

Dear Reader: Thank you for downloading this free book from Brian
W. Kelly’s finished book catalog. I finished the book titled System/I
Pocket RPG & RPGIV Guide
https://letsgopublish.com/technology/rpg.pdf in October 2016.
Concepts, Coding Examples, & Exercises.

Most of my books had previously been published on Amazon.

Click below if you would like to donate to help the free book

cause:

https://www.letsgopublish.com/books/donate.pdf

Enjoy!

https://letsgopublish.com/technology/rpg.pdf
https://www.letsgopublish.com/books/donate.pdf

The System i

Pocket RPG & RPGIV
Guide

AS/400 and System i RPG Concepts, Coding Examples &
Exercises

– A Comprehensive Book of updated Information and RPG
examples for the new and experienced AS/400 and System i
Application Developer –

B R I A N W . K E L L Y

Copyright © 2006, Brian W. Kelly
The System i Pocket RPG & RPGIV Guide Author Brian W. Kelly

All rights reserved: No part of this book may be reproduced or transmitted in any
form, or by any means, electronic or mechanical, including photocopying,
recording, scanning, faxing, or by any information storage and retrieval system,
without permission from the publisher, LETS GO PUBLISH, in writing.

Disclaimer: Though judicious care was taken throughout the writing and the
publication of this work that the information contained herein is accurate, there is
no expressed or implied warranty that all information in this book is 100% correct.
Therefore, neither LETS GO PUBLISH, nor the author accepts liability for any
use of this work.

Trademarks: A number of products and names referenced in this book are trade
names and trademarks of their respective companies. For example, System i is a
trademark of IBM Corporation.

Referenced Material : The information in this book has been obtained through personal
and third party observations, interviews, and copious research and analysis. Where unique

information has been provided or extracted from other sources, those sources are
acknowledged within the text of the book itself. Thus, there are no formal footnotes nor is
there a bibliography section. Any picture that does not have a source was taken from various

sites on the Internet with no credit attached. If any picture owner would like credit in the
next printing, please email the publisher.

Published by: LETS GO PUBLISH!
 Joseph McDonald, Publisher
 P.O Box 425
 Scranton, PA 18503
 jmac@letsgopublish.com
 www.letsgopublish.com
Library of Congress Copyright Information Pending

Book Cover Design by Michele Thomas; Editing by Brian P. Kelly

ISBN Information: The International Standard Book Number (ISBN) is a unique
machine-readable identification number, which marks any book unmistakably.
The ISBN is the clear standard in the book industry. 159 countries and territories
are officially ISBN members. The Official ISBN for this book is:

0-9745852-7-0
__

The price for this work is : $69.95.00

USD

10 9 8 7 6 5 4 3 2 1

Release Date: October, 2006

Dedication

To my wonderful wife Patricia, and our loving

children, Brian, Michael, and Katie as well as

the greatest pack of brothers and sisters, aunts

and uncles, cousins, nieces and nephews that any

person could ever hope to have in just one life.

Acknowledgments

I would like to thank many people for helping me in this effort.

I would first like to thank my immediate family, starting with my
lovely and dear wife, Patricia. Again, as I offer in all my books, my
wife Patricia is my source. She is the person who keeps me alive and
sane and well in more ways than can be mentioned. She is the glue
that holds our whole family together. Besides that, she keeps getting
better looking as the years go by, and I love to see her wonderful face
every day in my life. No matter where I look when she is in my view,
the view is very good. Her daddy, a wonderful man in his own right,
Smokey Piotroski, called his little girl Packy as a nickname. Though
Stash is now with the Angels, I love that name and the person who
wears it and I still use it to address my little Packy. God gave me a gift
that keeps me going. Thank you Packy for all you do to keep me and
our whole family well and mostly, thank you for the smile that you
always put on my face.

I would also like to thank my twenty-one year-old daughter, Katie,
who is still my little baby doll. Kate helps me in any way she can.
Even more than that, her sweet voice and her accomplished guitar
playing gets the muse racing as my fingers pound the keyboard. Katie
is starting to feel better now and we thank God for that but it still is not
easy for her. He is now working, helping other children cope with their
difficulties. She is well on her way to being OK. I thank my Katie for
she will always be Daddy’s Little Girl. I love you very much.

A special thank you also goes to Dr. Patrick Kerrigan, who takes credit
for little but helps all who come his way in all ways. Dr. Patrick comes
to the job with the abilities of Hippocrates and the patience of Job. He
left no stone unturned in helping Katie through her need and as I have
witnessed, he does it for all and with humility.

Thanks also go out to my twenty-four -year-old son, Michael is getting
ready for his second year of Law School after receiving his B.S. Degree
in Accounting. After a trek with a construction company this summer,
Michael is more than anxious to be a lawyer. Of course, when he goes
away – even for a week or two I miss him very much.

I also thank my twenty-six-year-old son, Brian, who just knocked 'em
dead in Law School and graduated Magna Cum Laude. Brian spent
most of this year taking courses in preparation for the Bar
Examination, which he passed with flying colors. He’s got all kinds of
interesting job applications out there so soon he’ll be saving the world.

I thank Brian for the editing of this book – at least most of the chapters.
He is phenomenal wit the written word. If you find a mistake
anywhere in this book, it had to be in one of the chapters I wouldn’t let
him touch. Brian, you make us very proud. Mom and I are very proud
of all of our children and we thank each of them for their work in
academia and their efforts on our behalf.

Thanks also to the extended family who are always there to lend a
helping hand. Barb, Kim & Dave, Dawn, Cindy & Dave Boyle,
Megan and Sean are some of the most wonderful family in my life.
And dad Joe, with the angels, always gets his plugs in. Thanks also to
Melissa and Paul Sabol and their new baby boy Paul IV.

Accomplishments often materialize because of a strong friendship
infrastructure. I am pleased to have a number of great friends. Among
them is my longtime best friend Dennis Grimes, who is always there to
help, though he may think everything I write sounds the same.
Professor Grimes is on the faculty with me at Marywood University
and he is a CIO for Klein Wholesale. He is very talented and very
helpful. I selected his comments about RPG as a cover quote.
Barbara Grimes, Patricia Grimes Yencha, Elizabeth (Wizzler), Mary
the PhD., Denyse back from the U.K., Grandma Viola, and Grandma
Gert also pitch in whenever the opportunity arises. Dennis helps me in
whatever way I ask, especially when I am stuck. I really appreciate all
you do for me "D." Thank you

The busiest guy on all of my book projects, besides myself, is always
Joe McDonald. Joe is the businessman in our publishing venture, and
in that, he's all business. Joe is the former Publisher of the Scranton
Tribune/Scrantonian Newspaper. So he's got the right background to
make sure everything is A-OK! I promised Joe that my next book was
going to be non-technical as we moved the publishing business to
Children's books and third party authors. Joe assures me that after this
book, he will have the courage to lead me to the children’s side of the
business where our next book is scheduled to be The Adventures of
Eddy (The Dog) written by Joe's Grandson. Soon, it will be on the
bookshelves of America. My thanks also go to Peg McDonald for
making sure that Joe is always ready for action, especially now that he
is recovering from a tooth extraction induced broken jaw.

Of course, the long list of helping hands contains lots of names: Gerry
Rodski and Joyce, Jeanne and Farmer Joe Elinsky, John and Carol
Anstett, Grandma Leona and Grandma Annie (from the
“Mayflower”), Joe and Betta Demmick, Christopher & Emily, Carolyn
and Joe Langan, Bob & Cathy Wood, Cousin Eddy & Rose, Karen
and Al Komorek, Bonnie and George Mohanco, Becker and Robin

Mohanco, Lilya, Josh, and Alaina Like Mohanco, Bob and Nettie
Lussi, Kim and Ruth Borland--- they are all there when needed.. Other
helping hands include Dr. Lou and Marie Guarnieri as well as Mary
and Cindy Guarnieri, whose hands have been indispensable. I can’t
forget Mike and Frannie Kurilla & Frankie and Tony, Jerry and Hedy
Cybulski, Linda DeBoo and Bob Buynak, Joe, the Chief, LaSarge,
John and Susan Rose, and Dave and Nancy Books. Thanks also to Dr.
Rex Dumdum from Marywood-- my academic mentor. Special thanks
also to the E.L. Meyers Class of 1965 (41st reunion this year) for some
early training in the art of writing.

And don't let me forget Patricia’s parents, Arline and Stanley Piotroski,
who continue to guide us in our lives. Cathy and Marty Piotroski, Dr.
Susan Piotroski and Dr. Mitch Bornstein, Matt and Allie, Dr. Stan
Piotroski, Carol Piotroski, Sister Marlene, Justin and Katie, Merek,
MacKenzie, Myranda, McKylee Mae, Lynn, and Scott Piotroski, Erin
& Marty Piotroski Jr, Ralph Harvey, Brian, Margaret Brian Jr.,
Hannah Frostbutter, Beth & Dante Frostbutter,. Trooper Danny
Oleniak and Maryann, Barb & Ed & Barb Hahn, Russ & Bernadette
Banta, Louise Usloski, Theresa Vital & Roseann Dunay

The list includes the Kelly parents -- Ed and Irene also provide
guidance from upstairs as well as direct intervention as needed; Anna
Maye, Nancy and Angel Jim Flannery (Leland [No K] Zard), Renee
(Bean), Jimmy (Jim Bob), Bridget, Mary (MeeWee), Danny, Michael
(McPike) , Ken (La Rue), Jen, Angel David Davidow (a.k.a. Brunoch
Zard), Stephen (P.Q. Whoozer), Matthew(M.Q. Peph), Bailee Roo,
Viva La Vieve, and Billiard Peph, Joe and Rosalee, Raymond and the
real Sparkey. Mary and Bill Daniels, Liz (Weezler), Brian, Sophia
(Chubby Cheeks DiNardo,) Elise (Fleure d’Lise), Ginochetti. Megan
(Meggledeebaigledee), Bill Jr (Billdog), Vicky. Diane and Joe , Tara
and Colleen Kelly. Ed and Eudart, Eddy, John, and Robert Kelly. Bill
Rolland- Notre Dame’s # 1 Fan and master of accommodations, Bill
Kustas, Bill & Helen Kush, Steve and Shelly Bartolomei, Keith and
Dorie Zinn, Cheryl Danowski, Ricky, Joanne, Briana and Eric Bayer,
and of course the great musical cutter Harrison Arthur and his friend
Harry Heck Jr. The infamous Pierre Le Kep. More thanks to Judy
Jones and Jerry Reisch and Judy Judy Judy Seroska

Going back to the top of the list of helpers is my wonderful and huge pack
of cousins. The list begins with the Uncles and Aunts, many of whom are
now Angels. Uncle Nick and Aunt Emma McKeown, Dave and Kathleen
Conklin, Rita and Frank DeRiancho, Joan and Tom Nelson, Aunt Ruth and
Uncle Joe McKeown, Kathy and Joe McKeown Jr., Aunt Louise and Uncle
Jimmy McKeown, Patsy, Danny and Jerry McKeown, Nina and Jim
Brady, Jimmy Brady, Tommy and Mary Rowan, Arlene and Richard May,

Little Tommy Rowan, Helen and Joe Drexinger, and all the other cousins,
uncles & aunts who can’t make it to the special muse event every summer
in Montrose.

Of course, there’s Uncle Martin Kelly, Aunt Marie and Uncle Bud Hopko,
Aunt Helen Berger Aunt Catherine and Uncle Leonard Lamascola, Uncle
Pat & Aunt Mary Kelly, Sharon, Maureen, Jud, Pat Jr., and Tommy Kelly.
Uncle Mike & Aunt Fran, Uncle Joe Kelly, Marguerite and Helen. Red
Cloud (Uncle Phil Kelly) is also on the list for his due diligence in writing
postcards as is Uncle Johnny Kelly for being the youngest.

In the special care category, Dr. Lou Guarnieri has been making sure that
my bones are aligned properly for years. So that I can give those speeches
with a bright smile, I got some big help from Dr. Lou Kicha the Great and
his highly competent team of professionals at Aspen Dental-- John Cicon,
Carol Kephart, Nicole Arnone, Anita Florek, and the tooth architect, Mary
Lou Lennox. Thank you all very much.

A big thank you to Ray Killian from Penn Millers Insurance in Wilkes-
Barre PA for reporting some typos from the first printing that are
corrected in this version. Other helpers in many ways include the
former Klein development staff. In alphabetical order, by first name,
the Klein team includes: Barb Chaderton, Bill 'Curly' Kepics, Cindy
Dorzinsky, Cindy Goodwin, Dennis Grimes, Eric Priest, Jeff
Massaker, Jerry Reisch, Joe Byorick, Joe Rydzewski, John Robbins,
Paula Terpak, Rob Gilboy, Rod Smith, and Rosalind Robertson and.

I would also like to thank Nancy Lavan, our sponsor at Offset
Paperback, our printer. She continually encourages us in our writing
and publishing efforts. Chris Grieves, our new customer service person
has made working with the printing process an easy task. Special
thanks go to Michele Thomas, who takes ideas and makes wonderful
images from them, such as this wonderful cover.

To sum up my acknowledgments, as I do in every book that I have
written, I am compelled to offer that I am truly convinced that "the
only thing you can do alone in life is fail." Thanks to my family, good
friends, and a helping team, I was not alone.

Table of Contents at a Glance xi

Table of Contents at a Glance

Chapter 1 Introduction to the RPG Language .. 1

Chapter 2 The History of the RPG Language ... 9

Chapter 3 Understanding the RPG Fixed Logic Cycle ...25

Chapter 4 Developing RPG Applications ...47

Chapter 5 Your First RPG Program ..97

Chapter 6 The Specifics of RPG Coding –H Spec – by Example 107

Chapter 7 The Specifics of RPG Coding –F & L spec by Example 127

Chapter 8 The Specifics of RPG Coding – I spec – by Example 161

Chapter 9 Specifics of RPG– Structures/Constants by Example 203

Chapter 10 The Specifics of RPG Coding– C spec – by Example 219

Chapter 11 The Specifics of RPG Coding– O spec – by Example 247

Chapter 12 Decoding and Debugging RPG Programs ... 277

Chapter 13 Introduction to RPGIV .. 295

Chapter 14 RPG (/400) Operations ... 369

Chapter 15 RPGIV Operations and Built-In Functions 419

Chapter 16 RPG Arrays and Programming Structures .. 467

Chapter 17 RPG Data Structures .. 515

Chapter 18 String Coding In RPG .. 549

Chapter 19 RPG/400 & RPGIV Structured Programming 619

Chapter 20 Interactive RPG Programming ... 645

Chapter 21 RPG Subfile Programming .. 693

Chapter 22 RPG Database & Inter-Program Ops & Examples 743

Chapter 23 Case Study Part I RPG Operations in Action 775

Chapter 24 Case Study Part II RPG Operations in Action 823

Chapter 25 ILE & Static Binding. ... 855

Chapter 26 RPGIV Procedures and Functions .. 875

Chapter 27 Free Format RPG /FREE ... 907

Chapter 28 Using Embedded SQL in RPG Programs .. 919

Index ….. .. 933

Table of Contents xiii

Table of Contents

Chapter 1 Introduction to the RPG Language 1
 What is RPG? ... 1
 Creating New RPG Programmers ... 2
 Non-RPG Programmers .. 3
 IBM Leads the RPG Way .. 4
 The Minicomputer Revolution ... 4
 IBM Not Popular in Higher Education .. 5
 RPG Kills the Minicomputer Revolution ... 6
 Chapter Summary .. 7
 Key Terms .. 7
 Review Questions: ... 8

Chapter 2 The History of the RPG Language 9
 Filling in the Blanks .. 9
 In the Beginning .. 9
 Fixed Cycle Accounting Machines ... 10
 RPG on the IBM 1401 ... 11
 Here Comes the IBM System/3 ... 11
 System/3 as a 407 ... 12
 System/3 RPG Was RPG II ... 12
 The Four RPGs ... 13
 RPG I .. 13
 RPG II Adds More Capabilities ... 14
 RPG III ... 16
 RPG IV – Best Language on any Platform ... 18
 The Once and Future RPG ... 20
 Chapter Summary .. 20
 Key Terms .. 21
 Review Questions .. 22

Chapter 3 Understanding the RPG Fixed Logic Cycle 25
 Cycle Operations Are OK! .. 25
 A Quick Look at the RPG Cycle .. 26
 Report Headings.. 28
 Step 1 – Write Heading and Detail Lines ... 30
 Step 2-- Get Input Data ... 30
 Step 3 – Perform Total Calculations ... 31
 Step 4 -- Write Total Output ... 32
 Step 5 – LR On? .. 32
 Step 6 Move Data from Input Area to Fields .. 33
 Step 7 Perform Detail Calculations.. 33
 Additional INPUT Processing Information .. 34
 RPG Matching Records Processing ... 34
 Designating Record Types .. 35
 Record Identifying Indicator Processing .. 36
 Primary and Secondary Files ... 37
 The MR Indicator ... 38
 Multiple Output Records per Cycle. ... 40
 RPG Fixed Logic Cycle Summary ... 40

