different
schemas can be used in the same SQL query.

System-Wide Catalog

Besides the schema-wide catalog, there is another catalog contained in IBM
provided libraries QSYS, QSYS2 and SYSIBM. Most of the system-wide

catalog is resident in QSYS2 but to be technically correct there are parts of
the system-wide catalog in those two other libraries. This catalog stores
database information for all schemas. Under library SYSIBM, the ODBC
and JDBC catalog views also reside. These views are compatible with views
on other DB2 systems.

While we are discussing the libraries on the system, QSYS2 is a very
important library as it holds a lot of the system-wide catalog. Though
similar in name to QSYS, this library cannot contain other libraries.
Metadata about all objects on the system is stored in a series of SQL tables.
Most of these are built inside the library QSYS2, but others are built in
SYSIBM, and no Virginia, there is no Q in front of SYSIBM. A snapshot of
the objects in QSYS2 and SYSIBM are shown in Figures 7-2 and 7-3.

Figure 7-2 Some QSYS2 System Catalog Objects
 Display Library

Library : QSYS2 Number of objects . : 159

Type : PROD Library ASP number . : 1

Create authority . . : *SYSVAL Library ASP device . : *SYSBAS

Type options, press Enter.

 5=Display full attributes 8=Display service attributes

Opt Object Type Attribute Size Text

 SYSCST *FILE LF 73728

 SYSCSTCOL *FILE LF 40960

 SYSCSTDEP *FILE LF 40960

 SYSFEATURE *FILE PF 241664

 SYSFUNCS *FILE LF 53248

 SYSINDEXES *FILE LF 81920

 SYSJARCONT *FILE PF 49152

 SYSJAROBJ *FILE PF 57344

 SYSKEYCST *FILE LF 61440

 SYSKEYS *FILE LF 61440

 SYSLANGS *FILE PF 45056

 More

F3=Exit F12=Cancel F17=Top F18=Bottom

So, now you have evidence that when you create a schema, it places
information about the schema (metadata) within the system catalog and
then as objects are added to the schema, the tables in the schema as well as
the system catalog get updated.

Chapter 7 Libraries & Other Native Objects. 167

Figure 7-3 Some SYSIBM System Catalog Objects
 Display Library

Library : SYSIBM Number of objects . : 49

Type : PROD Library ASP number . : 1

Create authority . . : *SYSVAL Library ASP device . : *SYSBAS

Type options, press Enter.

 5=Display full attributes 8=Display service attributes

Opt Object Type Attribute Size Text

 CPRIVS *SRVPGM CLE 135168 SQL FUNCTION CPRIVILE

 CPRIV00001 *SRVPGM CLE 118784 SQL FUNCTION CPRIVILE

 CPRIV00002 *SRVPGM CLE 126976 SQL FUNCTION CPRIVILE

 PRIVILEGES *SRVPGM CLE 139264 SQL FUNCTION PRIVILEG

 PRIVI00001 *SRVPGM CLE 126976 SQL FUNCTION PRIVILEG

 SCHEMAS *SRVPGM CLE 98304 SQL FUNCTION SCHEMA

 SCHEM00001 *SRVPGM CLE 94208 SQL FUNCTION SCHEMAS

 CHECK_CSTS *FILE LF 32768

 COLUMNS *FILE LF 208896

 COLUMNS_S *FILE LF 208896

 PARAMETERS *FILE LF 114688

 More...

F3=Exit F12=Cancel F17=Top F18=Bottom

(C) COPYRIGHT IBM CORP. 1980, 2003.

Create a Native Database

The native IBM i CL Command below:

CRTPF FILE(PAYROLL/MASTER) RCDLEN(136)

will create a physical file (structurally an SQL Table) called MASTER in a
library called PAYROLL. The file called MASTER is given a single level
storage address, and then it is placed on any disk on the system. A directory
entry for master is added to the PAYROLL library object. Notice that there
was no source file referenced in the command so there is no DDS involved
in the creation of this database file object. The only definition is a 136-byte
record length.

Student note: Source files are like text files used to contain programs or
other descriptive data such as database descriptions, DDS is an IBM i only
language used to define native databases. SQL came later to the IBM I
system than DDS.

For this to work, the record length is a requirement so the database builder
knows how big to make the one big field the database will contain. When
MASTER is loaded with data records, the data probably will be spread
across different disks, since that is one way the system optimizes database
performance. The applications do not care because the system keeps track
of it all and it uses the directory entry in the PAYROLL library so that
through the PAYROLL library, MASTER can be found by name.

MASTER is pointed to (located) by this entry in the PAYROLL Library
(directory). Of course having MASTER in the library does not really give
us a database. For MASTER to be a usable database file containing the
structure of its data as well as its data, the structure (in DDS form stored in
a source file) must be referenced on the CRTPF command (create physical
file).

The system cannot guess what fields should be in the MASTER file so to
use this file as in the System/36 environment, the programmer enters the
field names and attributes into an RPG or COBOL source program along
with the program. To create a real database that is defined within itself,
however, the programmer would enter one DDS line for every field in the
table and then use the CRTPF to reference these descriptors to create the
structure. The Create Table command is used to do the same thing in SQL
and all the attributes, such as Labels can be processed by RUNSQLSTM.

Student note: RUNSQLSTM is not covered in this course.

In a native environment, however, the programmer submits the DDS
source for compilation using the CRTPF command for a DDS-defined file
For SQL, the RUNSQLSTM command can be used with SQL source in a
source file.. Both forms of database compilers read source file members as
input and each creates the database physical file as its output. If it is an SQL
object, the compiler adds a few more descriptive entries in the underlying
physical file object description and it also updates the schema. The system-
wide catalog gets updated in both cases.
.

Database Structures

Years ago, Ashton Tate’s dBase program referred to the descriptions for
databases as structures. It was another way of saying record layout. I still

Chapter 7 Libraries & Other Native Objects. 169

like to call physical database file descriptions “database structures.” It
makes good sense and that is how they have been referred to in the PC
world since the days of Ashton Tate’s groundbreaking dBase database
product. Sometimes Access 2007 calls these templates. Database structures
are thus maintained within the file object itself on an IBM i. Yes, they also
can exist in source but the real descriptors are in the physical and logical file
objects themselves.

To say again, the descriptions of the file and the fields (metadata) are kept
within a part of the file object on the IBM i. A physical file object on the
IBM i therefore contains both the structure (definition) of the data, and the
data itself. When an SQL table is created, the Create Table function builds
a non-keyed physical file similar to the physical file created with the CRTPF
command. It dutifully places the field names from the CREATE Table into
the same structure definition area as when the file is created via CRTPF.

Those who use the DB2 database typically do not care about the underlying
structure.

DB With No Structure

There has actually been a lot said in the preceding paragraphs. First of all,
real native IBM i databases, with fields known to the system, are created
when the CRTPF command is given a source definition from which it can
build the actual DB field descriptions within the database file object. The
RUNSQLSTM can also be used to process a Create Table command.
However, with the CRTPF native command, a database file can be created
without a source definition by merely specifying a record length. In this
case, the file looks and feels like the flat files you would find on other
record oriented systems such as VSAM based mainframes, and System/36s.
The 136-byte record creation is shown again below for closer reference:

CRTPF FILE(PAYROLL/MASTER) RCDLEN(136

This command creates a database file for sure, since there is no file on the
IBM i that is not a database file. However, there are no field definitions
provided to the database compiler. After this command, if you wanted to
get a list of the field names in the file, you could use the display file field

description command or DSPFFD. This command would show you that
there was, in fact, one field defined for this file. Its name would be
MASTER, it would be of type character and it would be 136 bytes long.

High Level Language (HLL) programs are not forced to use the power of
the database on the IBM i. Therefore they can describe the record layout
(Input in RPG and Data Division in COBOL) of a file within the program
itself, just as with a non database machine. They can do the same with SQL-
created tables. As long as the total size of the internally described data
fields did not exceed 136, and the spots carved out in the record for
numeric data actually are used for numeric data, using this method is OK
on an IBM i.

It’s not good. But it is OK. Of course, it does not help when you want to
run system commands that demand that the database structure be
contained within the DB object. Thus, without the data separated into
columns, Data File Utility inquiries or Query/400 queries against the file
would be worthless, since the file projects that it has just one field to show.

The ability of an IBM i database file to be “ internally described” within a
program has some, but few advantages. For example, this capability can
come in especially handily, when you are importing data from other
systems. It can also come in handy when you are running programs from
another system, which does not have a database, such as an IBM
System/36.

Chapter Summary

A library is a directory object that contains entries that are used to locate
system objects. Since libraries are objects, however, they must be stored
someplace and they are stored in the system library called QSYS. The
typical search for an object would be to find the library first in QSYS and
then use that library object to locate the object in question. The SQL object
type “schema” is a form of a library with special SQL objects.

Physical and logical database files are stored in libraries. If the library
happens to be a schema also, they can also be stored in a schema. A source
files is a special type of database file designed with three fields (Seq#, date,
and text). A source file is created with its own CL command, CRTSRCPF,

Chapter 7 Libraries & Other Native Objects. 171

to avoid having to use native DDS to describe the source files. Source files
may contain a virtually unlimited number of members with each member
can hold different source records. Thus, in some ways, the member list in
an IBM i file is a subdirectory to other file objects, all shaped the same as
the original file.

SQL collections and schemas use the library object as the underlying system
object. When a table is created, it is stored (pointed to) from the schema
which is really a special library object. There are some nice system tools to
work with library structures. For example the DSPLIB command shows all
of the objects in a library, including schema specific objects. Moreover,
there are lots of system commands that can be used against schema objects
to provide even more information than the SQL catalog provides. For
example, the DSPFD command looks into an SQL table and can tell you at
any moment how many records exist in the table. Additionally, the
DSPFFD command looks into the table object and it can tell you the
names, labels, types and other specifics about the columns (fields) in your
SQL tables / files as stored in a schema or a library.

Finally, SQL uses its own capabilities to keep metadata about all the objects
that are created in any of the four SQL faces (environments). Last chapter
we discussed the schema-wide catalog that keeps information about he
objects in a particular schema and in this chapter we introduced the notion
of the system-wide catalog with most of it being kept in system library
QSYS2. There are a number of tables in this library that can deliver
information about SQL objects as well as the native physical and logical
files on the system. In many ways the IBM i catalog then is more
comprehensive than those in other DB2 systems.

In these last two chapters, we outlined the considerations and the steps
necessary to create the files, libraries and application development
environment on your IBM i. Once you create your environment, you can
use SQL to build database objects for your application.

Key Terms

*MBRLIST
ADDPFM
Catalog
Catalog- SYSCHKCST

Catalog- SYSCOLUMNS
Catalog- SYSFUNCS
Catalog- SYSINDEXES
Catalog-SYSTRIGGER

Catalog-SYSVIEWS
Create Schema
Create Table
CRTLIB
CRTPF
CRTSRCPF
Creating Source Physical File
Data File Utility
Database, internally described
DDS specifications
Dictionary
Directories
DSPDBR, Data Base Relations
DSPFD, File description
DSPFFD, File Field Description
DSPLIB, Library
DSPOBJD, Object Description
DSPPFM, Physical File Mamber
Field definitions
File architectures
File objects
File / Member Commands
Integrated File System
Journal
Journal receiver
Library file system
Library object
Library structure
Library/file notiation
LIBRARY/OBJECT
Metadata
Object based system
Object type

Object-oriented
ODBC
Physical file object
Program Development Manager
PDM
QADB*
QDDSSRC source file
QSQLSRC
QSYS
QSYS.LIB
QSYS2
Qualified library
Query/400
RMVM
Root directory
RPG program
RUNSQLSTM
Schema
Select Data
Source DB files
Source description
Source development environment
Source file
SQL objects
SQL source
SQL statements
SQL tables
SYSIBM Library
System catalog
System library
System Storage Genesis
System/36
WRKOBJ, Work with Objects

Exercises

Use this chapter or look up information on the Web to answer the
following:

1. What is a Library?

Chapter 7 Libraries & Other Native Objects. 173

2. Describe the genesis of system storage on IBM i.

3. Write the command to create a library called YOURLIB. Use SQL to
create s schema called YOURSQL.

4. Describe in detail the difference between a library and a
schema/collection.

5. When you create a new database, where does it go?

6. Can a database have no field structure defined when it is created? Give
two examples? What are the implications for the programmer, User?

7. Write the command to create a source file for SQL in YOURLIB.

8. Write the command to display YOURLIB

9. Write the command to remove a member from a source file.

10. What is DDS?

11. Write the SQL to look at the SQL catalog file containing the system
columns

12. Describe the development environment on the IBM i?

13. How would you create a development environment?

Chapter 8 Creating and Dropping SQL Objects 175

Chapter 8

Creating and Dropping SQL Objects

SQL Object Review

In Chapters 6 & 7, we noted the six different object types that come into
play with DDL operations for SQL databases. These are as follows:

✓ ALIAS
✓ COLLECTION
✓ INDEX
✓ SCHEMA
✓ TABLE
✓ VIEW

In the preceding chapters we examined the major containers of SQL
objects in IBM i machines - namely the schema, and the native library and
file structure. Now it is time for us to study the other SQL object types
that are highlighted in the above list.

Building and Working with SQL Table
Objects

We have already discussed the notion of a table and the physical file object
in which tables are stored on the IBM i. We know that tables are the basic
structure in which data is stored in an SQL-driven database. Unless you buy
a package and take what is given, in most cases, you will need to create
tables in the database yourself. There are a number of database tools that
allow you to create tables without writing SQL, and of course, on IBM i,

there is also DDS, which is a native way of describing data and creating file
objects. But given that the table is the container of all the data, it is
important to understand how to naturally create a table using the proper
SQL DDL syntax. As we learned in Chapter 4, the SQL DDL statement to
create a table is CREATE TABLE.

What Does the SQL Create Table Statement Do?

On Access2007, it creates an SQL table in the open database.

ON IBM I, the CREATE TABLE SQL statement provides two functions

1. It creates a physical file database object.

2. It provides a detailed data definition of the object.

Since what is in a table is actually more important than the notion of a table
itself, before we delve into the full SQL syntax for CREATE TABLE, it is a

good idea to understand what goes into a table. We know that tables are
divided into rows and columns and are called files in file systems. We also
know that each row represents one piece of data, called a record in files
systems. We know that each column can be thought of as representing a
component or attribute, or a fact about that piece of data, called a field in
file systems.

For example, if you have a table for recording vendor information, then the
columns may include information such as Name, Address, City, Zip, and so
on. As a result, when you specify a table, you include the size that you
expect each of these data elements to be and you specify the data types for
each column. You optionally can specify column headers and other
descriptive text for any particular column.

Data Types

So what are data types? Typically, data comes in a variety of forms. It could
be an integer (such as 1), a real number (such as 0.55), a string (such as
'string'), a date/time expression (such as '2006-JAN-30 04:24:32'), or the

Chapter 8 Creating and Dropping SQL Objects 177

data can even be stored in binary format. When we specify a table,
therefore, we must specify the data type associated with each individual
column (i.e., we will specify that 'Name' is of type char(40) - meaning it is a
string with 40 characters). One thing to note is that different relational
databases allow for different data types, so it is wise to consult the DB2
UDB for IBM i Reference Manual before beginning to use a data type that
may be supported in MySQL, Oracle, SQL Server, or Ingres. Don’t assume.

Syntax – Create Table

The basic SQL syntax for CREATE TABLE in all SQL implementations is
as follows:

CREATE TABLE "table_name"

("column 1" "data_type_for_column_1",

"column 2" "data_type_for_column_2",

...)

There are many other keywords in SQL besides column names and data
types for the Create Table statement but there is nothing more basic than
defining the data. If we were to create the Vendor table noted above, it
would look very much as it did in Figure 4-4 in Chapter 4. However, for
this example, let’s introduce a new and handy data type called date as shown
in Figure 8-1..

A Close Look at SQL Data Types

In Figure 8-1, notice that the database definition uses just four different
data types – numeric (zoned decimal), character, decimal (packed), and date.
When you design a database, whether with DDS or with SQL, it is
important to pick the correct data type for a column.

Figure 8-1 Creating a Tables/File with SQL

 CREATE TABLE VENDORP

 (VNDNBR NUMERIC(5,0) NOT NULL,

 NAME CHAR(25),

 ADDR1 CHAR(25),

 CITY CHAR(15),

 STATE CHAR(2),

 ZIPCD DEC(5,0),

 VNDCLS DEC(2,0),

 VNDSTS CHAR(1),

 BALOWE DEC(9,2),

 SRVRTG CHAR(1),

 DATLAC DATE,

 Primary Key (VNDNBR)

Student Note: Data types are not all implemented in Access2007 or in IBM
i DB2.

With many companies doing business in multiple countries and with supply
chain management forcing companies to have compatibility with each
other’s IT systems, the idea of data typing has taken on a life of its own. If
you are doing business in the USA or some other country for that matter,
and that country is all you care about, then the basic data types supported
by the native database with DDS on IBM I will serve you well. However, if
you will be using distributed processing techniques to access data, it is very
important that data typing considerations play a large role in your DB
design so that your text data conversions will occur as expected.

For more information on data typing, the IBM DB2 UDB for IBM i SQL
Reference manual is available for free downloads from IBM. This book,
along with the SQL Programmer’s Guide is your bible for all matters
regarding IBM i SQL

Table 8-2 and 8-3 show the difference between the data typing available in
DDS and that available with SQL. The newer data objects are supported
via SQL. However, as you will see by reading the chart in Figure 8-3, RPG
has not yet caught up in its use of all data types.

Chapter 8 Creating and Dropping SQL Objects 179

Figure 8-2 Data Types for DDS

Data Type Valid Lengths Code
Character 1 through 32 766 characters A or blank

Hexadecimal 1 through 32 766 bytes H

Binary 1 through 18 digits B

Zoned decimal 1 through 31 digits S

Packed decimal 1 through 31 digits P

Floating-point (single
precision)

1 through 9 digits F

Floating-point (double
precision)

1 through 17 digits F

Date 6, 8, or 10 characters L

Time 8 characters T

Timestamp 26 characters Z

Figure 8-3 SQL Data Types with RPGIV Equivalence
SMALLINT Definition specification. I in position 40,

length must be 5 and 0 in position 42.
OR
Definition specification. B in position 40,
length must be <= 4 and 0 in position 42.

INTEGER Definition specification. I in position 40,
length must be 10 and 0 in position 42.
OR
Definition specification. B in position 40,
length must be <= 9 and >= 5 and 0 in
position 42.

BIGINT Definition specification. I in position 40,
length must be 20 and 0 in position 42.

DECIMAL Definition specification. P in position 40 or
blank in position 40 for a non-subfield, 0
through 30 in position 41,42.
OR
Defined as numeric on non-definition
specification.

Maximum length
of 16 (precision
30) and maximum
scale of 30.

NUMERIC Definition specification. S in position 40 or
blank in position 40 for a subfield, 0 through
30 in position 41,42.

Maximum length
of 30 (precision
30) and maximum
scale of 30.

FLOAT (single
precision)

Definition specification. F in position 40,
length must be 4.

FLOAT (double
precision)

Definition specification. F in position 40,
length must be 8.

CHAR(n) Definition specification. A or blank in
positions 40 and blanks in position 41,42.
OR
Input field defined without decimal places.
OR
Calculation result field defined without decimal
places.

n can be from 1 to
32766.

CHAR(n) Data structure name with no subfields in the
data structure.

n can be from 1 to
32766.

VARCHAR(n) Definition specification. A or blank in position
40 and VARYING in positions 44-80.

n can be from 1 to
32740.

BLOB Not supported Use SQLTYPE
keyword to declare
a BLOB.

CLOB Not supported Use SQLTYPE
keyword to declare
a CLOB.

GRAPHIC(n) Definition specification. G in position 40.
OR
Input field defined with G in position 36.

n can be 1 to
16383.

VARGRAPHIC(n) Definition specification. G in position 40 and
VARYING in positions 44-80.

n can be from 1 to
16370.

DBCLOB Not supported Use SQLTYPE
keyword to declare
a DBCLOB.

DATE A character field
OR
Definition specification with a D in position
40.
OR
Input field defined with D in position 36.

If the format is
*USA, *JIS,
*EUR, or *ISO,
the length must be
at least 10

TIME A character field
OR
Definition specification with a T in position
40.
OR
Input field defined with T in position 36.

Length must be at
least 6; to include
seconds, length
must be at least 8.

TIMESTAMP A character field
OR
Definition specification with a Z in position
40.
OR
Input field defined with Z in position 36.

Length must be at
least 19; to include
microseconds,
length must be at
least 26. If length
is less than 26,
truncation occurs

DATALINK Not supported in RPG

Date Data Types

As you would expect, the date data type is designed to store dates more
intelligently than in character format and / or decimal format. For
example, by storing a date as a date, high level languages and SQL
procedures can recognize the data as a date and cane provide special
function to derive answers to queries about different dates such as the
amount of days that have lapsed between two dates etc. For the vendor
file, we chose to add the date field as the last column, thereby providing a
database file of 11 columns.

You can see in Figure 8-1 that the field DATLAC (date of last vendor
activity) has been added as a date data type. Also note that we already had a

Chapter 8 Creating and Dropping SQL Objects 181

Vendorp file in our book library (SQLBOOK,) so to use this create we
would have first had to drop the table or delete it with a CL command.

The UDB 400 for IBM i supports a few very special data types for date,
time, and timestamp. Unlike most other data types, you do not specify the
length for these three data types when you define a field in DDL. The
system automatically determines the length of these data types.

The database actually stores them all in a four byte internal form on disk
with each record. When you run SQL statements or you compile a
COBOL or RPG program that includes the date data types, you also get to
specify (or take the defaults) for which external date format that you would
like to use for these fields in your database. The program then uses these
external definitions to translate the four byte internal values into meaningful
dates, times, or timestamps. Moreover, and more importantly, these fields
can be involved in special data arithmetic in SQL and in languages such as
RPGIV, making it very productive to use this form of the date, rather than
building your own in decimal or character format.

There are a number of tables available for the date, time, and timestamp
formatting through IBM and other sources. To see up-to-date tables, rather
than a table that will be quickly out of date in this book, take your favorite
search engine and type in IBM i DB2/sql date data type, and you will
have all the current information you need.

Field Reference File / Dictionary

There is another notion implemented in databases called a Field Reference
File which more or less provides the opportunity to have a passive data
dictionary capability within the native database. In DDS, for example, there
is a keyword called FORMAT in which the developer would place the name
of the physical file (table) that would be referenced for its data / field
definitions.

It makes creating files easier than having to know all of the field definitions,
text descriptions and column headings that were proper to use so it is a
heavily used feature on IBM i. Because the native physical file object
structure includes the names of all the columns in the database, this
reference facility does not have to go back to the source file to get the

definitions. It gets them right out of the file object itself. Moreover, when it
creates the physical file object / table, it also stores information about the
reference file so that later down the road this information could be
determined and a developer would know from whence the data definitions
for the file had really come.

The fact that IBM i tables hold their own definition information means that
there are three levels of metadata. Metadata about a table exists within the
table itself, and in the schema-wide catalog, and in the system-wide catalog.

SQL Based Field Reference Files

IBM in the last several years has really been trying to make SQL a viable
alternative to DDS for its IBM i SQL developers. IBM I SQL is as rich as
mainframe DB2. Some of the facilities announced in past releases such as
V5R2 such as the reference file capabilities prove that point. Of course
more came with V5R3 and more again with V5R4 and 6.1 etc. From V5R2
back in in 2002, IBM provided a tool to help in the creation of a field
reference file function, similar to that provided by DDS.

To do this, IBM added some new clauses in the Create Table statement that
I have seen used in other database servers. There are two new forms of the
Create Table statement that provide this capability, they are as follows:

CREATE TABLE LIKE

CREATE TABLE AS (SELECT…) WITH

We will explore both below. The facility that mimics the DDS FORMAT
keyword is the Like clause of the Create Table. In the following example,
we create a file called VVENDORP that gets its all of its field definitions
from the VENDORP file in the SQLBOOK schema.

Chapter 8 Creating and Dropping SQL Objects 183

CREATE TABLE SQLBOOK/VVENDORP

LIKE SQLBOOK/VENDORP

The resulting file has the entire set of field definitions from the based on
VENDORP file. The next example takes the VENDORP file as the base
but this time we use only five of the fields in VENDORP in the new file.
Notice the two versions of the same statement below:

CREATE TABLE SQLBOOK/VVENDORP_FOUR

AS

(SELECT VNDNBR, NAME, ADDR1, CITY,

STATE

FROM VENDORP)

WITH NO DATA

CEATE TABLE SQLBOOK/FOUR_DATA_COPY

AS

(SELECT VNDNBR, NAME, ADDR1, CITY,

STATE

FROM VENDORP)

WITH DATA

There is just one difference in the two above examples besides the non-
duplicate names of the two tables. The “With clause” in the first example
says “NO DATA” so just the definition is built. The “With clause” in the
second example says “DATA” so after the file is built SQL does a COPY
of the data under the covers and maps the data to the fields in the copy.

No Reference in the Object

IBM’s work in making this facility into an equivalent field reference file is
incomplete at this point but it is a good start. If you were to use the native
IBM I display file field reference command to look into the created object
you would see that the reference information from VENDORP has not
been captured. With DDS as noted above, the file from which the reference
descriptions were gleaned is included in each of the column definitions
stored in the file object. So IBM i SQL is not as fully featured yet as the
native database. Perhaps it is time that IBM proposed an extension to the
SQL standard for a specific reference file capability. Even without this
information, the reference capability as it stands is a great start.

System and SQL Table Names

DB2 UDB on IBM i provides long name support for SQL objects and also
for column names in a table. SQL object names for Tables, Indexes and
Views, for example, have a maximum length of 128 characters. SQL
column names max out at 30 characters. Access2007 names are 64
columns.

Those of you who have used an IBM i in the past know that 30 characters
are too much for many IBM i functions to handle. Many IBMi utilities,
commands, and interfaces only support a name of 10-characters in length.
RPG/400 for example, still a popular language on IBM i supports just six
character field names. This may become an issue when using native IBM i
commands to access SQL objects. However, there are ways to get around
this potentially big problem.

The CREATE TABLE statement does not allow you to specify a short
name for the table name. To help the IBM i user and to assure that the
objects built with long names can be accessed by IBM i tools, the system
does generate a short name automatically, but the short name has some
natural shortcomings.

Unfortunately for the notion of ease-of-use, the generated short name is
not what you might call “user-friendly.” For example, when you create a
table named INVENTORY_MASTER, IBMi automatically generates a

Chapter 8 Creating and Dropping SQL Objects 185

short 10-character name as INVEN00001, which is an amalgamation of the
first five characters of the table name and a unique 5-digit number. Any
other object built with the first five characters INVEN will get sequence
00002 and the next sequence # 00003 and so forth. After awhile, it will be
hard to tell just what each file is at the system level, merely by knowing its
name.

In some ways this is like the old PCDOS naming issues on PCs in which
you had to shorten the PCDOS name in order to get at the Windows
created files. As long as you know the rules, however, this method can
work for you. For example the native IBM i command to look at the file
description using a system command for INVENTORY_MASTER would
be as follows:

DSPFD SQLBOOK/INVEN00001

Display File Description (DSPFD) says look inside the file
definition in the INVEN00001 object that is stored in library
SQLBOOK and display it.

Of course, that’s as long as the file was the first one built. If not, you’d
have to query the amalgamated name suffix by incrementing it and
performing the DSPFD again. The good news is that there is a way to use
the RENAME statement to make this situation lots better. The format of
the RENAME TABLE statement is as follows:

RENAME TABLE schema/original table

name to SYSTEM NAME new table name

Let’s rename the INVENTORY_MASTER short name of INVEN0001 to
a more meaningful short name of INVNMASTER. Here is the statement
that does that followed by the system response:

RENAME TABLE SQLBOOK/INVENTORY_MASTER

TO SYSTEM NAME INVNMASTER

RENAME for INVEN00001 in SQLBOOK

completed.

So now for system commands, such as the DSPFD command, the new
name can be used as follows:

DSPFD SQLBOOK/INVNMASTER

With the RENAME command, we could have also have changed the long
name of the INVENTORY_MASTER file but we did not. So, the file is
now known by two names. The short name is how it can be addressed
through the operating system and the long name can be used with SQL as
shown in the example below:

select * from SQLBOOK/INVENTORY_MASTER

The RENAME TABLE works with both TABLES and VIEWS. If you
ever need to rename an index, then you would use the second form of the
RENAME command. RENAME INDEX.

Creating an Alias

You can create an alternative name, called an ALIAS for any table or view
built with SQL. When you assign an alias, you are assigning a name (long
name) to the short name, so for some this might suffice rather than using
the RENAME since the name you create as an alias as in the second
example below can in essence alias a short name with another short name.

Chapter 8 Creating and Dropping SQL Objects 187

CREATE ALIAS SQLBOOK/INVENTORY_MASTER

for SQLBOOK/INVNMASTER (NEW)

CREATE ALIAS SQLBOOK/INVEN2 for

SQLBOOK/INVNMASTER (NEW)

Why would you use the Create Alias statement? There are a number of
reasons why you might want to use an alias. However, one thing the experts
agree on is do not overwork the use of alias because it can get “hairy.”
Here are some of the valid reasons:

1. You may want to rename an object and still have existing applications
that refer to the old object name

2. You may want to create a different SQL long name for users who might
relate better to a different name

3. You may want to use SQL to access an existing database file object that
has multiple members (as explained in Chapter 7).

In the two examples above, if you include the (NEW) parameter, you will
be working with a specific member.

Alias for Selecting Specific Members

Suppose we have a multiple member table called Invoices and each week
we segregate the daily invoices by the name of the day. In other words, the
Invoice file has members for Sunday, Monday, Tuesday, Wednesday,
Thursday, Friday, and Saturday, each accessible and separated by the
member name. Since all of these members (using the days of the week) are
less than ten characters these work out fine as member names.

Suppose it is now Friday and we need to perform some special analysis on
the Wednesday data member of the Invoice file. Without an alias, there is
no way (other than an override database in a Command Language - CL
program) that we can access a file member other than the first member of a
file (the natural member that would be selected by default). The SQL code
to provide an alias for Wednesday is as follows:

CREATE ALIAS SQLBOOK/WedInvoice for

SQLBOOK/INVOICE (Wednesday)

From this point on, WedInvoice can be used in all SQL operations to refer
to the Wednesday member of the INVOICE table. The following SQL
Select shows how this new “Alias” can be used:

Select * from WedInvoice

Column Names

Using IBM i SQL, column names can be created initially with long names
up to 30 characters.

The first tool that we will examine is another clause of the CREATE
TABLE statement. The name of this clause within the CREATE TABLE
statement is:

FOR COLUMN

The FOR COLUMN clause of the CREATE TABLE command allows you
to specify a short name for your long column names. This short name can
be used with all of the IBM i functions that must use the short field names.
For those familiar with DDS, it is exactly the opposite. In DDS, you
specify the short column and alias the long column. With SQL, you specify
the long column and use the FOR COLUMN clause to provide the short
alias for the column (field).

To add column names, you can use the following clause when creating the
table:

Chapter 8 Creating and Dropping SQL Objects 189

FOR COLUMN Clause

A sample statement to create a two-field inventory master file and then
create the equivalent of a large alias field name for each of the two columns,
would be the following:

CREATE TABLE SQLBOOK/INVENTORY_MASTER4

INVENTORY_NUMBER FOR COLUMN INVNBR

INT NOT NULL WITH DEFAULT,

INVENTORY_ITEM_NAME FOR COLUMN

ITEMNAME VARCHAR (50) NOT NULL WITH

DEFAULT)

This gives you one column name for each of the two fields in this table.

Adding Column Headings and Field Text

The SQL CREATE TABLE command has no clause to enable text or
column headings to be applied to the columns in an SQL table. If you
work with native database, then you might expect that the CREATE
TABLE, just as the CRTPF command in native with DDS should, with just
the same one command be able to place the headings on columns as well as
place the text that best describes the column.. However, this cannot be
done with one command in SQL.

Those familiar with DDS or who use data warehousing / query products to
work against flat files already know that any database worth its salt permits
a nice amount of text as well as descriptive column headings within each
database table to describe fields. SQL can do this. However, it is not a
clause of the CREATE TABLE statement. The SQL tool to use is called:

LABEL ON

For this example, we will create an earnings file with some of the fields well
described with text and column headings. We will also provide an alias field
definition (EMPLOYEE_NAME) so that you can get a full picture of what
you need to do to dress up the insides of your tables. The better dressed, of
course, the more ready they are for inquiry and query programs.