Table of Contents xiv

 Chapter Summary .. 42
 Key Terms .. 43
 Review Questions .. 43

Chapter 4 Developing RPG Applications 47
 Writing Your Programs ... 47
 Programming Development Manager (PDM) ... 48
 PDM Features .. 48
 PDM: the List Manager .. 50
 What Does PDM Do? .. 50
 Starting PDM ... 51
 Work with Libraries Using PDM ... 52
 Work With Objects ... 53
 Work with & Other Options .. 54
 Work With Members .. 55
 Editing Source Members ... 57
 Compiling (Creating Objects from Members) .. 57
 Member Source Types .. 58
 COPY Members with PDM .. 58
 Source Entry Utility (SEU) .. 59
 SEU Features Overview ... 60
 SEU Features: .. 60
 Getting SEU Started ... 62
 SEU the Editor .. 66
 Line Editing Commands .. 68
 Why Line Commands? ... 69
 List of Line Commands ... 69
 Types of Line Commands ... 70
 Window Line Command ... 70
 SEU Top-Line Commands.. 70
 The SEU Main Edit Panel ... 71
 SEU Command Keys ... 72
 Defaults, Find/Change, Browse/Copy .. 73
 Line Command Exercises .. 73
 Copy One Line .. 74
 Delete Operations ... 76
 Copy Blocks ... 77
 More Line Tricks -Move, Insert, and Repeat .. 79
 Compiling and Executing your Program .. 85
 Running the NEW Program ... 91
 Summary and Conclusions: ... 91
 Key Terms .. 92
 Review Questions .. 93

Chapter 5 Your First RPG Program 97
 The Specs for Your First Program .. 97
 A Description of the Data ... 100
 The Data Itself ... 102
 Chapter Summary .. 104
 Key Terms .. 105
 Review Questions .. 105

Chapter 6 The Specifics of RPG Coding –

Table of Contents xv

Control Specification – by Example 107
 From Coding to Decoding .. 107
 Well Not Exactly! .. 109
 Decoding the PAYREG RPG Program ... 112
 Internally & Externally Described Data ... 112
 H-- Header (Control) Specification Form .. 114
 H Columns 7-14 (Reserved) .. 115
 H Column 15 (Debug) ... 115
 H Columns 16-17 (Reserved).. 115
 H Column 18 (Currency Symbol) .. 115
 H Column 19 (Date Format) .. 116
 H Column 20 (Date Edit) .. 116
 H Column 21 (Decimal Notation) ... 116
 H Columns 22-25 (Reserved).. 116
 H Column 26 (Alternate Collating Sequence) ... 116
 H Columns 27-39 (Reserved).. 116
 H Column 40 (Sign Handling) .. 117
 H Column 41 (Forms Alignment).. 117
 H Column 42 (Reserved) ... 117
 H Column 43 (File Translation) ... 117
 H Columns 44-56 (Reserved).. 117
 H Column 57 (Transparency Check)... 117
 H Columns 58-74 (Reserved).. 118
 H Columns 76-80 (Program Identification) ... 118
 RPGIV Header (H) Specification ... 119
 Chapter Summary .. 122
 Key Terms .. 123
 Review Questions .. 123

Chapter 7 The Specifics of RPG Coding – File Description
& Line Counter Specifications – by Example 127
 Talking to the Outside World .. 127
 F-- File Description Specification Form ... 127
 Why File Descriptions? .. 129
 F Column 7-14 File Name .. 131
 F Column 15 File Type – I, O, Etc. .. 131
 F Column 16 File Designation – Primary, Secondary, etc. ... 132
 Blank, P, S-- Output, Primary, and Secondary .. 132
 R-- Record Address File .. 133
 T-- Array or Table File .. 133
 F-- Full Procedural File ... 134
 F Column 17 (End of File) .. 134
 F Column 18 (Sequence) ... 135
 F Column 19 (File Format) ... 136
 F Columns 20-23 (Reserved) .. 138
 F Columns 24-27 (Record Length).. 138
 F Columns 28-39 (Other Entries).. 139
 F Column 28 Limits Processing ... 139
 F Column 29-30 Length of Key or Record Address ... 139
 F Column 31 Record Address File Type .. 140
 F Column 32 File Organization ... 141
 F Columns 33-34 Overflow Indicator .. 141
 F Columns 35-38 (Key Field Starting Location) ... 142
 F Column 39 (Extension Code) ... 143

Table of Contents xvi

 F Columns 40-46 (Device) .. 144
 F Column(s) 47-52 (Reserved) ... 145
 F Column 53 (Continuation Lines) ... 145
 F Column(s) 54-59 (Routine) .. 145
 F Column(s) 60-65 (Reserved) ... 146
 F Column 66 (File Addition) .. 146
 F Column(s) 67-70 (Reserved) ... 146
 F Column(s) 71-72 (File Condition) .. 147
 F Column(s) 73-74 (Reserved) ... 147
 F Column(s) 75-80 (Comments) .. 147
 FC File Description Continuation Lines .. 148
 FC Columns 7 – 18 Unused ... 148
 FC Columns 19 – 28 External Name of Record Format.. 148
 FC Columns 29 – 46 Unused ... 148
 FC Columns 47 – 52 Record # Field for Subfile ... 149
 FC Column 53 Continuation Character (K) .. 149
 FC Columns 44 – 59 & 60 – 67; ‘K’ Options ... 149
 FC Columns 68 – 74 Unused ... 149
 FC Columns 75 – 80 Optional Comments .. 149
 FC Options and Entries for Continuation ... 150
 RPGIV File Description Keywords .. 153
 L -- Line Counter Specification Form ... 155
 L Column 7-14 File Name .. 156
 L Column 15-17 Lines per Page .. 156
 L Column 18-19 Form Length ... 156
 L Column 20-22 Overflow Line Number .. 156
 L Column 23-24 Overflow Line Indicator ... 157
 L Column 25 - 74 Blank .. 157
 L Column 75 - 80 Optional Comments ... 157
 RPG IV Line Counter Information .. 157
 Chapter Summary .. 157
 Key Terms .. 159
 Review Questions .. 159

Chapter 8 The Specifics of RPG Coding –
Input – by Example .. 161
 The Many Faces of RPG Input .. 161
 Internally & Externally Described Input .. 163
 I – Input Specification Form .. 163
 Input Specification Quick Summary ... 165
 RPG Input Form Types .. 165
 PAREG Record and Field Statements ... 166
 I – Externally Described Record ID Entries ... 167
 IEDRI Columns 8-14 Record Name .. 167
 IEDRI Columns 16 – 18 Reserved .. 168
 IEDRI Columns 19 – 20 Record Identifying Indicator ... 168
 IEDRI Columns 21 – 41 Unused .. 168
 IEDRI Columns 42 – 74 Reserved .. 168
 IEDRI Columns 75 – 80 Reserved .. 168
 Applying Input Record IDs to PAREG ... 168
 I – Externally Described Field Description Entries ... 172
 Field Specifications in RPG/400 ... 172
 IEDFD Columns 7 – 20 Reserved .. 173
 IEDFD Columns 21 – 30 External Field Name .. 173

Table of Contents xvii

 IEDFD Columns 31 – 52 Reserved .. 174
 IEDFD Columns 53 – 58 Field Name ... 174
 IEDFD Columns 59 – 60 Control Level ... 174
 IEDFD Columns 60 – 61 Match Fields ... 175
 What about M2 through M9? ... 176
 IEDFD Columns 63 – 64 Reserved .. 179
 IEDFD Columns 65 – 70 Field Indicators .. 179
 IEDFD Columns 71- 74 Reserved .. 179
 IEDFD Columns 75 – 80 Comments .. 180
 I Program Described Record Identification Entries .. 180
 IPDRI Columns 8-14 File Name ... 181
 IPDRI Columns 14-16 (Logical Relationship) .. 182
 IPDRI Columns 15-16 (Sequence) .. 183
 IPDRI Column 17 (Number) ... 185
 IPDRI Column(s) 18 (Option) ... 186
 IPDRI Column(s) 19-20 (Record Identifying Indicators) .. 187
 IPDRI Column(s) 21-41 (Record Identification Codes) ... 188
 I Program Described Field Description Entries ... 190
 IPDFD Position 43 (Data Format) ... 191
 IPDFD Position 44-51 From / To Record Positons .. 192
 Additional Information re: from / to length ... 193
 IPDFD Column(s) 52 Decimal Positions .. 193
 IPDFD Column 53-58 Field Name .. 194
 IPDFD Column(s) 59 – 60 Control Level ... 194
 IPDFD Column(s) 61 - 62 Matching Fields .. 195
 IPDFD Column(s) 63 - 64 Field Record Relation ... 197
 IPDFD Column(s) 65-70 Field Indicators ... 197
 IPDFD Column(s) 71 – 74 Unused .. 198
 IPDFD Column(s) 76 – 80 Comments .. 198
 RPGIV Program Described Files .. 198
 IPIV Columns 31-34 Data Attributes ... 198
 IPIV Column 35 Date/Time Separator .. 199
 Chapter Summary .. 199
 Key Terms .. 200
 Review Questions .. 200

Chapter 9 The Specifics of RPG Coding –
Input Structures & Constants – by Example 203
 What is a Data Structure? .. 203
 Data Structure Record ID Entries ... 204
 IDSRI Column(s) 7-12 Data Structure Name ... 205
 IDSRI Column(s) 13-16 Reserved ... 206
 IDSRI Column(s) 17 External Description ... 206
 IDSRI Column(s) 18 Option .. 206
 IDSRI Columns 19–20 Record ID Indicator ... 207
 IDSRI Columns 21 – 30 External File Name ... 207
 IDSRI Column(s) 31 – 43 Reserved ... 208
 IDSRI Column(s) 44-47 Data Structure Occurrences ... 208
 IDSRI Column(s) 48 – 51 DS Length .. 208
 IDSRI Column(s) 52 – 74 Reserved ... 209
 IDSRI Columns 75 – 80 Comments ... 209
 I Data Structure Subfield Entries ... 209
 IDSSF Column 7 Reserved .. 210
 IDSSF Column 8 Initialization Option ... 210

Table of Contents xviii

 IDSSF Columns 9 – 20 Reserved ... 210
 IDSSF Columns 21 – 30 External Field Name .. 210
 IDSSF Columns 21 – 42 (Initialize Value) ... 211
 IDSSF Columns 31 – 42 Reserved ... 211
 IDSSF Column 43 Internal Data Format .. 211
 IDSSF Column 44 – 51 Field Location .. 212
 IDSSF Column 52 Decimal Positions .. 212
 IDSSF Column 53-58 Field Name .. 213
 IDSSF Columns 59 – 74 Reserved ... 213
 IDSSF Columns 75 – 80 Comments .. 213
 I Named Constant Entries .. 213
 INC Columns 7 – 20 Reserved ... 214
 INC Columns 21 – 42 Constant ... 214
 INC Columns 43 Type / Continuation ... 215
 INC Columns 44 – 52 Reserved .. 215
 INC Columns 53 – 58 Constant Name .. 215
 INC Columns 59 – 74 Reserved .. 215
 INC Columns 75 – 80 Comments ... 215
 Chapter Summary .. 216
 Key Terms .. 216
 Review Questions .. 217

Chapter 10 The Specifics of RPG Coding –
Calculations – by Example ... 219
 Mathematics and Logic .. 219
 The RPG Calculation Specification ... 221
 Calculation Specification Statement Format .. 227
 C Columns 7-8 (Control Level) .. 227
 PAREG and Control Levels ... 228
 C -- Columns 10-17 (Indicators) ... 230
 Pseudo Code .. 231
 Taking Totals ... 234
 C – Columns 18-52 Factors and Operators ... 236
 C -- Columns 18 – 27 Factor 1 ... 237
 C -- Columns 28 – 32 Operation .. 237
 C -- Columns 33 – 42 Factor 2 ... 237
 C -- Columns 43 – 48 Result Field ... 238
 C -- Columns 49 – 51 Length .. 238
 C -- Columns 49 – 51 Decimal Positions.. 239
 C- Column 53 (Operation Extender) .. 239
 C – Columns 54-59 (Resulting Indicators) .. 240
 C- Columns 60-80 (Comments) ... 241
 Another Look at PAREG Example CALCS ... 241
 Chapter Summary .. 243
 Key Terms .. 244
 Review Questions .. 244

Chapter 11 The Specifics of RPG Coding–
Output – by Example .. 247
 Showing the Results ... 247
 O-- Output Specification Form .. 247
 Output Record ID and Control Entries ... 248
 OPDRI -- Specification Columns 7-14 ... 250

Table of Contents xix

 Printing to Multiple Printers ... 250
 OPDRI Columns 14-16 (Logical Relationship) ... 251
 OPDRI — Column 15 (Type) ... 252
 OPDRI – Column 16 (Fetch Overflow / Release) .. 254
 OPDRI – Columns 17-22 (Space and Skip) .. 254
 Powerful Report Writing ... 255
 Spacing & Skipping .. 256
 OPDRI – Columns 23-31 (Output Indicators) .. 257
 Field Description and Control Entries ... 259
 OPDFD- Columns 7 through 22 Reserved ... 260
 OPDFD- Columns 23–31 Output Indicators ... 260
 OPDFD-- Columns 32-37 Field Name .. 261
 Field Names, Blanks, Tables and Arrays .. 262
 OPDFD Column 38 Edit Codes ... 262
 OPDFD —Column 39 Blank After .. 264
 OPDFD - Columns 40-43 End Position ... 266
 OPDFD - Column 44 (Data Format) ... 268
 OPDFD - Columns 45-70 Constant or Edit Word ... 268
 RPG/400 Edit Words.. 270
 Body - Status - Expansion .. 271
 OPDFD -- Columns 71-74 Reserved ... 274
 OPDFD -- Columns 75-80 Comments .. 274
 Chapter Summary .. 274
 Key Terms .. 275
 Review Questions .. 275

Chapter 12 Decoding and Debugging RPG Programs 277
 The PAREG Program Decoded .. 277
 The Decoding Process ... 281
 RPG Cycle and PAREG Decoding ... 283
 Debugging for Learning and Decoding .. 286
 Chapter Summary .. 293
 Key Terms .. 294
 Review Questions .. 294

Chapter 13 Introduction to RPGIV 295
 You’ve Already Seen RPGIV? ... 295
 A Better RPG ... 295
 What is RPGIV? .. 298
 Who Needs It? ... 298
 Many Beneficial Changes to RPGIV ... 300
 7 Specification Sheets vs. 8 ... 300
 Functions Moved to More Logical Specification Sheet .. 300
 Specifications Changed to Accommodate Extended Functions 301
 Additional Functions Added To Language.. 301
 Many RPG Limits Removed / Increased .. 301
 RPGIV ILE Environment .. 302
 Pointer Example .. 303
 Static Calls .. 303
 Dynamic Calls .. 303
 Keyword Orientation .. 304
 Decoding the PAREG RPGIV Program ... 310
 The RPGIV Header Specification ... 310
 RPGIV File Description Specification ... 311

Table of Contents xx

 RPGIV Input Spec Changes ... 312
 Record ID in RPGIV ... 313
 Input Field Spec in RPGIV .. 313
 RPGIV Calculation Spec Changes .. 314
 CALC Example 1 ... 315
 CALC Example 2 ... 315
 CALC Example 3 ... 316
 RPG IV Free-form Op-codes .. 317
 CALC Example 4 - Free Form in Action .. 319
 RPGIV Field Length and Decimals .. 321
 Built-In-Functions (BIFs) ... 321
 Other BIFs ... 323
 Pointer Example 1 -- Pointer Variables .. 324
 RPGIV Output Spec Changes ... 325
 Output Example 1 -- RPGIV ... 325
 Output Example 2 -- RPGIV Printer Output .. 326
 Output Example 3 Literal End Positions .. 326
 RPGIV Output Record Format and Control .. 327
 RPG IV Field and Control Specification ... 331
 Wrap-Up RPGIV with Similar Forms .. 332
 The RPGIV Definition ‘D’ Specification .. 332
 D Spec Example 1 Indentation .. 333
 D Spec Example 2 – DS From / To .. 333
 D Spec Example 3 DS Using Length ... 334
 D Spec Example 4 Multiple Occurrence DS ... 335
 D Spec Example 5 Named Constant .. 336
 D Spec Example 6 Stand-Alone Fields .. 336
 D Spec Example 7 Tables & Arrays .. 337
 D Spec Example 8 Compile Time Tables .. 338
 D Spec Example 9 Ext. Described DS.. 338
 D Spec Example 9 Data Area DS .. 339
 D Spec Keyword Continuation Line... 339
 ‘D’ Spec Continued Name Line ... 340
 D – Columns 7-21 Name .. 341
 D – Column 22 External Definition ... 341
 D – Column 23 Type of Data Structure... 342
 D - Columns 24-25 Definition Type ... 343
 D Columns 26-32 (From Position) ... 343
 D - Column 40 (Internal Data Type) .. 345
 D -- Columns 41-42 (Decimal Positions)... 346
 D -- Column 43 Reserved ... 347
 D -- Columns 44-80 (Keywords) ... 347
 D -- Columns 81-100 Comments .. 347
 D Specification Keywords. .. 348
 Built-In Functions / Pointers ... 353
 Date & Time Operations ... 354
 Date and Time Op-Codes ... 358
 Date Example 1 – Four Operations .. 359
 Date/Time Duration Codes .. 359
 Date Example 2 OP-CODES In Use ... 360
 Where to specify D, T, Z Formats? .. 360
 Date .. 362
 Chapter Summary .. 363
 Key Terms .. 364
 Review Questions .. 365

Table of Contents xxi

Chapter 14 RPG (/400) Operations 369
 How RPG Gets Things Done! ... 369
 RPG Operations .. 371
 Basic Operations - Including Arithmetic ... 371
 Compare & Branch / Subroutine Operations ... 379
 Call Operations (Inter-program) .. 386
 Data Manipulation Operations ... 389
 Database & Device File Operations .. 391
 Data Structure, Data Area, Table, Array, String Operations .. 397
 Data Structure (as a data structure) ... 398
 Table .. 399
 Strings .. 399
 Program Control, Declarative, Informational & Other Operations 404
 Structured Operations .. 406
 All RPG Operations / Parameters ... 408
 Chapter Summary .. 412
 Key Terms .. 413
 Review Questions .. 414

Chapter 15 RPGIV Operations and Built-In Functions 419
 What Is the Same in RPGIV? ... 419
 RPGIV-Only Operations... 421
 RPGIV Built-In Functions (BIFs) ... 431
 Chapter Summary .. 463
 Key Terms .. 463
 Review Questions .. 464

Chapter 16 RPG Arrays and Programming Structures 467
 Advanced RPG/400 Elements .. 467
 IBM Definitions... 468
 Three Types of Arrays .. 469
 Array Syntax Rules .. 471
 Compile Time Arrays ... 475
 Compile Time Array Record Rules: .. 476
 Pre-run Time Array ... 477
 Alternating Arrays or Tables ... 479
 Related Arrays w/o Alternating Format... 480
 Tables ... 481
 Related Tables w/o Alternating Format .. 483
 Searching Arrays & Tables .. 484
 LOKUP Example .. 486
 The Meaning of the LOKUP Resulting Indicators .. 487
 LOKUP (LOOKUP in RPGIV) Review ... 489
 Changing Entries in Arrays ... 491
 Adding Entries to Arrays ... 492
 Another LOKUP Example – .. 494
 Table LOKUP with one Table ... 494
 Speeding up Array Searches .. 496
 Faster Processing for Unordered Arrays .. 497
 Consider Keyed Files Vs. Arrays ... 499
 Named Constants .. 500

Table of Contents xxii

 Named Constant Examples .. 500
Figurative Constants ... 502
 Rules for Figurative Constants ... 504
 Figurative Constant Example 1 .. 505
 Figurative Constant Example 2 .. 506
 Other RPG/400 Reserved Words ... 509
 Chapter Summary .. 511
 Key Terms .. 513
 Review Questions .. 513

Chapter 17 RPG Data Structures .. 515
 What is a Data Structure? .. 515
 Special Types of Data Structures.. 516
 How Are Data Structures (DS) Defined? ... 518
 Moving Data into Data Structures ... 518
 Data Structure Example 1 ... 519
 Data Structure Example 2 ... 520
 Accessing Multiple Occurrence Data Structure .. 521
 Data Structure Example 3 ... 521
 Data Structure Example 4 ... 522
 Working with System i Data Areas .. 523
 *LDA Local Data Area .. 524
 Additional Data Area Data Structure Info ... 527
 More on *NAMVAR DEFN ... 528
 Summary of Data Area Operations ... 530
 More Data Area Data Structure Examples: ... 531
 Data Structure Initialization .. 535
 Method 1 -- Global Initialization ... 535
 Method 2 - Subfield Initialization .. 536
 Initialization Subroutine ... 537
 The RESET and CLEAR Operations ... 539
 The RESET Op-Code ... 539
 The CLEAR Op-Code ... 540
 Data Structure Performance Trick ... 544
 Speeding up Date Reformatting ... 544
 Chapter Summary .. 545
 Key Terms .. 546
 Review Questions .. 546

Chapter 18 String Coding In RPG 549
 Strings Are an RPG Later Arrival .. 549
 String Characteristics: ... 549
 Basic String Handling Functions .. 550
 Complex String Handling Functions ... 551
 RPG String Implementation ... 551
 Variable Subscripting for String Manipulation: ... 554
 Convert Upper/Lower (U/L) Case of State Field ... 561
 RPG Fields.. 564
 String Coding In RPG/400 ... 565
 The CAT Operation (CAT RPGIV) ... 565
 The CHECK Operation (CHECK RPGIV) ... 569
 CHEKR CHECKR(RPGIV) ... 572
 SCAN Operation -- RPG/400 & RPGI) ... 573
 SUBST Substring Operation --- RPG/400 & RPGIV ... 575

Table of Contents xxiii

 XLATE Translate Operation --- RPG/400 & RPGIV ... 576
 Complex String Examples ... 578
 Complex String Example 1: .. 579
 Hexadecimal Literals & Named Constants ... 579
 Complex String Example 2: .. 580
 Extract & Identify a String .. 580
 Complex String Example 3: .. 581
 Find the Length of a String... 581
 Complex String Example 4: .. 581
 Convert Last, First to First Last ... 581
 Complex String Example 5: .. 583
 Convert Last First to First Last, Mixed Case ... 583
 Complex String Example 6: .. 585
 Center a Line of Text ... 585
 Complex String Example 7: .. 587
 Justify a Line of Text .. 587
 Complex String Example 8: .. 588
 Substring Insertion ... 588
 Complex String Example 9: .. 589
 Substring Text Replace .. 589
 Complex String Example 10: .. 590
 Substring Text Deletion .. 590
 Complex String Example 11: .. 592
 Scan and Replace Text ... 592
 Complex String Example 12: .. 597
 Translate Numbers ... 597
 Complex String Example 13: .. 598
 Remove Leading Zeros ... 598
 Complex String Example 14: .. 599
 Find a # in an Address .. 599
 Complex String Example 15: .. 601
 Replace All Blanks in a Text Line ... 601
 Complex String Example 16: .. 604
 Check a Name for Valid Characters ... 604
 Arrays vs. String Operations Example 17: ... 608
 Combine First & Last Name .. 608
 Arrays vs. String Operations Example 18: ... 610
 Separate / Reverse First & Last Name ... 610
 RPGIV for String Manipulation ... 614
 Chapter Summary .. 614
 Key Terms .. 616
 Review Questions .. 616

Chapter 19 RPG & RPGIV Structured Programming 619
 What is Structured Programming? .. 619
 Why Structured Programming .. 621
 Effective Program Development ... 621
 Easier Program Maintenance .. 621
 Readability .. 621
 Improved Program Efficiency .. 622
 Control Logic Structures .. 623
 Implementing Structured Programming ... 623
 Structured Programming .. 624
 RPG Structured Operations .. 624

Table of Contents xxiv

 Select Groups - SELEC - WHXX- OTHER ... 628
 Conditionally Invoke .. 630
 Do While DOWxx .. 634
 Do Until DOUxx ... 635
 Do Groups DO ... 636
 Do Loop Leave Option (LEAVE) .. 639
 Do Loop Iterate Option (ITER) .. 640
 “Structured” Misc. Operations – CABXX... 640
 Chapter Summary .. 641
 Key Terms .. 642
 Review Questions .. 643

Chapter 20 Interactive RPG Programming 645
 The WORKSTN Device ... 645
 Web Programming .. 647
 Data Description Language ... 648
 WebSphere Development Studio Client (WDSC) ... 649
 WDSC .. 650
 The Program Development Manager ... 653
 The WDSC Designer ... 653
 Menus .. 658
 Display Panels .. 659
 SDA Features .. 659
 Getting Started ... 660
 Screen Design Aid Menus ... 661
 Creating a Display File ... 661
 Screen Panel Exercise Objectives .. 662
 Working with an Existing Source Member .. 664
 Building SDA Image from Scratch .. 665
 Specify Record Format Type .. 666
 The No-Nonsense Design Image Panel ... 667
 Typing Your Screen Constants .. 667
 Instantaneous Feedback upon ENTER .. 668
 Intermediate Exit and Creation .. 669
 Checking Intermediate DDS with SEU ... 670
 Adding Variable Fields from the Database .. 671
 Selecting Database Fields for Use .. 672
 Exiting the Data Base Option .. 673
 SDA Image Commands ... 674
 Column Headings from the Database ... 676
 Adding Fields & Changing Field Attributes... 677
 Field Manipulation Commands .. 678
 Adding a New Field to Your Display .. 679
 Changing Display Attributes ... 679
 Making the Attribute Change ... 681
 Adding Editing Keywords ... 682
 Assigning End-of-Job Indicator .. 684
 Indicator at File Level .. 685
 Display File in an RPG Program .. 685
 Other Display Operations ... 687
 Chapter Summary .. 688
 Key Terms .. 690
 Review Questions .. 690

Table of Contents xxv

Chapter 21 RPG Subfile Programming 693
 Subfile Lists .. 693
 Old –Time Display List Management ... 693
 The Subfile Method .. 694
 Learn Subfiles By Example ... 695
 VENDSRCH RPG Subfile Program .. 699
 SDA Design Panel... 702
 Subfile Records .. 705
 Three Major Purposes for Subfiles .. 707
 Inquiry for Multiple Records .. 708
 Inquiry w/ Update for Multiple Records ... 714
 Command Key Specification .. 715
 Data Entry Subfiles ... 720
 SFLNXTCHG Keyword ... 722
 DSPATR Keyword .. 722
 SFLMSG / SFLMSGID Keyword .. 723
 Process of Activation ... 723
 Performing Data Entry with Subfiles.. 725
 How to Correct Errors in Subfile .. 731
 Two Subfiles for Error Correction .. 731
 Error Correction Using One Subfile ... 732
 Data Entry Approach Correct Errors: .. 735
 Heads Down w/ Batch Edit ... 735
 Another Subfile technique for Data Entry .. 736
 Poor Person’s Subfile ... 737
 Variable Line Numbering .. 737
 Chapter Summary .. 739
 Key Terms .. 740
 Review Questions .. 741

Chapter 22 RPG DB & Inter-Program Operations
& Examples ... 743
 Input-Output Operations .. 743
 General Operations ... 744
 Workstation I/O Operations .. 745
 Disk I/O Operations .. 745
 Data Base File Processing .. 746
 CHAIN Operation .. 746
 Chain by file: .. 746
 CHAIN by Key ... 747
 CHAIN by Relative Record Number ... 747
 READ (consecutive) ... 749
 Set Lower Limit SETLL (Indexed) .. 750
 READ EQUAL (READE) ... 750
 Set Greater Than SETGT (Indexed) ... 751
 Read Prior Record (READP).. 752
 Read Prior Equal (REDPE) .. 752
 Composite Key .. 753
 Update & Delete (UPDAT & DELET) ... 753
 Output Delete / Add / Update .. 754
 Add Record... 755
 Writing Records by RRN ... 755
 Printer File .. 756
 Group Name for Exception Output ... 757

Table of Contents xxvi

 EXCPT Externally Described File Output .. 758
 File Control Options .. 759
 FEOD vs CLOSE ... 760
 External Subroutines .. 761
 More -- Inter-Program Communication .. 763
 To Subprogram or Not to Subprogram ... 763
 Good and Bad Inter-program Techniques .. 765
 Steps for Inter-program Communications ... 765
 Running a CL command in RPG ... 767
 Data Retention with Program Calls ... 768
 RETRN Operation and RT Indicator .. 768
 FREE Operation in RPGIV ... 769
 To Exit From a Sub Program ... 770
 Chapter Summary .. 771
 Key Terms .. 772
 Review Questions .. 772

Chapter 23 Case Study Part I: RPG Ops in Action 775
 The Once and Future PAREG2 .. 775
 The Cycle Is Efficient ... 779
 The RPG Cycle Does Lots of Work ... 780
 Primary File vs Fully Procedural .. 781
 Is the Data All Wrong Here? .. 782
 Data Design Matters ... 783
 Matching Records Processing ... 784
 Using Exception Output .. 786
 Salary Option .. 787
 Missing Time Card Logic ... 789
 What is a subroutine?.. 789
 Check for Missing Master .. 790
 Control Level Breaks – No RPG Cycle .. 796
 The MOVMS1 Subroutine – First Record .. 798
 The PAYCLC Subroutine - First Record ... 799
 Control Break Level 1 Processing .. 801
 Level 1 Subroutine .. 802
 Control Break Level 2 Processing .. 803
 Process the Record Just Read ... 804
 Final Total Processing .. 805
 Externally Described RPG/400 PAREG2E ... 806
 What are the Differences in PAREG2 – Internal v External? ... 810
 Externally Defined Data Structure .. 811
 RPG IV Program Versions ... 812
 RPGIV Program Described PAREG2P4 .. 812
 File Description ... 814
 The “D” Spec .. 816
 Conditioning Indicators and Operation Names ... 816
 RPGIV Externally Described PAREG2E4 ... 817
 Chapter Summary .. 818
 Key Terms .. 819
 Review Questions .. 819

Chapter 24 Case Study Part II: RPG Ops in Action 823

Table of Contents xxvii

 The Once and Future PAREG3 .. 823
 Main Program Formats .. 840
 Three More Versions of PAREG3 .. 844
 Externally Described PAREG3E ... 845
 RPG IV Program Versions ... 847
 RPGIV Program Described PAREG3P4 .. 847
 RPGIV Externally Described PAREG3E4 ... 849
 Chapter Summary .. 851
 Key Terms .. 852
 Review Questions .. 852

Chapter 25 ILE & Static Binding. 855
Integrated Language Environment .. 855
 Migrating to RPGIV & ILE .. 856
 What is ILE? ... 857
 Dynamic Binding ... 858
 Static Binding ... 859
 Static Binding by Copy ... 859
 Static Binding by Reference .. 860
 Tools of the Trade .. 860
 Program ... 861
 Module .. 862
 Service Program .. 862
 Procedures .. 863
 The New CALL Statement .. 865
 Activation Groups ... 865
 Default Activation Groups ... 867
 Persistent Activation Groups ... 869
 Chapter Summary .. 870
 Key Terms .. 872
 Review Questions .. 872

Chapter 26 RPGIV Procedures and Functions.................... 875
 Big Changes to RPGIV .. 875
 What is a Procedure? .. 876
 Subprocedures vs. Subroutines ... 879
 Local and Global variables .. 880
 Information Hiding .. 881
 Prototyoing Subprocedures ... 881
 CALLP Operation .. 882
 Recursive Calls ... 883
 Prototype Example – One Source Module .. 885
 Decoding the Subprocedure ... 888
 These Are Not Standalone Fields .. 889
 Procedure Interface ... 889
 Proving It Works ... 891
 External Programs / RPG Modules .. 892
 Making GLOBAL Work ... 895
 Creating the Program from Modules .. 897
 Creating RPGIV Functions ... 897
 Return Value for Functions .. 897
 Creating Service Programs ... 899
 Dynamic vs. Static Calls ... 900
 Chapter Summary .. 902

Table of Contents xxviii

 Key Terms .. 903
 Review Questions .. 904

Chapter 27 Free Format RPG /FREE................................. 907
 Free At Last! ... 907
 The Free Sandwich .. 910
 More Rules ... 911
 Control Level Calculations (L1 etc.) .. 911
 Linoma Modernization Example ... 914
 Chapter Summary .. 917
 Key Terms .. 917
 Review Questions .. 917

Chapter 28 Using Embedded SQL in RPG Programs 918
 SQL Works with System i5 Languages ... 918
 Create SQL Program Commands .. 919
 CRTSQLRPG .. 919
 CRTSQLRPGI .. 919
 Writing SQL Code in RPG Programs ... 920
 Set Processing Only .. 922
 Select and Process Multiple Rows .. 923
 Chapter Summary .. 929
 Key Terms .. 930
 Exercises.. 931

Index .. 933

Table of Contents 29

Preface:

Though this book was built to be a textbook for university,
college, and community college level courses on the RPG/400
and RPGIV programming languages, the finished product is
much more than that. It is also a tutorial, a by-example guide, as
well as a complete reference for all System i RPG based
application development

Finally, there is a Pocket Developer’s Guide for System i RPG &
RPGIV programming. Yes, it is in big pocket guide form and it is
tutorial in nature. Along with the tutorials to help you learn the
language, this guide is also packed with reference material so you
do not have to switch to a new book once you learn the language.
For example, there is all the reference help you need to be able to
use every op-code in RPG/400 and RPGIV as well as every BIF
that you may ever need to use. If you are looking for how to use
the new RPGIV keywords and the exclusive ‘D’ Spec, it’s got
that too! Moreover, instead of weighing you down with pounds
of paper, its convenient size will encourage you to “take it along
for the ride” rather than leaving it behind and having to guess.