Here is the CREATE TABLE statement for a Payroll Earnings file:

SQLEARN File

CREATE TABLE SQLBOOK/SQLEARN

(EMPLOYEE_NAME FOR COLUMN EMPNAM CHAR(35)

 CCSID 37 NOT NULL DEFAULT '' ,

EMPFNAME CHAR(15) CCSID 37 NOT NULL DEFAULT '' ,

EMPLNAME CHAR(20) CCSID 37 NOT NULL DEFAULT '' ,

EMPINL CHAR(1) CCSID 37 NOT NULL DEFAULT '' ,

ACCT# NUMERIC(6, 0) NOT NULL DEFAULT 0 ,

EMPAD1 CHAR(35) CCSID 37 NOT NULL DEFAULT '' ,

EMPAD2 CHAR(40) CCSID 37 NOT NULL DEFAULT '' ,

CITY CHAR(20) CCSID 37 NOT NULL DEFAULT 'WILKES-BARREE',

PAYCOD CHAR(1) CCSID 37 DEFAULT NULL ,

RATE NUMERIC(5, 2) NOT NULL DEFAULT 0 ,

STATUS CHAR(1) CCSID 37 NOT NULL DEFAULT '' ,

MGRNO NUMERIC(6, 0) NOT NULL DEFAULT 0 ,

EMPNO DECIMAL(6, 0) NOT NULL DEFAULT 0 ,

SALARY NUMERIC(9, 2) NOT NULL DEFAULT 0 ,

TXTINF VARCHAR(50) CCSID 37 NOT NULL DEFAULT '',

Primary Key (EMPNO)) ; (semicolon for RUNSQLSTM use)

Before we move on to other topics, let’s create one more table that we will
be using later in the book. It is called the EMP or Employee table

EMP File
CREATE TABLE SQLBOOK/EMP (

 EMPNO CHAR(6) CCSID 37 NOT NULL ,

 FIRSTNME CHAR(12) CCSID 37 NOT NULL ,

 MIDINIT CHAR(1) CCSID 37 NOT NULL ,

 LASTNAME CHAR(15) CCSID 37 NOT NULL ,

 WORKDEPT CHAR(3) CCSID 37 DEFAULT NULL ,

Chapter 8 Creating and Dropping SQL Objects 191

 PHONENO CHAR(4) CCSID 37 DEFAULT NULL ,

 HIREDATE CHAR(8) CCSID 37 DEFAULT NULL ,

 JOB CHAR(8) CCSID 37 DEFAULT NULL ,

 EDLEVEL SMALLINT NOT NULL ,

 SEX CHAR(1) CCSID 37 DEFAULT NULL ,

 BIRTHDATE DATE DEFAULT NULL ,

 SALARY DECIMAL(9, 2) DEFAULT NULL ,

 BONUS DECIMAL(9, 2) DEFAULT NULL ,

 COMM DECIMAL(9, 2) DEFAULT NULL) ;

Column Headers

If we were running with the RUNSQLSTM command, we would end the
statement with a semicolon as above and we could place the LABEL ON
statement immediately following this if we chose. However, the fact is that
you can create a table one day and weeks later you can add the descriptive
text with LABEL ON. However, this is not a good method for a database
designer to use. An SQL DDL - LABEL ON statement that touches
many of these fields and adds column headers to the SQLEARN table is
shown below:

LABEL ON COLUMN SQLBOOK/SQLEARN

(EMPLOYEE_NAME IS

 ‘COMPANY EMPL NAME' ,

EMPFNAME IS

 'EMP FIRST NAME' ,

EMPINL IS

 'EMP INIT' ,

ACCT# IS

 'EMP GL ACCT NBR' ,

EMPAD2 IS

 'EMPAD1' ,

PAYCOD IS

 'PAY CODE’ ,

RATE IS

 'PAY RATE' ,

 STATUS IS

 'AC REC CD' ,

 MGRNO IS

 'MGR NBR') ;

The operative word for each column is the word “IS” This word means
that the text that follows is for the column heading and it is not to be
construed as plain old descriptive text.

If the column headings that you see above are put in as if they are three 20-
character segments of a 60-character string, it is because that is exactly how
this is implemented. For years, SQL permitted just on column header line
but DDS permitted the headers (used for column headings in reports) to be
defined with three parts – each part being printed on a different line of the
heading of a report. For example The EMPLOYEE_NAME and
EMPFNAME fields would appear as below as report columns:

COMPANY EMP

EMPL FIRST

NAME NAME

This is in contrast to taking lots of column width on a report by stringing
out the text a follows:

COMPANY EMPL NAME EMP FIRST NAME

Column Text

In addition to being able to dress up the column headings in a table,
another form of the LABEL On clause as shown below permits us to add
descriptive text to fields in the database to provide documentation as to
what each field is all about. The theory here is that the column header is a
public notion and may not reflect what the database designer wants to say
about any particular element.

LABEL ON COLUMN RUNSQLLIB.SQLEARN

(EMPLOYEE_NAME TEXT IS 'COMPANY EMPL NAME' ,

 EMPFNAME TEXT IS 'EMPLOYEE FIRST NAME' ,

 EMPLNAME TEXT IS 'EMP LAST NAME' ,

Chapter 8 Creating and Dropping SQL Objects 193

 EMPINL TEXT IS 'EMPLOYEE INITIAL' ,

 ACCT# TEXT IS 'GL # FOR EMPLOYEE' ,

 RATE TEXT IS 'PAY RATE' ,

 STATUS TEXT IS 'ACTIVE RECORD CODE' ,

 MGRNO TEXT IS 'MGR NBR' ,

 SALARY TEXT IS 'EMPLOYEE SALARY') ;

The operative phrase for each column is in the words “TEXT IS.” This
phrase differentiates the text message from the heading method. It means
that the text that follows is for a description of the field and it is not to be
construed as a column heading.

Creating an Index

Indexes are created on existing tables. Unlike native database DDS, indexes
are not assigned to logical files or views. They are used by the SQL
optimizer to locate rows of data more quickly and efficiently. SQL has an
intelligent ‘Query Engine” of its own on the IBM i and the engine
optimizes its performance by intelligently mapping out the path that it will
take to find the data in an SQL request. In many systems, this
optimizations scheme, stored with the database, is called an access plan.
Just as the term indicates, it is a plan of attack for SQL queries. When any
of the underlying objects that had been a part of any access plan are deleted,
a plan may be invalidated by the optimizer. The next time the plan is
needed; it invalidates itself and creates a new plan. While creating access
plans, the database engine (optimizer) looks for the best indexes to use to
optimize the access request.

Note: A native IBM i logical file is a mechanism that permits “views” of
data to be built using DDS. The views are database objects and, just as
an SQL view, they provide physical data in a different form from the
underlying table.

An SQL index can be built on one or more columns of a table. Each index
gets its own name in much the same way as a native logical file. Unlike
logical files, however, SQL users do not get to see indexes via SQL. They
are just there for the optimizer to speed up SQL queries. Other than for

system use, for SQL use, they are “invisible.” They are typically created by
an IT person serving in the role of a database administrator since all indexes
affect performance in one way or another – positively or negatively. A
knowing source should always be involved in SQL index creation.

For example, all things being equal, the process of updating a sorted table
containing indexes takes more time than updating a sorted table without an
index. This is because the indexes also need to be updated. So, it is a good
idea to create indexes only on columns that are often used for searches.

Let’s say we wanted to create a unique index over our illustrious Vendorp
file on the name field. A unique index means that two rows cannot have
the same index key contents (value). The syntax of the command would be
as follows:

CREATE UNIQUE INDEX index_name

ON table_name (column_name)

A quick example follows:

CREATE UNIQUE INDEX vendori ON VENDORP

(ADDR1 ASC)

Result:

Index VENDORI created in SQLBOOK on

table VENDORP in SQLBOOK.

Let’s continue by creating an index over the SQLEARN table that we built
with the CREATE TABLE statement earlier in this chapter. The statement
to perform this SQL function and its completion message is as follows:

Chapter 8 Creating and Dropping SQL Objects 195

CREATE INDEX SQLBOOK/EARNIDX ON

SQLBOOK/SQLEARN (EMPNO)

Index EARNIDX created in SQLBOOK on

table SQLEARN in SQLBOOK.

IBM i data management creates a “native” keyed logical file (a native IBM i
structure)as the home object for the SQL index. In this example, EMPNO
is the key with which data will be sorted when using the EARNIDX SQL
index. However, if you try to look inside the index itself with either the
native Display File Description (DSPFD) or the native Display File Field
Description(DSPFFD) commands, you may be surprised that the file
EARNIDX looks almost exactly the same as a logical file would that was
created with DDS. But, of course you would first have to know how to use
DDS.

Student Note: DDS knowledge is not required in this course.

There is an indicator in the internal database file object that it was created
as an SQL type Index so, without even going to the schema-wide or
system-wide catalog, SQL can tell that this guy is not really a logical file that
may also be an SQL View. It is in fact, an index. For example, if we were
to execute the following command:

select * from SQLBOOK/EARNIDX

IBM i SQL data management would very quickly notify us that we were
trying an illegal operation on the index as you can see in the message I
received below:

EARNIDX in SQLBOOK not table, view, or

physical file.

It definitely knows!

SQL Table Indexes are Structurally Native Logical Files

Though access as a View via SQL is taboo as shown above, the index file
object is available for your use as a native logical file when you use native
IBMi commands. Though they are not usable to SQL, they are however,
very usable to native methods and this can mean a lot to the accomplished
IBM i developer.

IBM is moving the IBM i database to an SQL orientation though
admittedly it will take a long time. That is a given. So, why would IBM
give the Index object more power for native than for SQL? By permitting
the SQL index object to actually be used as a bona fide logical file in native
mode, IBM gives the native programmer (most IBM i shops) the
opportunity to use the same key-based record at a time program operations
against the Index object as could be done with a logical file with all fields
projected. Therefore, it helps IBM to make it easier for IBM i shops to
change their data definition language to SQL’s DDL from DDS. If all the
tables were SQL instead of DDS today, the job for IBM would be half
over. That’s where Big Blue is heading.

The SQL View and the Create View
Statement

Now, it’s time to take a look at the last SQL object that we will be covering
in this chapter – the SQL View. Check out the code to create a view on the
IBM i using the longer notation:

Chapter 8 Creating and Dropping SQL Objects 197

CREATE VIEW SQLBOOK/EARN_PROJECTION

(EMPFNAME, EMPLNAME, EMPINL, EMPAD1,

EMPAD2, CITY)

AS SELECT

 EMPFNAME,

 EMPLNAME ,

 EMPINL,

 EMPAD1,

 EMPAD2,

 CITY

FROM SQLBOOK/SQLEARN

This view will be created in the SQLBOOK schema. Of course if you
would prefer not to be long-winded as in the definition of the SQL View
above, you can eliminate the first projection with a shorter statement that
does the same thing. You can then use the results of the select as needed:

CREATE VIEW SQLBOOK/EARN_PROJECTION

AS SELECT

EMPFNAME,

EMPLNAME,

EMPINL,

EMPAD1,

EMPAD2,

CITY

FROM SQLBOOK/SQLEARN

View EARN_PROJECTION created in

SQLBOOK.

An SQL View is a virtual table. It is based on the result-set of a SELECT
statement. It is like a native logical file and in fact, a logical file is created

whenever you create a view. Unlike a native logical file, however, an SQL
View cannot be built with a key. It contains rows and columns, just like a
real table. In fact it contains fields from one or more real tables in the
database. A View can span multiple tables – up to 32.

You can add SQL functions to a view by using the WHERE, and JOIN
clause which we will be examining more in Chapter 14. The View presents
data to the user or to a program through the view as if the data were
coming from a single table – regardless of how many tables make up the
view.

The database design and structure of the underlying physical data is not
affected by the functions, where, or join statements in a View.
As you can see from the introductory CREATE VIEW functional
statement above, the Create View has its own unmistakable syntax as
follows:

Create a View – Syntax

CREATE VIEW view_name AS

 SELECT column_name(s)

 FROM table_name

 WHERE condition

A simple example view follows:

CREATE VIEW SQLBOOK/vendorv

 AS SELECT *

 FROM vendorp

 WHERE balowe > 500

View vendorv created in SQLBOOK

Chapter 8 Creating and Dropping SQL Objects 199

You may recall in Chapter 5 that we created this view as an early example.
Once you create a view, you can treat it as if it were a table itself and get
additional query power from the SELECT statement as follows:

Select * from vendorv where SRVRTG = ‘R’

Figure 8-4 SQL Query Against a View

 Display Data

 Data width : 134

Position to line Shift to column

....+....1....+....2....+....3....+....4....+....5....+....6....+....7....+..

..

VNDNBR NAME ADDR1 CITY

 48 Denton and Ball 7934 S SCRANTON AVE SCRANTON

 26 Lockhart Machinaws 45 Ginzo Lane Wokegon

 30 Detweiller Controls 45 Fognetta Place Kernstin

******** End of data ********

 Bottom

F3=Exit F12=Cancel F19=Left F20=Right F21=Split

The table shown in Figure 8-4 is the result of the simple select against the
view Vendorv. The view is the object that actually provides the selection of
records with SRVRTG of ‘R’ even though the SRVRTG field is not shown
in the panel. You would have to hit F20 to shift the data to see it.

Now, let’s review the simple view of the Vendorp file from above that we
first created in Chapter 5. To make it more convenient, we repeat the
coding for the view below:

CREATE VIEW vendorv

 AS SELECT *

 FROM vendorp

 WHERE balowe > 500

The Essence of a View

The creation of a view in essence is the same as running an SQL Select
query and then saying that is a great query, then memorializing the
SELECT statement by packaging it in the operative form of an permanent
SQL object Since we have not spent much time discussing the SELECT
statement at this time it is still obvious in this simple language that this
select uses the WHERE clause. The Where clause is SQL’s way of limiting
the rows returned in an SQL query. As you would expect from the code,
only a subset of the rows in the Vendor table will be returned by the Select
statement in this View.

Once we create the view, as shown above, operations on it are similar if not
mostly identical to operations performed on SQL tables. If we choose to
perform a Select on this view later in the month, or later next year, by
having saved the View, we can later treat it as if the View is a table by itself:.
In the example below, we execute the view from a more populated version
of Vendorp.

SELECT * from SQLBOOK/VENDORV

Figure 8-4 Returned Data from a Select upon a View
 Display Data

 Data width :

 Position to line Shift to column

+....1....+....2....+....3 | .9....+...10....+...11....+...12....+.

 VNDNBR NAME | ZIPCD VNDCLS VNDSTS BALOWE

 48 DENTON AND BALL | 18,504 20 A 3,500.00

 25 A MACHINE CORP. | 45,903 10 A 7,500.00

 26 B MACHINERY | 23,657 20 A 1,495.55

 30 D CONTROLS | 45,793 20 A 900.25

 7,020 Sun MicroSystems | 95,054 10 A 8,000.00

 8,030 Phillies Phinest | 18,702 20 A 35,700.00

 8,020 Bings Music | 58,702 20 A 79,700.00

 ******** End of data ********

One of the first things that you may notice in Figure 8-4, is that this select
has returned only those records (rows, tuples) in which the balance owed is
in fact greater than $500.00. [Note: We used a split screen technique in
SQL to show the right side while freezing the number and name
columns.] If you look further, you will notice that the data is in no
particular sequence. That is another feature of SQL. Unless you say to

Chapter 8 Creating and Dropping SQL Objects 201

order (sequence) the data by something, it comes back the way SQL wants,
not necessarily the way you may want it. We examine the ORDER BY
clause with select in the next section below.

SQL Views cannot be built with keys (indexes) on the IBM i or any other
SQL machine that conforms to the SQL standard. With SQL you create
your Views and then you create indexes as separate objects, as we did at the
beginning of this chapter. The indexes are created over the base tables,
however. There is no relationship between the view and the index other
than that the view may reference a table that uses an index as a performance
helper.

When you make an SQL request to access the SQL View, it is the SQL
query optimizer's job to find an index to use to access your data through
the specified SQL View. If the optimizer finds an appropriate index, your
query runs faster. If it doesn’t find one, it doesn’t run any faster; regardless
of whether you use the ORDER BY or not. You can do nothing to make
the query use an index. That is the nature of SQL.

“Order By” Clause -- Projection / Selection of a View

The Order By clause is used to retrieve data in a specified sequence. For
example, we could use an order by clause in the example in Figure 8-4, and
we could sort the data on vendor name. For our purposes, let’s go back to
the Vendorv view and let’s provide a simple select statement with a subset
of fields and let’s add the Order By on it.

Type in this statement as follows:

SELECT name, balowe, vndcls

 FROM sqlbook/vendorv

 WHERE vndcls = 20

 ORDER BY balowe DESC

 SELECT statement run complete.

This statement projects three fields from the Vendorv View, further selects
records for VNDCLS of 20 [Note: the Vendorv view selected balowe >
500.00] and the statement then uses the Order By to sort the balance owed
column in descending sequence. Ascending is the default. The results of
this Order By SQL is shown in Figure 8-5.

Figure 8-5 Order By Clause Descending on BALOWE
 Display Data

 Data width

: 48

Position to line Shift to column

.

....+....1....+....2....+....3....+....4....+...

NAME BALOWE VNDCLS

Bings Music 79,700.00 20

Phillies Phinest 35,700.00 20

Denton and Ball 3,500.00 20

Lockhart Machinaws 1,495.55 20

Detweiller Controls 900.25 20

******** End of data ********

Bottom

F3=Exit F12=Cancel F19=Left F20=Right F21=Split

Dropping (Deleting) SQL objects

In this chapter, we have proven that SQL can create lots of good stuff. In
IT whenever there is a facility that can create stuff that resides on a disk
drive and therefore takes space, you can count on there also being a way to
free up that space with a statement designed to get rid of created things.
The statement name to do that in SQL is not the DELETE; it is the word
highlighted immediately below:

DROP

So, what are the things we can drop / remove with the drop statement and
how do we use the various commands. Rather than list the objects and
then show you how to delete them using DROP, the DROP commands are
so short that I can list both the statement and the object below and

Chapter 8 Creating and Dropping SQL Objects 203

intuitively you will know how to delete all of the SQL object types that we
studied in this chapter. In fact, to make it more real, let’s use object names
that we have created this chapter.

DROP also works in Access2007 for objects recognized by Access.

DROP COLLECTION SQLBOOK

DROP SCHEMA SQLBOOK

DROP TABLE SQLBOOK/Vendorp

DROP INDEX SQLBOOK/EARNIDX

DROP ALIAS SQLBOOK/WEDINVOICE

DROP VIEW SQLBOOK/VENDORV

DROP DISTINCT TYPE TYPENAME

OK, we did not yet cover the DISTINCT Type so when we do, you now
know how to delete it.

Schema Considerations

Before you drop a schema, exercise due caution. When a schema is deleted,
all objects in the schema are also deleted. Moreover, when you drop the
Schema, all dependent objects – views, indexes, foreign key constraints, etc.
that reference a table being dropped --- are also dropped. The only way to
get them back is with a backup tape, and that is serious business to the
business.

There is a technique that can be used with a DROP SCHEMA that
minimizes your exposure to an inadvertent delete. The drop schema has a
keyword called RESTRICT that can assure that the Schema and its
associate objects are not deleted unless all objects have first been removed
from the schema. If you use this option, you are forcing yourself to
examine all of the objects before you eliminate them all. When data is
critical and its reconstruction would be problematic, the RESTRICT option
is a very good idea.

The keyword gets added to the end of the statement as in the following:

DROP SCHEMA SQLBOOK Restrict

SQL Object Naming Guidelines

In Chapter 16 we delve head-on into the notion of entities and entity
relationships. We know that tables represent the instances of an entity.
Take vendor information as an example. You store all your vendor
information in a table, perhaps even several tables. Here, 'vendor' is an
entity and all the rows in the vendor table represent the instances of the
entity 'vendor'. So, why not name your table using the entity it represents,
'VENDOR'.

There are those who would argue that such a table is storing 'multiple
instances' of vendors, so you should make your table name a plural word,
such as Vendors, not Vendor. The most prevailing notion in this regard,
however, is that the database represents a set of data by definition and there
is just one “set,” and thus the name should be singular. With that in mind,
consider

Naming your vendor table as “Vendor”

Naming your order table as “Order”

Naming your item table as “Item”

If your database deals with different logical functions and you want to
group your tables according to the logical group they belong to, consider
prefixing your table name with a two or three character prefix that can
identify the group of tables as being related in some way.

For example, your database has tables which store information about your
Sales department, you could name all your tables related to Sales
department as shown below:

Chapter 8 Creating and Dropping SQL Objects 205

SLS_Leads

SLS_Regions

SLS_RegionsManagers

For transaction files in which you build “junction tables” that are used to
provide a physical transaction record for each instance of a many-to-many
relationship within base tables, you might consider a multi-part name. An
Example of this would be a “Student_Class’ file in which many students
take one particular class and many classes can be taken by one student.
When a student enrolls in a class, a transaction occurs and the naming for
that transaction table should reflect its purpose.

Since Views are often a combination of two tables based on a join
condition, representing two or more entities, consider combining the names
of both the base tables. For example, if there is a view combining two
tables “Vendor”' and “Addresses,” name the view as 'Vendror_Addresses.”

For field names, many experts like the idea of adding about a three
character prefix or suffix to each column in a table to help differentiate the
data names when they are used in a program or procedures.

Here are ten additional thoughts for establishing SQL table and index
naming conventions.

1. Avoid using the object type as part of the object name. For example, do
not use the words FILE, TABLE, or INDEX as part of the name.

2. Use the table name and a suffix for SQL indexes. With SQL, you do not
need to be concerned about the length of the name, as indexes cannot be
specified in an SQL statement. SQLEARNIDX in this scenario would
easily be recognized as an SQL index over SQLEARN. Obviously, it is not
a good idea in practice to include the name SQL in your names unless you
are differentiating such objects from native objects.

3. Avoid overly complicated, long names for tables or other database
objects.

4. Be careful using 'Mixed case' names instead of using underscores to
separate two words of a name so that you can assure that all developers are

consistent with case through out their code. Though this does not really
matter on IBM i, there are case sensitive SQL Servers. Having to guess the
case of a character in a name is an extra burden for developers.

5. Use underscores only between the prefix/suffix and the actual object name.

6. Do not break the name of an object with underscores

7. Do not use spaces within the name of database objects. IBM i uses spaces as

delimiters.

8. Do not use reserved words for naming my database objects. You will either

get poor or unpredictable results

9. If you plan to implement over multiple databases, find out the lowest
common denominator names and attributes that will work. In most
databases and file systems, the first character of a name must be a letter,
while subsequent characters may be letters, digits, or _ (underscore). There
are DBMS packages out there that allow $, #, @ -- but so far, no DBMS
has been inclined to allows all three. Even when special characters allowed,
they are not allowed in all instances. For example, Microsoft attaches
special meaning to names that begin with @ or # and Oracle discourages
special characters in the names of certain objects.

10. If you plan to implement over multiple databases, also be aware of the
differences in data typing and length. All SQLs are not equal and the IBM i
has grown up substantially in data typing over the last few years. Length is
very inconsistent, For example, for columns, constraints, and tables,
Microsoft permits 128 across the board, whereas Oracle has traditionally
been 30 across the board and IBM is 30, 18, and 128 respectively. For field
names, a nice oracle convention is to prefix the fieldname with a 2 or 3
character contraction of the table name

Qualifying SQL Object Names

You have the option of qualifying SQL objects with the Schema name or
choosing to use defaults. If you use defaults when you create a new SQL
object (do not use qualified library name with the object name) what

Chapter 8 Creating and Dropping SQL Objects 207

happens when you create the object? Which schema does it go in? It
actually goes into the schema that is in your current library.

Current Library

What is a current library? When each user on the IBM i signs on, they are
assigned a current library for the work that they are about to commence. If
that library name were SQLTEST, then that is the default library in which
the SQL object, say the VENDORX Table will be created. See Figure 8-6
for a look at the notion of a library list.

Let’s run this command in interactive SQL or with RUNSQLSTM and see
what we get:

CREATE Table SQLTEST/VENDORX ….

Table VENDORX in SQLTEST created but

could not be journaled.

As you can see, the file is created in the current library, SQLTEST in this
case.

All Libraries Are Not Schemas

All libraries are not schemas. This says a few things. First of all, it says that
the VENDORX table was created in a “schema” called SQLTEST.
However, it also says that the schema was not a real SQL-built schema; it
was a plain old library. Since it was not really a schema, SQL could not
update the schema-wide catalog since it did not exist and SQL could not
cause journaling to begin on the new database object because the proper
artifacts of a schema did not exist in the SQLTEST library.

When an SQL Table Is Created

By now, you have been well introduced to the notion of a physical file and
the idea that an SQL table when created becomes an IBM i physical file.
This is all true, but there is a lot more that happens when the file object is
created through SQL. These things include the following:

1. The schema- wide catalog is updated if it exists along with the system-
wide catalog.

2. The file is marked specially as an SQL table to differentiate it from those
created with DDS or other means.

3. The file is built with just one member, the name of which is the same as
the table. As with all physical files, the default member that is used, unless
an override is in effect, is always the first member.

4. The record format name is the same as the file name. This is a major
departure from DDS and in some languages such as RPG/400, this can
cause some issues during compilation.

5. The table has no maximum size.

6. The file is automatically journaled, providing there is a schema. Both
before and after journal images are performed.

7. The database management system automatically reuses deleted records or
holes in the database without the user having to perform reorganize
functions.

The Primary Key Constraint

IBM i SQL has grown up quite a bit and will continue to grow up over the
next several years until it has all of the function of all of the other SQLs in
the industry including all of the DB2 versions. Many enhancements have
been made to the product in recent years including the primary key clause
of the CREATE TABLE command.

Its format is as follows:

Chapter 8 Creating and Dropping SQL Objects 209

Primary Key (field1, field2…)

Figure 8-1 shows the primary key constraint within the SQL DDL used to
create the Vendorp table. This constraint does two things. First of all, it
enforces the relational database primary key rule. Secondly, it builds a
unique index over the primary key that can be used in a high level program.
Tedd Codd’s primary key rule applied to the Vendorp file says basically that
no two rows will have the same vendor number. This identifier will serve as
a unique identifier for each row.

The Primary key clause for the vendor file is repeated below:

Primary Key (VNDNBR)

As a free format language, SQL does not care if you use multiple lines for a
statement as well as multiple blanks between words. Most examples that
you see, however, show a style that appears to be very rigid and very same,
not very flexible. Although the rigid style, especially in DDL is very evident
in training examples end in most implementations, it is not required. It
does, however, make statements much easier to read than an unaligned
stream of text. Thus, I suggest you continue with the style as shown in
Figure 8-1.

You may have noticed already that SQL is not case sensitive. You can type
create table or Create Table and it means the same. The AS/400 operating
system likes upper shift; yet it too permits lower shift to be entered. But,
when it stores the characters that are typed, unless they are quoted strings, it
stores them in upper case. When it displays them, it displays in upper case
even though you can reference the VENDORP file as the vendorp file and
still get a hit.

The Notion of “Null”

In the description of the vendor file shown in Figure 8-1, you may have
noticed the word null. It follows the word “NOT” as in the line below:

VNDNBR NUMERIC(5,0) NOT NULL,

The VNDNBR field has also been selected as the primary key, which is by
definition, is not allowed to be null. When a field is defined to be able to
accept null values, it means that there will be times that the column has no
value for that particular record. An example would be a student record in a
class test grade list in which the student was absent for the test and did not
receive a zero. If the student received a zero, it would be averaged into the
class average. However if the student has yet to take the exam or was
excused entirely from the exam, that student’s record would not be
included in the class average. Thus a null has more implications than a
blank or a zero and because there could be numerous nulls in a primary key
field if they were permitted, it would violate the primary key rule and
therefore, they are not permitted.

The Library Search List

The library search list is a phenomenon unique to the IBM i. It has some
of the capabilities of a path statement in PCDOS. Basically, it is a
mechanism for avoiding searching the whole system for unqualified objects
(objects not specified with a library name). It is a job phenomenon, not a
fixed object on the IBM i. In other words, when you sign on to the IBM i a
job starts on your behalf. Every job has a library list supplied by an object
called a job description. When you submit a batch job or a procedure on
the IBM i, the submit function supplies a job description (a native object
type) with a library list that can be overridden by the Submit command
itself or it can be changed within the job stream with a change job CL
command (CHGJOB).

Chapter 8 Creating and Dropping SQL Objects 211

Figure 8-6 The Library Search List
 Display Library List

 System: SYSTEM3

Type options, press Enter.

 5=Display objects in library

 ASP

Opt Library Type Device Text

 QSYS SYS System Library

 QSYS2 SYS System Library for CPI's

 QHLPSYS SYS

 QUSRSYS SYS System Library for Users

 SQLTEST CUR

 QGPL USR General Purpose Library

 QTEMP USR

 Bottom

3=Exit F12=Cancel F17=Top F18=Bottom

C) COPYRIGHT IBM CORP. 1980, 2003.

Display Library List

The panel shown in Figure 8-6 is the result of a command that is executed
interactively on an IBM i most often from the command line but it could be
embedded in a program. The command is display library list, entered as
DSPLIBL. That’s it. The IBM i verb to display anything is DSP, the IBM i
adjective or noun for library is LIB, and the IBM i shortcut for list is L.
Once the command is processed, it returns the current library list.

Three Parts to a Library List

As you can see in the display shown in Figure 8-6, there are three parts to a
library list. There is the system library list, the current library and the user
library list. There can be 250 objects listed in all of the parts of a library list
but normally there are less than 25. When you ask for an object by name,
the IBM i dutifully searches every library from those specified in the system
library list to the current library to the user library list. When the name is
not located, the system returns a message saying object not found.

For SQL Select commands, for example, the system will search the entire
list for the tables or views that are requested. However, for SQL create
commands, the system checks the current library to be sure that the object
does not exist and then it creates it in the current library. Each user on the

system can have a different current library but often the current library is
set up as the same for all users of a major group.

Current Library

It is fun to learn about all of the advanced notions of the IBM i but there is
enough material to write a huge book so I am trying to simplify the notion
of IBM i work management without burdening you to understand it all.
However, I could not skip the topic. When you run an SQl command with
the Interactive SQL facility, the library list that exists in your job (signon to
signoff) is the list of libraries where the SQL functions will look for SQL
objects if you do not qualify the object name. When you create a new
object and you do not specify the library name as a qualifier, it will be built
in your current library. That is important if you are trying to find these
objects after a successful ISQL session in which you created SQL objects.

The Library Qualifier

When you choose to use the library qualifier, you must be careful within in
the source file to use the proper naming convention for library qualifier.
To qualify an object such as Vendorp as living in the SQLBOOK library, it
would be qualified as follows using System naming and SQL naming.

SQLBOOK/VENDORP System naming

SQLBOOK.VENDORP SQL Naming
.

Proper Naming SYS or SQL?

The interactive SQL (ISQL) has lots of other options that you should check
out if you ever have the opportunity to get on an IBM i system. Try typing
the STRSQL (start SQL) command and hitting F4 (the prompter) on an
IBM i command line. Another option worth noting for both is the naming
convention. With the naming parameter you choose the System (SYS) or
SQL (SQL) option of naming. When you choose the SQL style for naming

Chapter 8 Creating and Dropping SQL Objects 213

references, the separator is a period and when you choose System, it is a
slash (/).

Chapter Summary

Placing the SQL Create or the DROP verb in front of any of the following
SQL object types will be your entrée into creating that object in the schema
or creating the schema itself. It is also your entrée into deleting the schema
or deleting any of the SQL objects within a schema.

• ALIAS
• COLLECTION
• INDEX
• SCHEMA
• TABLE
• VIEW

SQL gives long names to all of the objects that it creates and it uses the first
five characters of the long name plus a five digit suffix to build a short
name for IBM i internal use. There are examples shown in this chapter to
help you be able to change the short names or the long names of these
objects.

One of the most time consuming job in using SQL databases is creating
them. Care must be taken for every entity that is created as a table. All of
the attributes (fields) need to be defined exactly on the Create Table
command with the proper name, length and data type. If the name is a
long name, internally the name is shortened for native use. You can also
change this name with a RENAME command. When you select a length,
depending on the data type, the column may actually take less or more
space than you expect.

Therefore it helps to understand the data types that can be selected for the
columns you define. If you need math to be performed on a column value,
for example, choose one of the numeric data types. If you need decimal
places, choose the numeric type, the decimal type or one of the floating

point (real) types depending on your intended use. If the field is to contain
a date, time, or timestamp value, code its data type accordingly.

IBM has enhanced SQL with a capability that permits alias names to be
assigned to members. This may be a better option for you than using the
OVRDBF command in CL prior to using the member at execution time.

Table indexes are for performance only with SQL. However, if you use the
primary key clause in creating a table, SQL will build an index on the
primary key and the physical file underneath will behave as a keyed physical
file just as if it were created with DDS. If you are switching to DDL from
DDS, this is good to know.

The For Column clause enables you to rename your short column names to
make them more meaningful for native DB operations. The Label On
Column statement is very handy in getting both column heading and text
information into the table object to betted describe a column.

When you have Select operations that you want to permanently capture so
they can be used by anybody in the organization, it is good to create a View.
Once you create a View, which is structured as a logical file with no key,
you can use that View in further SQL queries or you may embed the View
into a program just as if it were an SQL table.

The default sequence for any SQL operation without an explicit Order By
clause is indeterminate. Thus the Order By clause is very valuable in
providing data to your views, queries, or programs in the proper sequence.

Though, you can name any of your objects anything that you want to the
length limits, it is good to think about your naming convention so that it is
easier to work with your SQL objects and their attributes. When you
qualify object names with the schema (library) name, you must use the
format of the STRSQL, STRQM, RUNSQLSTM or the HLL precompiler
you are using. You can either use the System option (/) or the SQL option
(.) of naming. If you pick the wrong option, it will give you a bad day.

The Library Search List is a structure that is job oriented on the IBM i but it
can have an effect on your SQL in any of the four faces. If you do not
qualify your SQL objects, then you are at the mercy of the library list as to
where SQL finds your objects and where it creates them.

Chapter 8 Creating and Dropping SQL Objects 215

Key Terms

Alias
Batch job
Bigint
Binary
Blob
Case sensitivity
Char
Character
CHGJOB
CL program
Clob
Column headings
Column names
Column text
Compile
Create alias
Create Table
Create View
Creating Index
CRTPF
Current library
Data types
Datalink
Date
DB design
DBClob

DDL
DDS
Decimal
Default library
Dependent objects
DOS naming
Drop collection
Drop distinct type
Drop schema
Drop table
Drop view

DSPFD
DSPFFD
DSPLIBL
File object
Float
Floating-point
For column clause
Free format language
Graphic
Headings on columns
Hexadecimal
i5/OS utilities
Index object
Integer
Job description
Job stream
Journal
Label On
Library
Library list
logical file
Long column
Mixed case
Multi-member files
MySQL
Naming convention
Naming guidelines
Null
Numeric
Optimizer (SQL)
Oracle
Order by clause
OVRDBF
Packed decimal
Physical file object
Primary key constraint
Query Engine

Query/400
Rename Table
Restrict
RPG program
RPGIV
RUNSQLSTM
Schema Considerations
Select
Short alias
Short name
Smallint
SQL index object
SQL naming
SQL orientation
SQL procedures
SQL queries
SQL Servers

SQL statements
SQL view
Student_Class
Suffix
System naming
Table name
Text is
Time
Timestamp
Transaction files
User library list
Varchar
Vargraphic
Views
Virtual table
Zoned decimal

Exercises

Use this chapter or look up information on the Web to answer the
following:

1. Name the SQL object types that can be created or dropped?

2. Is there a difference in the default naming for objects with long names
from the native to the SQL environment? If so, What Is the difference?

3. Name seven data types that you can see using in SQL and give a
description of the data type and your reasons for choosing each of the
seven types.

4. What does the SQL Create Table statement do?

5. Write the SQL to Create a table named Customer_Static_Information
with about eight data columns. Be sure to use the For Column clause with
some of the fields. Explain what the For Column clause does. Assign a
primary key. Create the table in the YOURSQL schema you created in the
Chapter 7 exercises.

Chapter 8 Creating and Dropping SQL Objects 217

6. Write the SQL to change the short column names that were produced for
some of e long column names. Why is this a good idea?

7. Write the SQL to add column headers and text to the fields you defined
in your customer file.

8. What are the Date, Time, and Timestamp data types and why would you
use them.

9. Write the SQL to create an Alias for a table on your system called
“THIS_IS_A_LONG_TABLE_NAME”

10. Write the SQL for Creating an Index on your customer file

11. Write the SQL to create a view over the customer file that includes just
five fields and includes a Where clause.

12. Write down the full system commands to display the customer file
information, the field information, the member list, and the data from the
file.

13. When you execute a DSPPFM command against this new customer file
will any data appear on the report?

14. Write the SQL to perform a select against the customer view you
created. Project and select the data even further and order it by customer
name.

15. What do you have to be concerned about when you are dropping a
schema?

16. Why are some SQL objects not journaled when they are created?

17. Explain the notion of the primary key constraint.

18. Explain the notion of “Null”

19. What is a library search list and what bearing does it have on an SQL
environment.

20. Write the full command to display a library list? The command to
intelligently modify a library list is EDTLIBL. Type in this command on
your AS/400 and create a printout of the first panel for submission Add
YOURSQL library to the list.

21.Write the full command to display a library list? Is there an extra library
in the list? If so, what is its name?

22.What are the three parts to a library list?

23. What function does the CL command to “override a database with”
provide? Why would you use it?

24. Write the command that would enable you to use an add physical file
member command to add a member called Member2 to the customer table
you created in step X

25. Write the CL to override the customer file so that you will be using the
Member2 set of data rather than the default member.

26. Write the SQL command that creates an alias for the Member 2 file so
that the override in Exercise 25 does not have to be executed.

Chapter 9 Interactive SQL (ISQL) 219

Chapter 9

Interactive SQL (ISQL)

Interactive v. Batch

An interactive SQL facility is associated with every database manager.
Essentially, every interactive SQL facility is an SQL application program
that reads statements from a terminal, prepares and executes them
dynamically, and displays the results to the user. Such SQL statements are
said to be issued interactively.

The interactive facility for DB2 UDB for IBM i are invoked by the
following commands / interfaces:

STRSQL Start Interactive SQL

Static SQL vs. Dynamic SQL

No discussion of SQL is complete without covering the notion of static and
dynamic SQL. Basically the difference is in the name. Static SQL is fixed
and mostly unchangeable whereas dynamic SQL is provided or can be
provided on the fly during execution.

Static SQL

The source form of a static SQL statement is embedded within an
application program written in a host language such as COBOL. It does not
change during execution or after. The statement is prepared before the

program is executed and the operational form of the statement persists
beyond the execution of the program.

The key point is that a source program containing static SQL statements
must be processed by an SQL precompiler before it is compiled. The
precompiler performs a lot of functions long before the program is
executed. For example, it checks the syntax of the SQL statements to assure
they are correct. Then it takes the source statements and changes them into
host language comments. Finally, it generates host language statements to
call the database manager.

When we cover program development in Chapter 13, you will see the steps
in running programs with embedded static SQL. Again the first step is the
preparation of the program with the static SQL statements. The second
step is pre-compilation, and the final setup before execution is the full
compilation of the modified source program.

Dynamic SQL

A dynamic SQL statement is prepared during the execution of an SQL
application. The operational form of the statement persists until the last
SQL program leaves the call stack. When the call stack is empty, that SQL
is gone. The source form of the statement is a character string that is passed
to the database manager by the program using the static SQL statement
PREPARE or EXECUTE IMMEDIATE. These are examined in Chapter
13. SQL statements that are submitted to the interactive SQL facility that
we are now exploring are also dynamic SQL statements.

DML and ISQL

The major DML statements that are used with IBM i Interactive SQL are as
follows:

Chapter 9 Interactive SQL (ISQL) 221

SELECT
INSERT
UPDATE
DELETE

There is no question that Select is the most popular of the DML
statements. Therefore, the bulk of this chapter is devoted to helping you
get a very good feel for this most powerful operator. So, what we are going
to do in the next few panels is start ISQL and get ourselves ready to run
some interactive Select statements followed by other DML statements.
Then in Chapter 13, we will demonstrate how to put some of those select
and update statements into some RPG and COBOL code to see how IBM i
high level languages work with embedded SQL.

Start Interactive SQL ISQL

Technically the command to start an SQL interactive session is called Start
Structured Query Language. However, most users say that they are using
Interactive SQL (ISQL). This command starts the interactive SQL program
with default parameters unless they are changed. The program starts the
statement entry of the interactive SQL program which immediately shows
the Enter SQL Statements display. This display allows you to build, edit,
enter, and run a SQL statement in an interactive environment. Any
messages during the running of the program are shown immediately on this
display.

The IBM i command that kicks off an ISQL session on the IBM i is as
follows:

STRSQL

As in all IBM i commands, including the RUNSQLSTM command, there
are a number of options of which you should be aware prior to using the
command. Several of the most important parameters of the SQL command

are shown below in Figure 9-1, along with an explanation as to what
function or facility the parameter provides.

When you type the STRSQL command, and you press F4 from the
command line, prior to the session starting, you will see all of the options
for the STRSQL command. These are shown in Figure 9-1. You can
change any of these options prior to starting your session.

Figure 9-1 Prompted STRSQL – The Option Parameters
 Start SQL Interactive Session (STRSQL)

Type choices, press Enter.

Commitment control *NONE *NONE, *CHG, *CS, *ALL...

Naming convention *SYS *SYS, *SQL

Statement processing *RUN *RUN, *VLD, *SYN

Library option *LIBL Name, *LIBL, *USRLIBL...

List type *ALL *ALL, *SQL

Data refresh *ALWAYS *ALWAYS, *FORWARD

Allow copy data *YES *YES, *OPTIMIZE, *NO

Date format *JOB *JOB, *USA, *ISO, *EUR...

Date separator character *JOB *JOB, /, ., ,, -, ' ',

*BLANK

Time format *HMS *HMS, *USA, *ISO, *EUR, *JIS

Time separator character *JOB *JOB, :, ., ,, ' ', *BLANK

Decimal point *JOB *JOB, *PERIOD, *COMMA...

Sort sequence *JOB Name, *HEX, *JOB, *JOBRUN...

 Library Name, *LIBL, *CURLIB

Language identifier *JOB *JOB, *JOBRUN...

Bottom

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

F24=More keys

.

Commitment Control

This STRSQL parameter specifies whether SQL statements are run under
commitment control in this ISQL session.

Naming Convention

This parameter specifies the naming convention used for SQL objects for
this ISQL session. The options are the same as RUNSQLSTM:

*SYS -- The system naming convention (library-name/file-name) is used.

Chapter 9 Interactive SQL (ISQL) 223

*SQL -- The SQL naming convention (schema-name.table-name) is used.

Statement Processing

This STRSQL parameter specifies what values are used to process the
statements. Should the SQL be run, or just checked?

*RUN -- The statements are syntax checked, data checked, and then run.
*VLD -- The statements are syntax checked and data checked but not run.
*SYN -- The statements are syntax checked only.

The ISQL Main Panel

When you hit Enter, you are taken to a panel that looks similar to the
command processing menu (QCMD) for CL commands on the IBM i. This
panel is shown in Figure 9-2.

Figure 9-2 The ISQL Main Panel
 Enter SQL Statements

Type SQL statement, press Enter.

 > CREATE VIEW SQLBOOK/VENDORV AS SELECT * FROM SQLBOOK/VENDORP

 WHERE BALOWE> 500

 VENDORV in SQLBOOK type *FILE already exists.

 Session was saved and started again.

 Current connection is to relational database S999777K.

===> __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 Bottom

F3=Exit F4=Prompt F6=Insert line F9=Retrieve F10=Copy line

F12=Cancel F13=Services F24=More keys

The first thing that you should notice in Figure 9-2 is that there is already
stuff on the display. Where did that come from? It came from “my” last

ISQL session. There are a number of ways to exit ISQL. I always exit with
the Save session option so that all of the good work I did in a prior session
is there when I come back. Of course, sometimes I blindly pick another
option and the command manager very nicely wipes out my whole
workspace.

If you have worked with CL command panels in the past, you are already
familiar with how SQL works. It is not completely the same but it is very
similar. For example, you can hit F9 and bring down the last command
that you ran, change it or leave it alone and run it again. You can also go
way back using the roll up key to work you did several months ago and you
can press F9 next to a complicated SQL statement that you were able to
make work then and the system will bring it back for you so you can change
it or run it again, or at any stage, you can copy and paste it into a program.

From the SQL command line you can type in any SQL statement and press
ENTER. It will execute immediately and provide feedback on the results.
Sometimes it may even bring back a report depending on what you are
doing. If you are just learning the syntax of SQL, you will find the Prompter
most helpful. Let’s try it now. Position your cursor on the first line of the
portion of the ISQL panel that is available for entry (by the --> arrow).
Then, hit Command Key 4 (PF4). You will get page 1 of the main
prompter panel as shown n Figure 9-3

Since most of our work in ISQL will be DML and mostly we will be using
the SELECT statement, pick option 30 from the SQL prompt panel and
you will be taken to a panel similar to the one shown in Figure 9-4.

When you hit the Enter key from the panel shown in Figure 9-4, you will
see the results of the query displayed on your “terminal” screen as shown in
Figure 9-5. Then, when you return to your SQL interactive screen, you will
see the SQL statement as built by the ISQL prompter as shown in Figure 9-
6. If all goes well, it will look as if you had typed it in yourself.

Chapter 9 Interactive SQL (ISQL) 225

Figure 9-3 SQL Main Prompter Panel
 Select SQL Statement

Select one of the following:

 1. ALTER TABLE
 2. CALL
 3. COMMENT ON
 4. COMMIT
 5. CONNECT
 6. CREATE ALIAS
 7. CREATE COLLECTION
 8. CREATE INDEX
 9. CREATE PROCEDURE
 10. CREATE TABLE
 11. CREATE VIEW
 12. DELETE
 13. DISCONNECT
 14. DROP ALIAS
 15. DROP COLLECTION
 16. DROP INDEX
 17. DROP PACKAGE
 18. DROP TABLE
 19. DROP VIEW
 20. GRANT PACKAGE
 21. GRANT TABLE
 22. INSERT
 23. LABEL ON
 24. LOCK TABLE
 25. RENAME
 26. RELEASE
 27. REVOKE PACKAGE
 28. REVOKE TABLE
 29. ROLLBACK
 30. SELECT
 31. SET CONNECTION
 32. SET TRANSACTION
 33. UPDATE
Selection 30 ___
F3=Exit F12=Cancel

Figure 9-4 Specify Select Statement Parameters
 Specify SELECT Statement

Type SELECT statement information. Press F4 for a list.

 FROM files VENDORP
 SELECT fields NAME, CITY, STATE, VNDCLS, BALOWE
 WHERE conditions BALOWE > 95.00
 GROUP BY fields
 HAVING conditions
 ORDER BY fields
 FOR UPDATE OF fields Bottom

Type choices, press Enter.

 DISTINCT records in result file Y Y=Yes, N=No
 UNION with another SELECT N Y=Yes, N=No
 Specify additional options N Y=Yes, N=No

F3=Exit F4=Prompt F5=Refresh F6=Insert line F9=Specify subquery
F10=Copy line F12=Cancel F14=Delete line F15=Split line F24=More keys

Figure 9-5 Display Results of Prompted Query
 Display Data

 Data width : 73

Position to line Shift to column

....+....1....+....2....+....3....+....4....+....5....+....6....+....7...

NAME CITY STATE VNDCLS BALOWE

J B COMPANY SCRANTON PA 10 100.00

SCRANTON INC OLD FORGE PA 20 250.00

PASS PAX INC OLD FORGE PA 10 300.00

K D BUTTS WALLACE INC SCRANTON PA 30 500.00

DENTON AND BALL SCRANTON PA 20 3,500.00

JOHN STUDIOS SCRANTON PA 10 325.00

A MACHINE CORP. Chicago IL 10 7,500.00

B MACHINERY Wokegon OK 20 1,495.55

C ENGRAVING CO Greghert IL 20 100.00

D CONTROLS Kernstin IL 20 900.25

I POWER EQUIPMENT Swingder PA 20 250.00

ROBIN COMPANY Robin PA 20 153.00

F STEEL CO Mattusic PA 30 290.00

Sun MicroSystems Santa Clara CA 10 8,000.00

ATG Dynamo Cambridge MA 20 352.56

McFadyen Consulting Indianapolis IN 10 250.00

 More...

F3=Exit F12=Cancel F19=Left F20=Right F21=Split

Figure 9-6 Prompter-Built SQL Statement
 Enter SQL Statements

Type SQL statement, press Enter.

 > CREATE VIEW SQLBOOK/VENDORV AS SELECT * FROM SQLBOOK/VENDORP

 WHERE BALOWE> 500

 VENDORV in SQLBOOK type *FILE already exists.

 Session was saved and started again.

 Current connection is to relational database S102F52E.

 > SELECT DISTINCT NAME, CITY, STATE, VNDCLS, BALOWE FROM VENDORP

 WHERE BALOWE > 95.00

 VENDORP in *LIBL type *FILE not found.

 > SELECT DISTINCT NAME, CITY, STATE, VNDCLS, BALOWE FROM

 SQLBooK/VENDORP WHERE BALOWE > 95.00

 SELECT statement run complete.

===> __

 __

 __

 __

 __

 __

 Bottom

F3=Exit F4=Prompt F6=Insert line F9=Retrieve F10=Copy line

F12=Cancel F13=Services F24=More keys

Chapter 9 Interactive SQL (ISQL) 227

Select Distinct

You may notice by looking at the panel in Figure 9-6 that we invoked the
distinct clause of the SELECT statement without explaining it. This clause
has implications regarding what records are actually returned

Preventing Duplicate Rows (Distinct)

When SQL analyzes a select-statement, several rows might qualify to be in
the result table, depending on the number of rows that satisfy the select-
statement's search condition. Some of the rows in the result table might be
duplicates. You can specify that you do not want any duplicates by using
the DISTINCT keyword as we did above, followed by the list of column
names that you want to see in the table. This is exactly what we did in
Figure 9-6. However, the nature of the VENDORP data is such that there
are not duplicate vendors in the vendor file so the result would be the same
with or without the distinct clause.

However, if we switch to an Employee file now similar to the one we called
EMP and created in Chapter 8, you will see that the notion of distinct and
the prevention of duplicates means lots more Again, the DISTINCT clause
means you want to select only the unique rows. If a selected row duplicates
another row in the result table, the duplicate row is ignored (it is not put
into the result table). For example, suppose you want a list of employee job
codes. You do not need to know which employee has what job code.
Because it is probable that several people in a department have the same
job code, you can use DISTINCT to ensure that the result table has only
unique values.

The following example shows how you would to do this:

 SELECT DISTINCT JOB

 FROM SQLBOOK/EMP

 WHERE WORKDEPT = 'F11'

From IBM’s sample data referenced in the DB2 Reference Manual this
would result in two rows:

Job
Designer

Manager

Though there may be two or more designers and managers in department
F11, only one entry is returned for each distinct job name. If you choose
not to include DISTINCT in a SELECT clause, you might find duplicate
rows in your result, because SQL returns the JOB column's value for each
row that satisfies the search condition. Null values are treated as duplicate
rows for DISTINCT.

When you include DISTINCT in a SELECT clause and you also include a
shared-weight sort sequence, even fewer values are returned. The sort
sequence causes values that contain the same characters to be weighted the
same regardless of upper or lower case. If 'MGR', 'Mgr', and 'mgr' were all
in the same table, for example, only one of these values would be returned.
The sort sequence is specified as a parameter at the time you invoke an
SQL create program (CRTSQLXXX) function or when you begin an ISQL
session (STRSQL) or you use RUNSQLSTM to process an existing SQL
source file.

Now that we have fired up ISQL and we have worked in a few SELECT
statements interactively, we can close out the ISQL session now by pressing
F3 from the main SQL command panel as shown in Figure 9-6. When you
hit the F3 key, you will see a panel similar to the one shown in Figure 9-7.

Figure 9-7 Exit Interactive SQL
 Exit Interactive SQL

Type choice, press Enter.

 Option 1 1=Save and exit session

 2=Exit without saving session

 3=Resume session

 4=Save session in source file

F12=Cancel

Chapter 9 Interactive SQL (ISQL) 229

As you can see there are four options on the Exit SQL panel shown in
Figure 9-7. With option 1, you can either save your current session and
SQL will dutifully keep your entire work area with all the commands and
results messages until you issue the STRSQL command again. When you
come back in to ISQL, the system automatically puts you in the same work
area and other than the reconnected message you get, it is like you never
left.

You can also choose # 2 to get out of SQL and save nothing. This is a bad
idea unless you have done absolutely nothing in SQL and you want to start
with a clean work area. The third option is the ‘I was only kidding” option
in that it returns you back to the session without exiting. The last option on
the list is very valuable. Instead of your having to cut and paste the
triumphs that you have had in your ISQL session, you can copy it to a
source file at the session close and then you can tweak it and perhaps later
use the RUNSQLSTM command against the file to perform these functions
as needed.

Save Session Caveat

If you saved only one interactive SQL session by using option 1 (Save and
exit session) on the Exit Interactive SQL display, you may resume that
session at any workstation. However, if you use option 1 to save two or
more sessions on different workstations, interactive SQL will first attempt
to resume a session that matches your work station. If no matching sessions
are available, then interactive SQL will increase the scope of the search to
include all sessions that belong to your user ID. If no sessions for your
user ID are available, the system will create a new session for your user ID
and current workstation. In this case, of course, you start with a blank slate.

Chapter Summary

Interactive SQL also known as ISQL is one of the most powerful features
of the SQL toolkit. It is not just a testing environment; it can perform any
of its operations on any live schema or any live database. Thus, it is also
dangerous and should not be easily granted to an end user.

ISQL permits the developer to fashion any and all SQL statements (most
with a prompt assist) and have those statements syntactically verified or
actually validated prior to running the command. Additionally, there is a full
run option that treats every SQL statement that you type and Enter as a
statement that gets immediately executed. Most SQL developer use ISQL to
prove their work before embedding it in an HLL program or creating a
View of data to save the result of the ISQL query and run it as often as
need be.

The STRSQL command gets you into the environment. F9 brings down the
last command and every SELECT entry that is satisfied returns its
unformatted results to the design screen for your review. Rather than use
RUNSQLSTM for functions that are supported, if you use ISQL, there is
less work in determining the fate of your submissions. As in all of the four
faces, you have to be careful about picking the proper naming conventions
– SQL or System when you enter the session.

At the end of your session when you press F3, you get a number of options
giving you great flexibility to wipe out your workspace and exit; or saving to
a source file and exiting, returning to the work session without exiting or
my favorite, exiting and saving the workspace which will automatically
reconnect when you sign on again.

Key Terms

*RUN
*SYN
*VLD
Distinct clause
DML
Duplicate rows
Dynamic SQL
Execute immediately
Exit Interactive SQL options
Extended dynamic SQL
IBM i Navigator,

Naming convention,
QSQPRCED API,
Save session caveat
ISQL Select
ISQL Select Distinct
SQL Development Kit
SQL script
SQL statements
Statement processing
Static SQL
STRQM

Chapter 9 Interactive SQL (ISQL) 231

Exercises

Use this chapter or look up information on the Web to answer the
following:

1. Describe the interactive SQL environment (ISQL) on IBM i.

2. What purpose does IBM i ISQL serve?

3. What does the term Interactive SQL mean?

4. Is there a batch SQL?

5. Compare the benefits of interactive SQL to batch SQL if there is a batch
SQL facility?

6. What command is used to START interactive SQL? What are the major
options of the command and how should they be filled out?

7. What does it mean to prevent duplicate rows?

8. When saving your SQL session after and exit, under what circumstances
might your session be wiped out?

9. How would you take your SQL statements that you have proven with
ISQL and make them work in your chosen environment?

Chapter12 Query Manager 233

Chapter 12

Query Manager

What is Query Manager for IBM i?

The IBM official name for Query Manager is the DB2 UDB for IBM i
Query Manager. It is shipped as part of the IBM DB2 Query Manager and
SQL Development Kit for IBM i licensed program. It consists of a
collection of software tools that you can use to obtain information from
DB2 Universal Database™ for IBM i (DB2 UDB for IBM i) databases.

Just as ISQL, you can use Query Manager to select and analyze information
stored in one or more database tables. In addition to these functions, you
can also arrange the information to produce reports or new permanent SQL
tables. After you go through the effort of building a query, you can create
and run your query definitions, or you can run queries from stored
definitions that you did not create.

The major differentiating factor between ISQL and Query Manager is that
you can format the way that retrieved query data is presented by creating a
report form, and applying the form to the SQL statements when you run a
query. If you would prefer to let Query Manager format the query
information for you, you can do that also, using a simple default report
form.

In other words, for those of us learning Access 2007, the AS/400 or IBM i
Query Manager is the green screen front end that provides access to
difficult query and report functions on an IBM i text based (non-gui)
system.

All of these functions are called from what is called the DB2/400 Query
Manager Menu. From here, you can define, maintain, and run queries, and
you can produce reports or tables from data gathered from database files.
You can also define, maintain, and run report forms, and create and
maintain database tables. The tool for inserting data is a major plus for the
Query Manager over the Insert statement in SQL, just as the Access 2007
tools bring relief from INSERT. In some ways, the Table Manager function
makes entering data into SQL tables almost as easy as it would be in the
IBM I native environment in which the tool of the day is known as Data
File Utility (DFU.)

For those comfortable with the SQL language, the data retrieval part of a
Query Manager Query can be created using SQL. But, for those who have
little or no experience using SQL language, they can create their queries
using Query Manager’s (QM) prompted query creation mode. A series of
displays prompts the user to enter all of the information that Query
Manager (QM) needs to create a query.

QM queries can retrieve data from a single table or from as many as 32
tables. You can select all table columns, or only a few columns, and
organize them for the type of output you desire. You can have all table
rows in the output, or you can select only a few to be included, using row
selection tests. You can also use report breaks and arithmetic summary
functions to include additional information in your report, to make it easier
to read.

Just as with SQL, you determine what data the query is to retrieve, but with
QM Query you also decide the format of the report, and whether the
output should be displayed, printed, or sent to another database table.
By sending query output to a database table, you can create a new
populated SQL table. As noted previously, you can also create and maintain
database tables using Query Manager’s prompt-guided table entry option.

Chapter Summary

QM provides a menu driven SQL based query facility that is both
customized and prompted. It is a very nice tool to use for both queries and
all SQL data manipulation.

Chapter12 Query Manager 235

In addition to standard SQL functions QM has a powerful Table Facility.
This permits the user to create, display, and maintain tables. The latter is via
a powerful table editor. Moreover, the user can also use QM to define QM
profile data. The product is shipped with IBM’s SQL Toolkit ID# 5722-
ST1 as a licensed program.

With QM, users can perform the following tasks:

✓ Create and run QMQRY queries

✓ Create and manage QMFORM reports

✓ Create, manage, and report on DB files

✓ Create and Manage QM Profiles

With QM, Programmers can perform the following tasks:

✓ Perform all user functions

✓ Integrate queries into applications

✓ Pass PARM data into queries at RUN time

✓ Put any ISQL statement can be executed in a CL program

✓ Build a QM Query to manage, control, and manipulate data

✓ Perform QM updates insertion, and deletion of records

There are many facilities in QM that give you the feel of a full-function
query product similar to those found in client PC environments. Though
there was not enough space in a small chapter to review all of the facility in
QM, the information that we covered in this chapter should give you
enough to get a big jump start on your Query Management efforts

Specific implementation topics of QM have not been included in this
student version. Yet, all key terms and all questions about QM are included
to haunt the reader into gaining an appreciation of QM as a fine tool in an
IBM i shop.

Key Terms

AS/400 Query

Averages
Break group

BREAK1
Calculate totals
Column headings
Command window
Control breaks
Control field
Control total
Create and change queries
Create table
Data File Utility
Default report form
Define prompted query
Descriptive text
Edit Panel
Final text
Footing
Formatted report
Grand totals
Level breaks
New Table

Order By
Page heading
PROMPT or SQL
Prompted query
Prompter, 15
query
Query Manager Menu
Query/400
Report
Report breaks
Reporting options
SQL query
SQL statements
STRQM
Summary functions
Summary values
Table editor
Table facility

Exercises

Use this chapter or look up information on the Web to answer the
following:

1. What are the functions of Query Manager for IBM i?

2. Does Query Manager use SQL? If so, how?

3. What are SQL queries in Query Manager?

4. What are prompted queries in Query Manager?

5. What is a report form in Query Manager?

6. How can you make reports easier to read?

7. What is a level break?

Chapter12 Query Manager 237

8. What is a default report?

9. How Does QM Query work?

10. What can be done with the usage column?

11. How can default queries be produced using the Query Prompter?

12. Describe the process of using the QM Edit Facility to create and

13. Use QM Query with a designed form and the SQL option to select the
records from Vendorp in which the VNDNBR is in an inclusive range from
30 to 40.

14. Use QM Query with a prompted default report to select all of the
records from VENDORP whose SRVRTG is R, P, or G.

15. Use QM Query with a prompted option and a designed form to select
all of the records from Vendorp whose VNDNBR is greater than 1000, and
whose VNDCLS is 20 or 30.

16. How would you use QM Query to add a record to the Vendorp File?

17. How would you use QM Query to change the person # in the Persons
table to number 10.

Chapter 13 Embedded SQL HLL 239

Chapter 13

Embedded SQL in High Level
Language Programs

SQL Works with IBM i Languages

The SQL coding that we have been working with in this book until this
time is known as dynamic SQL. In other words, we place an SQL
statement in ISQL or QM source files and without any preparation, the
statements are immediately translated and executed with no need for
compilation. This paradigm changes within the context of this new chapter.
In this Chapter we introduce the notion of using SQL statements within
your high level language programs to provide read, update, add, and delete
capabilities.

SQL is available in IBM’s high level languages:

✓ C

✓ C++

✓ RPG

✓ COBOL

IBM also has three other languages in which SQL is supported. These are
as follows:

✓ REXX

✓ FORTRAN

✓ PL/I

The biggest problem with FORTRAN and PL/I on IBM i is that the
compilers have been frozen for some time now and you need to do special
things to get these languages for your shop.

In this chapter, we focus on embedding SQL in the RPG language. In all
cases, the theory is the same. After showing a simple program in RPG, we
show the same program in COBOL. The second program that we
demonstrate is in RPG and it uses SQL cursors to get the data from
selected records into the program fields. This program is not repeated in
COBOL. Once you get the sense of what embedded SQL actually is and
how it can be deployed in one or several languages, performing additional
functions such as inserts, updates, and deletes is just a matter of changing
the SQL.

IBM has a great manual available for your most sophisticated use of
embedded SQL with all host languages. The manual is called iSeries DB2
Universal Database for iSeries SQL Programming with Host Languages. It
is available for free download from IBM’s Web site. Just use a few
keywords from the title and IBM will provide you a link to download the
manual.

Create SQL Program Commands

Student Note: The following is for a perspective, not for memorization or
full understanding.

The pre-compiler commands to read the SQL statements along with the
program code written in the specific IBM i language for the pre-compiler
are listed below along with an explanation of each command:

Unlike Office 2007 in which all the tools are mouse click oriented,
mainframe and IBM Power systems and Oracle systems are not quite as
touchy-feely. The commands below are special commands for the various
languages on IBM I so that there is a pre-compiler that prepares the SQL
statements for use in the HLL (high level language) program.
Create Ile SQL COBOL command is next. ILE is a programming
environment on IBM i.

 CRTSQLCBLI

Chapter 13 Embedded SQL HLL 241

The Create SQL ILE COBOL Object (CRTSQLCBLI) command calls the
Structured Query Language (SQL) precompiler which precompiles COBOL
source containing SQL statements, produces a temporary source member,
and then optionally calls the ILE COBOL for IBM i compiler to create a
module, create a program, or create a service program.

CRTSQLCI

The Create SQL ILE C Object (CRTSQLCI) command calls the Structured
Query Language (SQL) pre-compiler which pre-compiles C source
containing SQL statements, produces a temporary source member, and
then optionally calls the ILE C compiler to create a module, create a
program, or create a service program.

CRTSQLCBL

The Create SQL COBOL Program (CRTSQLCBL) command calls the
Structured Query Language (SQL) pre-compiler which pre-compiles
COBOL source containing SQL statements, produces a temporary source
member, and then optionally calls the COBOL for IBM i compiler to
compile the program.

If the Relational database (RDB) parameter is specified and a program is
created, an SQL package will be created at the specified relational database.

CRTSQLCPPI

The Create SQL ILE C++ Object (CRTSQLCPPI) command calls the
Structured Query Language (SQL) precompiler which precompiles C++
source containing SQL statements, produces a temporary source member,
and then optionally calls the ILE C++ compiler to create a module.

Since this command only creates a module, the user must issue the
CRTSQLPKG command after the CRTPGM or CRTSRVPGM command
has created the program if an SQL package is needed.

CRTSQLPKG

The Create Structured Query Language Package (CRTSQLPKG) command
allows you to create (or re-create) an SQL package on a relational database
from an existing distributed SQL program. A distributed SQL program is a
program created by specifying the Relational database (RDB) parameter on
a CRTSQLxxx (where xxx = CBL, CBLI, CI, CPPI, PLI, RPG or RPGI)
command.

CRTSQLPLI

The Create SQL PL/I Program (CRTSQLPLI) command calls the
Structured Query Language (SQL) precompiler which precompiles PL/I
source containing SQL statements, produces a temporary source member,
and then optionally calls the PL/I compiler to compile the program.

If the Relational database (RDB) parameter is specified and a program is
created, an SQL package will be created at the specified relational database.

CRTSQLRPG

The Create SQL RPG Program (CRTSQLRPG) command calls the
Structured Query Language (SQL) precompiler which precompiles RPG
source containing SQL statements, produces a temporary source member,
and then optionally calls the RPG compiler to compile the program.