There are lots of RPG books but there has never been an RPG
book like this. Instead of arguing about the merits of RPG/400,
the cycle, and the modern feel of ILE RPG, this book teaches it
all. You’ll be pleased with all the valuable explanations and
examples. You won’t want to put down this comprehensive guide
to learning System i RPG now that you’ve got your hands on it.
This book is almost 50 years overdue.

In today’s IT landscape, most System i shops support both RPG
and ILE RPG. Besides its down-home writing style, the major
benefit of this book is that it is built as an essential text for
anyone charged with the responsibility of maintaining and
extending RPG code at all levels. And that means a new
approach to the historical cycle, RPG/400, basic and advanced
RPGIV, Eval and extended Factor 2 operations, prototypes and
procedures, free form RPG and, of course embedded SQL. It’s
all in there – from the simple to the sublime. This Guide has an

Table of Contents 30

example for nearly every type of RPG operation you can imagine
from interactive workstation code to subfiles, to database and
device operations.

Author Brian Kelly designed this book to show you how to use
RPG by working with rich examples that you’ll use over and over
again. Additionally, for each example, there is the exact
explanation you need to get a head start on being an RPG guru.
This is the first RPG book to hand to your new developers and
veterans alike. More importantly, it is the right size text for any
relevant modern business programming course at your nearby
university or community college.

Both entry level and existing programmers will enjoy the easy to
read, down home style of this pocket guide. The book gives a
general notion of how programming systems work and it shows
how to begin developing and maintaining code to help get you
started in learning RPG. Even if you are new to AS/400 and
System i, and you want to understand how to use RPG for
programs that you now code in other languages, you can learn all
you need to get the job done right from this pocket book. It is
written in a way that assumes very little prior RPG or even
generic programming knowledge.

There is no CD with this book but you can get any of the save
files by coming to the Lets Go Publish Web site at
www.letsgopublish.com If the files are not posted yet, or if you
have a problem downloading, please send me an email to my
private email address at jmac160@verizon.net. You may also
send to info@letsgopublish.com. I monitor that box regularly. I
would love to hear from you.

Go ahead and leaf through this book now. You’ll see it is
chocked full of examples. Many screen shots are included so you
can code the RPG examples in the book right along with your
AS/400 or System i server.

Who Should Read this book?

http://www.letsgopublish.com/
mailto:jmac160@verizon.net
mailto:info@letsgopublish.com

Table of Contents 31

New programmers, existing programmers, supervisors, operation
personnel, or any other person in your organization who need to
know how to program in basic or advanced RPG or RPGIV.
Many IT managers today are looking for ways to educate other
staff in System i RPG. Look no further. If you plan to train
operations people or PC people as AS/400 developers, or you
want to help your staff better understand the marvels of System i
RPG business-oriented programming, this is the right book.

With all of the smart PC technicians in every business and
institution today, there are many who would appreciate the
opportunity to learn the major System i business programming
language – RPG/400 and/or RPGIV. Many of these would do
very well as programmers if redeployed. This book can be all you
need to move them off the mark.

If you’ve always wanted to be able to tell your team what you
know about RPG, ILE, RPGIV, and embedded SQL
programming on the AS/400 and System i, but you did not have
the time, rest assured that Brian Kelly has done it for you with
this book. He’s said what you would have said if you had the
time to say it. Moreover, the folks at LETS GO PUBLISH think
you’ll like what you would have said.

Consider creating a home-made RPG programmer with a
minimal start-up investment. It may be a good deal for you and
for your company.

Though rich in content, none of IBM’s RPG reference and user
manuals are built to teach you the language. They are for
reference. There is way too much in IBM’s manuals to learn it all
but they are great detail references for specific topics. This
Pocket Guide for RPG uses a different approach. It is your
teaching / learning vehicle to RPG. It is your new tool to help you
solve programming problems efficiently with RPG coding. Once
you have learned how to program in RPG, the completeness of
this book permits it to also serve you as a handy “pocket”
reference and as a guide for using new techniques.

Table of Contents 32

There is no doubt that RPG and RPGIV together represent the
finest business programming language ever developed. I wish
you well in your RPG business programming endeavors, and I
hope to see you again reading another Lets Go Publish Pocket
Guide in the future.

Feel free to shop for this book and other LET’S GO PUBLISH!
Books at BookHawkers (www.bookhawkers.com), IT Jungle
(www.ITJungle.com), MC Press (www.mc-store.com), iSeries
Network (www.iSeriesNetwork.com) and other fine booksellers.

Joseph J. McDonald, Publisher

Scranton, Pennsylvania

Table of Contents 33

Table of Contents 34

Chapter 1

Introduction to the RPG Language

What is RPG

RPG is one of the few languages that was originally created for punch
card machines that is still in common use today. Today’s most modern
RPG version is known both as RPGIV and as ILE RPG. Though RPGIV
can run many of the programs designed in the 1960’s, this new RPG
language is with little doubt the most functionally complete programming
language of all time. Originally developed by IBM in 1960 to run on the
very popular IBM 1401, IBM has continued to extend the RPG standard
so that it stands well ahead of all other modern languages.

RPG began as an acronym for Report Program Generator, which was
descriptive of the original purpose of the language: generation of reports from
data files, including matching record and sub-total reports. IBM engineers
took pains to make the 1950’s 1401 computer system easy to program by
those trained to work with the punched card equipment that was
prevalent in those days. This simple language called RPG made it easy to
automate routine processes, and to print results on standard tabular
forms.

RPG was not created to be a general-purpose programming language.
Many consider this the basis for its power. Underlying every early RPG
program was the 407 Accounting Machine sequencing algorithm,
hardwired into the software, relieving the programmer of the burden of
controlling the input process procedurally. Early textbooks called RPG a
problem oriented language because it was designed to solve simple
business problems – especially reporting. These texts compared RPG to
COBOL, which was characterized as a procedural language in which the

Table of Contents 35

programmer used input output commands inside of the program to per
form the functions that were inherent automatically in the RPG language.
Thus, early COBOL programs were always substantially longer than early
RPG programs.

The RPG programming language initially used fixed-format cards. When
the cards had been used within the context of the 407 Accounting
Machine, the control panel would pick up the data from various card
columns, perhaps add the data to accumulators and then print a line on a
report. By mimicking this electromechanical machine, original RPG
programming was little more than a fill-in-the-blanks operation. For
example, if columns 47-53 of a transaction card held a part number,
which was used as a control field, a two character designation in RPG was
all you had to provide to make it happen.

Early RPG purists believe that versions of RPG after the first version
(RPG II to RPG IV) were corrupted by the pressure to turn RPG into a
general-purpose programming language. Many who worked with the early
versions were able to use and to study its sheer simplicity and elegance
before this aspect was diminished with the many enhancements over the
years. For the purists, the enhancements came at the expense of the
simplicity that had been originally built into the language from its origins
as a software replacement for IBM’s big tabulating accounting machines.

In many ways, the design of the original RPG language had many
similarities to what are called fourth generation languages or 4GL
languages. In fact, just as most if not all 4GL’s, the original RPG met with
its greatest resistance from those who wanted to control all aspects of the
programs they wrote. Understanding what a language was going to do for
them and merely filling in the blanks was not something to which the
experienced programmers of the day were ready to adapt.

Creating New RPG Programmers

In the 1960’s the supply of programmers was not very deep so IBM and
other companies trying to gain a computer sale would often have to sell
the business prospect on the idea of creating its own programmer(s).
Sometimes it was the shipping clerk; sometimes it was the head order
taker; sometimes it was a bookkeeper, and sometimes it was a woman or

Table of Contents 36

man picking or packing items in the warehouse. Once the “programmer”
was selected, his or her life changed substantially.

Instead of their former position responsibilities, they were now on the
forefront of the computer revolution. As a trusted employee of the
organization, they were trained to understand the business computer of
the day and the computer language that best fit the computer. This
selection often overwhelmed the individual selected but soon, they knew
that something good had just happened to them.

In small businesses in which IBM’s “Marketing Representatives” had
convinced the business executives that they too could benefit from
automation, the programming language most often selected was none
other than RPG. This language was better accepted by those just learning
about computers as a means to create grassroots solutions for the
businesses that had given them this phenomenal opportunity to learn
about computers. Once introduced to RPG, the neophytes knew they
could master its intricacies and they could use its simplicity to help their
organization. They were not computer professionals by design but by
destiny they were soon to be.

From their humble beginnings, however, they were not concerned about
the latest and greatest in programming facility or function. They did,
however, want to know how they could best help the organization
become successful using the computer system that had been selected.
Those programmers selected in this fashion, and there are many,
embraced the RPG language as a means of making their respective
organizations successful because they could readily understand what it
would take to make it happen. RPG was the intuitive business language
that helped many of these initial pioneers believe that they could become
professional business programmers. And, they did!

Non-RPG Programmers

During this same time, there were also many engineers and scientists who
had begun to tinker with computer technology. These professionals did
not necessarily understand a debit from a credit or pick list from a payroll
stub. Moreover, they were hoping that nobody would come by any time

Table of Contents 37

soon with an explanation of these that made sense. They simply were not
tuned into the business of business.

Being math or science oriented, they flocked to the notion of assembly
language (almost as primitive as computer machine language). They also
fell in love with the Fortran language. Fortran comes from the two words
Formula and Translation and this language was created by engineers for
engineers. With these tools, they were able to solve problems using
simultaneous linear equations and other complex mathematical notations
that would have taken days in the past. These soon-to-be computer
science types had no inclination to program business applications, nor
were they attracted to anything that the business oriented RPG language
had to offer.

IBM Leads the RPG Way

IBM quickly became the leader in business application programming. Not
only did IBM create the RPG language for small businesses but it also
perfected COBOL (Common Business Oriented Language) for its
mainframe computers. Though Big Blue did offer RPG for mainframes
and it eventually offered COBOL for smaller business, RPG became the
dominant business language for small to medium sized businesses and
COBOL became the dominant business language for larger businesses.
First RPG was built for the 1401, then the System/360 model 20 and then
the System/3.

The Minicomputer Revolution

While IBM was perfecting the notion of busiess computing on its small
business line headed by the System/3 and its mainframe line with the
System/370, a new breed of computer systems became very popular
without an help from IBM I might add. Companies such as DEC,
Hewlett-Packard, Eang, and Data General sprang up and took the
engineering / scientific world by storm. These machines cost 75% or
more of the price of an IBM System/370 and unlike IBM’s processing
power-challenged System/3 line, they ran engineering and scientific
programs quite well.

Table of Contents 38

Moreover, because these minicomputers were in the price range of s
System/3 and even much less, businesses began to use these machines to
perform routine business applications. The hardware vendors helped this
trend by building their own version of RPG and they added all of IBM’s
System 3 and later small business machine customers to their prospect list.
During these days, I can remember IBM using the term, “They’re eating
our lunch,” to describe how ell the minicomputer vendors were doing in
traditional IBM business computer territory.

Though many of the machines provided RPG, it was not the favorite
language of the engineers and scientists who often ran the computer
departments or the departments in which these machines were installed.
To be frank, it was not even on the list. Instead of RPG, they advocated
such lower level computer science type languages as C, Pascal, and
BASIC. These came into being and soon became pervasive on the
minicomputers of the day.

IBM Not Popular in Higher Education

Nobody can say for sure what came first, the chicken or the egg.
However, over the last thirty or more years -- perhaps dating back even
thirty-years sooner to Harvard’s snub of Thomas Watson Sr. re: the
Harvard / IBM Mark I Computer in the 1940’s, colleges and universities
have not held IBM or its products in high regard. Do academics dislike
IBM because the company has traditionally made its living using languages
such as RPG or COBOL; or do the academics dislike RPG and COBOL,
especially the IBM-defined RPG, because they are made by IBM. These
questions are at the center of the debate.

Regardless of the reason, there has been little love between IBM and the
computer science community in academia for quite some time. Overall,
this has hurt IBM to a degree but it has also hurt IT students expecting to
be able to be employed in a mostly IBM-oriented business world without
having been given the proper business programming credentials.

It is no wonder that the minicomputer quickly became the best friend of
the computer-oriented academic community. Colleges and Universities
began to stock their new Computer Science programs with the
minicomputers of the 1970’s rather than IBM System/370s or System/3s

Table of Contents 39

that were available at the time. The apparent bias for these new
minicomputers was so strong that IBM was often not even invited to
propose its solutions to higher learning institutions. Thus, more and more
computerists emerged from colleges and universities without ever having
been introduced to RPG business programming.

RPG and AS/400 Kill the Minicomputer Revolution

Though RPG has proven itself well over the years, providing the
production data processing for many successful companies, using IBM’s
small-business computer lines, the unwarranted bias from academia and
from the computer science community continues. RPG is the last
language to be considered in computer science departments.

Despite this fact, until the mid 1990’s, IBM’s new account marketing
engine with the RPG-oriented AS/400 as its major tool, absolutely
defeated all of the minicomputers that ever existed: DEC, Data General,
Wang, and others. One must ask how wrong the academicians must have
been to embrace technology that was so easily defeated by IBM in the
business world, where the computing rubber actually meets the road.

Did the rigidity of the academic computer science community against
IBM’s unique business computing approach help or hurt students in these
institutions? Clearly it hurt students looking for a well-paying computer
position in industry. For IBM to overcome the disadvantage of graduating
students not being familiar with its best-selling products, IBM developed
its own courses and its own education centers and companies trained
non-degreed personnel to fill the jobs that would have been easily gained
by knowledgeable students. In many academic computer programs today,
this anti-IBM scenario persists has not changed and students continue to
be short-changed on higher-paying job prospects than those available in
the entry Windows market.

IBM’s victory over all minicomputer vendors was so complete that even
the mighty Hewlett Packard had to give up on its own proprietary line of
computers. Even before its merger with COMPAQ, who had bought-out
DEC several years earlier, HP had become mostly known as a small
printer company. IBM’s System/36, System/38, and finally its 1988-
introduced AS/400 lines and today’s System i5 won the day for Big Blue

Table of Contents 40

and the business oriented RPG language was the major weapon to help
make that happen.

Table of Contents 41

Chapter 2

The History of RPG

Filling in the Blanks

In describing RPG, I touched on a number of the historical aspects of the
language. In this section, it’s time to fill in the blanks to better present the
origins of a language known as much for its strong buseiness capabilities
and success as it is for the legions of computer science types and hackers
who refuse to touch it.

In the Beginning

The beginning of data processing as we know it in themodern era actually
began back in the 1890s, some 25 years before Tom Watson Sr.’s, coming
as an outsider from NCR Corporation. Watso would waste no time
taking over the IBM company as its CEO. While toiling in the 1890’s
trying to solve a major dliemma of the US Census department in getting
its once a decade census tabulated in less than ten years. Herman
Hollerith found a solution that would keep the IBM company going for
over sixty years. While working for the Computing Tabulating and
Recording Company (CTR) one of the predecessor companies of which
IBM was founded, he devised a machine to tabulate punched cards to
help complete the 1890 census and save the day for the Census
Department.

His invention led to many similar and complimentary products by IBM
over the next sixty or more yearts until the ocompany launched its first
computer in the 1950’s. But, way before the 1950’s IBM was content
making a killing selling what the company called tabulating equipment but

Table of Contents 42

which the industry simply referred to as “Tab” machines. In 1934, for
example, IBM introduced its 405 Alphabetical Accounting Machine. This
was IBM's high-end Tab offering, and by the way, it was the first one to
be called an “Accounting Machine.”

Fixed Cycle Accounting Machines

The 405 was “programmed” by a removable plug board with over 1600
functionally significant "hubs", with access to up to 16 accumulators.
This high end mechanical monster could tabulate at a rate of 150 cards
per minute (CPM), or tabulate and print at 80 cpm. The print unit
contained 88 type bars, the leftmost 43 for alphanumeric characters and
the other 45 on the right for digits only. The 405 was IBM's flagship
product until after World War II. In fact, during the war, retrofitted 405s
were used not only as tabulators but also as the print device for top-secret
relay calculators built by IBM for the US Army Signal Corps. They were
used for decrypting German and Japanese coded messages. Eventually,
IBM introduced a model 402, model 403, and a more advanced model
407 for businesses in the 1950’s. All of these models were big revenue
producers for the IBM Company and they helped many business
operations become more efficient.