If the Relational database (RDB) parameter is specified and a program is
created, an SQL package will be created at the specified relational database.

CRTSQLRPGI

The Create SQL ILE RPG Object (CRTSQLRPGI) command calls the
Structured Query Language (SQL) precompiler which precompiles RPG
source containing SQL statements, produces a temporary source member,
and then optionally calls the ILE RPG compiler to create a module, create a
program, or create a service program.

Chapter 13 Embedded SQL HLL 243

Writing SQL Code in Application Programs

Note: DB Students do not know how to work with IBM I notions and
so the following is set forth merely as a perspective. Look at the
finished RPG programs etc. to gain a perspective as to how SQL is
placed into various programs. This is not to teach you how to
program.

This chapter assumes that you already know how to create plain old RPG
programs and/or COBOL programs and that it is the SQL part that is new.
So, now let’s write s simple RPG program in Figure 13-1 that creates the
VENDORP file with embedded SQL. Then we will create another RPG
program in Figure 12-2 followed by a COBOL program shown in Figure
13-3 to do the same thing.

In the RPG program shown in Figure 13-1 take notice to the following:

1. The example is a complete RPG program that can be compiled
2. There are no “F” Specs or I Specs etc. required
3. If we were to remove the first and last two statements, the command
could be pasted to run interactively with STRSQL.

Figure 13-1 RPG SQL Code to Create a Table Vendorp

 C/EXEC SQL

 C+ CREATE TABLE SQLBOOK/VENDORP

 C+ (VNDNBR DEC(5,0),

 C+ NAME CHAR(25),

 C+ ADDR1 CHAR(25),

 C+ CITY CHAR(15),

 C+ STATE CHAR(2),

 C+ ZIPCD DEC(5,0),

 C+ VNDCLS DEC(2,0),

 C+ VNDSTS CHAR(1),

 C+ BALOWE DEC(9,2),

 C+ SRVRTG CHAR(1))

 C/END-EXEC

 C SETON ... LR

So, all you need to do is compile this code with either RPG compiler and
you have a functioning program that creates a table in the SQLBOOK or
another IBM i library. Now let’s create an RPG program that does a simple
select as shown in Figure 13-2. The COBOL version follows in Figure 13-4.

Figure 13-2 Select Single Row From a Table - RPG
 I* This is a complete RPG / SQL program:

 I DS

 I 1 50VNDNBR

 I 6 30 NAME

 I 30 31 CLASS

 I 32 402BAL

 C*

 C Z-ADD20 VNDNBR

 C/EXEC SQL

 C+ SELECT VNDNBR, NAME, VNDCLS, BALOWE

 C+ INTO :VNDNBR, :NAME, :CLASS, :BAL

 C+ FROM VENDORP

 C+ WHERE VNDNBR = :VNDNBR

 C/END-EXEC

 C ... 'NAME ' DSPLY NAME

 C ... 'CLASS' DSPLY CLASS

 C ... 'BALOWE’ DSPLY BAL

 C SETON ... LR

For those who can read RPG code, you can see the RPG/400 part here
defines four fields VNDNBR. NAME, CLASS, and BAL that will be used
to store input in the program from the embedded SQL SELECT statement.
Then, a search argument is primed to look up the vendor number. Vendor
20 is in the file and this is moved with a Z-ADD operation into the field
called VNDNBR that is already defined in the input specifications.

The SELECT statement reads in the four fields from the Vendorp file and
using the INTO clause of the SELECT statement places the values into the
corresponding program defined fields. When program fields are used in
SQLRPG, they are prefixed by a colon. Notice the WHERE clause criteria
is where the value from the program (:VNDNBR primed with 20) is equal
to the value from the database (VNDNBR).

When the SELECT Statement is executed the four fields are in the input
fields shown at the top of the program. To prove that this RPG/400 code

Chapter 13 Embedded SQL HLL 245

works, I have chosen to use a DSPLY operation which takes the values and
sends them out to the user of the terminal session to view.

The values retrieved from this record are as follows as shown in the display
of the job log in Figure 13-3 below.

Figure 13-3 Results of Simple Select Program
 Display Program Messages

 DSPLY NAME PHONDUS CORPORAT 2

 DSPLY CLASS 20

 DSPLY BALOWE 45000

 Type reply, press Enter.

Reply_____________________________

 F3=Exit F12=Cancel

The program in COBOL is functionally the same and the appropriate
pieces are shown in the panel in Figure 13-4 below

Figure 13-4 COBOL Program Pieces to Perform Simple Select
 WORKING-STORAGE SECTION.

 77 VNDNBR PIC S9(5) COMP-3.

 77 CLASS PIC S9(2) COMP-3.

 77 NAME PIC X(25).

 77 BAL PIC S9(9.2) COMP-3.

 *

 *

 PROCEDURE DIVISION.

 MOVE 20 to VNDNBR.

 EXEC SQL

 SELECT vndnbr, name, vndcls, balowe

 INTO :vndnbr, :name, :class, :bal

 FROM vendorp

 WHERE vndnbr = :vndnbr

 END-EXEC.

Set Processing Only

It helps to recall that when using interpreted SQL on the IBM i that one
can only process data in sets. This is in contrast to the typical record at a
time processing that IBM i programmers have used since the IBM i was
called a System/38. The example in Figure 13-2 avoids the problem of
having to deal with a set of data in a program as opposed to bringing in just

one record at a time. By searching just for the vendor # key of 20 in this
program, we were assured to have just one record delivered. If instead of
key value 20 for VNDNBR, we chose to select all the records that have a
balowe filed greater or equal to $150.00, the program would bring back
multiple records and bomb.

The simple program in Figure 13-2 has no idea of how to handle the
storage of a set of data and it has no idea of how to get an individual record
if a set of data is returned from a query rather than just one record. The
trick in SQL programming to handle sets of data is to declare something
that is called a cursor. Like a file cursor, the cursor we define will enable us
to move from one record to another in the returned set of data.

Select and Process Multiple Rows

So, record by-record processing with embedded SQL requires the
declaration of an SQL CURSOR. This notion can be accommodated in
either a Stored Procedure or in SQL code embedded in an IBM i language
such as one of those we noted above. One thing that all of these languages
have in common is that all are compiled.

We know that once the SQL statement is built, you can execute. This tells
you whether the SQL works. Then the functioning SQL can be copied to
the HLL source program. So, once the SQL statement runs well in
interpreted mode, then it is OK to embed it into a program. If you need to
use the Select statement, then you would use the ISQL facility to prove the
SQL works before moving it to the HLL program.

By defining a cursor in an IBM i program, the records returned from the
embedded SQL select will be in memory and just like you process a subfile,
the programmer can write code to read through the memory file that has
been returned. Unlike the memory subfile which gets defined in the DDS
for a display file, the memory file for an embedded select is defined by the
SELECT itself. The field names or the * for all selected fields are the
columns that define the memory file. The number of records is obtained at
execution time base upon the records that meet the WHERE clause criteria.

Figure 13-5 shows the functions that must be accomplished in order to
process multiple records returned from a query.

Chapter 13 Embedded SQL HLL 247

Figure 13-5 Function and Meaning of Cursor Processing

Program Function Meaning
1. Declare SQL cursor Prepares the SELECT or other

DML statement
2. Open the cursor Process the SQL statement and

position the cursor to record 1 of
the memory file (returned set)

3. Fetch next record Bring the data from the next
memory record into the program
fields for processing

4 Test for Last record If no more records in the memory
file, go to step 6 to close cursor.

5. Process record (program defined
or SQL defined updates or inserts if
part of spec)

Perform program functions as if this
record arrived via normal record at a
time processing.

6. Close Cursor Remove the results of the SQL
query that are in memory

Figure 13-6 Program Function I Pseudo Code Form

Program Function Pseudo Code
1. Declare SQL cursor DECLARE MYCURSOR CURSOR FOR

 SELECT EMPNO, FIRSTNME,
LASTNAME
 FROM EMP
 WHERE SEX = ‘M’
 ORDER BY LASTNAME

2. Open the cursor OPEN MYCURSOR

3. Fetch next record FETCH MYCURSOR
INTO :EMPNO, :FNAME, :LNAME

4 Test for Last record If last record: go to Step 6, else: go to
 Step 3

5. Process record

HLL Operations on retrieved data
processing.

6. Close Cursor CLOSE CURSOR MYCURSOR

Now, let’s take the same functions and invent a pseudo code language in
which to use these powerful SQL operations In Figure 13-6 we can see that
the select returns the set of data in memory and then we keep moving

through the data set in a forward direction fetching one record from
memory at a time just like a plus 1 RRN with a subfile.
There are several new keywords and SQL terms that we introduced in this
Chapter. They are shown in the table in Figure 13-7

Figure 13-7 New Terms and Purpose in Embedded SQL

Term Purpose
Precompiler A step before the compilation of an SQL high level

language program which converts the SQl code to
native language functions / calls.

/EXEC SQL Starts block of SQL Code

/END-EXEC Ends a block of SQL code

INTO Used to place column values into program variables

DECLARE Means of declaring a cursor for set at a time processing

CURSOR The element in embedded SQL that positions Fetches
to the proper next record.

OPEN Brings the result set of the SQL query into memory

WHENEVER A monitor condition function for embedded SQL

NOT FOUND A condition to monitor – record not found by a fetch
to the result set

GOTO Spot in program to branch if a monitored error occurs
such as no more records left in result set.

FETCH Moral equivalent of a read. Performed agsinst the
result set.

CLOSE Closes the cursor; removes memory table (result set)

In Figure 13-8 we take the Pseudo from Figure 13-6 and we build a real
RPG program from it. Rather than provide the DSPLY op code in this
scenario, however, we used SQL’s INSERT facility to send output to a new
table we call HLDTABLE in SQLBOOK. It has just the VNDNBR,
NAME, VNDCLS, and BALOWE fields defined and that is just enough.
The program does a select of all rows with the BALOWE field column
being greater or equal to $150.00. Then the RPG program cursors through
the result table in memory and processes each record, one at a time, sending
the output via the INSERT statement into the new HLDTABLE file.

In Figure 13-9, we show the same program in RPGIV after having done the
CVTRPGSRC command. FYI – RPGIV is an advanced RPG language and
the CVTRPGSRC native command takes the old formatted RPG andmakes
it work in the new RPGIV format.

Chapter 13 Embedded SQL HLL 249

Notice that the CVTRPGSRC understands SQL syntax and lets it ride just
as it was in the RPG/400 code.

Figure 13-8 RPG/400 Cursor Program
 *************** Beginning of data ***********************
0001.00 F* THIS PROGRAM SELECTS RECORDS & WRITES LAST RCD FETCHED
0002.00 I DS
0003.00 I 1 50VND
0004.00 I 6 30 NAM
0005.00 I 31 32 CLASS
0006.00 I 33 410BAL
0007.00 I*
0008.00 C*
0009.00 C* RIGHT HERE STEP 1 IS ACCOMPLISHED
0010.00 C*
0011.00 C* SET SOME OPTIONS
0012.00 C/EXEC SQL
0013.00 C+ SET OPTION COMMIT=*NONE,
0014.00 C+ DATFMT=*ISO
0015.00 C/END-EXEC
0021.00 C/EXEC SQL
0022.00 C+ DECLARE MYCURSOR CURSOR FOR
0023.00 C+ SELECT VNDNBR, NAME, VNDCLS, BALOWE
0024.00 C+ FROM SQLBOOK/VENDORP
0025.00 C+ WHERE BALOWE >= 150
0026.00 C+ ORDER BY NAME
0027.00 C/END-EXEC
0028.00 C*
0029.00 C* RIGHT HERE, STEP 2 IS ACCOMPLISHED
0030.00 C*
0031.00 C/EXEC SQL
0032.00 C+ OPEN MYCURSOR
0033.00 C/END-EXEC
0034.00 C*
0035.00 C SQLCOD DOWEQ0
0036.00 C* RIGHT HERE, STEPS 4 & 5 ARE ACCOMPLISHED
0037.00 C/EXEC SQL WHENEVER NOT FOUND GO TO NF
0038.00 C/END-EXEC
0039.00 C*
0040.00 C*
0041.00 C/EXEC SQL
0042.00 C+ FETCH MYCURSOR
0043.00 C+ INTO :VND, :NAM, :CLASS, :BAL
0044.00 C/END-EXEC
0045.00 C* DO SOMETHING WITH CODE HERE!!- WRITE TO HLDTABLE FILE
0046.00 C* EACH RECORD IS WRITTEN TO HLDTABLE TO SHOW CODE WORKS
0047.00 C/EXEC SQL
0048.00 C+ INSERT INTO SQLBOOK/HLDTABLE
0049.00 C+ (VNDNBR, NAME, VNDCLS, BALOWE)
0050.00 C+ VALUES(:VND,:NAM,:CLASS,:BAL)
0051.00 C/END-EXEC
0052.00 C ENDDO
0053.00 C*
0054.00 C*
0055.00 C* RIGHT HERE STEP 6 IS ACCOMPLISHED
0056.00 C*
0057.00 C NF TAG
0058.00 C/EXEC SQL
0059.00 C+ CLOSE MYCURSOR
0060.00 C/END-EXEC
0061.00 C SETON LR
 ************ End of data*************************

Figure 13-9 RPGIV (ILERPG) Cursor Program
 ********** Beginning of data ************************************
0001.00 F* THIS PROGRAM SELECTS RECS & WRITES LAST RECORD FETCHED
0002.00 D DS
0003.00 D VND 1 5 0
0004.00 D NAM 6 30
0005.00 D CLASS 31 32
0006.00 D BAL 33 41 0
0007.00 I*
0008.00 C*
0009.00 C* RIGHT HERE STEP 1 IS ACCOMPLISHED
0010.00 C*
0011.00 C* SET SOME OPTIONS
0012.00 C/EXEC SQL
0013.00 C+ SET OPTION COMMIT=*NONE,
0014.00 C+ DATFMT=*ISO
0015.00 C/END-EXEC
0021.00 C/EXEC SQL
0022.00 C+ DECLARE MYCURSOR CURSOR FOR
0023.00 C+ SELECT VNDNBR, NAME, VNDCLS, BALOWE
0024.00 C+ FROM SQLBOOK/VENDORP
0025.00 C+ WHERE BALOWE >= 150
0026.00 C+ ORDER BY NAME
0027.00 C/END-EXEC
0028.00 C*
0029.00 C* RIGHT HERE, STEP 2 IS ACCOMPLISHED
0030.00 C*
0031.00 C/EXEC SQL
0032.00 C+ OPEN MYCURSOR
0033.00 C/END-EXEC
0034.00 C*
0035.00 C SQLCOD DOWEQ 0
0036.00 C* RIGHT HERE, STEPS 4 & 5 ARE ACCOMPLISHED
0037.00 C/EXEC SQL WHENEVER NOT FOUND GO TO NF
0038.00 C/END-EXEC
0039.00 C*
0040.00 C*
0041.00 C/EXEC SQL
0042.00 C+ FETCH MYCURSOR
0043.00 C+ INTO :VND, :NAM, :CLASS, :BAL
0044.00 C/END-EXEC
0045.00 C* DO SOMETHING WITH CODE HERE! -- WRITE TO HLDTABLE FILE
0046.00 C* EACH RECORD IS WRITTEN TO HLDTABLE TO SHOW CODE WORKS
0047.00 C/EXEC SQL
0048.00 C+ INSERT INTO SQLBOOK/HLDTABLE
0049.00 C+ (VNDNBR, NAME, VNDCLS, BALOWE)
0050.00 C+ VALUES(:VND,:NAM,:CLASS,:BAL)
0051.00 C/END-EXEC
0052.00 C ENDDO
0053.00 C*
0054.00 C*
0055.00 C* RIGHT HERE STEP 6 IS ACCOMPLISHED
0056.00 C*
0057.00 C NF TAG
0058.00 C/EXEC SQL
0059.00 C+ CLOSE MYCURSOR
0060.00 C/END-EXEC
0061.00 C SETON LR
 ****************** End of data ***********************

Chapter 13 Embedded SQL HLL 251

 Figure 13-10- HLDTABLE File after a Run.
 Display Physical File Member

File : HLDTABLE Library : SQLBOOK

Member : HLDTABLE Record : 1

Control ________ Column : 1

Find ________

*...+....1....+....2....+....3....+..

07030ATG Dynamo

FFFFFCEC4CA98994444444444444440000320

0703013704851460000000000000002F0050F

08020Bings Music `ø

FFFFFC898A4DAA88444444444444440007700

0802029572044293000000000000002F0900F

00034Blind Robin Copany

FFFFFC98984D98894C9989A44444440000130

0003423954096295036715800000002F0050F

00046Butts & Wallace Inc &

FFFFFCAAAA454E8998884C984444440000500

0004624332000613313509530000003F0000F

 More..

F3=Exit F12=Cancel F19=Left F20=Right F24=More keys

Check out the six documented stages of a cursor program in each of the
RPG programs to see how the cursoring is accomplished in RPG. Notice
the first SQL execution does something that makes it all work. In the Set
option area at the top of the code in line 13, we set commitment control off
because in this program we are not demonstrating how to achieve
commitment control in SQL HLL languages.

Chapter Summary

Once you get your SQL code verified with RUNSQLSTM or ISQL, it is
time to place it in a program and give it a whirl. The SQL code in both
COBOL and RPG and RPGIV is basically the same and it is learning how
to deal with the host compiler’s variables and nuances that make the
difference.

There are a host of compiler commands available for whatever language
you choose and the editors from PDM to WDSc Eclipse have the necessary
formats for SQL language derivatives.

The code to process a set of data is at first annoying but as you learn what it
is doing, it is no more annoying than OPNQRYF and quite frankly, the
code is easier to read. When you open the cursor, the SQL statement is
executed and the result set is in your program. Then, you cursor through
the result set (memory file) and process one record at a time just like in
subfile programming.

One of the first things that everybody notices when looking at the RPG
code to create the table is that there really is no RPG code. And, there
would not be any COBOL code if the program was in COBOL. There are
no F specs or I specs. The only thing needed is the C specs for the SQL
precompiler directives.

The same applies to the bigger programs in RPG and RPG IV. Though the
RPG program is reading a file and writing a file, there are no F specs in the
program and there is no RPG I/O involved. There is so little RPG code
that it is easy to consider the language in this instance as merely a place for
SQL to execute. There is nothing better than getting your feet wet just to
find out whether it is miserable out or not. Though there is not much RPG
in this code, there is no C and no Java either – just RPG and SQL. That’s
not really a bad combination.

Key Terms

/END-EXEC
/EXEC SQL
5722-WDS
CLOSE
Create SQL Program
CRTSQLCBL
CRTSQLCBLI
CRTSQLCI
CRTSQLCPPI
CRTSQLPKG
CRTSQLPLI
CRTSQLRPG
CRTSQLRPGI
Cursor

CVTRPGSRC
Declare
DSPLY
Embedded SQL
Fetch
GOTO
High level languages
INTO
Memory table
OPEN
Precompiler
Pseudo code
Result set
RPG compiler

Chapter 13 Embedded SQL HLL 253

RPG program
RPG/400
RPGIV
Set option
Set Processing
SQL cursor

SQL programming
SQL query
Subfile
Whenever

Exercises

Use this chapter or look up information on the Web to answer the
following:

1. When creating a table through RPG, why is there no File Description
specification required for the table being created?

2. Are there any SQL statements that you can think of that are not
permitted within an RPG program?

3. What re the two compile commands to run the RPG SQL and RPG ILE
SQL compilers?

4. What is a cursor?

5. Why is a cursor necessary in some programs and not in others?

6. What would have to change in the last RPG programs if we wanted to
process only the records in the Vendorp file that are in VNDCLS 20??

Chapter14 Advanced SQL 255

Chapter 14

Advanced SQL, Special Facilities,
Select, Join, Sub-Query, Update,
Insert and Delete.

SQL Special Facilities

So far, we have touched on just about everything basic that you might want
to do with the SQL language. In this chapter, we take a number of those
notions a lot further and we explore more of the clauses in DML with a
powerful set of examples to capture both the imagination and the coding
pad. You’ll like some of the spiffy examples that we use to make SQL
come alive in this chapter.. Before we get into the examples, let’s take a look

at a very powerful operator, LIKE.

Like Operator

You use the Like operator when you are looking for a partial match inside a
column. It is used with the WHERE Clause and helps you provide
powerful selection options for SQL queries. With the like operator are
several powerful wild card functions to provide a means of getting at data
that is typically not intuitive with field selects.

The format of the Select statement with the LIKE predicate is as follows:

SELECT "column_name"

 FROM "table_name"

 WHERE "column_name"

 LIKE {PATTERN}

 [:wildcard])

The {PATTERN} in the above format often consists of wildcards. An
indicator variable is returned by Like to show whether the string contains
the requested pattern. The wildcard parameter is optional; if unspecified,
the percent sign (%) will be assumed. The wild card options include the
following

% Any string of 0 or more chars

_ Exactly one single character

The % wildcard is especially powerful in that you can place it before, after,
or both before and after a set of text that you would like to find a string of
characters inside of a column – but not the whole column. The % itself
represents a string of columns that are ignored.

If you place the % before the text you are using as a search argument, then
the LIKE operator ignores all text until it finds that string. Then it
compares the string, character by character until it hits the end of the field.
If all characters in the search string match the string found from that point
on in the field then the record is selected. The caution of course is that if
there are blanks or any other characters in the field after the text value is
found, it will not result in a match unless your search value also contains the
trailing blanks or other characters.

If you place the % after a group of characters then the Like operator
compares from the beginning of the field to the wildcard and if it gets a
match against the search argument the record is selected. If you are off by
one character, the record will not be selected.

Chapter14 Advanced SQL 257

The “%” before and “%” after “Like” arguments are handy when you are
looking for a string of text that begins a field or ends a field. If the string is
in the middle, the use of one wildcard before or after requires exact
precision. But, there is a solution, and a nice solution at that. If you want to
select the records in a database that contain a string of characters anywhere
in the record, you can use a % before and % after the text for which you are
searching.

There are some SQL implementations by some vendors that support the
use of a “CONTAINS” predicate, which is basically what you get when you
sandwich the search text within two % wild cards.

The “_” wildcard is a substitute for just one character and does not need
the same level of explanation as the % wildcard.

Now, to make sure we have this down right, let’s look at some examples
and make sure you try them on your own machines:

Where Fieldname LIKE (‘A%’)

This returns all of the values in the column that start with A.

Where Fieldname NOT LIKE (‘KE_LY’)

This returns all of the records for column that do not match KELLY or any
other letter than L for the third character.

'A_Z':

This combo returns the records in a column that matches a string that starts
with 'A,’ then has any character and finally ends with a 'Z'. Valid
combinations are 'ABZ' and 'A2Z'

Note: In the above example, 'AKKZ' would not cause a match because
there are two characters between A and Z instead of one.

'ABC%':

This string search argument would return a record for any string in which
this field starts with 'ABC,’ such as 'ABCD' and 'ABCABC.” Both of these
satisfy the condition.

'%XYZ':

This would return those records in which the column values end with
'XYZ.’ Both 'WXYZ' and 'ZZXYZ’ satisfy the condition.

'%AN%':

This is a double wildcard text search string. The search is looking for string
in the specified column that contains the pattern 'AN' anywhere in the
column. Examples that fit are 'LOS ANGELES' and 'SAN FRANCISCO'
Both satisfy the condition.

Null Fields

Null fields contain null values. They are truly empty. They are not blank or
filled with zeroes. They are not populated with any data. As such, as you
will see, they are not included in functions such as averages. However, you
can search for a null since it is its own character value. An example is the
following:

Where Fieldname IS NULL

Chapter14 Advanced SQL 259

Concat – Concatenate Two or More Strings

The concatenation operator (concat) permits you to concatenate two strings
into one field. For example, take a column called FIRSTNME, concatenate
it with a blank and a column called LASTNME:

FIRSTNME CONCAT ’ ’ CONCAT LASTNAME

Substr – Substring

The Substring operation permits you to pick a string out of a larger string.
In other words, the SUBSTR operation returns a substring of a string.. An
example would be to select all rows from a PROJECT table for which the
project name (PROJNAME) starts with the word 'OPERATION ‘

SELECT * FROM PROJECT WHERE

SUBSTR(PROJNAME,1,10) = ‘OPERATION ’

Now, let’s move on to some spiffier SQL example using what we have
learned already in this book. In Chapter 5 we created the PERSON table
with the RUNSQLSTM command. Let’s do a few selects from this table:

Select Exercise 1

Select every column and every row from the PERSON table:

SELECT * FROM PERSON

Result: Retrieves all data from PERSON table

Select Exercise 2

SELECT FIRSTNME, LASTNAME FROM

PERSON WHERE EDLEVEL = 12

Result: Retrieves the names of those who are seniors from the person table.

Select Exercise 3

Select the name, balance, vendor class from the vendor p file.

Select name, balowe, vndcls from

vendorp

Result – projection of three fields, all records included.

Select Exercise 4

Select vendor number and balowe minus $200 and the first 15 positions of
name from VENDORP

Select VENDNR, balowe - 200,

SUBSTR(name, 1,15) FROM vendorp

The results from this query are included on the next page:

Chapter14 Advanced SQL 261

 VENDOR BAL-200 SUBSTR

 NUMBER

 7,000 190.46- Microsoft Corpo

 7,010 105.00- Oracle Corporat

 7,020 7,800.00 Sun MicroSystem

 7,030 152.56 ATG Dynamo

 7,040 199.75- Education Direc

Select Exercise 5

Select vendor name, balance owed, from VENDORP if balowe is greater
than 200 and the vendor class is one of the following: 4,6,10.

SELECT name, balowe FROM vendorp

WHERE balowe > 200 AND vndcls

IN(4,6,10)

The results from this query are included below:.

+....1....+....2....+...+....4

 NAME BALANCE

 OWED

 Sun MicroSystems 8,000.00

 McFadyen Consulting 250.00

 ******** End of data **

Using SQL Built-In Functions

SQL has a ton of functions that help make the language very rich and
powerful. These are broken down into two groups, Scalar functions, and
Column functions.

Scalar Functions

A scalar function can be used wherever an expression can be used. The
restrictions on the use of column functions do not apply to scalar functions,
because a scalar function is applied to single parameter values rather than to
sets of values. The argument of a scalar function can be a function.
However, the restrictions that apply to the use of expressions and column
functions also apply when an expression or column function is used within
a scalar function. For example, the argument of a scalar function can be a
column function only if a column function is allowed in the context in
which the scalar function is used. The list of scalar functions available is
very large and is shown in Figure 14-1. The column functions are included
at the bottom of Figure 14-1.

Column Functions

The following information applies to all column functions other than
COUNT(*) and COUNT_BIG(*). Sometimes the rules actually make SQL
more confusing than the reality. But all SQL developers must play by the
rules.

The argument of a column function is a set of values derived from an
expression. The expression may include columns but cannot include another
column function. The scope of the set is a group or an intermediate result
table. If a GROUP BY clause is specified in a query and the intermediate
result of the FROM, WHERE, GROUP BY, and HAVING clauses is an
empty set, then the column functions are not applied.

Chapter14 Advanced SQL 263

Figure 14-1 Scalar and Column Functions

Scalar

Functions

ABS DIFFERENCE LOR SIN

ACOS DIGITS LOWER SINH

ANTILOG DLCOMME

NT

LTRIM SMALLINT

ASIN DLLINKTYP

E

MAX SOUNDEX

ATAN DLURLCOM

PLETE

MICROSE

COND

SPACE

ATANH DLURLPAT

H

MIDNIG

HT_

SECONDS

SQRT

ATAN2 DLURLPAT

HONLY

MIN STRIP

BIGINT DLURLSCHE

ME

MINUTE SUBSTRING

or

BLOB DLURLSERV

ER

MOD SUBSTR

CEILING DLVALUE MONTH TAN

CHAR DOUBLE_PR

ECISION

NODENA

ME

TANH

or DOUBLE

CHARACT

ER_

LENGTH

EXP NODENU

MBER

TIME

CLOB FLOAT NOW TIMESTAMP

COALESC

E

FLOOR NULLIF TIMESTAM

PDIFF

CONCAT GRAPHIC PARTITI

ON

TRANSLAT

E

COS HASH PI TRIM

COSH HEX POSITIO

N

or

POSSTR

TRUNCATE

or

COT HOUR POWER TRUNC

CURDATE IDENTITY_V

AL_

LOCAL

QUARTE

R

UCASE

CURTIME IFNULL RADIANS UPPER

DATE INTEGER or

INT

RAND VALUE

DAY JULIAN_DA

Y

REAL VARCHAR

Chapter14 Advanced SQL 265

DAYOFM

ONTH

LAND ROUND VARGRAPHIC

DAYOFW

EEK

LCASE ROWID WEEK

DAYOFW

EEK_ISO

LEFT RRN WEEK_ISO

DAYOFYE

AR

LENGTH RTRIM XOR

DAYS LN SECOND YEAR

DBCLOB LNOT SIGN ZONED

DECIMAL

or DEC

LOCATE

DEGREES LOG10

Column

Functions

AVG COUNT_BIG MIN SUM

COUNT MAX STDDEV_

POP or

STDDEV

VAR_POP or

VARIANCE

or VAR

If a GROUP BY clause is not specified in a query and the intermediate
result of the FROM, WHERE, and HAVING clauses is an empty set, then
the column functions are applied to the empty set. For example, the result
of the following SELECT statement is the number of distinct values of
JOB for employees in department D01:

 SELECT COUNT(DISTINCT JOB)

 FROM EMPLOYEE

 WHERE WORKDEPT = 'D01'

The keyword DISTINCT is not considered an argument of the function,
but rather a specification of an operation that is performed before the
function is applied. When DISTINCT is specified, duplicate values are
eliminated. If ALL is implicitly or explicitly specified, duplicate values are
not eliminated.

A column function can be used in a WHERE clause only if that clause is
part of a sub-query of a HAVING clause and the column name specified in
the expression is a correlated reference to a group. If the expression
includes more than one column name, each column name must be a
correlated reference to the same group.

Using Group By and Having

GROUP BY allows grouping of selected columns. It can be based on a
criteria in the HAVING clause.

HAVING provides the selection criteria for the GROUP BY clause.

ORDER BY is specified after GROUP BY and HAVING. It can specify
order of rows. Results are sorted in ascending or descending collating
sequence based on one or more column values.

Chapter14 Advanced SQL 267

The SELECT statement has a number of built-in scalar functions for
grouping such as the original big five as following
:

✏ AVG (numeric columns)

✏ SUM (numeric columns)

✏ MAX (num or char columns)

✏ MIN (num or char columns)

✏ COUNT (count selected rows)

Let’s try these out with some examples.

Select Exercise 6

Using a subset of the VENDORP file, give me the count of all the records
and the average balance in each state.

SELECT COUNT(*), AVG(balowe), state

FROM vendorp GROUP BY state

Results
COUNT (*) AVG (BALOWE) STATE

 1 78.500000000000000000000000 NY

 1 19.000000000000000000000000 MI

 1 4.990000000000000000000000 FL

 1 1,495.550000000000000000000000 OK

 1 250.000000000000000000000000 IN

 1 352.560000000000000000000000 MA

 3 2,833.416666666666666666666666 IL

 1 56.000000000000000000000000 AZ

 1 66.540000000000000000000000 MS

 1 29.830000000000000000000000 OR

 1 9.540000000000000000000000 WA

 2 4,047.500000000000000000000000 CA

 1 256.000000000000000000000000 OH

 14 2,996.982142857142857142857142 PA

 2 12.475000000000000000000000 TX

 1 79,700.000000000000000000000000 VA

Scalar functions such as SIN and COS are listed in the table in Figure 14-1
but are not covered in this presentation.

Select Exercise 7

In this example, we need to display all the records in the EMP file which we
created in Chapter 8. The EMP file is the basis of some queries to come.
Before we start doing involved queries, let’s get a look at some of the
records in the EMP File so we know what we’re sampling

SELECT * from SQLBOOK/EMP

Chapter14 Advanced SQL 269

Figure 14-2 Left side of EMP Table
EMPNO FIRSTNME MIDINIT LASTNAME WDEPT PHONENO HIREDATE

1451 Dernit Q Pitt D13 421 07/12/81

112 Brian U John D11 422 04/21/74

145 Dan A Patterson D13 423 02/22/65

145 Dino G Lella D12 322 03/17/84

190 Lisa A Maria D11 425 09/12/88

763 Michelle L Dente D11 426 04/12/86

120 Linda A Bates D17 334 05/17/81

169 Morpheus T Zion D16 439 07/20/88

1458 Darla D Debroskin D13 449 01/23/86

1449 Clarence G Wunnerful D12 657 09/12/86

******** End of data ********

Figure 14-2 Right Side of EMP Tablee

 JOB EDLEVEL SEX BIRTHDATE SALARY BONUS COMM

 D12 18 M 03/21/57 22.50 55.50 .14

 D11 12 M 05/30/78 17,000.00 250.00 .20

 D16 17 M 01/21/56 21.50 55.00 .12

 D45 11 M 11/21/68 31.50 65.00 .13

 56 16 F 05/12/89 64.50 30.00 .16

 57 20 F 02/16/68 107.50 40.00 .13

 58 12 F 03/23/76 10.75 80.00 .14

 D16 16 M 12/12/88 537.50 690.00 .15

 D16 20 F 01/21/66 26.50 75.00 .11

 D12 18 M 01/21/56 54.50 23.00 .13

 ******** End of data ********

Select Exercise 8

In this example, we would like to determine the maximum pay rate value
and minimum pay rate value from the EMP Table..

SELECT MAX (rate), MIN (rate) FROM

emp

 Display Data

 D

 Position to line Shift

+....1....+....2....+....3

 MAX (SALARY) MIN (SALARY)

 17,000.00 10.75

 ******** End of data ********

Select Exercise 9

For each department within the company, what is the number of employees
and the total salary paid to them? – Show Dept #, Employees, and Total
Salary

SELECT WORKDEPT, SUM(salary), COUNT (*)

FROM emp

GROUP BY WORKDEPT

ORDER by WORKDEPT

 Display Data

 Data width :

Position to line Shift to column

....+....1....+....2....+....3....+....4....+....5....+....6....+..

WORKDEPT SUM (SALARY) COUNT (*)

 D11 17,172.00 3

 D12 86.00 2

 D13 70.50 3

 D16 537.50 1

 D17 10.75 1

******** End of data ********

 Select Exercise 10

Select the department, the sum of its salaries, and the # of employees in the
department from the employee file.

Chapter14 Advanced SQL 271

SELECT WORKDEPT,SUM(salary),COUNT (*)

FROM emp

GROUP BY WORKDEPT

HAVING COUNT (*) > 1

ORDER by WORKDEPT

 Display Data

 Data width

Position to line Shift to column

...+....1....+....2....+....3....+....4....+....5....+....6....+...

ORKDEPT SUM (SALARY) COUNT (*)

 D11 17,172.00 3

 D12 86.00 2

 D13 70.50 3

******* End of data ********

Select Exercise 11

Sub Query

Now, we are about to move from simple queries to queries within queries.
These are also known as Sub Queries. In order for you to fully see what is
going on, we are going to do some setup queries so you can see the data as
it unfolds in the subquery. So, let’s look at some more data in the EMP file

SELECT LASTNAME, FIRSTNME, HIREDATE,

WORKDEPT

 FROM emp

 WHERE WORKDEPT IN ('D11','D12')

 ORDER BY LASTNAME

 Display Data

 Data

Position to line Shift to

....+....1....+....2....+....3....+....4....+....

LASTNAME FIRSTNME HIREDATE WORKDEPT

Dente Michelle 04/12/86 D11

John Brian 04/21/74 D11

Lella Dino 03/17/84 D12

Maria Lisa 09/12/88 D11

Wunnerful Clarence 09/12/86 D12

******** End of data ********

Select Exercise 12

We are still setting up for the sub query. Let’s now take a look at the values
in the department file.

Select * from dept

...+....1....+....2....+....3....+....4....+....5....+
DEPTNO DEPTNAME MGRNO ADMRDEPT

 D11 Spiffy Computer Service DEPT -

 D12 Planning Dept -

 D16 Information Center -

 D13 Manufacturing Systems -

 D17 Administrative Systems -

 D19 Support Services -

 D18 Operations -

 D20 Software Support -

******** End of data ********

End of data ********

Select Exercise 13

Select Employees who work in dept names starting with “S”

Chapter14 Advanced SQL 273

SELECT LASTNAME, FIRSTNME, WORKDEPT

FROM emp

WHERE WORKDEPT IN (SELECT DEPTNO FROM

DEPT

WHERE DEPTNAME LIKE 'S%')

ORDER BY LASTNAME

SELECT statement run complete.

 Display Data

 Position to line Shift

+....1....+....2....+....3....+....

 LASTNAME FIRSTNME WORKDEPT

 Dente Michelle D11

 John Brian D11

 Maria Lisa D11

 ******** End of data ********

Select Exercise 14

Produce an employee list showing the name and monthly salary, of those
employees who have a double “t” or ‘tt” in their last name.

Another Example From ISQL

SELECT LASTNAME, (SALARY / 12) AS

MONTHLY_SALARY FROM EMP WHERE

LASTNAME LIKE '%tt%' ORDER BY 2

 Display Data

 Data wi

Position to line Shift to co

....+....1....+....2....+....3....+....4....+....5..

LASTNAME MONTHLY_SALARY

Patterson 1.791666666666666666666666

Pitt 1.875000000000000000000000

******** End of data ********

Update Exercise 15

Now, let’s use some SQL statements other than SELECT to demonstrate
the data manipulation facility built into SQL’s DML. We’ll demonstrate two
examples of the Update statement. The first will be simple but the second
one will take some thinking.

Set the vendor status of all records in the vendorp backup file to “S” if the
vendor class is “03”

UPDATE vendorpin2 SET vndsts = 'S'

WHERE vndcls = 10

26 rows updated in VENDORPIN2 in

SQLBOOK.

Update Exercise 16

Now, let’s move on to something really spiffy. It is called the scalar
Subselect. With this function, we can update rows in one table based on the
values in another table. To do this example we create a duplicate of the
EMP file and we change the column name of the salary in this file to csal.
We name the file SALFILE. Here is a scalar subselect function within an
Update SQL statement.

Chapter14 Advanced SQL 275

UPDATE EMP A1 SET salary =

 (SELECT csal FROM salfile A2

WHERE A1.EMPNO = A2.EMPNO)

 10 rows updated in EMP in SQLBOOK

.
In this scalar sub-select, the notations, “A1” and “A2” within the UPDATE
statement are abbreviations for the two files. This is a very, very powerful
operation. To make sure this works without a hitch, you must be sure that
you get a hit on item #. In other words, there needs to be a record in the
SALFILE for every record in the EMP file. If there is not a record, some
bad things can happen. The subselect comes after the words salary = as
you can see in the above UPDATE function. That means that the second
half of the query runs for each record read in the first half. If there is no hit
in the second query, there is nothing to prevent the SALARY field from
being updated with a zero or null value signifying that it is now nothing.. To
prevent this with better SQL coding you would have to add some additional
tests to be sure you got a hit.

Insert Exercise 17

Insert one row of constant data into the emp file. Add the contents of the
eleven fields
LASTNAME Anstett,
FIRSTNME Borregard
WORKDEPT D13
SALARY 59000.00
Etc.

The SQL for this is as follows:

INSERT INTO SQLBOOK/EMP (EMPNO,

FIRSTNME, MIDINIT, LASTNAME,

WORKDEPT, PHONENO, EDLEVEL, SEX,

SALARY, BONUS,COMM)

VALUES(596,'Borregard','A',

'Anstett’, ‘D13',456,

17, ‘M’, 5900000, 23000, 17)

1 rows inserted in EMP in SQLBOOK.

Insert Exercise 18

So we’ve done some fancy selects, a nice scalar sub-select for update and
now, let’s do a repopulation (refresh of a database with another database
that has good data. When you are messing with data in a lab environment
refreshing data is a normal task. In this insert sub-select we will access all
of the fields from a refresh file called VENDORPIN1 and we will insert
these rows into the file VENDORPIN2.

Chapter14 Advanced SQL 277

INSERT INTO VENDORPIN2

(VNDNBR, NAME, ADDR1, CITY, STATE, ZIPCD,

VNDCLS, VNDSTS, BALOWE, SRVRTG)

SELECT VNDNBR, NAME, ADDR1, CITY, STATE,

ZIPCD, VNDCLS, VNDSTS, BALOWE, SRVRTG

FROM VENDORPIN1

33 rows inserted in VENDORPIN2 in SQLBOOK.

Delete Exercise 19

If you have concluded in Exercise 19 that this will not refresh anything, you
are 100% correct. It will actually add thirty-three more rows to the file and
not replace any of them. So, to get an SQL way of doing a native clear
physical file member (CLRPFM), we look no further than the DML
DELETE statement. To delete all of the rows in VENDORPIN2 prior to
running the INSERT in Exercise 18, use the following cure-all for data.

delete from VENDORPIN2

SQL warns with this message panel

delete from VENDORPIN2

 Confirm Statement

You are about to alter (DELETE or UPDATE) all of the records in

your file(s).

 Press Enter to confirm your statement to alter the entire file.

 Press F12=Cancel to return and cancel your statement.

When you issue the unconditional delete against all fields and all records in
a file, the file will be cleared just as if you had issued a CLRPFM native
command.

Advanced SQL Exercise 20

For the piece d’ resistance, Write an SQL SELECT statement which will
retrieve the last name, job code, education level, salary, and the work
department of each employee in either work department D11 or E21 who
also has an education level of 12, 16, 17, or 18, and has a salary between 0
and 23700. Please make sure that the job code is not null for any rows
selected.

The SQL Code

SELECT LASTNAME, JOB, EDLEVEL, SALARY,

WORKDEPT FROM EMP

WHERE

(WORKDEPT = 'D11' or WORKDEPT = 'E21')

AND (EDLEVEL IN (17, 12, 16, 18))

AND (SALARY BETWEEN 0 AND 23700)

AND (JOB IS NOT NULL)

SELECT statement run complete.

 Display Data

 Data width . . .

Position to line Shift to column . .

....+....1....+....2....+....3....+....4....+....5....+....6

LASTNAME JOB EDLEVEL SALARY WORKDEPT

John 56 12 17,000.00 D11

Denrock 56 16 64.50 D11

Dente 57 12 107.50 D11

******** End of data ********

Advanced SQL Exercise 21 - Having

Write an SQL SELECT statement which will retrieve the work department,
maximum salary, minimum salary, and average salary from departments

Chapter14 Advanced SQL 279

with at least one male employee whose maximum salary is greater than
$2,000. Group the results by workdept.

SQL – Having

SELECT WORKDEPT, MAX(SALARY),

MIN(SALARY),

AVG(salary)

FROM EMP

Where SEX = 'M'

Group by workdept

HAVING MAX(SALARY) > 2000

SELECT statement run complete.

Results
 Display Data

 Data width : 77

Position to line Shift to column

....+....1....+....2....+....3....+....4....+....5....+....6....+....7....+..

WORKDEPT MAX (SALARY) MIN (SALARY) AVG (SALARY)

 D11 17,000.00 17,000.00 17,000.000000000000000000000000

 E21 5,900,000.00 5,900,000.00 5,900,000.000000000000000000000000

******** End of data ********

Another Exercise - Subselect

Advanced SQL Exercise 22 - SubQuery

Write an SQL SELECT statement with a subquery statement included that
will retrieve the last name, first name, and birth date from the employee file
for all employees in which their salary is greater than the average salary of
all employees.

Objective: find all of the employees whose salary is greater than the average
salary

Looking for All Employees > AVG

Select lastname, firstnme, birthdate

from emp

where salary >

Select avg(salary) from emp)

 Display Data

 Data width : 40

Position to line Shift to column

....+....1....+....2....+....3....+....4

LASTNAME FIRSTNME BIRTHDATE

Gwolf Dnzel 11/05/56

Anstett Borregard 08/14/83

******** End of data ********

•
• ******** End of data ********

Join

A join is a query that combines rows from two or more tables, or
views SQL performs a join whenever multiple tables appear in the
query's FROM clause. The query's select list can select any columns
from any of these tables. If any two of these tables have a column
name in common, you must qualify all references to these columns.

There a re a number fo different types of joins. The most common join is
called the inner join and the second most used join is clled the left outer
join. In this section, we will provide a definition for all of the join types and
then provide two examples. One each for the inner join and the left outer
join.

Chapter14 Advanced SQL 281

The seven types of joins supported on IBM i are the following:

✓ Inner Join

✓ Left Outer Join

✓ Right Outer Join

✓ Left Exception Join

✓ Right Exception Join

✓ Cross Join

✓ Full Outer Join

An Inner Join returns only the rows from each table that have matching
values in the join columns. Any rows that do not have a match between the
tables will not appear in the result table. If a customer file and an order file
are joined and there are no orders for the customer, the customer will not
be selected in the join view.

A Left Outer Join returns values for all of the rows from the first table
(the table on the left) and the values from the second table for the rows that
match. Any rows that do not have a match in the second table will return
the null value for all columns from the second table. Nulls can be
monitored and be defaulted with an IFNULL clause For example:
IFNULL(OPERATIONS , 0) will replace the value of OPERATIONS
with a 0 if a NULL is detected. This type of join comes in handy in a
payroll operation in which a person who did not submit a time card record
for example would appear on the edit list but would have no time card.

A Right Outer Join return values for all of the rows from the second table
(the table on the right) and the values from the first table for the rows that
match. Any rows that do not have a match in the first table will return the
null value for all columns from the first table. This is the opposite of the
left outer join.

A Left Exception Join returns only the rows from the left table that do
not have a match in the right table. Columns in the result table that come
from the right table have the null value. This is another way of finding
errors where there must be matches to process properly.

A Right Exception Join returns only the rows from the right table that do
not have a match in the left table. Columns in the result table that come

from the left table have the null value. It is the opposite of the Left
exception join.

A Cross Join or a product join returns a row in the result table for each
combination of rows from the tables being joined (a Cartesian Product)

A Full Outer Join which IBM calls a Simulating Full Outer Join, like the
left and right outer joins, a full outer join returns matching rows from both
tables. However, a full outer join also returns non-matching rows from
both tables; left and right.

Inner join using JOIN syntax

To use the inner join syntax, both of the tables you are joining are listed in
the FROM clause, along with the join condition that applies to the tables.
The join condition is specified after the ON keyword and determines how
the two tables are to be compared to each other to produce the join result.
The condition can be any comparison operator; it does not need to be the
equal operator. Multiple join conditions can be specified in the ON clause
separated by the AND keyword. Any additional conditions that do not
relate to the actual join are specified in either the WHERE clause or as part
of the actual join in the ON clause.

Join Exercise 23

Create a list of employees showing the number, employee last name and the
department last name where the lastname starts with a letter higher in the
alphabet then the letter ‘L’.

SELECT EMPNO, LASTNAME, DEPTNAME

 FROM SQLBOOK/EMP

INNER JOIN SQLBOOK/DEPT

 ON WORKDEPT = DEPTNO

 WHERE LASTNAME > 'L'

In this example, the join is done on the two tables using the WORKDEPT
and DEPTNO columns from the EMP and DEPT tables. Since only

Chapter14 Advanced SQL 283

employees that have last names starting with at least 'L' are to be returned,
this additional condition is provided in the WHERE clause.

 Display Data

 Data width

osition to line Shift to column

...+....1....+....2....+....3....+....4....+....5....

MPNO LASTNAME DEPTNAME

45 Lella Planning Dept

449 Wunnerful Planning Dept

69 Zion Information Center

451 Pitt Manufacturing Systems

45 Patterson Manufacturing Systems

******* End of data ********

Left Outer Join

A left outer join returns all the rows that an inner join returns plus one row
for each of the other rows in the first table that did not have a match in the
second table.

Join Exercise 24

Suppose you want to find all of the departments with a starting letter higher
than L and all the employees who are assigned to those departments. You
also want to see those departments’ with no assigned employees as well.
The following query will return a list of all departments whose names are
greater than 'L', along with their assigned employees.

SELECT DEPTNO,DEPTNAME,EMPNO,LASTNAME

 FROM SQLBOOK/DEPT

LEFT OUTER JOIN SQLBOOK/EMP

 ON DEPTNO = WORKDEPT

WHERE DEPTNAME > 'L'

 Display Data

 Data width

Position to line Shift to column . . .

...+....1....+....2....+....3....+....4....+....5....+....6..

EPTNO DEPTNAME EMPNO LASTNAME

D11 Spiffy Computer Service DEPT 112 John

D11 Spiffy Computer Service DEPT 190 Denrock

D11 Spiffy Computer Service DEPT 763 Dente

D11 Spiffy Computer Service DEPT 558 Gwolf

D12 Planning Dept 145 Lella

D12 Planning Dept 1449 Wunnerful

D13 Manufacturing Systems 1451 Pitt

D13 Manufacturing Systems 145 Patterson

D13 Manufacturing Systems 1458 Debroskin

D19 Support Services - -

D18 Operations - -

D20 Software Support - -

******* End of data ********

Union Exercise 25

The purpose of the SQL UNION command is to combine the results of
two queries together. In this respect, UNION is somewhat similar to JOIN
in that they are both used to relate information from multiple tables. One
restriction of UNION is that all corresponding columns need to be of the
same data type. Also, when using UNION, only distinct values are selected
so it is similar to SELECT DISTINCT.

In this scenario, as you have witnessed our files have a bit more data in
them from our exercises and we have made backups of the Vendorp called
VENDORPIN1 and VENDORPIN2. For this join view we are going to
select from the IN1 file where the balance owed is greater than 150 and the
SRVRTG is equal to ‘A”. To this, we are going to Union the records in
IN2 in which the SRVRTG column is equal to ‘R’ At this point, there are
over 90 records in these two files. The SQL to accomplish this UNION is
as follows:

http://www.1keydata.com/sql/sqljoins.html
../../Finished%20Books/QuickCourseSQL/INK

Chapter14 Advanced SQL 285

SELECT * FROM VENDORPIN1

WHERE BALOWE > 150 AND SRVRTG ='S'

UNION ALL SELECT *

FROM VENDORPIN2 WHERE SRVRTG = 'A'

ORDER BY NAME

SELECT statement run complete.

The results are in the table below:

Union

 Display Data

 Data width : 134

Position to line Shift to column

....+....1....+....2....+....3 |

.9....+...10....+...11....+...12....+...13....

VNDNBR NAME | ZIPCD VNDCLS VNDSTS BALOWE

SRVRTG

 7,030 ATG Dynamo | 2,141 20 A 352.56 A

 7,030 ATG Dynamo | 2,141 20 A 352.56 A

 34 Blind Robin Copany | 18,702 20 A 153.00 A

 34 Blind Robin Copany | 18,702 20 A 153.00 A

 7,040 Education Direct | 18,515 20 A 14.50 A

 7,040 Education Direct | 18,515 20 A 14.50 A

77,777 Left Outer Join | 18,515 10 S 500.00 A

77,777 Left Outer Join | 18,515 10 S 500.00 A

 7,130 McFadyen Consulting | 98,523 10 S 250.00 A

 7,130 McFadyen Consulting | 98,523 10 S 250.00 A

 7,070 Red Hat Club | 85,743 10 S 78.50 A

 7,070 Red Hat Club | 85,743 10 S 78.50 A

******** End of data ********

 Bottom

F3=Exit F12=Cancel F19=Left F20=Right F21=No split

Last column of data.

Notice there are just twelve records in the unioned output view. This is
because we selected only a few records to be combined from each of the
underlying files.

Chapter Summary

SQL’s Powerful DML statements – Select, Update, Insert, and Delete were
used in well over 20 exercises in this chapter to both drive home how to use
the SQL statements that you have learned in preceding chapters as well
provide an opportunity for more advanced learning regarding the nuances
that make the SQL language so elegant and powerful.

We continue to find new things to discuss regarding the where clause and in
this chapter it gains much facility with the use of the underscore and the
percentage wildcards with the Like predicate. This combination permits
single and multiple characters or character strings to be searched and found
at the beginning, middle, end, or anywhere within large or small character
string. For the array programmer this saves substantial work in
programming to be able to use these features that are natural to the SQL
language.

The concat and substring operations are also highlighted as very powerful
operators available in this free format language. A number of exercises
focused on the utility of the column functions with the Group By and
Having clauses providing powerful capabilities in summarizing, averaging,
and counting column values and providing additional values to be selected
in the Having clause. These exercises took us to the very powerful sub
query facility that typically is not viewed as the easiest of all SQL capabilities
to learn. Besides this, we demonstrated just how powerful the IBM i SQL
can be and how powerful some sub query operations can be. Besides a
standard sub query, we also developed a scalar sub query in which two
tables were involved and values from one table selectively updated values in
another table. .

The rest of this chapter was exercises with the last set of tutorials, text, and
exercises focusing on the facility of two multi-file powerful operators –
Union and Join and the many flavors of Join. The flavors of Join are
always very interesting and the examples we covered were right to the point.

Chapter14 Advanced SQL 287

Key Terms

%
_
Advanced SQL
AVG
Between
Column Functions, 6
Concat
COS
COUNT
Cross Join
Delete
Double wildcard
Full Outer Join
GROUP BY
HAVING
Inner Join
Insert
INTO
Join
Left Exception Join

Left Outer Join
Like
MAX
MIN
NOT
Null
OR
Right Exception Join
Right Outer Join
Scalar Functions
SIN
SQL Built-In Functions
Sub Query
Substr
SUM
Union
Update
Values
Where Clause
Wildcard

Exercises

Use this chapter or look up information on the Web to answer the
following:

1. What is a Null capable field?

2. Describe how the SUBSTR and CONCAT operations work?

3. Create a table for the Voucher file that can link to the vendor file on
vendor number. A voucher is an accounts payable disbursements record
that is assigned a unique “voucher number” when a vendor invoice is
accepted for payment.

4. Populate the voucher file to provide for the join operations that are
requested in exercises 5 through 12.

5. Use the description of the vendor file plus create a description for a
voucher file Construct tow Concat – Concatenate Two or

6. Write an Inner Join Select on the Vendor file and the voucher file to
include all records in a joined format designed by you.

7. Write a Left Outer Join Select on the Vendor file and the voucher file to
include all records in a joined format designed by you.

8. Write a Right Outer Join Select on the Vendor file and the voucher file to
include all records in a joined format designed by you.

9. Write a Left Exception Join Select on the Vendor file and the voucher
file to include all records in a joined format designed by you.

10. Write a Right Exception Join Select on the Vendor file and the voucher
file to include all records in a joined format designed by you.

11. Write a Cross Join Select on the Vendor file and the voucher file to
include all records in a joined format designed by you.

12. Write a Full Outer Join Select on the Vendor file and the voucher file to
include all records in a joined format designed by you.

Chapter 15 AS/400 & IBM i Database Concepts 289

Chapter 15

AS/400 and IBM i Database Concepts

Student Note:
This Chapter is not part of the course but it stays here for those wishing a
larger perspective.

AS/400 Basic Nomenclature

Let’s take a closer look at what IBM originally built in as the System/38 and
then the AS/400 native database.

In a book, the focus of which is SQL, on a system that stores even its SQL
objects in native form, one of the challenges is presenting the SQL language
in the right sequence without dwelling on the native facility that exists with
or without SQL. It was about 28 years ago in 1978 that IBM invented the
native mechanism for defining tables and views. Still today, this natural, free
and integrated method of defining databases on IBM i is called Data
Description Specifications or simply, DDS.

Relational tables and views built with DDS have been implemented all these
years using what IBM calls physical and logical files. Physical files are
regular old data files with data as you would expect them to be, though
internally they have a few extra bells and whistles, such as metadata to
accommodate record and field information as well as other object
information. SQL tables are stored internally as physical file objects with a
few extra defining characteristics, which give away their source.

Logical Files are also called Logical Views, or just Views. A logical file is
really just a view of one or up to 32 physical files. It has a similar object
structure as a physical file, but there is no physical data. It is a superset of
an SQL view in that it can also define an index (access path) to the data.

The area of the file object in which the data would be referenced, points to
physical data files outside of the object instead of to internal data, since
there is none. The point is that the structure of the physical and logical file
objects is the same. The physical file references its data as part of the same
object whereas the logical references data in other physical file objects.

A logical view enables data access via presentation rules, which come into
play when the logical file is used in a program or query. These rules govern
how the data in the “based-on” physical files is to be presented, when
accessed via the logical view. Again, the logical file itself contains no data.
Its access paths and / or indices point to data in up to 32 separate physical
files. In many ways a logical file mimics the capability of an SQL view and
its ability to carry an index mimics the SQL index capability. SQL views
and SQL indexes are physically implemented on IBM i using the native
logical file structure.

This information is germane even to an AS/400 shop that has decided to
use SQL as its major database language. All SQL data manipulation
operations can be performed on AS/400 databases built from DDS just as
well as those built using SQL commands. Whether you code your
programs in C++, COBOL, RPG/400 or RPGIV, unless you are
depending on keyed access, they will work with SQL views in the same
fashion as do logical files, and vice-versa.

Keyed Access Issues with DDL

Though tables are implemented as physical files and views are implemented
as logical files, until IBM chooses to violate the SQL standard, there are
actually lots of issues to deal with if you one day choose to create all of your
tables (files) with DDL. The problem is simple to explain but difficult to
solve for a programmer. SQL treats views and indexes as two separate
entities. An index is created as a keyed logical, and a view is a non-keyed
logical and neither will ever be given the other’s capabilities. All of those
nice logical views that provide keyed access to programs that you may have
created with DDS over the years can still be used but you cannot create
anything like that with SQL. The logical file and the index are one and the
same with DDS while with SQL they are separate SQL objects.

Chapter 15 AS/400 & IBM i Database Concepts 291

Without some major work on the standard and at the lab, you cannot and
will not be able to define a key for an SQL view. Yes, that does mean that
all of those goodies that are available when defining SQL views are of little
or no benefit if your high-level language programs depend on keyed access
through an index that is a part of the view. Such an animal does not exist in
SQL. An SQL view then is useful to the native implementer only if you do
not need a key sequence or you do not need to access records by key or if
you choose to remove record level access from your programs (CHAIN,
READE, etc.) and you choose to move to embedded SQL.

Physical Files

Since an SQL table becomes an AS/400 physical file object when it is
created, we will now take a closer look at what makes up a physical file. In
addition to data records, a physical file contains a definition of the fields in
the file (a description of the data a.k.a. a format or database structure). It
also contains an access path, so the data can be stored either in arrival
sequence (plus one access path), or in keyed sequence, such as customer
number. Unlike an SQL table that has no keyed access, a native physical file
as created with DDS is the equivalent of an SQL table but it also has an
access path.

The IBM i is an object oriented system. The operating system supports
many object types. Yet, there is no object type of index on the IBM i and
there has never been an object type of index with System/38 or AS/400. So,
if SQL has the ability to create indexes, and the operating system has not
been tweaked to support an index object type, then what exactly is an index
on the IBM i?

As noted previously, SQL tables are not built with indexes within the same
object structure. Instead, when an index is created with SQL, the IBM i
builds an object type that has been part of the OS from day one – an object
type with far more native capabilities than a mere index. The object is a
logical file, which inherently has the ability to store an index. When an SQL
index is stored in such a file, SQL markings in the object prevent the logical
file from being anything other than an index for SQL activity.

The data in a physical file or that data referenced by a view or logical file is
packaged in a sub-object, called a member, which we say is contained in the
file object. Though we like to say that, it is really not true. The physical
structure of the data container is separate from the file object itself and is
usable only through its reference in the file object.

Members

File members can at first appear to be an elusive notion so we will take the
time to discuss them since they are very usable with SQL. For a further
explanation, please review Chapter 7. First of all, it helps to know up front
that there can be many members “in” a physical file. Each member
segregates a portion of the data from all other members. In normal
database processing, one member is accessed at a time. The first member is
the default used when no member is specified.

A file can be overridden to provide data from all members, one at a time to
a calling program. This helps in transaction-based systems. For example, it
helps when data needs to be segregated by transaction date, and it helps at
month end, when the data is easily merged for reporting. Thus, we can
envision that as part of every file, there is a list of members as an integral
part of the file object. The members can be accessed specifically by file
name / member name.

Though the default in i5/OS with SQL or native DDS is to create a file
with just one member, a file can contain thousands of members. In fact,
because of this special structure, IBM uses members to store individual
source programs, such as those written in RPG and COBOL. IBM also
uses source file members to store DDS to build native physical files. More
importantly to the SQL student, experts in AS/400 systems recommend
that SQL developers place their create commands in source members as a
“permanent” area from which tables, views, indexes etc. can be rebuilt or
modified as needed. There is a nice Q & A on members in Chapter 7.

DDS / SQL Is Not Always Needed

As you learned in prior chapters, data description specifications (DDS) are
typically used to create a native database. The native command to create a
physical file (CRTPF) can create a physical database file without the

Chapter 15 AS/400 & IBM i Database Concepts 293

developer providing a description of the data. The term used for these DB
files is internally described since they must be described inside of programs
in order to be used. Structurally, without DDS, the command creates a
single field file with the field being the same size as the file record length as
specified in the command.

Logical Files

AS/400 logical file objects are structured similarly to physical file objects,
and they behave in the same way as described above, but, they contain
(reference) no private data within the object itself. Well, then what do they
contain? They contain nothing more than a definition, or view, or set of
rules as to how to retrieve records from a physical file or files, and how to
format fields when the dependent physical file is used. Through the native
logical file, the AS/400 database is able to implement the relational
operators, and send a view of the results of those operations to the
requesting program or user.

A single logical file can be built over one to 32 physical files. In other
words, up to 32 physical files can be brought together, with JOIN or non-
JOIN DDS operations, to create one logical file. The same capabilities
exist with SQL Views. Many (any number of) logical files can be built over
(specify) the same physical file, just as any number of views can be built
against a specific SQL table.

Logical files are also implemented with an internal access path that points
to the data container in a physical file member. Therefore, just as a physical
file, it has an efficient means of getting at the data in the based-on physical
file. The access path contains an index of key values and locations as to
where the actual data records reside in the based-on physical file. When a
logical file or SQL view is used, the logical file object’s access path governs
how physical file data is presented / retrieved from data manipulation
operations.

Just as physical files can be used with either internally described data or
externally described data, logical files work the same way. In fact, a logical
file or SQL view, with all fields defined can often be substituted in a
program for its underlying physical file, and the program would produce the

same results as with the physical file. Of course, because data would be
retrieved via a separate view and perhaps a separate index, the program
timings would more than likely be a bit slower.

Logical files and therefore SQL views are used to make new relationships in
the data base from the existing database. As noted in prior chapters, the
operations include Order, Union, Selection, Projection, Join, and others.
Records can therefore be referenced, and/or selected based on data
content, and/or subdivided (projected) based on data fields desired.

Data Currency

The implementation of DB2 UDB for IBM i, with or without SQL is done
to accommodate data currency and immediacy. For example, any change to
data can be immediately reflected in all views, regardless of how the view
was created. Moreover, there are no embedded pointers or linkage records
used to order the records, so there is not a big chain of events necessary
when index fields are originally entered or later updated. All links are done
based on the relationships of data, not by external, unnatural means.

Data and Index Currency

Changes to an AS/400 database can be immediately reflected or can be
deferred. When new records are added or when key values are updated in
records, the access path must be maintained to reflect the changes. The
system automatically updates the access path in all logical files and SQL
indexes either (1) immediately one at a time, (2) delayed, after the job is
over, or (3) on a rebuild basis - the database rebuilds the index before every
use. Based upon file usage, one of these approaches typically fits the
database.

When you create your physical file or logical file, when you change the file
object using either a Change Physical File (CHGPF) command, or the
Change Logical File command (CHGLF), you can specify your choice for
access path maintenance. The parameter is used to govern all members of
the file, regardless of how the file object was crated – SQL or native. Of
course, since SQL table and View objects are built with arrival access paths,
they never have an index within the internal object. Thus, this notion does

Chapter 15 AS/400 & IBM i Database Concepts 295

not really matter for SQL created objects. The index object is a native
keyed logical file so it is affected by access path maintenance. The SQL
Create Index function establishes the index with an *IMMED access path.
However, it can be altered using a change logical file command (CHGLF)
to any of the following values.

The possible values are:

*IMMED The access path is updated each time a record is changed,
added, or deleted from a member. *IMMED must be specified for files
that require unique keys.

*REBLD The access path is completely rebuilt each time a file
member is opened. The access path is maintained until the member is
closed, then the access path is deleted. *REBLD cannot be specified for
files that require unique keys.

*DLY The maintenance of the access path is delayed until the
logical file member is opened. Then, the access path is updated only for
records that have been added, deleted, or changed since the logical file was
last opened.

Creating Physical and Logical Files

How do you create physical and logical files? We have already discussed
two ways. There is a third method on the AS/400 and IBM i which was
more or less imported from the System/36 to make migrations from that
platform even easier. The three ways to create physical files are as follows:

IDDU Interactive Data Definition Utility (used in S/36 environment)

SQL Structured Query Language

DDS Data Description Specifications - AS/400 native interface to
 the database.

Interactive Data Definition Utility (IDDU)

Physical files can be described using IDDU. However, you will have to use
DDS or SQL in order to build logical files or to build views.. You would
choose to use IDDU if you are looking for a menu-driven, interactive
method of describing data. You might also choose IDDU if you are already
familiar with describing data, using IDDU, on a System/36. If this were a
Java topic, we might say that IDDU has been deprecated.

SQL Structured Query Language

Of course SQL is the way everybody else does a relational database. On the
IBM i, it is an optional, separately orderable, separately licensed program. It
uses the ANSI data definition, data manipulation, and data control
language. SQL is characterized by its simplicity and lack of verbosity. You
tell the system what you want. You do not tell the system how to get it.
One of the precepts of Tedd Codd’s relational design was that the
implementation details are unnecessary to the use of the database.