In the late 1950’s to the early part of the 1970’s while IBM was beginning
to focus on its emerging computer lines, the company was still renting
these behemoths to smaller and smaller companies. It was not until 1969
that IBM formally replaced its Tab line with its diskless all-card System/3
and its miniature 96-column card. For a number of years thereafter, IBM’s
new account sales personnel sold first time computer users on the IBM
Tab line since these old war horses rented for about half of what a
System/3 cost. After all, IBM only permitted its customers to rent its
machines back then so the longer one of those electromechanical marvels
was doing its job, the more profitable the experience was for IBM.

The RPG cycle was the key to making the language an initial success. The
cycle enabled processes during which an RPG program automatically read
a record and performed certain routines. This fixed cycle was at the heart
of file processing. Unlike other high-level languages, RPG didn’t require a
lot of work with file declarations for opening and closing files, and

Table of Contents 43

working with files, nor did it require a complex list of instructions to
simply print data. The infamous RPG
cycle took care of all that for the programmer. Those who learned how to
work with the cycle were far more productive than those programmers
who worked with other languages.

RPG on the IBM 1401

In 1960, the RPG language was built for and made popular with the IBM
1401 transistor based business computer. In 1964, RPG was upgraded to
a more usable language. This improvement coincided
with the announcement of the IBM 360 model 20. While RPG did a fine
job of handling 80-position cards, it couldn’t handle tape or disk
processing, not to mention display devices—which were just being
introduced. By the later 1960’s, however, the call to make RPG a “real
programming language,” was answered with the introduction of RPG II.

The RPG Cycle

The RPG cycle (the processes during which an RPG program
automatically reads a record and performs certain routines) was at the
heart of file processing. Unlike other high-level languages, RPG didn’t
require extensive file declarations for opening and closing files, nor did it
require a complex list of instructions to simply print data. The RPG
cycle took care of that for the programmer.

Here Comes the IBM System/3

The story of RPG would be incomplete without a discussion of the first
computer ever made by IBM to be an RPG-only machine. When IBM
decided to retire its older card processing “TAB” units, the company still
believed that there was still opportunity in the small to medium business
market for a lighter, less costly family of card processing gear. IBM’s plant
in Rochester Minnesota had been built in 1956 specifically to build card
readers and card punches for computer systems.

Table of Contents 44

IBM computers were built only in Endicott and Poughkeepsie at the time,
so it was understandable that the Rochester Plant and its research arm,
built in 1960 got the nod to design and build the next generation of punch
card processing equipment for the IBM Corporation. I repeat, Rochester
was not a plant that IBM had selected to produce any type of computer
equipment since its New York facilities already had that covered.

Rochester sold the idea of a card-only System/3 using a multifunction
card unit (MFCU) to corporate IBM and along with its accessories (96-col
keypunch and sorter) the Minnesota plant produced a modern version of
IBM’s old warhorse tabulating equipment. Though Big Blue envisioned
nothing more than newer and better TAB equipment, the Rochester folks
had bigger ideas. The machine the company announced in fall 1969 with
no disk or tape or any other magnetic or optical media capabilities used
96-column cards-only. Thus, it satisfied IBM’s desire for a modern unit-
record system but it was clear that there was more to this new machine
than met the eye. The underlying architecture of the System/3 eventually
permitted it to grow into being lots more than IBM expected or wanted at
the time. But, that is another story.

System/3 as a 407

To simulate the functions of fixed cycle of the 407 Accounting Machine,
IBM adapted its RPG language. The System/3 had two card hoppers in
its multi-function card unit (MFCU) package so RPG II was enhanced to
be able to directly access both of these card reader / punches in one
program. Since both card hoppers could read and both could punch, RPG
II was given the ability to punch data into the same card that was read.
Additionally, RPG programs could also punch out new decks of cards
from blanks. Since the MFCU could not print on cards, RPG did not gain
this ability either. However, any card output that required interpreting was
sent through the 96-column card keypunch unit that IBM called its 5496
Data Recorder.

System/3 RPG Was RPG II

Though the RPG language design for the card-only System/3 models was
not much different from that which preceded it, technically it became
known as RPG II. With its new disk drives, the 1970 version of System/3
RPG II was a much more capable programming language. The major

Table of Contents 45

operators included for DISK were the CHAIN and the EXCPT, which
are explained in detail later in this book. By introducing these operation
codes, for the first time in RPG, programmers were able to access and
update/add disk records both randomly and by key (index files) within the
confines of the RPG calculations specification form. These operations, in
essence were the very first operations in RPG that did not depend on the
RPG cycle for execution. RPG II was well on its way.

By 1970, IBM customers were demanding disk data storage and tape
processing for the system. IBM obliged and it introduced its 5444 disk
drives which conveniently mounted under the MFCU in two drawers.
Each of four disk platters could hold up to 2.45 million bytes of data. A
fixed and a removable platter were housed in each of two drawers. Of
course, IBM would also sell one drawer units to those needing less disk
capacity. Eventually the System/3 grew with 5445 and later 3340 disk
drives to hold as much as 180 MB of data on four large disk drives.

The Four RPGs

So, with the IBM 1130 and the disk enhancements to the System/3, the
RPG language compiler as originally announced for the 1401 was
enhanced and re-announced as RPG II. From the very early RPG “I”
language introduced to mimic the electromechanical machines, IBM has
been continually improving the language. Historically, these
improvements have brought four different RPG languages to market

RPG One

Prior to RPG II of course, with RPG I and the 1401, the programmer
used the many statement types defined by the RPG language to interface
with what we now refer to as a “fixed logic cycle.” With the fixed logic
cycle and the RPG code as “written” by the programmer, the 1401
computer could pretend that it really was a 407-style accounting machine
and that the program as devised by the programmer provided the
variables and logic in much the same fashion as the removable wired
circuit panel of its electromechanical predecessor.

It is hard to imagine that an electromechanical machine of the early 20th
century could support 150 fixed cycles per minute. Yet, the “advanced”

Table of Contents 46

407 unit was capable on the average of reading a two card records from
the one hopper in less than one second, passing the data from the card
record to the output print line via “hard wires,” and tat the same time,
counting, totaling, and printing output lines.

When RPG was used to mimic this operation, just as the 407 itself, the
amount of work that was completed was dependent on the speed of the
card reader and the speed of the printer. The System/3, though very slow
by today’s processing standards, was much faster than these mechanical
devices which in fact restricted its speed. If the card reader read slower
then the printer could print, then the program was said to be card reader
bound. If the printer were slower, the program was printer bound.
Printer and reader spooling were not yet invented for small computers
and were still years away.

The now famous RPG fixed logic cycle performed various types of work
during the cycle. If the programmer told the RPG cycle that there was
work to be performed in any of these component areas of the cycle, the
cycle would cause that work to be accomplished. In its most simplistic
terms, the cycle started by being able to print report headings on output,
then it read cards, it then calculated and totaled fields and when it started
the cycle again it was ready to output a record, which most often was in
the form of a print-line.

RPG II Adds More Capabilities

From 1965 with the IBM 1130 and soon after the System/360 Model 20
through the end of the 1960s with its Ssytem/3, IBM made the new RPG
II programming language something that had to be noticed. The 1130 for
example was marketed by IBM as a scientific computer, having
superseded IBM’s long standing 1620 unit. However, when the 1130 was
equipped with an RPG II compiler, it became a very capable business
machine. The IBM plan did not have any business-only customers looking
for success by installing an IBM 1130 unit. However, the IBM Company
did not refuse these orders. With RPG II as a business mainstay, the 1130
became far more popular than it would have ever been with just Fortran
as its guiding light.

Businesses of all kinds soon were able to choose to use this disk-enabled
small machine for scientific, business and accounting purposes. For

Table of Contents 47

example, the Administration of Marywood University of which I am a
faculty member, back in the early 1970’s, chose to use one of these 1130
units as its main administrative system for many years --- until they
eventually switched to a System/3. Mercy Hospital in Scranton PA also
found the 1130 with RPGII as an ideal system for patient billing and
accounts receivable. RPG II was the main business language of the late
1960’s and before the System/3, IBM’s powerful but little 1130 unit
carried the RPG water for Big Blue.

Instead of depending solely on the fixed logic cycle as in the 1401, the
major structural improvement that RPG II brought to the fore included
the ability to read and write at will during what we will now call
“calculation time.” The original RPG language did not include an ad hoc
read, write or update facility. All reading and writing was done via the
RPG cycle. With RPG II, IBM introduced the random read “CHAIN”
operation for ad-hoc input and the company introduced the exception
output “EXCPT” operation for ad hoc updates, adding records, or
printing report lines.

RPG purists have categorized these new facilities in the language as the
beginning of its degradation as a powerful report writing tool. In many
ways, they are correct since the new capabilities in the language I brought
it from its origin as a fixed cycle facility to a real programming language.
The enhancements made it substantially easier to code business logic
without language constraints. RPGII did not eliminate the RPG cycle,
and in fact, required that the cycle be used at least once time in order to
arrive at “calculation time.” The RPG cycle, for example, still is viewed
by those who understand it as the most appropriate vehicle for reports.

In 1972 IBM enhanced RPG II by adding the KEY and SET operations.
These were enhanced with the use of the mini CRT on the System/32
desk sized computer announced in 1975. The KEY and SET operations
allowed the programmer to accept input and display output. It was simple,

fast, and effective and it permitted real interactive work to be done on the
IBM System/3 Model 6 and later the System/32. In 1977, This facility
was enhanced to work with the System/34. Additionally, IBM introduced
the revolutionary workstation file with RPG for the first time with the
System/34. This permitted full-panel workstation devices (i.e., dumb
terminals) to be deployed as natural devices in an RPG II program.

Table of Contents 48

In 1977 the WORKSTN device was a real phenomenon. IBM defined
the notion of a display screen. The displays screen was defined externally
to the program and was manipulated within the program using normal
RPG operations against screen names. An extension was added to the
RPG File description specification to permit what was called a format
member to be compiled along with the program. From this member, the
programmer could select screen names for output / input to interact with
a user.

Prior to the native WORKSTN device support for the System/34, display
terminals were not ever integrated into compilers. In fact, terminals were
supported only via special add-on support in the form of the
Communication Control Program (System/3 CCP) or the Customer
Information Control System (System/370 CICS). Both CCP and CICS
had their own system generation process and specialized operation codes
such as Get and Put. Moreover, these tools required skills above and
beyond that of a normal programmer. The WORKSTN file was so easy to
use that many who had become adept at CCP or CICS could not believe
that it could possibly work. It worked, and it made the RPG language the
easiest to use for business full screen at a time interactive processing.

RPG III

In 1978, IBM announced a machine that was so elegant architecturally
that it would take the company almost another two years to deliver its first
customers shipment. It was called the IBM System/38 and it was a
minicomputer class machine but IBM liked to call it a small business
computer. The System was built to be the replacement box for the IBM
System/3. It was clearly the most advanced general-purpose computer of
its day, complete with a built-in relational-like database management
system and natural workstation facilities that were far better than even the
System/34.

With the System/38, IBM introduced the RPG III language which
brought a host of new functions to RPG, among them a nearly complete
set of structured programming operations (e.g., IF-THEN-ELSE, DO).
With these new features, programmers were able to define RPG programs
which did not require even a thread of the RPG cycle. IBM did not
eliminate the RPG cycle with the System/38 and in fact, along with all file
input/output facilities, the cycle was enhanced to use externally described

Table of Contents 49

files. The System/38 permitted the input and output of files to be
described externally such as in a workstation file object or a database file
object. At compile time, the programmer merely added a switch in the
File Description Specification to tell the compiler that the input and
output specs for a file were included in an external object. The compiler
would then dutifully go to the object and bring the specs into the
program, provide them in the compiler listing and make them available
for use within the program. This saved the programmer massive amounts
of time.

In 1983, IBM replaced its System/34 line of computers with its brand
new System/36. Many of the structured operations that were given to the
System/38 in 1978 were made part of the System/36 RPG II compiler.
However, because the System/36 was not object based, the notion of
externally described data remained a System/38 exclusive. Though in
many ways the enhanced System/36 RPG was more like RPG II ½ than
RPG III, the name for System/36 RPG stayed as in the System/34 –
RPG II.

In 1985, System/38 RPG III was again enhanced to include support for
and/or logic within IF and DO operations. This support greatly enhanced
program readability and greatly decreased programmer
frustration levels. Additionally, those familiar with such structures on
other systems and other compilers more readily adapted to learning RPG.

In 1988, IBM introduced the AS/400 and the company provided another
new compiler called RPG/400. Because of the many flavors of RPG that
were currently being used, IBM packaged all of its exiting compilers into
this new edition. Thus, on the new IBM AS/400, the RPG compilers that
were available included the following:

1. RPG38 System/38-compatible RPG III.
2. RPG36 System/36-compatible RPG II.
3. RPG AS/400-compatible RPG III.

There was and still is little discernable difference between the System/38
RPGIII and the AS/400 RPG III.

Table of Contents 50

RPG IV – Best Language on any Platform

In 1994, IBM introduced the first significant update to the RPG language
in more than 15 years—ILE RPG a.k.a. RPG IV. The introduction of
RPG IV marked the first time ever that the RPG specifications have
changed. In fact a new data definition specification was added and the
long suffering File Extension specification form was eliminated from the
new language.

Significantly since the language was originally developed. RPG IV also
eliminated virtually all of the perceived limitations of previous versions
of RPG. With RPG IV, IBM has added natural expressions to the
language in the areas of mathematics and conditioning, and has created
leading-edge DATE and TIME arithmetic operations.

This latest version of RPG is, by far, the richest language in existence.
Though it is more capable and therefore more complex that the RPG of
the 1960’s, it is still easy to learn and it offers a rich set of functions for
day-to-day, general-purpose business applications. With its reasonably
new free form facilities and its many built in functions, and its use of
procedures, it also has great affinity to the block structured languages
used within the computer science community. As such, it makes it easier
for System i5 programming shops to train today’s college graduates for a
career as a System i5 IT professional. Moreover, the concepts learned are
applicable to other programming languages.

So, in 1994 with version 3 Release 1 for CISC and in 1995 with Version 3
Release 6 for RISC architecture, IBM brought forth its fourth iteration of
RPG, dubbed RPG IV by those who use it but officially named ILE RPG
for its dependence on the more advanced Integrated Language
Environment in which it prospers.

The Integrated Language Environment is a programming model that
permits highly modular code to perform well on AS/400 type machines.
It also enables all languages written within this model to better cooperate
when working together. The former model now called the Original
Programming Model (OPM) is not as functional and robust as the ILE
model, yet it still is supported on the IBM System i5.

Table of Contents 51

Some of the improvements to RPG with RPG IV include the following:

1. New “D Specification: In addition to the specifications for RPG/400,
IBM introduced a new specification form called the “D” spec. All non-
external data definitions can now be specified in a D-specifications that
are new to ILE RPG. In addition you can define "named constants" that
greatly simplify coding these in the C-spec's. Also C-spec formats have
changed slightly to provide for variable names of up to 10 characters (up
from 6 in RPG/400) and longer operation codes.

2. New Operations: Several new operations have been added. One that
rovided the ability to code math in a formula-like fashion is the EVAL
operation. In essence it permits you to evaluate a mathematical expression
similar to Cobol and other mathematical programming languages such as
Basic, FORTRAN, PL/1, etc.

3. Modularity: With ILE, you can now write modules (non-executable) in
several languages and bind them together into a single ILE program. This
program can be an RPG IV program. You can also use RPG modules in
other language programs. Thus you can use the best language (ILE C, ILE
Cobol, ILE RPG, ILE CLP) for a process or you can use existing
modules to write a program.

4. Larger size fields: With RPGIV, the RPG spec has been widened to 100
characters to accommodate up to ten character field names and larger
operation codes.

5. Date fields / operations: One of the first major differentiations
between RPG/400 and RPGIV is the new compiler’s ability to deal with
the date data type. For example operations exist to subtract a duration
from a date and get a duration or to subtract two dates and have the result
presented as a duration.

6. Procedures: IBM has also built into the language the notion of callable
procedures.

7. Built-In Functions: Many built-in functions or BIFS have been added
to the RPGIV language including %date, % days, %months, %years, %diff,

%abs, %editc, %subdt, %DEC, %INT, %UNS, %FLOAT, %error.

Table of Contents 52

8. Free format RPG specifications: We may joke that this is not your
father’s RPG because it isn’t. In fact, with RPG FREE form, IBM has
given the RPG programmer the opportunity to code without the typical
columnar boundaries of RPG/400. As an added benefit, IBM has also
provided the ability to add free-form SQL statements within the RPG
language to make RPG an even friendlier language for those who choose
to use embedded SQL for database access.