SQL is a very nice, fee-based alternative to DDS on the AS/400 and IBM i.
It has been well-adopted by the newer breed of developer, whose roots
often spring from other platforms such as Unix and Windows. On every
other platform but IBM i, you either take relational database the way Codd
envisioned it, and that means SQL is the standard . . . or you don’t take
the database.

The following is an example of a CREATE TABLE command, which is the
equivalent of building and compiling DDS into a database file. By now, you
should know the syntax of this command cold.

CREATE TABLE STUDENT

 (STUDENT_NO DECIMAL(10) NOT NULL,

 STUD_NAME CHAR(30) NOT NULL,

 STUD_ADDR CHAR(30) NOT NULL)

Chapter 15 AS/400 & IBM i Database Concepts 297

This SQL command creates an arrival sequence physical file, named
STUDENT, with no key, in the user’s current library. The Create Table
command is explained in detail in Chapter 8.

Data Description Specifications

Data Description Specifications (DDS) is the most frequently used method
for describing AS/400 databases. DDS is the language of the native
database. Although we show some DDS examples in this book, it is only to
help relate SQL to those who already know DDS. For more information
on the native database, please see The iSeries Pocket Database Guide from
Lets Go Publish at www.letsgopublish.com.

Physical files are defined to the system as fields comprising physical records
of data and access to data. The definition of a physical file contains
information about the file itself such as: File by name, Record format by
name, Fields by name, and access by arrival sequence or keyed sequence.

The CRTPF Command

When DDS is used to create any database file in a particular library, such as
SQLBOOK, by default, a member with the same name is created within the
created file at the same time. As noted previously, it is these members that
actually “hold” the data when it arrives. The physical file is built with a
description of all the data elements (fields) – contained within the file object
itself. To put this in perspective, any newly created physical file, with
CRTPF or SQL’s Create Table, with its field definitions is equipped with
the data definitions within the object itself.

A sample CRTPF command with the English keyword prompts is shown in
Figure 15-1

Figure 15-1 Create Physical File
 Create Physical File (CRTPF)

Type choices, press Enter.

File > ARMAST Name
 Library > SQLBOOK Name, *CURLIB
Source file > QDDSSRC Name
 Library > SQLBOOK Name, *LIBL, *CURLIB
Source member > ARMAST Name, *FILE
Record length, if no DDS Number
Generation severity level . . . > 20 0-30
Flagging severity level > 0 0-30
File type > *DATA *DATA, *SRC
Member, if desired > *FILE Name, *FILE, *NONE
Text 'description' > *SRCMBRTXT

 Additional Parameters

Maximum members > 1 Number, *NOMAX
Access path maintenance > *IMMED *IMMED, *DLY, *REBLD
Force keyed access path > *NO *NO, *YES
Member size:
 Initial number of records . . > 10000 1-2147483646, *NOMAX
 Increment number of records . > 1000 Number

 Maximum increments > 3 Number
Allocate storage > *NO *NO, *YES
Contiguous storage > *NO *NO, *YES
Preferred storage unit > *ANY 1-255, *ANY
Records to force a write > *NONE Number, *NONE
Maximum file wait time > *IMMED Seconds, *IMMED, *CLS
Maximum record wait time > 60 Seconds, *NOMAX,
*IMMED
Share open data path > *NO *NO, *YES
Max % deleted records allowed . > *NONE 1-100, *NONE
Reuse deleted records > *NO *YES, *NO
Record format level check . . . > *YES *YES, *NO

Dissecting CRTPF Parameters

Now, let’s dissect the first part of this command just a bit so we have a
better understanding of what we are telling the compiler when we create a
physical file.

File > ARMAST
 Library > SQLBOOK
Source file > QDDSSRC
 Library > SQLBOOK
Source member > ARMAST
Record length, if no DDS . > ________

Chapter 15 AS/400 & IBM i Database Concepts 299

In this section of the command, you tell the compiler to create a file object
named ARMAST and that it should be built in the SQLBOOK library. You
then tell it the DDS is in the QDDSSRC source file which is in the
SQLBOOK library. In the second last line, you tell the compiler that the
specific DDS for this file are located in the ARMAST member of the
QDDSSRC source file. The last line shows on the prompt but is not used.
If no DDS were used for the file, this is where you would specify the record
length.

In Figure 15-1, you can see that there are many other parameters that can
be applied at create time. Most affect performance and structure.

Creating Logical Files

Logical files are defined to the system as a bunch of rules in much the same
fashion as physical files. In addition to the create logical file parameters, the
rules in logical file DDS cause record Selection, Projection, and other
relational operations upon records from a physical file. In addition to the
rules for access, the logical file also contains the means to accessing the
data.

Defined with DDS

The definition of a logical file is provided in DDS in much the same
fashion as a physical file. In other words, you specify file by name, record
by name, and fields by name (optional). Fields are optional because if you
choose to have all of the fields from the physical exist in the logical file, you
don’t specify any logical fields. If you specify any fields – that is all you get.
When you specify fields in a simple, logical file, based on one physical file,
you are performing relational projection. Unless you explicitly specify each
of the fields in the physical file, you get a subset of the fields available.
Thus, you are projecting a smaller image (# of fields) of the physical file
than actually exists in the physical file.

Using DDS, you define the access path in a logical file. You specify whether
the path is in arrival sequence or keyed sequence. You also specify whether
all of the records will be included in the view, using DDS select/omit

criteria. Figure 15-2 shows the components involved in a logical file
creation.

Figure 15-2 Compile Diagram with PF and FieldREF
 |------------------, ----------|

 | ARLINQ DDS | | HELLO LIB|

 | | | |

 | * All Fields of | >>>>>>>| The |

 | ..ARMAST | | Logical |

 | | | | File |

 | | * Key on CUST | | Object |

 | | * Select/ Project| | ARLINQ |

 | *-----#------------| ----------

 | | DDS for LF Logical File - no data records

 | |

 /------------------, /----------------|

 |ARMAST | | |

 | | | FLDREFFILE |

 | ARMASTR | |----------------|

 | R CUSTP | | |

 | CUST R ...|.....>| |

 | NAME R ...|.....>| |

 | STREET R ...|.....>| |

 | CITY R ...|.....>| |

 -----#------------ | |----------------|

 Physical File Physical File

 With data records With no data records

 Reference purposes only

Collecting the Attributes

As you can see in the diagram, at compile time, which is also known as
logical file creation time, the DDS compiler uses the physical file (ARMAST
in this instance) to obtain the record and field attributes for use in the
logical file build. SQL views are constructed under the covers in much the
same way.

The “dictionary,” on the bottom right has no real role at logical file creation
time. The diagram merely demonstrates that the physical file originally got
its descriptions from the reference file. During the logical file compilation
process, as shown in Figure 15-2, the logical file receives all of its
information from the physical file ARMAST, upon which it is based.

In DDS systems, the field reference file provides a passive data dictionary
to the native database.

Chapter 15 AS/400 & IBM i Database Concepts 301

The CRTLF Command

Just as with a physical file, when DDS is used to create a logical file in a
particular library, such as SQLBOOK, a member is created at the same
time. The member in the logical file does not “hold” the data, as you can
visualize in a physical file. However, the logical member built via CRTLF or
SQL Create View does access the data in the physical file by pointing to the
member component in the “based-on” physical file.

The CRTLF command to create a logical file is shown below with many of
its first page of default parameters. Following this command, we will briefly
examine some of these parameters, so that you can get a good feel about
the information you must provide, and that which the system provides as
defaults for the file creation process. Now, let’s take a closer look at the
CRTLF command as shown in Figure 15-3

Dissecting CRTLF Parameters

Now, let’s dissect the first part of this command just a bit, so we have a
better understanding of what we are telling the compiler, when we create a
logical file.

File > ARLINQ

 Library > SQLBOOK

Source file > QDDSSRC

 Library > SQLBOOK

Source member > ARLINQ

In the section above, you tell the compiler to create a logical file object
named ARLINQ, and that it should be built in the SQLBOOK library. You
then tell it that the DDS is in the QDDSSRC source file which is in the
SQLBOOK library. In the second to last line, you tell the compiler that the

specific DDS for this file are located in the ARLINQ member of the
QDDSSRC source file.

Figure 15-3 Create Logical File
 Create Logical File (CRTLF)

Type choices, press Enter.

File > ARLINQ Name

 Library > SQLBOOK Name, *CURLIB

Source file > QDDSSRC Name

 Library > SQLBOOK Name, *LIBL, *CURLIB

Source member > ARLINQ Name, *FILE

Generation severity level . . . > 20 0-30

Flagging severity level > 0 0-30

File type > *DATA *DATA, *SRC

Member, if desired > *FILE Name, *FILE, *NONE

Physical file data members:

 Physical file *ALL Name, *ALL

 Library Name, *CURRENT

 Members Name, *NONE

 + for more values

 + for more values

 Text 'description' > *SRCMBRTXT

 Additional Parameters

 Maximum members > 1 Number, *NOMAX

 Access path maintenance > *IMMED *IMMED, *DLY, *REBLD

 Force keyed access path > *NO *NO, *YES

 Preferred storage unit > *ANY 1-255, *ANY

 Records to force a write > *NONE Number, *NONE

 Maximum file wait time > *IMMED Seconds, *IMMED, *CLS

 Maximum record wait time > 60 Seconds, *NOMAX, *IMMED

 Share open data path > *NO *NO, *YES

 Record format level check . . . > *YES *YES, *NO

 Bottom

 F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

DB2/400 Database Characteristics

The AS/400 database automatically accommodates data sharing by multiple
users – concurrent access to physical files / SQL Tables and/or logical files
/ SQL Views. The system maintains data integrity and provides data
independence.

Unique DB Characteristics

There are a number of unique database characteristics, which are contained
as attributes of a physical file. In essence, they define the rules of behavior

Chapter 15 AS/400 & IBM i Database Concepts 303

for the DB file. One might call these data management rules, since they are
implementation-oriented, not definition-oriented. In other words, Tedd
Codd would not care about them because they are implementation details
and are not part of relational theory.

Despite the efforts of the great master, Tedd Codd, whose database ideal
was for developers and users to have no concern for the underlying system
implementation and attributes, of any computer system deploying a
relational database, the fact is that every database runs on a computer with
its own personality. When you deploy your database on any type of
hardware, or operating system, you will find some different knobs to turn.
There will be some different bells to ring. And, there will be some different
whistles to blow, in order for you to get everything the way you want – and
still have a fine-performing machine. It is simply unavoidable, though you
can, in most cases, ignore the underlying AS/400 and IBM i options and
just take the defaults.

Defining Behavioral Rules

Most of the file attributes we are about to examine are originally placed in
the file as a result of the Create Physical File command – CRTPF
command or the CRTLF. After the file is created, physical or logical, most
of these attributes can be changed permanently by the right Change
Command – CHGPF or CHGLF. Changes to the file made with these
commands are permanent until changed again.

A smaller number of attributes can also be changed, temporarily, during
execution, using the Override with Database File command - OVRDBF.
There are also some attributes, which are invisible in the object, but affect
the file object only during execution. These attributes are given in the form
of overrides, with the Override Database File (OVRDBF) command.

Database attributes most often pertain to your physical database files,
although some attributes, such as index characteristics / maintenance, are
part of a logical file. However, the number of attributes in the file object is
always the same, regardless of how the file is built - SQL, IDDU, or DDS.

Let’s start taking a look at these very powerful attributes, one at a time. It
helps to remember that these database attributes collectively form the rules
for a database file, and are in fact stored within the object itself.

Records to Force a Write (FRCRATIO)

The AS/400 and IBM i are boxes, which use the notion of Single Level
Storage. Inherent in this implementation, is the concept that virtual memory
and virtual disk are one and the same, and present the image of single-level
storage to the system. All objects, therefore, are addressed at the same level,
using their single-level storage address. They are ultimately resolved
(located) to real memory or disk. Neither the user, nor the implementer
controls what may be in memory and what may not be in memory at any
given moment.

Virtual Programs and Data

By default, on your AS/400 or IBM i, both programs, and data are
virtualized. Long after a program thinks that it has updated or written a new
disk record, depending on system and file characteristics, the record may
still be hanging around in memory. To developers who have chosen to
implement without journaling, commitment control, and perhaps, without
RAID5 disks, the idea that an order record, as an example, may not actually
be “really” updated on disk, causes some level of consternation. And it
should!

If the system were to crash. . . . Yes, the probability is low that the disk
will crash tomorrow. However, it is very high that one or more disks will
crash during the life of your system. If you use RAID5, or mirroring, you
are in reasonably good shape for preserving records that have been written.

But what about those records that have not yet been written to disk? Well,
without journaling, you may not get the more recently-written records back.
If the system powers off, without a Universal Power Source (UPS) available
for you to do an orderly shutdown, un-journaled records in memory
disappear, with the rest of memory’s contents, as soon as the system is
deprived of power. If your journals are on disk drives that are managed
independently of your main disk storage pool, (separate auxiliary storage

Chapter 15 AS/400 & IBM i Database Concepts 305

pool - ASP), you can get your data back up-to-date, as well as withstand a
disk crash.

This book does not teach you sophisticated techniques, such as
commitment control and journaling, nor does it deal with other
implementation topics, such as RAID disk protection, or auxiliary storage
pools (ASPs). Most non-AS/400 relational databases use journaling and
commitment control, because, quite frankly, their systems do not have the
same reliability as an AS/400 or IBM i. Please note that it is best, even with
AS/400 and IBM i to use journaling and commitment control in your
applications. Regardless of how your system is set up, however, you need to
be familiar with the Records to Force a Write (FRCRATIO) attribute of the
physical file.

Protecting Data

The FRCRATIO attribute determines the number of Insert, Delete, or
Update operations that can occur on records in memory before those
records are forced into auxiliary (permanent) storage. If the physical file is
being journaled, IBM suggests a very large number or the use of the value
*NONE. There is a caveat with *NONE, in that it may cause long
synchronization of the journal and physical files. More detailed IBM
information on this topic is available in the CL reference information in the
AS/400 Information Center.

The Force Write Ratio of course is most important if your data is
unprotected by RAID or mirroring. The term itself means the number of
program database writes necessary to force an actual write to disk. It is like
blocking at a system level vs. a program level. . If you have three records in
the memory block that are not written when the system crashes, they are
gone. A FRCRATIO of one minimizes the impact of lost data since no
more than one update can be lost, but it also keeps the disk drives lots
busier, thereby impacting performance.

Maximum File Wait Time (WAITFILE)

Since the AS/400 is an object-oriented system, there is code within the
object itself to give information about the object, even when the object
otherwise cannot be used. One such attribute which delivers a response to a

program is the WAITFILE parameter. This attribute determines the
number of seconds that a requesting program will wait for the file resources
to be allocated when the program attempts to open the file.

Maximum Record Wait Time (WAITRCD)

There is another WAIT attribute, which is also very helpful in finding
problems and in terms of providing work-arounds while the problems are
being investigated. This attribute has to do with how long a file will wait,
after being requested by a program to fetch a record, before it gives up and
sends an error message. This is what will happen if the record is locked by
another process.

Wait, Don’t Crash!

The WAITRCD parameter permits you to specify the number of seconds
that any program is going to wait for a record to be updated or deleted, or
for a record read in the commitment control environment with
LCKLVL(*ALL) specified. If the record is not allocated in the specified
wait time, the file complains by sending an error message to the program.

Records Retrieved at Once (NBRRCDS)

This parameter specifies the number of records read from auxiliary storage
as a unit and written to main storage as a unit. The amount of data actually
read is equal to the number of records times the physical record length, not
the logical record length. Valid values range from 1 through 32767.

This parameter is valid for sequential or random processing and is specified
only when the data records are physically located in auxiliary storage in the
sequence in which they are processed. This parameter overrides the
number of records value specified in the program, or in other previously
issued OVRDBF commands.

In this land of web programming and client-server code, we sometimes
forget about all of the batch processes which are designed, and must be
designed, into systems. Along with batch processes comes sequential

Chapter 15 AS/400 & IBM i Database Concepts 307

processing. Along with sequential processing comes the AS/400 and IBM i
sort program, as invoked via the Format Data command (FMTDTA). Yes,
even with an integrated database, there is ample need to sort records into a
particular sequence before running a program.

OVRDBF NBRRCDS

The Records Retrieved at Once (NBRRCDS) attribute is not specified in
the file itself and thus cannot be changed. It is invoked only via the
OVRDBF, and lasts until the job has ended or the override is deleted.

EOF Retry Delay in Sec (EOFDLY)

Another processing setting carried by the file object and triggered only by
an OVRDBF command, is the End-Of-File Retry Delay in Seconds
(EOFDLY) attribute. With this parameter, you specify the number of
seconds of delay, before the system will try to read additional records when
an end of file condition is reached, in a program reading the overridden file.
The typical happening for a program, when it fetches a record after the end
of file is reached, is that the request is denied. No more records can be read
from the file, until the program either closes and reopens the file, or the
program ends and restarts. In both of these cases, however, in order to get
to newly added records while processing sequentially, the program must
read through all of the beginning records, one at a time, and it must have
information about where the new records begin.

No EOF Message

EOFDLY prevents the typical file close logic in programs. The file does
not send an EOF message to the program. The program is disconnected
from the file, and the program then sleeps for a period of time. The
database physical file object wakes up periodically (1 second to 99999
seconds) as set by the EOFDLY parameter and it checks to see if there are
more records to process. If there are more records, it starts shipping the
newly retrieved records to the program for processing.

When you choose to use this technique, the delay time is used to allow
other jobs in the system an opportunity to add records to the file, and have
the new records processed without having to start the program again.

Instead the program sits on the READ statement. When the delay time
ends, the job is made active, and data management determines whether any
new records were added. If no new records were added, the job waits for
another time delay without informing the application program. When a
number of seconds is given, no end of file occurs on the given database file
until an End Job (ENDJOB) command or Forced End of Data (FEOD)
occurs

Record Format Level Check (LVLCHK)

We’ve looked at performance attributes and program facility attributes, and
now we are going to look at an integrity attribute. The Record format level
check (LVLCHK) attribute specifies whether the level identifiers for the
record formats of the database file should be checked when the file is
opened by a program. For this check, which is done while the member is
opened, the system compares the record format identifiers of each record
format used by the program with the corresponding identifiers in the
database member. Level checking cannot be done unless the program
contains the record format identifiers. You cannot use an override to
change level checking from *NO to *YES, but you can go from *YES to
*NO to turn it off.

An Indelible Mark

When a database file is created (logical or physical), the compiler prints
some identifying information within the created file object. A unique stream
of data is associated with each of the different formats in the file during the
process. It is known as “level information,” or more formally as record
format identifiers.

When a program is compiled that uses a database file, the compiler copies
this unique “level information” into the created program object. In this
way, the program “knows” the shape of the file as it was on the day the
program was compiled. The object program is built to accommodate that
shape. If you go ahead and change that database file, the system will reward
you by building a new set of “level information” into the file object. This
will make your program bomb. It will bomb with a level check error at file
open time, since the file signature is not the same as when the program was
compiled. If the program is based on one shape of data and you change the

Chapter 15 AS/400 & IBM i Database Concepts 309

shape, you want the program to bomb before it messes something up. This
is exactly what happens. It serves to protect program and database integrity.

How Do You Get the Levels in Synch?

So, this is good overall. But it may be bad temporarily. Let’s say, for
argument purposes, that you added a field to the end of a record and you
recreated the database. Let’s also say that the program you are working with
does not need the additional field or fields you added. If you do nothing
extra, your program will bomb. However, if you compile the database with
LVLCHK(*NO), or you override it (OVRDBF) at execution time, you can
avoid the costly level check and your program will run fine.

The down side is that you will have degraded the value of the level
mechanism, and you will have lost a valuable means of protecting program
and database integrity. The right thing to do, for integrity purposes, after a
major database change, is to recompile all affected programs. This
recaptures the level information and gives the compiler the opportunity to
assure that all is OK before building the new program object.

Share Open Data Path (SHARE)

Now, we come to an attribute that helps us control file sharing. Again, not
exactly! The Share Open Data Path (SHARE) attribute determines whether
the open data path (ODP) is shared with other programs in the same
routing step. When an ODP is shared, the programs accessing the file
share facilities such as the file status information and the data buffer.

What is an ODP?

You can think of an ODP as the information in a job about a file. For
example, one of the things a job knows about a file it is processing is the
address of the current record, and, if processing is consecutive, it knows
which record will be processed next. When an ODP is shared, more than
one program in a job stream is aware of the processing information, such as
the file cursor (the “which record” pointer).

Suppose program A opens up a file with a shared ODP. Let’s say it then
reads two records and calls program B. Program B in turn, opens the same

file with a shared ODP. When program B reads the file, it is presented with
record 3 of the file, not record 1, since it has elected to share the open data
path with program A.

There are a few choices when specifying whether you want the ODP shared
or not. If the value is *NO, then the ODP is not shared with other
programs in the routing step (job). A new ODP for the file is both created
and used every time a program opens the file. On the other hand, if you
select *YES for the attribute, the same ODP is shared with each program in
the job.

Limit to Sequential Only (SEQONLY)

The Limit to Sequential Only (SEQONLY) is another processing-only
attribute. It has some similarities to the number of records (NBRRCDS)
parameter discussed above, but it is not the same. In fact, it takes over after
the NBRRCDS parameter finishes doing its thing. Moreover, as you will
soon see, the SEQONLY parameter has its own number of records sub-
parameter. Its job, when specified in the OVRDBF command, is to stage
the physical file for sequential-only processing. In other words, it specifies,
for database files whose records are processed in sequential order only,
whether sequential only processing should be used with this file. It will help
avoid confusion if I show you how this thing looks in a prompted override
(OVRDBF) as follows:

Limit to sequential only: SEQONLY

 Sequential only > *YES

 Number of records > 100

From Disk to Virtual Memory and Back

This parameter also specifies the number of records transferred as a group
to or from the database (virtual memory) if sequential only processing is
used. If a number is not specified, a default number is handily determined
by the system. You are better off specifying your own number. This
parameter is used to improve the performance of programs that process
database files in a sequential manner. It overrides any blocking value

Chapter 15 AS/400 & IBM i Database Concepts 311

specified in the program or in any other previously issued OVRDBF
commands.

Chapter Summary

Every database takes on some of the characteristics of the system that it
grew up on. The IBM i database grew up integrated and originally came
into being from one of the easiest to use file systems every created – the
System/3. So, lots of ease of use is built-in to the natural database objects
on every IBM i..

The IBM i database system is made up of libraries, physical files, logical files
and members. The IBM i has always optimized data currency over all
database attributes. When you update a record, it ought to be updated and
its access path ought to be updated also so that all keys are in order and all
records are accessible by any keys that are on the system – even if a key was
just added or deleted or changed. SQL is a direct beneficiary of IBM’s care
in making its internal DB objects so all-encompassing. It’s nice that SQL
runs on a system that demands so much of itself.

The whole idea of database on an integrated machine is to have a base
facility that every facet of the machine can use. So, it is no wonder that
when SQL came to the integrated database box, it would be positioned to
use the powerful objects that had already been established for it, even
unknowing of its imminent arrival.

The physical file structure has already been discussed and various facets of
this remarkable object have been amplified in this chapter. What is not
obvious in this book but which is obvious in native books about the IBM i
is that this DDS phenomenon that continues to be pervasive on the box is
not just a database thing. DDS is also used to describe communications
files, display files, printer files, and others. It is the native descriptor
language for the IBM i and database is just one piece of that need.

Each IBM i physical and logical file has an access path. For a non-keyed
logical file, it is an arrival key of sorts that gets pinned to the record as a slot
keeper. Some files have keyed access paths. Physical and logical files may
have keys. An SQL index is not implemented as an independent object on
an IBM i but rather it uses a logical file structure with an access path to get

its job done. Thus, to make an index facility within SQL, parts of the logical
file object had to be “dumbed” down from its native capabilities. The same
goes for the SQL view. A logical file object can contain an index and an
SQL View cannot. A logical file index can also have select omit logic built
within an index but SQL cannot. An SQL view cannot have an index
bound to any view. DDS does not have a link to an optimizer but SQL
does and IBM attests that the SQL optimizer does a good job of figuring
out an access approach when and if indexes should be used.

Additionally, because of this access path notion – even non keyed IBM i
records can be processed by relative record number. In fact, there is a
command called INZPFM which goes ahead and pre-writes default records
to a “direct” file so that the file can be processed by relative record #.

Members are the vehicle that IBM has chosen to contain the data for SQL
or DDS-built files. This is a step up on the notion of a partitioned data set
but it has many of the same characteristics. IBM has been improving SQL
with notions to help make the anomalies go away. Member access can now
be achieved in SQL by the Alias facility. As time passes, more anomalies
and differences between SQL and Native will be smoothed out. Let the
better method win in all cases. Adjust the standards rather than pin the
database to an inferior method.

There are lots of attributes that can be created along with a physical or
logical file objects. There are many parameters. If you miss the opportunity
to do it right at create time, however, there are also lots of ways to make it
right after the fact. These commands are part of the i5/OS operating
system. They are part of the integrated database.

The first level of change are the change commands such as Change Physical
File (CHGPF) or Change Logical File CHGLF). These enable the
implementer to modify parameters in an object permanently without having
to delete and recreate the object. This facility has been there since day one
on the System/38. These commands can even change the record
allocations. You practically cannot run out of room on a file anyway as the
operating system continually permits more and more records to be added
with operator intervention after the initial allocations are made. Operator
intervention may not be desirable, however, so the Change operation
permits the allocation to be updated on the fly.

Chapter 15 AS/400 & IBM i Database Concepts 313

Then again, if you just want to make a change for today or the next hour or
for your terminal session, you can do that also with the override with
database file CL command (OVRDBF). With this command, you can
change the specs until you sign off or until the job that you changed
finishes executing. The system gives great flexibility and top level integrity,
full sharing, and currency. This chapter gave you a nice look at a lot of
those features of which SQL takes advantage because it sits on top of the
i5/OS operating system on the IBM i.

Key Terms

*DLY
*IMMED
*REBLD
Access path
Index
CRTPF
Index currency
Data Currency
EOFDLY
File Wait Time
FRCRATIO
IDDU
Keyed access

Keyed logical
Logical files
LVLCHK
Members
NBRRCDS
Object oriented system
Object type
ODP
Open Data Path
Physical file object
Protecting Data,
Record Wait Time
SEQONLY

Exercises

Use this chapter or look up information on the Web to answer the
following:

1. When customer number 2 and customer number 4 exist in a database
that is keyed by customer number and a user types in a record for new
customer number 3, what happens to the index in terms of access path
mainteanance choices?

2. Describe the three methods of maintaining an access path, *DLY,
IMMED, or *REBLD.

3. When an SQL index is created, what physical object is used and why?
What else can be done with that object in high level language programs?

4. What parameters on the CRTPF command have to do with data and
index currency?

5. Does FRCRATIO as a parameter give a programmer the opportunity to
use natural system caching? If not, what happens if there is no forced write
to update ratio?

6. Is EOFDLY a way of delaying operations so that other operations
complete or is it a programmer tool? Explain?

7. Can an SQL view support record level access in an RPG program? If yes,
how? If no, why?

8. Is there a file parameter that prevents a program from using a database
object that it has been bound to if that object is altered or deleted and
recreated?

9. What parameter permits a program to wait a period of time to get a file
lock? Record lock?

10. What is meant by an object type? How can physical and logical files
both be *file object types when they are different?

11. What is an open data path? Why would you care about such a thing?

12. Is the FRCRATIO for performance or for protecting data or neither or
both?

13. Should SQL tables be created with IDDU?

14. Can AS/400 data be blocked when used in programs?

15. Why would I want to limit processing to sequential only?

16. If a program is written to be able to update a million record file
processed sequentially by record, and later the need to update is taken away
from the program by a switch that gets set in the program each time it is
run, if the program were rewritten so that the file open was for input and
not for update would there be any difference in performance? Explain.

Chapter 17 Advanced SQL – Constraints and Isolation Levels 315

Chapter 17

Advanced SQL – Constraints and
Isolation Levels

*** Do not Proceed ***

Student Note: This Chapter is not included in the work required in an
introductory database course. It is not deleted below in case students wish
to pursue the notion of database into the advanced stages – for a better
perspective of the advanced notions included in the study of the DB topic.

Powerful Rule-Based Capabilities

Constraints are a very powerful capability of SQL dating back to its
invention. They are enforced by DB2 UDB for IBM i to assure that the
constraint rules as applied function as defined. The types of constraints that
are offered are as follows:

✓ Unique constraints

✓ Referential constraints

✓ Check constraints

Unique constraints

A unique constraint is the rule that the values of the key are valid only if
they are unique. They can be created using the CREATE TABLE and
ALTER TABLE statements.

Enforcement

Unique constraints are enforced during the execution of INSERT and
UPDATE DML statements. A PRIMARY KEY constraint is a form of

316 The IBM i Pocket SQL Guide

UNIQUE constraint. The difference between this and non-primary use is
that a PRIMARY KEY cannot contain any null-able columns.

Referential Constraints

A referential constraint is the rule that the values of any foreign key are
valid only if they also appear as values of a parent key; or some component
of the foreign key is null.

Enforcement

Referential constraints are enforced during the execution of INSERT,
UPDATE, and DELETE statements.

Check Constraints

A check constraint is a rule that limits the values allowed in a column or
group of columns. Check constraints can be added using the CREATE
TABLE and ALTER TABLE statements.

Enforcement

Check constraints are enforced during the execution of INSERT and
UPDATE statements. To satisfy the constraint, each row of data inserted
or updated in the table must make the specified condition either TRUE or
unknown (due to a null value).

Note: the examples in this chapter and the data as well come from
IBM’s DB2 UDB for IBM i SQL Programming Concepts V5R2 book.
We thank IBM for the use of this material in this book.

Adding and Using Check Constraints

A check constraint assures the validity of data during inserts and updates by
limiting the allowable values in a column or group of columns.

Chapter 17 Advanced SQL – Constraints and Isolation Levels 317

In this example, the following statement creates a table with two columns
and a check constraint over COLUMN2 that limits the values allowed in
that column to positive integers:

CREATE TABLE T1 (COLUMN1 INT, COLUMN2

INT CHECK (COL2>0))

If we tried to insert a row with a negative value for COLUMN2 into this
table, it would fail because the value to be inserted into COL2 does not
meet the check constraint; that is, -1 is not greater than 0.
The following statement would be successful:

Referential Integrity Constraints

Referential integrity is the condition of a set of tables in a database in which
all references from one table to another are valid. IBM has supplied a series
of sample tables in Appendix A of its Reference Guide, DB2 UDB for IBM
i Sample Tables. For our examples, we will assume that these tables are in
the schema named SQLBOOK.

✓ SQLBOOK/EMPLOYEE serves as a master list of employees.

✓ SQLBOOK/DEPARTMENT acts as a master list of all valid
department numbers.

✓ SQLBOOK/EMP_ACT provides a master list of activities
performed /for projects.

Other tables may refer to the same entities described in these tables. When
a table contains data for which there is a master list, such as a customer
number column in an order file that data should actually appear in the
master list, such as a customer table. If not, the reference is not valid. The
table that contains the master list is the parent table, and the table that refers
to it is a dependent table. When the references from the dependent table to the
parent table are valid, the condition of the set of tables is called referential
integrity. So, if there is a reference in the order table for a customer, the
customer must exist in the master list.

318 The IBM i Pocket SQL Guide

Stated another way, referential integrity is the state of a database in which all
values of all foreign keys are valid. Each value of the foreign key must also
exist in the parent key or be null. IBM supplies definitions to these terms in
its SQL Reference Guide. Understanding these terms is essential in
understanding the notion of referential integrity:

✓ A unique key is a column or set of columns in a table which
uniquely identify a row. Although a table can have several unique
keys, no two rows in a table can have the same unique key value.

✓ A primary key is a unique key that does not allow nulls. A table
cannot have more than one primary key.

✓ A parent key is either a unique key or a primary key which is
referenced in a referential constraint.

✓ A foreign key is a column or set of columns whose values must
match those of a parent key. If any column value used to build the
foreign key is null, then the rule does not apply.

✓ A parent table is a table that contains the parent key.

✓ A dependent table is the table that contains the foreign key.

✓ A descendent table is a table that is a dependent table or a
descendent of a dependent table.

Enforcement of referential integrity prevents the violation of the rule which
states that every non-null foreign key must have a matching parent key.

Adding or Dropping Referential Constraints

Use the SQL CREATE TABLE and ALTER TABLE statements to add or
change referential constraints.

When you define a referential constraint, you specify:

✓ A primary or unique key
✓ A foreign key
✓ Delete and update rules that specify the action taken with respect

to dependent rows when the parent row is deleted or updated.

Optionally, you can specify a name for the constraint. If a name is not
specified, one is automatically generated.

Chapter 17 Advanced SQL – Constraints and Isolation Levels 319

Example 1 Adding Referential Constraints

The rule that every department number shown in the sample employee
table must appear in the department table is a referential constraint. This
constraint ensures that every employee belongs to an existing department.
The following SQL statements create the CORPDATA.DEPARTMENT
and CORPDATA.EMPLOYEE tables with those constraint relationships
defined.

Example 1A

CREATE TABLE SQLBOOK/DEPARTMENT

 (DEPTNO CHAR(3) NOT NULL

 PRIMARY KEY,

 DEPTNAME VARCHAR(29) NOT NULL,

 MGRNO CHAR(6),

 ADMRDEPT CHAR(3) NOT NULL

CONSTRAINT REPORTS_TO_EXISTS

REFERENCES SQLBOOK/DEPARTMENT (DEPTNO)

ON DELETE CASCADE)

320 The IBM i Pocket SQL Guide

Example 1B

CREATE TABLE SQLBOOK/EMPLOYEE

 (EMPNO CHAR(6) NOT NULL

 PRIMARY KEY,

 FIRSTNAME VARCHAR(12) NOT NULL,

 MIDINIT CHAR(1) NOT NULL,

 LASTNAME VARCHAR(15) NOT NULL,

 WORKDEPT CHAR(3)

CONSTRAINT WORKDEPT_EXISTS

REFERENCES SQLBOOK/DEPARTMENT (DEPTNO)

ON DELETE SET NULL ON UPDATE RESTRICT,

 PHONENO CHAR(4),

 HIREDATE DATE,

 JOB CHAR(8),

 EDLEVEL SMALLINT NOT NULL,

 SEX CHAR(1),

 BIRTHDATE DATE,

 SALARY DECIMAL(9,2),

 BONUS DECIMAL(9,2),

 COMM DECIMAL(9,2),

CONSTRAINT UNIQUE_LNAME_IN_DEPT

UNIQUE (WORKDEPT, LASTNAME))

In this case, the DEPARTMENT table has a column of unique department
numbers (DEPTNO) which functions as a primary key, and is a parent
table in two constraint relationships:

The constraint named REPORTS_TO_EXISTS is a self-referencing
constraint in which the DEPARTMENT table is both the parent and the
dependent in the same relationship. Every non-null value of ADMRDEPT

Chapter 17 Advanced SQL – Constraints and Isolation Levels 321

must match a value of DEPTNO. A department must report to an existing
department in the database. The DELETE CASCADE rule indicates that if
a row with a DEPTNO value n is deleted, every row in the table for which
the ADMRDEPT is n is also deleted.

The constraint named WORKDEPT_EXISTS establishes the
EMPLOYEE table as a dependent table, and the column of employee
department assignments (WORKDEPT) as a foreign key. Thus, every value
of WORKDEPT must match a value of DEPTNO. The DELETE SET
NULL rule says that if a row is deleted from DEPARTMENT in which the
value of DEPTNO is n, then the value of WORKDEPT in EMPLOYEE is
set to null in every row in which the value was n. The UPDATE
RESTRICT rule says that a value of DEPTNO in DEPARTMENT cannot
be updated if there are values of WORKDEPT in EMPLOYEE that match
the current DEPTNO value.

The constraint named UNIQUE_LNAME_IN_DEPT in the
EMPLOYEE table causes last names to be unique within a department.
While this constraint is unlikely, it illustrates how a constraint made up of
several columns can be defined at the table level.

Removing Referential Constraints

The ALTER TABLE statement can be used to add or drop one constraint
at a time for a table. If the constraint being dropped is the parent key in
some referential constraint relationship, the constraint between this parent
file and any dependent files is also removed.

DROP TABLE and DROP SCHEMA statements also remove any
constraints on the table or schema being dropped.

Example 2 Removing Constraints

The following example removes the primary key over column DEPTNO in
table DEPARTMENT. The constraints REPORTS_TO_EXISTS and
WORKDEPT_EXISTS defined on tables DEPARTMENT and
EMPLOYEE respectively will be removed as well, since the primary key
being removed is the parent key in those constraint relationships.

322 The IBM i Pocket SQL Guide

Example 2A

ALTER TABLE SQLBOOK/EMPLOYEE

DROP PRIMARY KEY

You can also remove a constraint by name, as in the following example:

Example 2B

ALTER TABLE SQLBOOK/DEPARTMENT

DROP CONSTRAINT UNIQUE_LNAME_IN_DEPT

Update Considerations with Referential Constraints

If you are updating a parent table, you cannot modify a primary key for
which dependent rows exist. Changing the key violates referential
constraints for dependent tables and leaves some rows without a parent.
Furthermore, you cannot give any part of a primary key a null value.

Update Rules

The action taken on dependent tables (EMPLOYEE in this example set)
when an UPDATE is performed on a parent table depends on the update
rule specified for the referential constraint. If no update rule was defined
for a referential constraint, the UPDATE NO ACTION rule is used. Let’s
take a look at the various actions that can occur when such an update
occurs that affects a referential constraint:

UPDATE NO ACTION Specifies that the row in the parent table can be
updated if no other row depends on it. If a dependent row exists in the
relationship, the UPDATE fails. The check for dependent rows is
performed at the end of the statement.

UPDATE RESTRICT Specifies that the row in the parent table can be
updated if no other row depends on it. If a dependent row exists in the

Chapter 17 Advanced SQL – Constraints and Isolation Levels 323

relationship, the UPDATE fails. The check for dependent rows is
performed immediately.

There is a subtle difference between the RESTRICT rule and the NO
ACTION rule. This difference is best seen when looking at the interaction
of triggers and referential constraints. Triggers can be defined to fire either
before or after an operation (an UPDATE statement, in this case). A before
trigger fires before the UPDATE is performed and therefore before any
checking of constraints. An after trigger fires after the UPDATE is
performed, and after a constraint rule of RESTRICT (where checking is
performed immediately), but before a constraint rule of NO ACTION
(where checking is performed at the end of the statement). The triggers and
rules would occur in the following order:

✓ A before trigger would be fired before the UPDATE and before a
constraint rule of RESTRICT or NO ACTION.

✓ An after trigger would be fired after a constraint rule of
RESTRICT, but before a NO ACTION rule.

If you are updating a dependent table, any foreign key values (non-null) that
you change must match the primary key for each relationship in which the
table is a dependent. For example, department numbers in the employee
table depend on the department numbers in the department table. You can
assign an employee to no department (the null value), but not to a
department that does not exist.

If an UPDATE against a table with a referential constraint fails, all changes
made during the update operation are undone. A number of these
constraint rules are implemented via the automatic journaling that is
established when tables are built within schemas rather than libraries. It
would help to have an appreciation for commitment control and journaling
to best understand how the system reacts to an update that violates a
constraint

Example 3 UPDATE Rules

For example, you cannot update a department number from the
department table if it is still responsible for some project, which is
described by a dependent row in the project table.

324 The IBM i Pocket SQL Guide

The following UPDATE fails because the PROJECT table has rows that
are dependent on DEPARTMENT.DEPTNO having a value of 'D01' (the
row targeted by the WHERE statement). If this UPDATE were allowed,
the referential constraint between the PROJECT and DEPARTMENT
tables would be broken.

UPDATE SQLBOOK/DEPARTMENT

 SET DEPTNO = 'D99'

 WHERE DEPTNAME = 'DEVELOPMENT CENTER'

The following statement fails because it violates the referential constraint
that exists between the primary key DEPTNO in DEPARTMENT and the
foreign key DEPTNO in PROJECT:

UPDATE CORPDATA.PROJECT

 SET DEPTNO = 'D00'

 WHERE DEPTNO = 'D01';

The statement attempts to change all department numbers of D01 to
department number D00. Since D00 is not a value of the primary key
DEPTNO in DEPARTMENT, the statement fails.

Deleting from Tables with Referential Constraints

If a table has a primary key but no dependents, DELETE operates as it
does without referential constraints. The same is true if a table has only
foreign keys, but no primary key. If a table has a primary key and dependent
tables, DELETE deletes or updates rows according to the delete rules
specified in the constraint. All delete rules of all affected relationships must
be satisfied in order for the delete operation to be successful. If a referential
constraint is violated, as you would expect, the DELETE fails.
The action to be taken on dependent tables when a DELETE is performed
on a parent table depends on the delete rule specified for the referential

Chapter 17 Advanced SQL – Constraints and Isolation Levels 325

constraint. If no delete rule was defined, the DELETE NO ACTION rule
is used.

DELETE NO ACTION Specifies that the row in the parent table can be
deleted if no other row depends on it. If a dependent row exists in the
relationship, the DELETE fails. The check for dependent rows is
performed at the end of the statement.

DELETE RESTRICT Specifies that the row in the parent table can be
deleted if no other row depends on it. If a dependent row exists in the
relationship, the DELETE fails. The check for dependent rows is
performed immediately. For example, you cannot delete a department from
the department table if it is still responsible for some project that is
described by a dependent row in the project table.

DELETE CASCADE Specifies that first the designated rows in the
parent table are deleted. Then, the dependent rows are deleted. For
example, you can delete a department by deleting its row in the department
table. Deleting the row from the department table also deletes: (1)The rows
for all departments that report to it (2) All departments that report to those
departments and so forth.

DELETE SET NULL Specifies that each nullable column of the foreign
key in each dependent row is set to its default value. This means that the
column is only set to its default value if it is a member of a foreign key that
references the row being deleted. Only the dependent rows that are
immediate descendents are affected.

DELETE SET DEFAULT Specifies that each column of the foreign key
in each dependent row is set to its default value. This means that the
column is only set to its default value if it is a member of a foreign key that
references the row being deleted. Only the dependent rows that are
immediate descendants are affected. For example, you can delete an
employee from the employee table (EMPLOYEE) even if the employee
manages some department. In that case, the value of MGRNO for each
employee who reported to the manager is set to blanks in the department
table (DEPARTMENT). If some other default value was specified on the
create of the table, that value is used. This is due to the
REPORTS_TO_EXISTS constraint defined for the department table.

326 The IBM i Pocket SQL Guide

If a descendent table has a delete rule of RESTRICT or NO ACTION and
a row is found such that a descendant row cannot be deleted, the entire
DELETE fails.

When running this statement with a program, the number of rows deleted
is returned in SQLERRD(3) in the SQLCA. This number includes only the
number of rows deleted in the table specified in the DELETE statement. It
does not include those rows deleted according to the CASCADE rule.
SQLERRD(5) in the SQLCA contains the number of rows that were
affected by referential constraints in all tables.

The subtle difference between RESTRICT and NO ACTION rules is
easiest seen when looking at the interaction of triggers and referential
constraints. Triggers can be defined to fire either before or after an
operation (a DELETE statement, in this case). A before trigger fires before
the DELETE is performed and therefore before any checking of
constraints. An after trigger is fired after the DELETE is performed, and
after a constraint rule of RESTRICT (where checking is performed
immediately), but before a constraint rule of NO ACTION (where
checking is performed at the end of the statement). The triggers and rules
would occur in the following order: A before trigger would be fired before the
DELETE and before a constraint rule of RESTRICT or NO ACTION.
An after trigger would be fired after a constraint rule of RESTRICT, but
before a NO ACTION rule.

Example 4 DELETE Cascade Rule

Deleting a department from the DEPARTMENT table sets WORKDEPT
(in the EMPLOYEE table) to null for every employee assigned to that
department. Consider the following DELETE statement:

Example 4A

 DELETE FROM SQLBOOK/DEPARTMENT
 WHERE DEPTNO = 'E11'

Chapter 17 Advanced SQL – Constraints and Isolation Levels 327

Given the tables and the data as defined in IBM’s tables, one row is deleted
from table DEPARTMENT, and table EMPLOYEE is updated to set the
value of WORKDEPT to its default wherever the value was 'E11'. A
question mark ('?') in the sample data below reflects the null value. The
effects of the delete operation to the department file would appear as
follows:

Figure 17-1 Department Table Data

Contents of the table after the DELETE statement is complete.

DEPTNO DEPTNAME MGRNO ADMRDEPT

A00 SPIFFY COMPUTER SERVICE DIV. 000010 A00

B01 PLANNING 000020 A00

C01 INFORMATION CENTER 000030 A00

D01 DEVELOPMENT CENTER ? A00

D11 MANUFACTURING SYSTEMS 000060 D01

D21 ADMINISTRATION SYSTEMS 000070 D01

E01 SUPPORT SERVICES 000050 A00

E21 SOFTWARE SUPPORT 000100 E01

F22 BRANCH OFFICE F2 ? E01

G22 BRANCH OFFICE G2 ? E01

H22 BRANCH OFFICE H2 ? E01

I22 BRANCH OFFICE I2 ? E01

J22 BRANCH OFFICE J2 ? E01

Note that there were no cascaded deletes in the DEPARTMENT table in
SQLBOOK because no department reported to department 'E11'.
Below are snapshots of one affected portion of the EMPLOYEE table in
SQLBOOK before and after the DELETE statement is completed.

328 The IBM i Pocket SQL Guide

Figure 17-2 Partial Employee Table Before snapshot

Partial contents before the DELETE statement.

EMPNO FIRSTNME MI LASTNAME WORKDEPT PHONENO HIREDATE

000230 JAMES J JEFFERSON D21 2094 1966-11-21

000240 SALVATORE M MARINO D21 3780 1979-12-05

000250 DANIEL S SMITH D21 0961 1960-10-30

000260 SYBIL P JOHNSON D21 8953 1975-09-11

000270 MARIA L PEREZ D21 9001 1980-09-30

000280 ETHEL R SCHNEIDER E11 0997 1967-03-24

000290 JOHN R PARKER E11 4502 1980-05-30

000300 PHILIP X SMITH E11 2095 1972-06-19

000310 MAUDE F SETRIGHT E11 3332 1964-09-12

000320 RAMLAL V MEHTA E21 9990 1965-07-07

000330 WING LEE E21 2103 1976-02-23

000340 JASON R GOUNOT E21 5696 1947-05-05

Figure 17-3 Partial EMPLOYEE Table After snapshot

Partial contents after the DELETE statement.

EMPNO FIRSTNME MI LASTNAME WORKDEPT PHONENO HIREDATE

000230 JAMES J JEFFERSON D21 2094 1966-11-21

000240 SALVATORE M MARINO D21 3780 1979-12-05

000250 DANIEL S SMITH D21 0961 1960-10-30

000260 SYBIL P JOHNSON D21 8953 1975-09-11

000270 MARIA L PEREZ D21 9001 1980-09-30

000280 ETHEL R SCHNEIDER ? 0997 1967-03-24

000290 JOHN R PARKER ? 4502 1980-05-30

000300 PHILIP X SMITH ? 2095 1972-06-19

000310 MAUDE F SETRIGHT ? 3332 1964-09-12

000320 RAMLAL V MEHTA E21 9990 1965-07-07

000330 WING LEE E21 2103 1976-02-23

000340 JASON R GOUNOT E21 5696 1947-05-05

Chapter 17 Advanced SQL – Constraints and Isolation Levels 329

DB2 UDB for IBM i Trigger Support

A trigger is a set of actions that are run automatically when a specified
change operation is performed on a specified table. The change operation
in this case is said to have “fired a trigger.” The change operation can be an
SQL INSERT, UPDATE, or DELETE statement, or an insert, update, or
delete high level language statement in an application program. Triggers are
useful for tasks such as enforcing business rules, validating input data, and
keeping an audit trail. Triggers can be defined in two different ways:

✓ SQL triggers

✓ External triggers

For an external trigger, the CRTPFTRG CL command is used. The
program containing the set of trigger actions can be defined in any
supported high level language including the RPG/400, COBOL, and
RPGIV. External triggers can be insert, update, delete, or read triggers.

For an SQL trigger, the CREATE TRIGGER statement is used. The
trigger program is defined entirely using SQL. SQL triggers can be insert,
update, or delete triggers.

Once a trigger is associated with a table, the trigger support calls the trigger
program whenever a change operation is initiated against the table, or any
logical file or view created over the table. SQL triggers and external triggers
can be defined for the same table. Up to 200 triggers can be defined for a
single table.

Each change operation can call a trigger before or after the change
operation occurs. Additionally, you can add a read trigger that is called every
time the table is accessed. Thus, a table can be associated with many types
of triggers.

✓ Before delete trigger
✓ Before insert trigger
✓ Before update trigger
✓ After delete trigger
✓ After insert trigger
✓ After update trigger
✓ Read only trigger (external trigger only)

330 The IBM i Pocket SQL Guide

SQL Triggers

The SQL CREATE TRIGGER statement provides a way for the DB2
UDB for IBM i to actively control, monitor, and manage a table or group
of tables whenever an insert, update, or delete operation is performed. The
statements specified in the SQL trigger are executed each time an SQL
insert, update, or delete operation is performed. An SQL trigger may call
stored procedures or user-defined functions to perform additional
processing when the trigger is executed.

Unlike stored procedures, an SQL trigger cannot be directly called from an
application. Instead, an SQL trigger is invoked by the database management
system upon the execution of a triggering insert, update, or delete
operation. The definition of the SQL trigger is stored in the database
management system and is invoked by the database management system,
when the SQL table, within which the trigger is defined, is modified.

Creating an SQL Trigger

An SQL trigger can be created by specifying the CREATE TRIGGER SQL
statement. The statements in the routine-body of the SQL trigger are
transformed by SQL into a program (*PGM) object. The program is
created in the schema specified by the trigger name qualifier. The specified
trigger is registered in the SYSTRIGGERS, SYSTRIGDEP,
SYSTRIGCOL, and SYSTRIGUPD SQL Catalogs.

Example 5 BEFORE SQL triggers

BEFORE triggers do not modify tables, but they can be used to verify
input column values, and also to modify column values that are inserted or
updated in a table. In this example the trigger is used to set the fiscal quarter
for the corporation prior to inserting the row into the target table. We first
create the simple table called TransactionTable and then we create the
trigger for it

Chapter 17 Advanced SQL – Constraints and Isolation Levels 331

Example 5A

CREATE TABLE TransactionTable

(DateOfTransaction DATE,

 FiscalQuarter SMALLINT)

CREATE TRIGGER

TransactionBeforeTrigger

BEFORE INSERT ON TransactionTable

REFERENCING NEW AS new_row

FOR EACH ROW MODE DB2ROW

BEGIN

 DECLARE newmonth SMALLINT;

 SET newmonth =

MONTH(new_row.DateOfTransaction);

 IF newmonth < 4 THEN

 SET new_row.FiscalQuarter=3;

 ELSEIF newmonth < 7 THEN

 SET new_row.FiscalQuarter=4;

 ELSEIF newmonth < 10 THEN

 SET new_row.FiscalQuarter=1;

 ELSE

 SET new_row.FiscalQuarter=2;

 END IF;

END

For the SQL insert statement below, the "FiscalQuarter" column would be
set to 2, if the current date is November 14, 2000.

332 The IBM i Pocket SQL Guide

INSERT INTO

 TransactionTable(DateOfTransaction)

 VALUES(CURRENT DATE)

Note: SQL requires all tables, user-defined functions, procedures and
user-defined types to exist prior to creating an SQL trigger. In the
examples above, all of the SQL objects are defined before the trigger is
created. Now. Let’s look at AFTER SQL triggers

Example 6 AFTER SQL Triggers

The WHEN condition can be used in an SQL trigger to specify a condition.
If the condition evaluates to true, then the SQL statements in the SQL
trigger routine body are executed. If the condition evaluates to false, the
SQL statements in the SQL trigger routine body are not executed, and
control is returned to the database system. In the following example, a
query is evaluated to determine if the statements in the trigger routine body
should be run when the trigger is activated.

The first step is to create two simple tables. The first is called
TodaysRecords and the second is called OurCitysRecords. The third event
is the creation of the SQL trigger to fire after an update of a column of the
TodaysRecords table. The fourth event is the creation of another SQL
trigger to fire after the update of a different column in the same table.

CREATE TABLE TodaysRecords

 (TodaysMaxBarometricPressure FLOAT,

 TodaysMinBarometricPressure FLOAT)

CREATE TABLE OurCitysRecords

 (RecordMaxBarometricPressure FLOAT,

 RecordMinBarometricPressure FLOAT)

Chapter 17 Advanced SQL – Constraints and Isolation Levels 333

If today’s maximum barometric pressure is greater than the maximum
barometric pressure in our city’s records, then we want to update the city’s
records with the new maximum

Example 6A

CREATE TRIGGER

UpdateMaxPressureTrigger

AFTER UPDATE OF

TodaysMaxBarometricPressure

ON TodaysRecords

REFERENCING NEW AS new_row

FOR EACH ROW MODE DB2ROW

WHEN

(new_row.TodaysMaxBarometricPressure>

SELECT

MAX(RecordMaxBarometricPressure)

FROM OurCitysRecords))

 UPDATE OurCitysRecords

 SET RecordMaxBarometricPressure =

 new_row.TodaysMaxBarometricPressure

If today’s minimum barometric pressure is less than the minimum
barometric pressure in our city’s records, then we want to update the city’s
records with the new minimum.

334 The IBM i Pocket SQL Guide

Example 6B

CREATE TRIGGER

UpdateMinPressureTrigger

AFTER UPDATE OF

TodaysMinBarometricPressure

ON TodaysRecords

REFERENCING NEW AS new_row

FOR EACH ROW MODE DB2ROW

WHEN

(new_row.TodaysMinBarometricPressure<

(SELECT

MIN(RecordMinBarometricPressure)

FROM urCitysRecords))

 UPDATE OurCitysRecords

 SET RecordMinBarometricPressure =

 new_row.TodaysMinBarometricPressure

To get the action started we first initialize the current values for the tables
with the following INSERT statements.

INSERT INTO TodaysRecords

VALUES(0.0,0.0)

INSERT INTO OurCitysRecords

VALUES(0.0,0.0)

For the SQL update statement below, the RecordMaxBarometricPressure in
OurCitysRecords is updated by the UpdateMaxPressureTrigger.

Chapter 17 Advanced SQL – Constraints and Isolation Levels 335

UPDATE TodaysRecords

SET

TodaysMaxBarometricPressure = 29.95

But tomorrow, if the TodaysMaxBarometricPressure is only 29.91, then the
RecordMaxBarometricPressure is not updated.

UPDATE TodaysRecords

SET

TodaysMaxBarometricPressure = 29.91

SQL allows the definition of multiple triggers for a single triggering action.
In the previous example, there are two AFTER UPDATE triggers:
UpdateMaxPressureTrigger and UpdateMinPressureTrigger. These triggers
are only activated when specific columns of the table TodaysRecords are
updated.

AFTER triggers may modify tables. In the example above, an UPDATE
operation is applied to a second table. Note that recursive insert and update
operations should be avoided. The database management system terminates
the operation if the maximum trigger nesting level is reached. You can
avoid recursion by adding conditional logic so that the insert or update
operation is exited before the maximum nesting level is reached. The same
situation needs to be avoided in a network of triggers that recursively
cascade through the network of triggers.

Isolation level

The notion of isolation level is another simple idea but with so many
variations that it appears to be complex. The isolation level used during the
execution of SQL statements determines the degree to which the activation
group (ILE – See Sidebar on Activation Groups at the end of this chapter)
is isolated from all other concurrently executing activation groups. Thus,

336 The IBM i Pocket SQL Guide

when activation group X executes an SQL statement, the isolation level
determines:

The degree to which rows retrieved by X and database changes made by X
are available to other concurrently executing activation groups.

The degree to which database changes made by concurrently executing
activation groups can affect X.

Isolation is only important where databases get modified by DELETE,
INSERT, SELECT INTO, and UPDATE. Since a SELECT of data may
be for update, it is important also. The actual level of isolation can be
explicitly specified on a DELETE, INSERT, SELECT INTO, UPDATE,
or SELECT-statement. If the isolation level is not explicitly specified, the
isolation level used when the SQL statement is executed is the default
isolation level.

DB2 UDB for IBM i supports five different isolation levels. For all
isolation levels except No Commit, the database manager places exclusive
locks on every row that is inserted, updated, or deleted. In other words, to
protect records from being updated by other processes, the database
manager locks each and every record that is included in the return set. This
ensures that any row that a user or a program chooses to change during a
unit of work is not changed by any other activation group in the meantime.
The protection prohibits any other activation group (typically in another
job) that uses a different commitment definition from updating the data
that your process has read until the unit of work is complete. The five
isolation levels are as follows:

Repeatable Read

The IBM IBM i Repeatable Read (RR) isolation level ensures:
Any row read during a unit of work is not changed by other activation
groups that use different commitment definitions until the unit of work is
complete.

Any row changed (or a row that is currently locked with an UPDATE row
lock) by another activation group using a different commitment definition
cannot be read until it is committed.

Chapter 17 Advanced SQL – Constraints and Isolation Levels 337

In addition to any exclusive locks, an activation group running at level RR
acquires at least share locks on all the rows it reads. Furthermore, the
locking is performed so that the activation group is completely isolated
from the effects of concurrent activation groups that use different
commitment definitions.

This facility is also defined in the SQL 1999 Core standard, Repeatable
Read in which it is called Serializable.

DB2 UDB for IBM i supports repeatable-read through COMMIT(*RR).
Repeatable-read isolation level is supported by locking the tables containing
any rows that are read or updated.

Read stability

Like level RR, level Read Stability (RS) assures that:

Any row read during a unit of work is not changed by other activation
groups that use different commitment definitions until the unit of work is
complete.

Any row changed (or a row that is currently locked with an UPDATE row
lock) by another activation group using a different commitment definition
cannot be read until it is committed.

Unlike RR, RS does not completely isolate the activation group from the
effects of concurrent activation groups that use a different commitment
definition. At level RS, activation groups that issue the same query more
than once might see additional rows. These additional rows are called
phantom rows.

For example, a phantom row can occur in the following situation:

Activation group P1 reads the set of rows n that satisfy some search
condition.

Activation group P2 then INSERTs one or more rows that satisfy the
search condition and COMMITs those INSERTs.

338 The IBM i Pocket SQL Guide

P1 reads the set of rows again with the same search condition and obtains
both the original rows and the rows inserted by P2.

In addition to any exclusive locks, an activation group running at level RS
acquires at least share locks on all the rows it reads.

In the SQL 1999 Core standard, Read Stability is called Repeatable Read.

DB2 UDB for IBM i supports read stability through COMMIT(*ALL) or
COMMIT(*RS).

Cursor Stability

Like levels RR and RS, level Cursor Stability (CS) ensures that any row that
was changed (or a row that is currently locked with an UPDATE row lock)
by another activation group using a different commitment definition cannot
be read until it is committed. Unlike RR and RS, level CS only ensures that
the current row of every updatable cursor is not changed by other
activation groups using different commitment definitions. Thus, the rows
that were read during a unit of work can be changed by other activation
groups that use a different commitment definition. In addition to any
exclusive locks, an activation group running at level CS may acquire a share
lock for the current row of every cursor.

In the SQL 1999 Core standard, Cursor Stability is called Read Committed.
DB2 UDB for IBM i supports cursor stability through COMMIT(*CS).

Uncommitted Read

For a SELECT INTO, a FETCH with a read-only cursor, subquery, or
subselect used in an INSERT statement, level Uncommitted Read (UR)
allows:

Any row read during the unit of work to be changed by other activation
groups that are run under a different commitment definition. Any row
changed (or a row that is currently locked with an UPDATE row lock) by
another activation group running under a different commitment definition
to be read even if the change has not been committed.

Chapter 17 Advanced SQL – Constraints and Isolation Levels 339

For other operations, the rules of level CS apply.

In the SQL 1999 Core standard, Uncommitted Read is called Read Uncommitted.

DB2 UDB for IBM i supports uncommitted read through
COMMIT(*CHG) or COMMIT(*UR).

No Commit

For all operations, the rules of level UR apply to No Commit (NC) except:
Commit and rollback operations have no effect on SQL statements.
Cursors are not closed, and LOCK TABLE locks are not released.
However, connections in the release-pending state are ended.
Any changes are effectively committed at the end of each successful change
operation and can be immediately accessed or changed by other
applications

Setting the Default Isolation Level

DB2 UDB for IBM i provides several ways to specify the default isolation
level: You can use the COMMIT parameter on the CRTSQLxxx, STRSQL,
and RUNSQLSTM commands to specify the default isolation level.
You can also use the SET OPTION statement to specify the default
isolation level within the source of a module or program that contains
embedded SQL. Another way is to use the SET TRANSACTION
statement to override the default isolation level within a unit of work. When
the unit of work ends, the isolation level returns to the value it had at the
beginning of the unit of work.

Use the isolation-clause on the SELECT, SELECT INTO, INSERT,
UPDATE, DELETE, and DECLARE CURSOR statements to override
the default isolation level for a specific statement or cursor. The isolation
level is in effect only for the execution of the statement containing the
isolation-clause and has no effect on any pending changes in the current
unit of work.

These isolation levels are supported by automatically locking the
appropriate data. Depending on the type of lock, this limits or prevents

340 The IBM i Pocket SQL Guide

access to the data by concurrent activation groups that use different
commitment definitions. Each database manager supports at least two types
of locks:

Share

Limits concurrent activation groups that use different commitment
definitions to read-only operations on the data.

Exclusive

Prevents concurrent activation groups using different commitment
definitions from updating or deleting the data. Prevents concurrent
activation groups using different commitment definitions that are running
COMMIT(*RS), COMMIT(*CS), or COMMIT(*RR) from reading the
data. Concurrent activation groups using different commitment definitions
that are running COMMIT(*UR) or COMMIT(*NC) are allowed to read
the data.

Activation Group Sidebar -- Just what is an activation

group? Activation groups are clearly a critical and confusing aspect of
IBM i Integrated Language Environment (ILE) technology. The
Integrated language Environment is IBM’s supercharged programming
model that replaced an offering today referred to as the Original
Programming Model or OPM. Though we use them in all ILE
programs, activation groups are difficult to define, however. The simple
answer is that it is a part of a job structure on IBM i. But admittedly
that does not say much.

So, let’s ay that an activation group is a container for things needed to
run processes in a job. Resources such as memory and variables and
other job substructures are some of the things inside the container.
When an IBM i job comes alive, it may have a number of activation
groups that are associated with it. To describe this phenomenon, the
experts like to say that the job “owns” these activation groups.

An activation group per se is a logical storage container reference within
a job. It holds pointers to storage allocation and references the runtime
program binding activities that the operating systems perform when a
program executes. As IBM i has been expanded to support more and
more facilities and more currency and threading, the underlying
operating system has had to become more complex to accommodate it.

Chapter 17 Advanced SQL – Constraints and Isolation Levels 341

The notion of activation groups has been in effect since the ILE
environment was announced in the mid 1990’s but most users care
nothing about it because they use the invisible default activation group
that automatically gets created in most compilation and binding
processes.

Continuing with the analogy of the activation group to a container or a
box of sorts, consider that a container can store various items, whereas
an ILE activation group contains the resources needed to run a job (one
or more programs). A container has storage space, whereas an
activation group has a notion called heap storage. The “ the “heap”
refers to storage that can be dynamically allocated, reallocated and
freed. The container also has static and automatic storage.

It is tough to relate an activation group to anything physical. In many
ways, it is best defined by the resources it owns. So, we may say with
certitude that an activation group is used to deal with a group of
internal resources for an ILE application. The resources owned include
the program static and automatic variables, heaps, Open Data Paths,
and commit scope. The notion of commit scope takes us all the way back
to how we got here in the first place using the With Isolation Level
clause of the SELECT statement. Given that all these resources are
scoped to one activation group in ILE, this allows for optional isolation
of applications, giving users control of how much sharing is to be done
within and between applications.

Each job on the IBM i has a DAG, or default activation group, that is
automatically created when it is started. Actually, two default activation
groups are created. These two activation groups are where your system
code and OPM (Original Program Model) programs run. ILE programs
can also run in the default activation group.

Chapter Summary

SQL provides powerful rule-based capabilities using a notion called
constraints. These are a very powerful capability of SQL that are enforced
by the database manager to assure the integrity of the database. The types
of constraints that are offered are as follows:

✓ Unique constraints

✓ Referential constraints

✓ Check constraints

✓ Triggers

342 The IBM i Pocket SQL Guide

A unique constraint is the rule that the values of the key are valid only if
they are unique. They can be created using the CREATE TABLE and
ALTER TABLE statements. They are enforced during an insert or update

A referential constraint is the rule that the values of any foreign key are
valid only if they also appear as values of a parent key, or some component
of the foreign key is null. These are enforced when INSERT, UPDATE,
and DELETE statements are executed against the table with the constraint.

A check constraint is a rule that limits the values allowed in a column or
group of columns. They are added using the CREATE TABLE and
ALTER TABLE statements and they are enforced during the execution of
INSERT and UPDATE statements.

SQL trigger constraints are tested before or after a database operation.
Before triggers can stop an update and an after trigger can update a file
based on conditions found in the trigger.

Isolation levels are used to give the developer control over the level of
locking that is to take place when using commitment control under SQL It
determines the degree to which rows retrieved by X and database changes
made by X are available to other concurrently executing activation groups.