The Once and Future RPG

IBM continues to enhance RPGIV for System i5. Yet, the enhanced
language is not available on any other platform. Industry consultants have
suggested to IBM that it make this very powerful business language
available on all of its platforms. Consultants have also suggested to IBM
that since RPGIV is more than ten years old, it is time fro IBM to rename
RPG. The natural next name, of course would be RPG V but some
consultants have suggested that IBM give the language a name that
releases it from its “legacy” status.

From its name, the computer science community has pegged RPG as an
old language and it is tough for RPG developers to get from under that
label. Thus, an all-out assault by IBM is being requested in which three
major changes need to occur with the language. These are as follows:

1. New name that includes both business and power connotations – such
as The All-Business language.
2. Availability on all other platforms from PC servers to Unix, Linux, and
mainframe boxes. After all, it is IBM’s best business language.
3. Natural Web operations within the language specification in the form
of a browser device file and op codes to send and receive Web pages of
any form – HTML, XML, JSP, JSF, etc.

Table of Contents 53

Chapter 3

Understanding the RPG Fixed Logic
Cycle

Cycle Operations Are OK!

When RPG got its first face lift in the mid 1960’s with RPG II demand
(out-of-cycle) operations, the RPG language purists were those who
wanted the cycle to be fully preserved at all costs. They were not happy
that RPG had lost its innocence and was on its way to becoming a real
programming language.

Ironically, those who would be called RPG purists today are those who
want to keep RPG on the bleeding edge of compiler functionality. Prior
to V5R4, for example, there had been clamor in these ranks for more
built-in functions, such as those available in Java and there was insistence
that IBM provide a move corresponding type operation in much the same
fashion as that available in COBOL. This group is driving the RPG
language in such a way that like PL/1 was supposed to be in the 1970’s
RPG may very well become that one language that offers the full gamut
of compiler innovations.

In the latest enhancements, the language draws new facility from both
Java and COBOL, two completely different languages. With all of the new
facilities being placed with the RPGIV language, perhaps the ultimate
destiny for RPG is even more than the All-Business Language moniker
that many of us would like. The Once and Future RPG may very well
become the All-Everything Language just as the System i5 itself has
become the All-Everything machine.

I mention the new purists because they would not approve of me first
presenting the RPG cycle in this book or even presenting it at all. These

Table of Contents 54

modern purists have wrestled RPG away from its roots so far that many
would be pleased that its roots disappear. They would not approve of
4GL or 5GL languages either since their world needs to include pointers
and heavy duty built in functions that rival the most complex languages of
today.

Despite the purists, I begin this technical work with the RPG cycle
because (1) it affords me the opportunity to examine the meaning of the
specifications in the RPG/400 language right along with the RPG cycle;
(2) Many RPG/400 cycle programs in RPG shops continue to be used
and continue to need maintenance; (3) Even those shops that have
converted to RPGIV for new development still use the RPG IV cycle for
those programs that were migrated since RPGIV fully supports the RPG
cycle; and (4) For applications that must produce printed reports, the
RPG cycle still provides the most efficient means of report writing short
of using 4GL tools. For report-writing in fact, RPG with the fixed logic
cycle in use is very much a 4GL unto itself.

A Quick Look at the RPG Cycle

Long before programmers learn their first language, they are introduced
to computer concepts. Within the notion of basic computer concepts is
the notion of INPUT > PROCESS >OUTPUT as shown in Figure 3-1

Table of Contents 55

Figure 3-1 Input Process & Output

Just about any computer program that you will ever write accepts input,
processes the input, and produces a report of some kind. The report may
be a line on a screen or a full display panel or a real business report.
Moreover, as you can see in Figure 3-1, in addition to producing output in
the form of a report or display, a program also can store data in database
files (storage) for future use.

So, whether you write the cycle yourself in every program or you choose
to use the IBM RPG fixed logic cycle, which by the way is excellent for
report-writing, your code will behave as if it is in a big INPUT>
PROCESS> OUTPUT cycle for in fact, it is.

So, it is no wonder that the very first data processing machines, the
electromechanical behemoths from the 1930’s were hard wired to this
cycle. It is also no wonder why the first RPG compiler, written to emulate
these machines was soft-wired to this cycle. And, because it eliminates
coding if you know hat you are doing, it is no wonder why RPG
programmers for years had no problem using the RPG cycle for their
most complex reporting functions.

So, now let’s take a look at the RPG cycle so we can understand just what
it is all about. Before we do that, however, I would like you to think of

Table of Contents 56

what the first thing that a report writing program might do – even before
it reads or processes any data. If you guessed that it may put out report
titles for the first page of the report since they do not depend on any data
being read, you are correct. And, if you carried this notion one step
further and suggested that they also prepare the titles so that they can be
put out on top of every other page in the report, you would be even more
correct.

The RPG cycle is built so that report titles are a natural part of the
language and they occur first. Thus as difficult as it may be to realize at
first, output happens before input at the beginning of each RPG cycle
from the first through the end of the program. Rather than start with
input, it starts with output thereby giving the program the opportunity to
get those titles on the report before the first data is read.

With that as a backdrop, and without further ado, let’s take a look at the
RPG cycle first shown in Figure 3-2.

Figure 3-2 The 7 Major Steps to the RPG Fixed Logic Cycle

Table of Contents 57

The various work components of the RPG cycle as shown in Figure 3-2
are as follows:

Table of Contents 58

1A. For reports, first page headings that you specify are printed.

1B. For reports, overflow headings that you specify are printed. Overflow
headings are those headings that are repeated on each page after the prior
page hits a bottom of the page overflow

1C. Detail output is printed. On the first cycle, since no data has been
read, there is no detail data to print. Detail output consists of any output
line that can be written or updated to any device – printer, disk, tape, etc.
Data fields that are read during the input part of the cycle in Step 2 are
held in memory as variables and are not made available to the program
until Step 6. These variables may be operated upon in calculations and
their contents can be modified. New variables can be defined within
calculations and these can store the result of operations. The newly
defined variables as well as the input variables or the modified input
variables as well as constants can be placed in the output record that is
written.

It helps to repeat that since no input data is available during the output
part of the first fixed cycle the program produce no output during the first
output time of the cycle. If you follow this logic, it also says that any
input that is read that must be printed will not print until the next output
time in the cycle. Thus, data read on the first cycle in step 2 is not
available for output until at the beginning of the second RPG cycle at step
1.

2. The first record is read from the primary file. Though the record has
been read, however, RPG does not make the data available to the
program until Step 6 of the cycle. When coding with the cycle this needs
to be considered since on cycle 3 for example, the record read in this step
of the cycle is not the record whose fields are available to the program.
The prior record’s data is still in the program fields until Step 6.

This may not make sense right now but it will as you study the next parts
of the cycle which include total calculations and total output. When RPG
is finishing up the totals for a group of data, this event has been triggered
by the cycle knowing that the record about to be read into the fields for
processing is the first record of a new group. In Step 2, RPG has learned
that the next record is from a different group. When writing reports, that

Table of Contents 59

means it is time to perform any special calculations that must be done at
this time of the cycle and then it is time to write out the totals.

In many ways, Step 2 is RPG peeking ahead to see what the next record is
so that it knows if it should take totals or if it will keep reading records
from the current group. This facility also comes in handy when doing
matching records so that RPG can look ahead to see the sequence of the
matches so that it knows which record to move in for processing.

3. Total calculations are then performed. Total calculations are totals that
occur after major, intermediate, or minor control field breaks. Since
during the first cycle, no data has been read at this point in the cycle, there
will be no control level breaks and therefore, no control level calculations
will be performed. However, there will be calculations whenever control
fields change in subsequent cycles.

To understand how control level calculations work, consider the following
example. If the program is written to total gross sales by city, when the
city control field changes from say Kingston to Plymouth when the
second record is read, then during the third cycle, this would cause a
minor (least important) control break. This is also called Level 1. During
the period in which the cycle provides some time for total calculations, it
starts by enabling Level 1 calculations followed by Level 2; then Level 3
until finally it reaches Level 9, the maximum number of levels as can be
defined in an RPG program. In the city example, during this opportunity
to take totals, the programmer would tell the RPG compiler to add the
city total of gross sales to the state total of gross sales and store it for the
level 2 total on state.

If we decided that we would also like state totals in this report, since the
state is a higher level organization than the city, we could use the next
highest control break level or L2. Then when the state changes from say
Alabama (AL) to Alaska (AK), during the L1 cycle, the programmer
would tell the RPG compiler to add the city totals to the state totals and
during the L2 cycle, the programmer would tell the RPG compiler to add
the state totals to the final total accumulator.

4. Total output is printed. Total output includes totals that have been
accumulated, such as the field in which we store the city total and the field
in which we store the state total. When the city total changes, for example,

Table of Contents 60

we probably want to print the total on the report with the City name next
to it. This type of output would occur during the L1 output cycle. If
there were no control breaks during this card cycle, then no output
triggered by a control indicator (L1 or L2) would be produced.

If the L2 control field changes (state in this case) that automatically means
that an L1 break also occurs. (If the state changes, by definition, you can
bet the city changes). So for an L2 break, L2 totals are produced as well as
L1 totals. Likewise if an L9 break occurs, all other total levels from L8 to
L1, in addition to L9, are prepared to produce output. Likewise if a final
total occurred, it would automatically create a level break at the highest
level defined in the program – L9 at the highest but just L2 in our case
with State and City.

5. The program checks to see if it should end by checking the LR
indicator. A special “indicator” called LR causes the program to end if it
is set on when all of the files that are being processed are out of records
or if this indicator “LR” it is set on in detail calculations from the last
cycle. When the program sees that LR is on at this point of the cycle, it
ends the program gracefully and closes all of the files.

6. Input is processed by moving input area buffer contents to the RPG
fields that you defined to hold them. When RPG has completed
performing level (control break) output (This can be disk, tape, card,
printer or any output conditioned by a level indicator at total level time),
the cycle moves to input processing time and it populates the fields in the
file read in Step 2 with the data that is stored in the input buffer.

Step 6 works hand in glove with Step 2 but they occur at different times
in the cycle. The following pertains to Step 2 and Step 6 as if theya re one
input routine. This is not how it really happens but it will help in
understanding the interrelationship.

7. Detail calculations are performed. What are detail calculations? They
are calculations that get performed when records are processed. Detail
calculations are permitted to occur for each record that passes through
Step 6 of the RPG cycle as shown in Figure 3-2. If, for example, each
record contained the order quantity and the price, each RPG cycle as
coded in the C specifications, the programmer can say to multiply the
quantity ordered by the price and create a field called the extended price.

Table of Contents 61

Since basic RPG permits just names of six characters, the result field
name might be called XPRICE or something else to properly reflect its
meaning.

Since RPG calculations have what are called conditioning indicators,
calculations are not necessarily performed each time that the program
passes through the detail calculations part of the RPG fixed logic cycle.
If, for example, the master and the time card records are being processed
through one file, then, assuming that masters are sequenced before
corresponding time card records, the programmer may wish to take action
only when a time card record is read. In that way, the information from
the master such as the pay rate can be used when the time record is read
and the program can multiply the two to get the gross pay amount. To set
this up, the programmer would assign an indicator to the master and an
indicator to the transaction file and those RPG cycles, in which a master
record is read, the calculations can be conditioned not to occur.

Additional INPUT Processing Information

For example, if there is one card reader / hopper defined to the program,
after RPG reads a record the cycle would keep repeating Steps 2 and 6 in
turn and would in essence keep going back to read another card or disk
record. If there are two card readers as in the old System/3 and both are
defined in the program, or there are two disk files defined, RPG will keep
going back to the first hopper or first file until it is empty or the disk file
is at end of file. At this time, RPG would begin reading data from the
other hopper or the second disk file until it is empty. When both hoppers
are empty or the disk files are at end of file indication, RPG automatically
turns on a switch called the last record indicator or LR and it declares that
the program can end and then it ends the program as described in Step 5
above. .

It is unusual to have two files that need to be processed and the job is
such that one can be processed fully before the other is even begun. Yet,
with no special coding in RPG, that is what occurs. In real business
processing situations, however, the program requirements most often
dictate that the records from one file be interspersed with the records
from the second file.

Table of Contents 62

RPG Matching Records Processing

For example, you may have master payroll records specified as File 1.
You may have time cards specified as File 2. To prepare for this
computer run, which depends on both files being in sequence by say,
employee number or a field called EMPNO, you would sort the both files
by employee number so they are in the same sequence. Your program
logic would want to be able to read the master payroll record for
employee 1 and then the time card for employee1 and then it would want
to read employee 2’s master and then employee 2’s time card and so on
until all employees were processed. Once the program reads the master
and the time card for each employee, it has enough information to
calculate the payroll.

During the input part of the cycle in Step 2, RPG provides for a period in
which two or more files of records that are all in sequence by the fields
specified for the match can be read and be declared a match. In this
scenario, the time cards and the employee master file would be in
different card hoppers in old systems or they would be in different disk
files in more modern System i5 units. This notion is referred to in RPG as
“matching records” and it is a big plus for using the RPG cycle for report
writing functions when two or more files are needed for processing. It is
also handy when updating master files from transaction files.

To use the matching records facility within the RPG cycle, the
programmer must have a very good understanding of the detailed RPG
cycle since the needs of the program are more involved than when using
just one input file. In addition to telling the compiler which file should be
read first (primary file – pay master) and which should be read second
(secondary file – time card), the programmer must also designate the
name(s) of the field(s) that must match. In this example, the one field
name is EMPNO in both files.

RPG provides a designator that can be placed next to the field names in
both files within the RPG Input Specifications. In other words, the
programmer must place a designator in a field from each of the files to be
matched. This can be referred to as a matching designator. If there is just
one field to match, then the only matching designator required is known
to RPG as “M1.” However, unlike the present example, which needs just
one field (EMPNO), if there is more than one field that must be matched

Table of Contents 63

(and up to nine fields), then RPG makes available other matching
designators --- M2 through M9. When more than one matching
designator (M2 to M9) is specified, all match fields that are specified must
be matched from each file before the special “indicator” known as “MR”
for match indicator is as we say, “turned on.”

So, let’s say in our simple example that we have two files. We mark the
employee number fields (EMPNO) in both files in the RPG program
input specs with the M1 designator. From here on, when this program
runs, RPG itself makes sure that both files are in sequence and when there
is a match, it turns on a special matching switch called the matching
record indicator or MR. The programmer can then use the status of this
switch (on or off) to cause desired events to occur in the program that
otherwise would be difficult to achieve. Additionally, if by any chance the
files are found by RPG to not be in sequence by the matching
designators, the program will halt with an error condition.

Record Identifying Indicator Processing

There is another phenomenon in the RPG fixed cycle called the record
identifying indicator. Each time RPG reads a master record with the
cycle, for example, it tells the programmer from which record from which
file it read the record by turning on an indicator that the programmer
associates with the file. If RPG turns indicator 01 on for example, that
may mean a master record has been read and if RPG turns on indicator
02, that may mean that a time card record has been read. This powerful,
yet simple communication gives RPG a simple way of permitting telling
programs what is happening so that the program can take the proper
action.

What is an indicator?

The RPG language provides a programmer with a tool box of 99
indications to use for their own purposes. The indication that a particular
record type has been read can be stored in a special type of “field” called
an indicator. To make it easy to remember, most programmers use
various indications to change the value of the indicator fields from 0 to 1.
Moreover, because these are special fields that exist in no other
programming language, RPG also permits just two values in the field –
either a “0” or a “1.” When the value is “0,” RPG programmers say the

Table of Contents 64

indicator (numbered 1 through 99) is “off.” Just like a light switch, when
the value is one, RPG programmers say that the indicator is “on.” So all
99 indicators in RPG can be tested to see if they contain values of “0” or
“1” as well as being tested for “on” or “off.”

With the notion of indicators and the RPG cycle, the compiler provides
some additional facility. If, next to the input record on the RPG Input
Specification, you choose to specify an indicator to turn on if a particular
record ID is read, RPG will gladly turn on that indicator if it reads a
record meeting the criteria you have specified. In the time card file and
master file example, since we would only have one time card for one
master, it would suffice to do no testing for record contents. Though
RPG can look at the contents and turn on an indicator if the contents of a
column contain a “T” (time cards) instead of an “M” (master) since we
are reading the data from two different files, we already know that if it is
read from the primary it is a master and if it is read from the secondary, if
it is a time card. Thus, there is no further need to definemarkings inside
the records to identify them.

So, for the record that defines the master file on the RPG Input
specifications in the RPG program, the programmer assigns an indicator.
Let’s say the programmer choose indicator 01. Now, for the record that
defines the time card in the RPG program, let’s say the programmer
chooses 02.