Programs just doing reads are basically unaffected. When you do a read for
update, however, and SQL grabs a number of rows for update purposes,
you probably want to lock those rows so that your changes are not merged
with other changes.

So, isolation is only important where databases get modified by DELETE,
INSERT, SELECT INTO, and UPDATE. Since a SELECT of data may
be for update, it is important also. The actual level of isolation can be
explicitly specified on a DELETE, INSERT, SELECT INTO, UPDATE,
or SELECT-statement. If the isolation level is not explicitly specified, the
isolation level used when the SQL statement is executed is the default
isolation level.

IBM i supports five different isolation levels. For all isolation levels except
No Commit, the database manager places exclusive locks on every row that
is inserted, updated, or deleted. In other words, to protect records from
being updated by other processes, the database manager locks each and

Chapter 17 Advanced SQL – Constraints and Isolation Levels 343

every record that is included in the return set. This ensures that any row
that a user or a program chooses to change during a unit of work is not
changed by any other activation group in the meantime. The protection
prohibits any other activation group (typically in another job) that uses a
different commitment definition from updating the data that your process
has read until the unit of work is complete.

Key Terms

Activation group
Adding constraints
Check constraints
Commit
Constraint
Create trigger
CRTPFTRG
Cursor stability
Delete Cascade
Delete No Action
Delete Restrict
Delete Set Default
Delete Set Null
Dependent table
Descendent table
Dropping
Rule Enforcement
Exclusive
External triggers
Foreign key

ILE
Isolation level
No commit
Parent table
Phantom rows
Primary key
Read stability
Referential constraints
Repeatable read
Rule-based capabilities
Set Option
SET transaction
Share
SQL 1999 Core
SQL triggers
SQLCA
Uncommitted read
Unique constraints
Unique key

Exercises

1. Define an activation group. Are activations groups only in ILE objects?

2. Why would you use a unique constraint on a file?

344 The IBM i Pocket SQL Guide

3. What makes a primary key different from a unique key?

4. Describe the notion of referential integrity

5. How is referential integrity implemented?

6. What are the Delete options for a dependent file with a referential
constraint? Explain.

7. What is a check constraint and why would you use one?

8. What is an SQL trigger? Is it the same as an RPG Trigger program?

9. What two types of triggers exist?

10. What is meant by the term isolation level?

11. Why are the IBM terms for the levels of isolation different from the
ISO standards?

12. What does the notion of isolation levels have to do with record locking
for update or delete?

13. What is a foreign key and what role does it have to play in referential
integrity?

Chapter 17 Advanced SQL – Constraints and Isolation Levels 345

This page and the next page intentionally left blank for future material

Chapter 18 Re-engineering PF & LF Objects for SQL 347

Chapter 18

Reengineering PF & LF Objects for
SQL

– Removed for student version – Do not proceed

There is no Chapter summary here for CH18 in the original which has been
removed.

There are no key terms and there are no review questions. This is more or
less a state of the state on where the IBM i SQL product is headed. I think
SQL will continue to improve and one day IBM will definitely be able to
say in all respects that it is better than DDS. Then, maybe it will be an even
easier sell.

Additional Information Sources

Through the course of this book I have given sources for various materials
that would be helpful in your further research. I found an IBM presentation
on the Web that was very well done and it had source information that I am
presenting below to you as given to me by IBM.

DB2 UDB for IBM i home page
 -http://www.iseries.ibm.com/db2

Newsgroups

USENET: comp.sys.ibm.as400.misc, comp.databases.ibm-db2

Education Resources - Classroom & Online

http://www.iseries.ibm.com/db2/db2educ_m.htm
http://ibm.com/servers/enable/education/i/ad/db2/recentindex1.html
DB2 UDB for iSeries Publications

348 The IBM i Pocket SQL Guide

Online Manuals: http://www.iSeries.ibm.com/db2/books.htm
Porting Help: http://ibm.com/servers/enable/site/db2/porting.html
DB2 UDB for IBM i Redbooks (http://ibm.com/redbooks)
Stored Procedures & Triggers on DB2 UDB for IBM i (SG24-6503)
DB2 UDB for AS/400 Object Relational Support (SG24-5409)
Advanced Functions & Administration on DB2 UDB for iSeries (SG24-
4249)

Trademarks & Disclaimers

References in this document to IBM products or services do not imply that
IBM intends to make them available in every country. The following terms
are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both:

AS/400 IBM

AS/400e IBM i

eBusiness IBMI

IBM

Lotus, Freelance Graphics, and Word Pro are registered trademarks of
Lotus Development Corporation and/or IBM Corporation.
Domino is a trademark of Lotus Development Corporation and/or IBM
Corporation.

Java and all Java-based trademarks are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.
Microsoft, Windows, Windows NT, and the Windows logo are trademarks
of Microsoft Corporation in the United States, other countries, or both.
ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of
Intel Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States
and other countries.

Chapter 18 Re-engineering PF & LF Objects for SQL 349

Other company, product and service names may be trademarks or service
marks of others.

Information in this book is provided "AS IS" without warranty of any kind.

All examples described are presented as illustrations of how SQL or DDS
may be used. Implementation may not deliver exactly the same results.
Costs and performance characteristics may vary.

Lets Go Publish! has not formally tested all routines to assure that they fit
in all environments. All statements regarding IBM future direction and
intent are subject to whatever IBM decides to do.

Index 351

Index

Student note: Index is included but no longer reflects proper page #s due
to chapter shifting for CIS 356 course.

%

 wildcard, 106, 268,

269, 307

*DLY, 304, 307, 311

*IMMED, 304, 307,

311

*MBRLIST, 105,

107

*REBLD, 304, 307,

311

*RUN, 73, 167, 168

*SYN, 73, 74, 76,

167, 168

/END-EXEC, 260

/EXEC SQL, 260

1st Normal Form,

326

2nd Normal Form,

326

3rd Normal Form,

326

5250, 390

5722-ST1

 SQL Development

Kit, 43, 66, 163, 248

5722-WDS, 251

A library list, 149,

152, 153, 155

Access, 17, 22, 37,

45, 50, 90, 105, 106,

239, 300, 307, 311

Access path, 301,

303, 304, 309

ACM Journal, 15

Activation Group,

370

Adding, 346, 348,

349

ADDPFM, 101

Advanced SQL, 267,

288, 289

ALIAS, 72, 79, 80,

117, 128, 129, 145,

156, 170

ALIAS., 80

aliase, 80

Alter Table, 69

An index, 103, 135,

300

Analytical Database,

4

And Conjunction,

203

ANSI, 23, 40, 41,

42, 44, 45, 48, 305

Application

requester, 19

AS/400 Query, 218

AS/400 SQL, 29,

42, 43

AS/400 Standards,

43

352 The IBM i Pocket SQL Guide

ASP, 81, 82, 92, 93,

102, 103, 153, 314

Attribute, 3, 38, 52,

105, 314, 315, 316,

317, 318, 319, 334,

336, 338

Authority, 3, 35, 48,

60, 61, 92, 93, 102,

103

Auxiliary Storage

Pool, 81

Averages, 216, 270

AVG, 275, 277, 278,

289, 290

Batch job, 152

BETWEEN, 203,

204, 210, 288

Between Test, 204

BIGINT, 121, 244,

275

Binary, 121, 244

BLOB, 122, 244, 275

Boyce

 Raymond, 34, 39

Break group, 216

BREAK1, 217, 225,

227

C language, 195

calculate totals, 216

cardinality, 177, 335,

336, 337

Cardinality, 190,

333, 336, 337

CASCADE, 48

Case sensitive, 147,

151

Catalog, 37, 79, 92,

93, 110, 111

CHAIN,, 193, 301

Chamberlin

 Don, 15, 34, 39,

179

CHAR

 data type, 55, 70,

109, 120, 121, 132,

255, 275, 306

Character, 109, 121,

228, 244

Check constraints,

345, 346, 372

CHGJOB, 152

CHGPF, 304, 312

Child, 8, 9, 10, 11,

331, 332, 336, 337,

338, 339, 340, 341,

342

CL program, 67, 74,

129, 155, 248, 258

Classification, 1

Client / server

database, 6

Client server, 13, 19,

23, 49

CLOB, 122, 244,

275

CLOSE, 259, 260,

261, 262

CLRPFM, 287

COBOL, 390

Codd

Index 353

 Tedd, 15, 31, 33,

34, 36, 37, 38, 39,

56, 151, 178, 179,

305, 306, 312

Code, 390

Collection, 1, 52, 55,

80, 81, 91, 117, 145,

213

Column functions,

274, 275

Column headers,

133

Column headings,

131, 133, 134, 215,

228, 229

Column names, 56,

110, 112, 119, 126,

130, 172, 193, 195

Column text, 134

Command window,

214

Commit, 367, 368,

369, 370

Commonly used

operations, 178

Compile, 69, 100,

101, 123, 253, 254,

255, 309, 318

Concat, 271

Constraint, 349, 350,

352

Control breaks, 216

Control field, 216

Control total, 216

Core SQL99, 42

COS, 275, 278

COUNT, 112, 274,

275, 276, 277, 278,

280, 281

Create alias, 128

Create queries 214

Change queries, 214

Create schema, 68,

81, 84, 91, 103

Create SQL

program, 252

Create table, 35, 54,

55, 62, 68, 94, 97,

118, 119, 242, 244,

306, 307

Create trigger, 359,

360, 361, 363, 364

Create view, 68, 138,

310

Create index, 135

Cross Join, 291, 292,

298

CRTLIB, 70, 112,

113, 240

CRTPF, 53, 93, 94,

95, 97, 98, 99, 101,

110, 131, 240, 302,

307, 308, 310, 312

CRTPFTRG, 359

CRTSQLCBL, 253

CRTSQLCBLI, 252

CRTSQLCI, 253

CRTSQLCPPI, 253

CRTSQLPKG, 253

CRTSQLPLI, 254

354 The IBM i Pocket SQL Guide

CRTSQLRPG, 254

CRTSQLRPGI, 254

CRTSRCPF, 70, 97,

101, 113, 243

Current Library, 149

Cursor, 169, 195,

198, 199, 228, 243,

258, 259, 260, 318,

259, 260, 261, 262

Cursor stability, 368

CVTRPGSRC, 260

Data access, 2, 54

Data access

statement, 193

Data and Index

Currency, 304

Data areas, 88

Data

backup/recovery,

15, 16

Data control, 3, 27,

60, 179

Data currency, 15,

16, 303

Data definition

Language, 27, 51,

179

Data description

Specification, 28

Data division, 96

Data file utility, 96,

240

Data integrity, 2, 3,

16, 37, 312

Data manipulation

language, 27, 56, 179

Data models, 5

Data normalization

steps, 332

Data organization, 2

Data security, 15, 16

Data sharing, 15, 16

Data types, 118, 119,

121, 122

Internally described,

96

Database language,

18, 28, 29, 30, 39,

44, 48

Database

Management, 2, 15

Database

Normalization, 325,

328

Database server, 13,

19

Database structures,

94

DATALINK, 122,

244

Date, 32, 36, 80,

106, 109, 118, 119,

122, 123, 155, 174,

198, 289, 302, 314,

330, 97, 107, 121,

122, 167, 181, 183,

228, 244, 70, 120,

122, 132, 205, 229,

244, 275, 329

Index 355

DB design, 120, 328,

338, 340

DB theory, 34, 334

DB2 clients, 23

DB2 Connect, 20, 23

DB2 Query

Manager, 43, 213

DB2 UDB CLI, 20,

23, 24

DB2 UDB for IBM i,

19, 21, 42, 49, 65,

75, 119, 120, 163,

213, 214, 215, 219,

233, 241, 303

DBCLOB, 122, 244,

275

DBMS, 4, 6, 11, 15,

17, 21, 23, 24, 148

DBMS Types, 4

DCL, 3, 27, 48, 60,

68, 179

DDL, 27, 48, 67, 68,

71, 79, 96, 97, 117,

118, 123, 137, 151,

164, 179, 300, 310

DDL statements, 79

DDS, 25, 26, 28, 29,

30, 37, 38, 39, 51,

53, 54, 55, 68, 69,

74, 75, 93, 94, 95,

97, 98, 99, 100, 105,

110, 113, 118, 119,

120, 121, 130, 131,

133, 136, 137, 150,

178, 189, 240, 258,

299, 300, 302, 303,

305, 306, 307, 308,

309, 310, 311, 313,

340

 What is DDS?, 96

 Where does DDS

go?, 97

 DDS specifications,

53, 97, 99

Decimal, 55, 121,

132, 244, 245, 275,

306

Declaration, 258

Declarative

referential integrity,

48

Declare, 259, 260,

261, 262

Default library, 70,

149

Default report form.,

213

Define Prompted

Query, 235, 236,

237, 238

Delete cascade, 349,

351, 355

Delete no action,

355

Delete restrict, 355

Delete set default,

355

Delete set null, 350,

351, 355

Dependent objects,

145

356 The IBM i Pocket SQL Guide

Dependent table,

347, 348, 351, 353

Descendent table,

348, 356

Descriptive text, 118,

133, 134, 216

Design a database,

119

Dictionary, 81, 82,

83, 91, 310

Difference, 178, 179,

275

Dimensional

database, 6

Dimensional model,

14

Directories, 87, 88,

89

Directory contents,

102

Directory structure,

87

Distinct clause, 172

Distributed database,

19, 20

Distributed

relational database,

20, 21

Distribution

Independence, 38

Division, 178, 257

DML, 27, 48, 56, 68,

164, 165, 169, 179,

259, 267, 284, 287

Donne

 John, 28

DOS naming, 127

Double wildcard,

270

DRDA, 20, 21, 23,

215

Drop collection, 145,

170

DROP distinct type,

145

DROP schema, 145

DROP table, 145,

170

DROP view, 145,

170

Dropping, 348

DSPDBR, 111

DSPFD, 101, 103,

104, 105, 106, 107,

108, 111, 127, 128,

136

DSPFFD, 96, 101,

108, 109, 111, 136

DSPLIB, 101, 102

DSPLIBL, 153

DSPLY, 256, 257,

260

DSPOBJD, 111

DSPPFM, 101, 108,

110

Duplicate Rows, 172

Dynamic SQL, 26,

164, 165

Edit Panel, 224, 225

Ellison

Index 357

 Larry, 39

Embedded Dynamic

SQL, 20, 24

Embedded SQL, 24,

43, 66, 69, 155, 166,

199, 252, 254, 256,

258, 260, 301

Embedding SQL,

193, 252

End User Tool, 47

Enforcement, 345,

346, 348

Enhanced SQL99,

42

Entity, 1, 146, 156,

333, 334, 336, 338,

342

Entity Relationship

Diagram, 325, 335

Entity Relationships,

333

EOFDLY, 246, 316

Equal, 203, 209, 210

E-R, 325, 333, 335,

336

E-R techniques, 333

Exclusive, 370

Execute

immediately, 165

Execution Printouts,

73

Exit Interactive SQL

 options, 173, 174

Exit ISQL, 168

Expressions, 197

Extended dynamic

SQL, 165

External triggers,

359

Fetch, 259

FETCH, 200, 259,

260, 261, 262

Field addition, 3

Field change, 3

Field definitions, 95,

307

Field deletion, 3

File architectures, 87

File object, 69, 95,

98, 99, 100, 104,

108, 111, 129, 136,

137, 149, 299, 301,

302, 303, 304, 307,

308, 311, 313, 316,

317

File Wait Time, 315

Final text, 216, 224,

226, 232

Flat file model, 6

FLOAT, 121, 244,

275

Floating-point

(double precision),

121

Floating-point

(single precision),

121

Footing, 32, 215,

216, 224, 226, 232

For column clause,

130

358 The IBM i Pocket SQL Guide

For Read Only, 200

For update of clause,

198, 199

Foreign key, 38, 145,

177, 331, 346, 347,

348, 351, 353, 354,

355, 372

Formatted report,

222

FORWARD_ONLY

, 198, 199

Four Faces, 66

FRCRATIO, 106,

313, 314, 315

Free format

language, 151

FROM, 195

FROM Clause, 196

Full Outer Join, 291,

292

Functional

Dependencies, 328,

329, 330

Good DB Design,

342

GOTO, 260

Grand totals, 216

Grant, 35, 60, 61, 68

GRAPHIC, 122,

244, 275

Greater than, 203,

209

GROUP BY, 170,

194, 196, 197, 198,

274, 276, 277, 280,

281

Guaranteed Access

Rule, 37

HAVING clause,

194, 198, 274, 276

Headings 131

Hexadecimal, 121

Hierarchical model,

6

High level

languages, 122, 166,

251

Honeywell, 33, 39

i5/OS utilities, 126

IBM systems, 21

IDDU, 305, 313

ILE, 365, 370, 371

Implementer-

defined, 42

INDEX, 72, 79, 117,

128, 135, 136, 145,

147, 156, 170

Index object, 137

Indexes, 80, 135,

142, 145, 147, 300,

301, 302, 304

Information

management system,

7

Information Rule, 37

Informix, 40, 41

Inner join, 290, 291

292, 293

Insert data, 27, 38,

50, 56, 59, 68, 168,

Index 359

170, 171, 213, 224,

225, 227, 228, 229,

243, 245, 246, 267,

285, 286, 314

Integer, 121, 244,

275

Integrated file

system, 87

Integrated relational

database, 177

Integrity

independence, 38

Interactive SQL

facility, 154, 163,

165

Internally described,

96, 302, 303

International

standards

organization, 41, 43

Internet, 13, 22, 37,

179, 216

Intersection, 178,

179

Into, 59, 256, 257,

259, 260, 261, 262,

286, 287

IBM i File System,

87

IBM i Navigator,

163

ISO, 24, 41, 42, 43,

122, 167, 275

Isolation level, 365

ISQL, 43, 45, 61, 73,

81, 154, 163, 164,

166, 167, 168, 169,

173, 174, 175, 193,

194, 213, 215, 220,

248, 251, 257, 283

Java, 13, 17, 18, 20,

22, 25, 26, 30

Java applet, 13

Java programming,

22

Java servlet, 13

JDBC, 13, 20, 22,

25, 65, 91

JDBC API, 22

Job description, 152

Job stream, 67, 152,

318

Join, 35, 56, 105,

139, 147, 177, 182,

184, 203, 290, 291,

292, 293, 294, 328,

340, 341

JOIN, 105, 139, 178,

184, 187, 292, 293,

294, 303

Journal, 44, 84, 91,

150, 314

Journal receiver, 84,

91

Keyed access, 105,

137, 300, 301, 307,

311

Keyed logical, 136,

300

Label on 72, 131,

133, 134, 170

360 The IBM i Pocket SQL Guide

Left exception join,

291, 298

Left outer join, 187,

206, 208, 291, 293,

295, 298

Less than, 203, 209

Less work, 330

Level breaks, 216,

239

Libraries, 88

 AS/400 example,

90

 CRTLIB, 89

 CRTPF, 95

 CRTPF, 93

 Database

structures, 94

 DOS directories, 89

 HLL programs, 96

 Object, 89

 Source file, 96

Library, 51, 71, 80,

81, 82, 83, 87, 88,

89, 90, 91, 92, 93,

94, 100, 101, 102,

103, 104, 106, 107,

109, 110, 112, 113,

152, 153, 154, 167,

219, 220, 221, 223,

230, 232, 233, 234,

235, 240, 242, 246,

307, 308, 311

Library file system,

88

Library object, 83,

88, 89, 90, 102

Library structure, 84,

87, 90

Library/file, 112

Library object, 87

Like, 13, 164, 165,

203, 258, 267, 268,

269, 327

List of values– IN,

204

Logical data

independence, 38

Logical files, 75, 80,

105, 135, 299, 300,

303, 304, 305, 312

Long column, 130

Lost data, 315, 330

LVLCHK, 106, 317,

318

Manipulation, 1, 27,

28, 35, 37, 39, 44,

188, 248, 284, 300,

303, 305

Many to Many, 339

Marchesani, Skip, 47

Matrix algebraic

operations, 178

MAX, 275, 277, 279,

280, 289

Members, 96, 99,

100, 101, 129, 301,

311

Memory table, 57,

194, 197, 199, 201,

260

Metadata, 92

Index 361

MIN, 275, 277, 279,

280, 289

Mixed case, 147

Modified source

program, 165

MS Access, 40

Multi-member files,

155

MySQL, 40, 119,

335

Name game, 51

Naming convention,

74, 147, 154, 167

Naming guidelines,

146

Naming parameter

 SQL or System, 74,

76

Native database, 1,

28, 44, 306

NBRRCDS, 315

Network model, 6

New table, 193, 245

No action, 48

No commit, 369

non-IBM systems, 21

Nonsubversion Rule,

39

NOT, 55, 70, 120,

131, 132, 152, 203,

204, 210, 260, 269,

288, 306

Not qualified., 80

Null, 37, 151, 152,

173, 270

Numeric

 data type, 55, 120,

121, 132, 152, 244

Object based system,

87, 103

Object database

model, 6

Object oriented

system,, 301

Object type, 84, 87,

88, 89, 90, 147, 301

Objective of

normalization, 326

Object-oriented, 89

Object-oriented

database model, 6

OCL, 69

ODBC, 20, 22, 24,

25, 65, 91

ODP, 318, 319

OLAP, 5, 14

OLTP, 4

OPEN, 41, 45, 259,

260, 261, 262

Open data path, 318

Open database

connectivity, 20, 22,

24

Operational

database, 4

OPNQRYF, 30,

195, 200

Optimize, 200

optimizer

 SQL, 135, 142

OR, 121, 122, 203,

207, 210, 246, 278

362 The IBM i Pocket SQL Guide

Oracle, 30, 36, 39,

40, 41, 44, 119, 148,

187, 202, 206, 208,

273, 335

Order by, 143, 144,

159, 170, 179, 198,

202, 218, 259, 276,

281, 283, 295

OS/390, 23

OVRDBF, 155, 156,

313, 316, 318, 319,

320

Package, 61, 170

Packed decimal, 121,

244

Page heading, 215,

224, 226, 230, 232

Parent table, 347,

348, 350, 352, 354,

355

Patent

 SQL, 39

PDM, 71, 105, 115,

240, 263

Phantom rows, 367

Physical Data

Independence, 38

Physical file object,

94, 117, 301, 316

Physical files, 28, 80,

101, 105, 111, 150,

182, 184, 299, 300,

301, 302, 303, 305,

308, 312, 314

Pointer, 8, 34, 90,

318

Pre-compilation, 165

Precompiler, 24,

164, 252, 253, 254

Prepare, 24, 165

Primary key, 37, 38,

150, 151, 152, 157,

160, 161, 177, 325,

329, 331, 334, 336,

338, 348, 350, 351,

352, 353, 354

Primary key clause,

150

Primary key

constraint, 150

Process(*SYN), 73

Product, 178

Program

development

manager, 105, 106,

240

Programmer

productivity, 15, 16

Project, 178, 271

PROMPT or SQL,

220

Prompted query,

214, 215, 218, 235,

238

Prompter, 66, 169,

170, 171, 233

Protecting Data, 314

Pseudo code, 259

QADB*, 111

QDDSSRC, 97, 98,

99, 100, 102, 107,

Index 363

108, 113, 240, 307,

308, 311

QM function, 195

QM Query, 214,

217, 218, 219, 221,

222, 230, 231, 233,

234, 238, 248

QSQLSRC, 68, 70,

71, 97, 98, 99, 100,

102, 108, 113

QSQPRCED

 API, 165

QSYS, 87, 88, 89,

90, 91, 92, 99, 100,

101, 153

QSYS.LIB, 87

QSYS2

 Library, 37, 91, 92,

103, 110, 111, 153

Qualified, 80, 87,

148

QUEL, 33, 39

Query engine, 29,

135

Query language, 26,

34, 45, 47, 179

Query manager, 27,

43, 45, 65, 66, 75,

163, 165, 193, 195,

213, 214, 215, 216,

218, 219, 220, 222,

223, 233, 234, 238,

241, 242, 243, 244,

245, 246, 247

Query manager

Menu, 248

Query/400, 96, 111,

137, 234, 235, 237,

240

Range, 203, 210

RDBMS, 1, 6, 15,

21, 39, 42

Read, 193, 200

Read stability, 367

Record format, 109,

317

Record wait Time,

315

Referential

constraint, 345, 346,

372

Relational

operations, 177, 179

Relational model, 6

Rename Table, 127

Repeatable read, 366

Repeating groups,

326, 327

Report breaks, 214,

216

Reporting Options,

238

Restrict, 48, 145

Result set, 194, 195,

198, 199, 200, 201,

204, 260

Result table, 57, 58,

172, 196, 197, 198,

200, 260, 274, 291,

292

Right exception join,

291, 298

364 The IBM i Pocket SQL Guide

Right outer join,

291, 298

RMVM, 101, 240

Root directory, 87,

88

RPG program, 105,

123, 254, 255, 260,

390

RPG/400, 53, 54,

113, 150, 256, 260,

261, 300

RPGIV, 121, 123,

260, 262, 300

Rule-based

capabilities, 345

Sales department,

146

Save session, 174

Scalar functions,

274, 275

Schema

Considerations, 145

Schema wide

catalog, 84

SDA, 390

Second Normal

Form, 328, 329

Security, 3, 17, 246,

333

Select data, 27

Seelct Distinct, 171,

172, 294

Select statement.,

193, 194

Selection, 3, 15, 56,

58, 141, 181, 182,

197, 198, 202, 214,

235, 267, 276

SEQONLY, 319

SEQUEL, 34, 179

Servlet, 13

Servlet server, 13

Set default, 48

Set null, 48

Set option, 263, 369

Set Processing, 257

Set theory, 27, 187

Set transaction, 369

SEU, 70, 71, 98, 240

Share, 370

Short alias, 130

Short name, 126,

127, 128, 130

SIN, 275, 278

Single-level

hierarchy, 87

Smallint, 70, 121,

132, 244, 275

Source continuation,

72

Source DB Files, 96

Source description,

95, 98

Source

Development, 112

Source file, 96

 Creating, 96

 CRTSRCPF, 97

 File / Member

Commands, 101

 QDDSSRC, 97

Index 365

 source files, 69, 97,

105, 113, 251

Split screen, 142, 194

SQL 1999 core, 367,

368, 369

SQL built-in

functions, 274

SQL cursor, 258

SQL development

kit, 43, 66, 75, 163,

213

SQL grant, 28

SQL index object,

137

SQL lessons, 179

SQL naming, 146,

154

SQL objects, 67, 68,

69, 75, 79, 80, 83,

112, 117, 126, 144,

148, 154, 299, 300

SQL orientation, 137

SQL procedures, 122

SQL programming,

258

SQL queries, 112,

135, 267

SQL query, 65, 91,

141, 218, 259, 260

SQL reference

manual, 61

SQL revoke, 28

SQL script, 163

SQL server, 40, 41,

119

SQL servers, 147

SQL source, 72, 73,

74, 76, 94, 97, 99,

173

SQL source file, 72,

173

SQL tables, 75, 101,

312

SQL triggers, 359,

360, 362

SQL view, 138, 139,

142

SQL89 standard, 42

SQL92 standard, 42

SQLCA, 356

Standard extensions,

41

Statement

Processing, 168

Static SQL, 164

Stonebreaker

 Michael, 33, 36

Stored Procedure,

49, 63, 258

STRQM, 157, 163,

219, 222

STRSQL, 163

Structured Query

Language, 23, 27,

37, 44, 166, 179,

252, 253, 254, 305

Structures, 1, 2, 94,

177, 239, 240, 326

Student_Class’, 147

Sub query, 281

366 The IBM i Pocket SQL Guide

Subfile, 195, 258,

259, 264

Sub-libraries, 88

Subquery, 170, 281,

289

Substr, 271

Ssuffix, 127, 147,

148

SUM, 275, 277, 280,

281

Summary functions,

214, 235, 237

Summary values,

216

Syntax checking, 73,

76

SYSCHKCST, 82,

83, 111

SYSCOLUMNS, 82,

83, 111

SYSFUNCS, 92, 111

SYSIBM

 Library, 91, 92, 93,

103

SYSINDEXES, 82,

83, 92, 111

System catalog, 92

System library, 87,

88, 153

System naming, 154

System storage

genesis, 88

System wide catalog,

37, 110

System/36, 29, 30,

96, 305

System/38, 29, 37,

40, 45, 47, 60, 178,

189, 257, 299

System/R, 33, 34,

39, 40

SYSTRIGGER, 82,

83, 111

SYSVIEWS, 82, 83,

111

Table editor, 50, 248

Table Facility, 50,

248

Table name, 37, 55,

126, 127, 146, 147,

148

Table objects, 117

Text is, 134

Third normal form,

331, 332, 337

Time, 29, 107, 121,

122, 167, 229, 244,

275

Timestamp, 121,

122, 244, 275

Training examples,

151

Transaction files,

147

Transaction

processing, 4, 23

Transitive

dependencies, 331

Triggers, 49, 382

Tuples, 142, 177,

188

Index 367

Uncommitted read,

368

Union, 170, 178,

196, 199, 294, 295

Unique constraints,

345, 372

Unique key, 177,

348

Update

 data, 27, 35, 38, 50,

56, 59, 68, 267, 284,

314

User library list, 153

Values, 59, 203, 210,

286

Varchar, 121, 131,

132, 244, 275

Vargraphic, 122,

244, 275

V5R3, 66

Views, 35, 37, 38,

65, 80, 91, 103, 111,

112, 140, 145, 153,

196, 290, 299, 300,

301, 302, 303, 305,

309

Virtual table, 139

WAS Express, 390

WDSc, 390

WebFacing, 390

WebSphere

Development Studio

Client, 390

Whenever, 260, 261,

262

Where Clause, 57,

197, 202, 267

Where condition,

170, 195, 196

Wild Card, 203, 268

With isolation Level,

201, 379

WRKOBJ, 111

Zoned decimal, 121,

244

368 The IBM i Pocket SQL Guide

LETS GO PUBLISH! Books:
Sold at www.itjungle.com, www.mcpressonline.com, www.bookhawkers.com
LETS GO PUBLISH! www.letsgopublish.com Our titles include the following: email info@
letsgopublish.com for ordering information

The IBM i Pocket Developers’ Guide.
Comprehensive Pocket Guide to all of the AS/400 and IBM i development tools - DFU, SDA, etc.
You’ll also get a big bonus with chapters on Architecture, Work Management, and Subfile Coding.

The IBM i Pocket Database Guide.
Complete Pocket Guide to IBM i integrated relational database (DB2/400) – physical and logical files
and DB operations - Union, Projection, Join, etc. Written in a part tutorial and part reference style, this
book has tons of DDS coding samples, from the simple to the sublime.

The IBM i Pocket SQL Guide.
Complete Pocket Guide to SQL as implemented on IBM i. A must have for SQL developers new to
IBM i. It is very compact yet very comprehensive and it is example driven. Written in a part tutorial and
part reference style, this book has tons of SQL coding samples, from the simple to the sublime.

The IBM i Pocket Query Guide.
If you have been spending money for years educating your Query users, and you find you are still
spending, or you've given up, this book is right for you. This one QuikCourse covers all Query options.

Getting Started With The WebSphere Development Studio Client for IBM i (WDSc)
Focus on client server and the Web. Your introduction to the client server and web development tools.
Includes CODE/400, VisualAge RPG, CGI, WebFacing, and WebSphere Studio. Case study continues
from the Interactive Book.

The IBM i Pocket WebFacing Primer.
This book gets you started immediately with WebFacing. A sample case study is used as the basis for a
conversion to WebFacing. This interactive 5250 application is WebFaced in a case study format before
your eyes. Either learn by reading the book or read while working along on your own system.

Getting Started with WebSphere Express Server for IBM i: Your Step-by-Step Guide
for Setting Up WAS Express Servers
A Comprehensive guide to setting up and using WebSphere Express. It is filled with examples, and
structured in a tutorial fashion for easy learning. The book is designed to take you to a point at which
you understand the notion of a servlet server, what WebSphere Express is, where it came from, how to
order it, how to set it up, and how to make it work in your shop.

The WebFacing Application Design & Development Guide:
The Step by Step Guide to designing green screen IBM i applications for the Web. This is both a
systems design guide and a developers guide. Using this guide, you will understand how to design and
develop Web applications using regular workstation interactive RPG or COBOL programs. When you
learn the tricks, and observe the sample code in action, you might choose to develop all your
applications using this approach.

The IBM i Express Web Implementor’s Guide. Your one stop guide to ordering, installing,
fixing, configuring, and using WebSphere Express, Apache, WebFacing, IBM i Access for Web, and
HATS/LE.

Can the AS/400 Survive IBM?
Exciting book about the AS/400 in an IBM i World.

The All-Everything Machine
The story about IBM’s finest computer server.

Chip Wars
The story of the ongoing war between Intel and AMD and the upcoming was between Intel and IBM.
This book may cause you to buy or sell somebody’s stock.

http://www.itjungle.com/
http://www.mcpressonline.com/
http://www.bookhawkers.com/
http://www.letsgopublish.com/