Once the programmer has done this, independent of the matching status
or the reading sequence of the program, whenever the program reads a
master record, regardless of its EMPNO value, record identifying
indicator “01” will be turned on and record identifying indicator “02”
(time card) will be off. That is because only one record identifying
indicator can be on at one time. RPG processes just one record each
cycle. Likewise, whenever the program reads a record from the time card
file, independent of the matching status or the reading sequence of the
program, and regardless of its EMPNO value, record identifying indicator
“02” will be turned on and record ID indicator 01 will be turned off.

Primary and Secondary Files

The second last phenomenon that we will discuss regarding matching
records is the notion of primary and secondary files. The 407 Accounting

Table of Contents 65

Machine had just one hopper so it did not need anything on a wiring
board to signal a match from two card readers. RPG is more
sophisticated. It says that one file can be designated as primary and a
second file can be designated as secondary for processing purposes within
a program. If there are three card readers and/or many tape and many
disk devices (files) in play, then theoretically, there can be as many – even
twenty or more files defined in just one program. If these files are not
defined as random or keyed-access files – in other words, they are to be
processed sequentially, the programmer would need to designate all but
one as secondary files in terms of matching records processing. Just one
file in all cases can be defined as primary.

Internally, based on the order defined in the program, RPG would
designate these files as tertiary, quaternary, quinary, senary, septenary,
octonary, nonary etc. based upon the order in which the programmer
specified them in what is called the File Description Specification in RPG.
In today’s processing, I rarely if ever see a tertiary sequential file. Multiple
files other than the primary and the designated secondary are most often
defined to RPG as something other than secondary – such as keyed index
files or random files. However, you may run into someone else’s code in
which they have chosen to use more than one secondary file for matching
records purposes.

The MR Indicator

The last phenomenon in understanding the RPG cycle with matching
records is that the MR indicator comes on at a certain times in the cycle as
does the record identifying indicators. They are turned off by RPG at a
designated time in the cycle. For the novice RPG programmer, this is
really a big pain to understand. “Real programmers” and RPG purists like
to be in control of the program. Great programmers, however can take a
powerful tool like “Matching Records,” learn it inside and out, and be
substantially more real and more productive than a real programmer.
More importantly, by understanding the cycle, as noted earlier in this
book, programmers can get much more done in report programs than by
having to write the code themselves. To be good at the cycle, however,
you have to understand the cycle. You have to know when RPG does
what it does. You have to understand when RPG turns on record id and
matching indicators and when it turns them off.

Table of Contents 66

For example, if the pay rate is in the master record, we know that when it
is read, indicator 01, the designated master record identifying indicator, is
turned on. If the next master record has the same EMPNO field value as
the record just read, RPG will read another record from the master file
(primary). Since we have a one to one relationship of master to time card,
this cannot happen. So, we know that the next record that RPG will read
will come from the time card file (secondary) one input cycle after the
matching master was read. Right before RPG reads the record for the
time card record; it cleans up its act and turns off the indicator (01) that
recognized that a master had been read. Prior to the time card record
being read then, there are no record identifying indicators in the on
condition. When RPG goes ahead and reads the time card record from
the secondary file, it turns on indicator 02.

It helps to know that RPG can actually peek ahead at the cards or
sequential disk records or tape records to see what they contain even if it
is not going to read them on this particular input cycle. No, I am not
kidding. RPG knows for example when it reads the master record from
hopper 1 for EMPNO # 1 that there is a matching time card record for
employee 1. It already knows that because it has peeked ahead. So, even
though it is processing the payroll master record from the primary file
with indicator 01, it is smart enough to turn on this special indicator called
“MR” to indicate that the next time card record what will be read from
the secondary file will match this master that is now being processed. The
fact is that when the master is read, RPG “sees” the matching time card
record sitting over there in the other file even though it has yet to read it.
Yes, that is neat!

If the pay rate is in the master and the hours are in the time card record,
when the master is read and indicator 01 comes on, the hours are still not
yet available for employee # 1. So, we cannot calculate gross pay at that
time in the cycle. So a condition that we might call “MR” and “01,”
means that we have a master read and being processed and its matching
time card has not yet been read. Notice the word matching in the prior
sentence. When we eventually read the time card, RPG has already turned
off the master indicator (01) and then it turns on indicator 02. So, if you
are keeping score at home, you might say that when the record identifying
indicator “02” and the “MR” indicator is on, the primary record just read
matches the secondary record that is now being processed. That is great

Table of Contents 67

information for a programmer to gain without having to write the code
for it. All you must do is be conversant with the RPG cycle.

Multiple Output Records per Cycle.

As an additional plus, for those systems such as the 1130 and the
System/360 that were equipped with disk drives, as well as the later
System/3 machines and every machine since, when the RPG language
read an input record, it could also write a record in the same cycle while it
was also producing a print line as what we call the detail output part of the
cycle.

Actually, RPG could outdo its electromechanical predecessor by punching
out many more cards in one cycle than it could read. Each of these card
records, however, would have to be described in detail in the RPG output
area. Each record described would be written as long as the conditioning
indicators were satisfied. No, we have not described conditioning
indicators in any degree of detail yet. Let’s just say that they make output
occur conditionally on whether certain indicators are on or off. When all
output is done, the program with its fixed logic cycle always go back to
read another record (96-column card in System/3s). When there are no
more records (cards on older systems) to read, as noted in Step 5 of the
Cycle above, RPG sets on its infamous last record indicator called “LR”
and the program ends and is removed from memory.

RPG Fixed Logic Cycle Summary

If we go back to Step 6 and Step 7 of the cycle, once a given input record
is read, the next step is that it is time again for detail calculations. This is
the classic processing part of the RPG cycle that we have just described.
The next step, of course is output at Step 1 and thus we have a complete
cycle:

INPUT >> Processing >> OUTPUT

We learned that detail calculations occur in that part of the RPG cycle
after the detail input has been read. The word “detail” describes what
happens in each normal RPG cycle as an individual record is processed

Table of Contents 68

(not counting total calculations or total output time). As noted above in
the matching example, a detail record ID indicator of 02 means we have
read in a time card. If we also have an MR match with the master record,
then we know that the master record for that time card is also in memory.

If we are trying to assure that our output occurs after all of the
information for one employee has been read, RPG helps again. We know
that the detail time card record turns on indicator 02. We know that
because this record matches a master, RPG is keeping indicator MR on
for us. So, if indicator 02 is on and indicator MR is on, we know that
RPG is processing a time card record and the time card record matches
the master record that RPG read in the prior cycle. Thus, it is a logical
time to condition some calculations that should occur when the time card
is being processed for a matched master.

In other words, it would be quite appropriate to condition detail
calculations to occur when both indicators 02 and MR are both on. In this
case, we specify a calculation to multiply the rate times the hours to
produce the first gross amount for the employee. Since the first gross
amount per employee would not be an input field, the program would use
RPG calculations to create this field for us within the detail calculation
specifications.

So, as we wrap up this example in summary form, RPG will have read all
of the data and performed the calculations and more than likely, because
we have told it so, it will print an output line on a piece of paper that is in
the printer. Once this happens, it is time to recycle – run the cycle again
and again and again – until we run out of input.

So, the next generic cycle step is to skip back to the beginning of the RPG
cycle to that spot that we designated above as the first step (1) in the
cycle. Of course, we ignore the headings now since we are not on the 1st
page since they occur just once in a program – to be able to print the first
page information. They were done in cycle 1. Since RPG at this point is
continuing to processing its first input record, it is highly unlikely that we
printed enough detail records that the first page is full. Therefore, there
will be no overflow processing on the second cycle and the next record
cane be brought in at Step 2 of the cycle and then we finish up total
calculations from the prior input record in Step 3 in the cycle and the
cycle keeps moving. In step 1, it helps to remember that RPG will print

Table of Contents 69

anything it can such as the contents of the last record read– not just
headings as long as the output lines are either not conditioned or are
conditioned with indicators that are turned on.

That actually about does it for our treatment of the RPG cycle in this
book. To strengthen your knowledge of the RPG cycle, however, we
provide a living example of the processing we have just explained in
words. We defer this example to Chapter 4 in which we show the code to
achieve what we have discussed regarding the cycle and as we fill them
out, we describe the RPG specification forms so that you can get a better
appreciate the form of this phenomenal language.

Table of Contents 70

Chapter 4

Your First RPG Program

The Specs for Your First Program

Now that you have been introduced to the original notion of RPG
programming using the RPG fixed logic cycle, let’s use this knowledge to
solve a simple business reporting problem. Suppose we have two files
from which we would like to gain information – a payroll master and a
time card file; and we would like to print a report in a very understandable
fashion including totals and subtotals.

For this program, let’s say we have the two files above – the very same
files that we used to describe the RPG cycle, level breaks, matching
records, and record identifying indicators above. Our objective, in the
form that a programmer often receives a request for a program from as
systems analyst is to print a report that looks like the report shown in
Figure 4-1. The input for the report comes from two database files, the
descriptions of which are shown in Figures 4-2 and 4-3.

Table of Contents 71

Figure 4-1 Program Output from Running Sample Learning Program

To be able to print this report, you must be able to define the two files to
RPG with the master as primary and the time card file as secondary.
During first page or overflow time on the report, you want the report
heading as well as the one line of column headings printed. For each
master, there is just one time card. Print an error message if there is a time
card and no master. If there is a master and no time card, let’s just let that
alone. When the time card record is read and there is a match with a
master record, calculate gross pay and print a detail line on the report.
Each time the city changes, total the columns shown on the sample by
city. Each time the state changes, total the city and then total the state. As
shown on the report. Each time the program ends – when the LR
indicator turns on (only once in a program) print out the city totals,
followed by the state totals, followed by the final totals.

Table of Contents 72

This constitutes a summary of the written specs for the program you are
about to write. Systems analysts are often more formal in their
communications with programmers, but at a basic level, that about does it
in informal shops. To know how to write the program, it will help to
review the information I presented on the RPG cycle but, other than that,
you’re ready to go.

So, in the next chapter, we show you line for line how to write the RPG
fixed cycle program that accomplishes the mission as defined. Well, not
exactly! The fact is that I have not even offered you one thought on the
various and many specification sheets that are the blood and guts of this
powerful language. So, maybe you can’t begin just yet. First, it seems that
you must find out about those infamous RPG form types in which all you
have to do is fill-in the blanks.

Well, not exactly! Sure, I could start there, but then this would be like
every other book that has attempted to overwhelm the learner with every
option on every RPG form – the easy and the difficult; the often used, the
less-often used and the hardly ever used. I am not going to do that to you
if you bought this book so that you could take a quick course or you
could very simply gain the basics of the RPG language. Form what you
learn in this book, you can grow into a more knowledgeable RPG
programmer but when you leave this book, you will already know how to
get a lot done with the language.

So, I will explain the option that you need to choose on the RPG
specification sheet to perform the functions (each and every one and no
more) that you need to do in this program for it to meet the specs as
given and to produce the report as shown. By the way (BTW), systems
analysts most often provide mock-ups of printer output, often in the form
of a printer spacing chart (like graph paper) that shows where each
constant and each field on the report is to appear. So, we have actually
given a little more in this instance to show you how your output is to
look.

Now is the time, if you are extremely adventurous to feel free to go out to
IBM’s Web site or another to learn as much as you can about the
components of this program as coded on RPG sheets. You may even
want to try to code the program with what you pick up on your Web trip.
This will not hurt even if you mess it up badly. Even if you try to code the

Table of Contents 73

program in pseudo code before you move on to the following mini-
tutorial for this program, it would help you learn this topic more precisely.
You’ll learn why all of your documented assumptions are wrong – and
that will help you learn RPG.

But, even if you choose to take the less difficult way out, which is also
OK in this book, and in fact, which this book enables, after you sit back
and relax and you read-on, soon you will have coded your first RPG
program, and you will understand it. How about that for a challenge?

A Description of the Data

As those who have become acquainted with the iterations of AS/400 to
the System i5 over the years will attest, the platform has a nice,
proprietary, even snappy database language of its own in support of the
relational database. So, instead of showing the data for these two files in
an CREATE TABLE format, I have chosen to show it in a DDS format
since that is the natural database language of the AS/400 historically.

Since most of the data defined in these two layouts are self descriptive
(even without column headings and text), let me take a brief opportunity
to describe the data in Figure 4-3 and Figure 4-3 as presented to you in
these figures.

Figure 4-2 DDS Layout of EMPMAST Record
 *************** Beginning of data ******

FMT PF A..........T.Name++++++RLen++TDpB..

0001.00 A R PAYR

0002.00 A EMPNO 3S 0

0003.00 A EMPNAM 20

0004.00 A EMPRAT 5S 2

0005.00 A EMPCTY 20

0006.00 A EMPSTA 2

0007.00 A EMPZIP 5S 0

 ****************** End of data *********

Table of Contents 74

Figure 4-3 DDS Layout of TIMCRD Record
FMT PF A..........T.Name++++++RLen++TDpB.

0001.00 A R TIMR

0002.00 A EMPNO 3S 0

0003.00 A EMPHRS 4S 2

 ****************** End of data ********

DDS provides a means of defining a field name and a length and an
attribute of say alphabetic or numeric, and if numeric, then it also
demands to know how many decimals. So, in the two DDS descriptions
above, let’s just say that PAYR and TIMR are known as record format
names and these take the format of the file (all the fields) and permit all of
the fields to be referenced in any program by this one name.

Following the record format name for a physical file, as shown in the
DDS in Figures 4-2 and Figure 4-3, the database designer gets to describe
all of the fields that make up the format of the record in the file – ie – the
record format. EMPMAST (employee master file) has six fields defined
for it and TIMCRD (time card file) has just two. IN all cases in the DDS
shown in these two figures, the data being described is self evident.

The first number shown after the field name in the figures is the length of
the field. If the field is numeric, more information is given. If it is
character, such as a name, no more needs to be described. The length is
all DDS needs and it will determine the start and finish positions in the
records. The “S” shown in these examples stands for decimal data that
has no strange IT format. In other words it is not packed data or binary or
floating point or fixed point. It is merely numeric data – one number for
storage position. You can say what it is without being a computer scientist
and that is one of RPG’s strengths.

Then in all cases, you see a number or a zero after the “S” in these field
definitions. It appears only when there is an “S” specified. This is where
the database designer tells the DDS compiler the number of decimal
places that the database must remember about the numeric value when it
is stored. The number “2” for example, as you would expect means that
two positions of the length are reserved for the decimal positions. If the a
value with three or more decimal position is stored in this database field,
the value is truncated to two decimal positions. And, that’s about all there

Table of Contents 75

is to defining homes for data field values in the natural database for the
System i5 – a.k.a. DDS.

The Data Itself

When you program in RPG or any other language, it is easy to make
assumptions about how the data will look. As many times as not, when
programmers are trying to figure out why the code of which they labored
and labored does not work, and it does not appear logical that it does not
work. Experienced programmers probably have just had a big laugh about
this phenomenon. Beginning programmers always blame the compiler or
the system for messing them up when a program does not work.

In almost all cases, the beginning programmer is wrong and they find that
there was something not quite right with their logic. Then, as the
programmers gets more experienced and they no longer are amused at
blaming the compiler and being wrong, they rightfully check and double
check their code to make sure they have not made a mistake that a peer
would recognize immediately. In this stage, programmers become
programmers. In fact, most who adopt the rule that the compiler is never
wrong and this helps them in their quest for excellence. However, when
they become excellent from this rigid discipline to which they subject
themselves, when they hit a problem they absolutely cannot solve, they
continue to blame themselves and look for a solution without seeking
help or crying foul.

The irony is that as a programmer actually becomes excellent, other
programmers may in fact be responsible for their apparent failings. If you
are following along, you may have already figured out that not all compiler
writers are not tenth degree knights. In fact, some of them are just out of
college. And, though IBM and others have checks and balances to prevent
bad code from entering the compiler or OS realm, sometimes it happens.
Otherwise, there would be no IBM PTFs. When an experienced RPG
programmer relearns that sometimes the compiler is wrong, they become
even better at their trade.

But, to become good at what they do, they first had to subsume their
initial arrogance and they had to discipline themselves into assuring that
nothing was wrong with their code. They knew that they would not be

Table of Contents 76

treated well by their peers if they continued to rant about the failings of
others when the failings were theirs.

Most RPG programmers are amazed at their first taste of understanding
their own excellence. Being trained to “blame me first,” there is an initial
shock in learning that the compiler or the OS was bad, and not the RPG
code. Along their path to excellence all of them have learned about the
problems with data.

No matter how foolproof the logic, if the data appears in what a
programmer would offer is an “illogical sequence,” the most meticulous
code will not perform correctly. So, along the way to excellence, after
they really understand the language, programmers learn to explain most of
the inexplicable by taking a hard look at the input data during the
debugging cycle.

It is in this vein that we offer Figure 4-4 and Figure 4-5 for your reading
and digestion pleasure. These are pictures of the actual data that are in
these samples. Since this is a sample world in which we are forced to live
-- in learning a programming language, the data used to produce the
results is the key to solving any issues that are not because our logic, as
prescribed by the analyst is flawed. Often, the work of the systems analyst
is necessarily incomplete or the phenomenon of analysis paralysis (over
analysis) subverts the project. Only through major testing with real data
can anybody – even the best programmers -- actually determine that bad
data has entered the system.

Figures 4-4 and Figures 4-5 show the data, in query form to help you in
your own desk-check logic, understand the real flow.

Table of Contents 77

Figure 4-4 Query Listing of EMPMAST File Data
 Display Report

 Report width

Position to line Shift to column

Line +....1....+....2....+....3....+....4....+....

 EMP EMPNAM EMP EMPCTY EMP EMP

 # RAT STA ZIP

000001 1 Bizz Nizwonger 7.80 Wilkes-Barre PA 18702

000002 2 Warbler Jacoby 7.90 Wilkes-Barre PA 18702

000003 3 Bing Crossley 8.55 Scranton PA 18702

000004 4 Uptake N. Hibiter 7.80 Fairbanks AK 99701

000005 5 Fenworth Gront 9.30 Fairbanks AK 99701

000006 7 Bi Nomial 8.80 Fairbanks AK 99701

000007 8 Milly Dewith 6.50 Juneau AK 99801

000008 9 Sarah Bayou 10.45 Juneau AK 99801

000009 10 Dirt McPug 6.45 Newark NJ 07101

****** ******** End of report ********

Figure 4-5 Query Listing of TIMCRD File Data
 Display Report

Position to line Shift

Line +....1....

 EMPNO EMPHRS

000001 1 35.00

000002 2 40.00

000003 3 65.00

000004 4 25.00

000005 5 33.00

000006 6 40.00

000007 7 39.00

000008 8 40.00

000009 9 40.00

000010 10 35.00

****** ******** End of report ********

Table of Contents 78

Chapter 5

The Specifics of RPG Coding –
Control Specification – by Example

From Coding to Decoding

Though the textbooks would show otherwise, the fact is that most
programmers today do not get their programming requirements from a
systems analyst who is designing a new application system. In fact, most
programmers get little to no documentation at all from the requester. In
most cases, no systems analyst exists in an RPG shop. Thus, the
programmers in the mid-sized to small shops are referred to as
programmer / analysts. The requester of a program change is typically a
user whose change application has been approved by a steering committee
or perhaps the IT Director.

Most small shops do not believe they have the time to deal with the
formality of the natural change process as documented in the Systems
Design and Analysis text books. Therefore, the information that comes
from the requester or the IT manager in most cases is much lighter than
the specs outlined in Chapter 3 under the heading, “the specs for your
first program.” The burden rests on the programmer /analyst to find the
program(s) that must be changed and then, go ahead and make the
change, test the change to make sure it works, and then put the change
into production.

Once the program is found, the process of decoding must begin.
Decoding an existing program is actually as important a skill as coding a
program originally. Trying to appreciate the art that a brother or sister
programmer deployed when making the code work the first time is most
often more difficult than making the change itself.

Table of Contents 79

In today’s IT environment RPG detractors with computer science
backgrounds will quickly point out their opinions that RPG is irrelevant as
a language. Others will tell you that the RPG cycle is irrelevant in a
modern programming language. The fact is, once you get out of college,
unless you work for the most rigid and the most precise shops, in your
role as a programmer, the only thing that matters is that you can read
code and that you can fix code. Being able to write code from scratch,
though a valuable skill, is just not as important. .

Once you begin a career in RPG programming, you will find code written
in each and all of the techniques available in a computer programming
language. For RPG programmers, this includes the RPG fixed logic cycle,
RPG II type code, RPG III style, as well as RPG IV. Additionally, ther are
externally described and internally described variants. Though many
would tell the neophyte to stay clear of the cycle, it not only has its place
in new development, but it also is an extremely valuable skill in being able
to decode the many applications that once in a while come up for air and
need to be fixed or adjusted to meet a new need.

So, we begin our description of the coding necessary to deal with the
specs of our payroll sample by decoding the program from scratch.

Check the page count. I have almost hit page 50 and I have not shown
one line of RPG code. I’m setting you up, of course for learning RPG by
learning a little than by being introduced to a lot at a time. By now, you
have the flavor of early RPG and you have a notion that it may be very
good to solve business problems that you have not even begun to discuss.

So, before we move into the mundane of describing the program solution
to Chapter 3, let’s consider that all RPG coders who use any form of the
language believe they are RPG coders. That means that you do not have
to be at the bleeding edge of RPG IV to be serving your company well.

In this book, of course, we assume nothing. Many original RPG
programs exist (cycle and otherwise) in the code inventories and packages
within long-standing RPG shops today. The inventories include cycle
programs that were coded in RPG, RPG II, RPG III or RPG IV. Since it
is extremely important to be able to update such code, RPG “decoding”
of cycle programs and other older RPG forms is a necessary skill for an

Table of Contents 80

RPG programmer. Therefore, in this book, to help you become a guru in
RPG decoding techniques, we show several methods of achieving the
same end in the programming examples.

Well Not Exactly!

Once you learn RPG itself via RPG/400, it will be easy to relate to the
same facilities as delivered within RPGIV. This book will show you how
to do that all along the way to learning RPG. For the RPGIV specific
advanced language features, since they are almost as different as COBOL
is different from RPG, we have included several chapter that addresses
the new facilities and we show specific coding examples for RPGIV.

However, in its basic form, RPGIV and RPG/400 are very similar.
Therefore, from a teaching/learning perspective, this book focuses on
RPG/400 in our early examples and then show the same code in RPGIV.
When it is appropriate to explain a feature of RPGIV that is substantially
different from the RPG/400 model, we will take the time in place to make
the explanation.

RPG is a wonderful language and you will soon see why. The fact is that
Java and C programmers and even old-time procedural COBOL
programmers have not typically liked RPG. Likewise, RPG purists of all
genres do not like Java, C, or COBOL. Old-time RPG programmers do
not have that warm of a feeling either for free format RPG and those
features that make the language look more like Java and C. And, as would
be expected, those who have adopted the RPG IV language as their first
language or who like the types of constructs that have been added to RPG
IV that make the language more universally appealing are in conflict with
the old-line RPG crowd. Something less than half of the RPG
programmers out there have wholesale adopted RPGIV and a lesser
percentage use the newest bells and whistles.

Rather than suggest that one faction in the RPG fight is correct and
another is off-base, since decoding for maintenance purposes is an
absolute necessity, we will start with the basics of all RPG and move on
from there. It would be inappropriate to teach just free-format RPG with
the built-in block language structures since the code libraries that you will
find in practice do not have much of this. So, we have chosen to help you
learn to be a real RPG programmer first. You can then stretch those skills

Table of Contents 81

to be an advanced RPGIV programmer after you gain knowledge of RPG
as practiced in most IT shops.

 Figure 5-1 RPG Cycle Program PAREG with State Totals and Matching Records
 *************** Beginning of data ***********************

 678911234567892123456789312345678941234567895123456789612345678
0001.00 H* RPG HEADER (CONTROL) SPECIFICATION FORMS
0002.00 H
0003.00 F*
0004.00 F* RPG FILE DESCRIPTION SPECIFICATION FORMS
0005.00 F*
0006.00 FEMPMAST IPEAE DISK
0007.00 FTIMCRD ISEAE DISK
0008.00 FQPRINT O F 77 OF PRINTER
0009.00 I*
0010.00 I* RPG INPUT SPECIFICATION FORMS
0011.00 I*
0012.00 IPAYR 01
0013.00 I EMPNO EMPNO M1
0014.00 I EMPCTYL1
0015.00 I EMPSTA EMPSTAL2
0016.00 ITIMR 02
0017.00 I EMPNO EMPNO M1
0018.00 C*
0019.00 C* RPG CALCULATION SPECIFICATION FORMS
0020.00 C*
0021.00 C 02 MR EMPRAT MULT EMPHRS EMPPAY 72
0022.00 C 02 MR EMPPAY ADD CTYPAY CTYPAY 92
0023.00 CL1 CTYPAY ADD STAPAY STAPAY 92
0024.00 CL2 STAPAY ADD TOTPAY TOTPAY 92
0025.00 O*
0026.00 O* RPG OUTPUT SPECIFICATION FORMS
0027.00 O*
0028.00 OQPRINT H 206 1P
0029.00 O OR 206 OF
0030.00 O 32 'THE DOWALLOBY COMPANY'
0031.00 O 55 'GROSS PAY REGISTER BY '
0032.00 O 60 'STATE'
0033.00 O UDATE Y 77
0034.00 OQPRINT H 3 1P
0035.00 O OR 3 OF
0036.00 O 4 'ST'
0037.00 O 13 'CITY'
0038.00 O 27 'EMP#'
0039.00 O 45 'EMPLOYEE NAME'
0040.00 O 57 'RATE'
0041.00 O 67 'HOURS'
0042.00 O 77 'CHECK'
0043.00 O D 1 02NMR
0044.00 O 46 'NO MATCHING MASTER'
0045.00 O EMPNO 27
0046.00 O EMPHRS1 67
0047.00 O D 1 02 MR
0048.00 O EMPSTA 4
0049.00 O EMPCTY 29
0050.00 O EMPNO 27
0051.00 O EMPNAM 52
0052.00 O EMPRAT1 57
0053.00 O EMPHRS1 67
0054.00 O EMPPAY1 77
0055.00 O T 22 L1
0056.00 O 51 'TOTAL CITY PAY FOR'
0057.00 O EMPCTY 72
0058.00 O CTYPAY1B 77
0059.00 O T 02 L2
0060.00 O 51 'TOTAL STATE PAY FOR'
0061.00 O EMPSTA 54
0062.00 O STAPAY1B 77
0063.00 O T 2 LR
0064.00 O TOTPAY1 77
0065.00 O 50 'FINAL TOTAL PAY'
 ****************** End of data ******************************

Table of Contents 82

 Figure 5-2 RPG Cycle Program PAREG – Internally Described Data
0001.00 F* RPG HEADER SPECIFICATION FORMS
0002.00 H
0003.00 F*
0004.00 F* RPG FILE DESCRIPTION SPECIFICATION FORMS
0005.00 F*
0006.00 FEMPMAST IPEAF 55 DISK
0007.00 FTIMCRD ISEAF 7 DISK
0008.00 FQPRINT O F 77 OF PRINTER
0009.00 I*
0010.00 I* RPG INPUT SPECIFICATION FORMS
0011.00 I*
0012.00 IEMPMAST AA 01
0013.00 I 1 30EMPNO M1
0013.01 I 4 23 EMPNAM
0013.02 I 24 282EMPRAT
0014.00 I 29 48 EMPCTYL1
0015.00 I 49 50 EMPSTAL2
0015.01 I 51 550EMPZIP
0016.00 ITIMCRD AB 02
0017.00 I 1 30EMPNO M1
0017.01 I 4 72EMPHRS
0018.00 C*
0019.00 C* RPG CALCULATION SPECIFICATION FORMS
0020.00 C*
0021.00 C 02 MR EMPRAT MULT EMPHRS EMPPAY 72
0022.00 C 02 MR EMPPAY ADD CTYPAY CTYPAY 92
0023.00 CL1 CTYPAY ADD STAPAY STAPAY 92
0024.00 CL2 STAPAY ADD TOTPAY TOTPAY 92
0025.00 O*
0026.00 O* RPG OUTPUT SPECIFICATION FORMS
0027.00 O*
0028.00 OQPRINT H 206 1P
0029.00 O OR 206 OF
0030.00 O 32 'THE DOWALLOBY COMPANY'
0031.00 O 55 'GROSS PAY REGISTER BY '
0032.00 O 60 'STATE'
0033.00 O UDATE Y 77
0034.00 OQPRINT H 3 1P
0035.00 O OR 3 OF
0036.00 O 4 'ST'
0037.00 O 13 'CITY'
0038.00 O 27 'EMP#'
0039.00 O 45 'EMPLOYEE NAME'
0040.00 O 57 'RATE'
0041.00 O 67 'HOURS'
0042.00 O 77 'CHECK'
0043.00 O D 1 02NMR
0044.00 O 46 'NO MATCHING MASTER'
0045.00 O EMPNO 27
0046.00 O EMPHRS1 67
0047.00 O D 1 02 MR
0048.00 O EMPSTA 4
0049.00 O EMPCTY 29
0050.00 O EMPNO 27
0051.00 O EMPNAM 52
0052.00 O EMPRAT1 57
0053.00 O EMPHRS1 67
0054.00 O EMPPAY1 77
0055.00 O T 22 L1
0056.00 O 51 'TOTAL CITY PAY FOR'
0057.00 O EMPCTY 72
0058.00 O CTYPAY1B 77
0059.00 O T 02 L2
0060.00 O 51 'TOTAL STATE PAY FOR'
0061.00 O EMPSTA 54
0062.00 O STAPAY1B 77
0063.00 O T 2 LR
0064.00 O TOTPAY1 77
0065.00 O 50 'FINAL TOTAL PAY'

Table of Contents 83

Decoding the PAYREG RPG Program

The PAREG program that we will be decoding in this chapter and the
next several chanters is chapter is shown first in Figure 5-1. The RPGIV
version of the same program as converted using IBM’s CVTRPGSRC
facility is shown in Figure 7-1.

Still, a third version of this program is necessary in order to cover the
notion of externally described files and internally described files in RPG.
Figure 5-1 shows the program as it would be written today using
externally described data. Figure 5-2 shows the same program using
internally described data, which is often called program described data.

You will notice that the only difference between the two programs is in
the Input (I) specifications. Program described data use two coding
formats for input known as the I and the J. The I part captures the record
identification information. The J part captures the input field information.
For externally described files, the formats are called IX and JX
respectively. The X designation is for eXternal. Overall there is not much
difference between the I and IX and the J and JX formats.

Internally & Externally Described Data

Internally described RPG data means that the data is described within the
program. The field names and attributes are assigned within the program.
The length is specified within the program. That is the big difference
functionally between external and internal descriptions. When a program
is compiled that uses internal descriptions, the compiler gets the exact
record layout from the program itself. When a program is compiled that
uses external descriptions, the compiler fetches the data descriptions from
the database and manufactures the input and output specifications in the
compiled program to save the programmer the work of all that coding.

Besides the input area, there are also changes in the PAREG program in
the File Description area. Column 19 of the File Description specification
asks if the input and output descriptions from the file should be fetched
from the data base (coded as E) or whether they should use the fixed
format within the program (coded as F). Based on this switch the
compiler knows how to do its job. Additionally, since using the “F”

Table of Contents 84

switch means the compiler does not visit the external file description to
get the data definitions, it has no means of knowing the record length. So,
you can see by examining Figure 5-1 and Figure 5-2 that the PAREG
program in Figure 5-2, which uses internally described data definitions has
a record length of 55 specified for the EMPMAST file and a record length
of 7 for the TIMCRD file. This coding is unnecessary for the File when
using external descriptions.

Let’s begin our decoding by describing the form types used in the all RPG
programs including the PAREG program.

Looking at the code in Figure 5-1, you can see that there are numbers in
columns 1-7, then there is a space, and then there is a letter. Walking
down the program line by line, in the column that holds the letter, you can
see that there are 2 H’s, 6 F’s, 9 I’s, 7 C’s, and 41 O’s. The program
described version in Figure 5-2 uses the same sequence numbers with
suffixes to distinguish new lines. It has 13 input lines. When present, the
forms are always presented to the RPG compiler in sequence.

The names for these specifications are as follows:

H Header (Control) Specification Form
F File Description Specification Form
I Input Specification Form
C Calculation Specification Form
O Output Specification Form

Two other RPG/400 forms not used in this program are as follows:

E File Extension Specification Form (after F)
L Line Counter Specification (after E or F if no E)

The Extension form is used to describe arrays and tables and the Line
Counter form is used to specify the length and overflow lines of forms
suing special sized (not 8.5 X 11) paper. The Extension form is covered
in Chapter **** and the Line Counter is covered in Chapter 6.

The vision of the programs in Figure 5-1 and 5-2 is deceiving in that the
column shown that has the specification type is presented as column 8 in

Table of Contents 85

the figure. However, this is not the case. To create the figure, I used the
Source Entry Utility, described in Appendix ****. I positioned column 6
using a Window command so that it would be the first column of the
program shown. SEU provides the numbers on the left side as a guide
for editing. Those numbers do not exist in the RPG statement. So, even
though it looks like column 8, please make the mental adjustment so that
just as the format line above shows, the RPG form ID is in column 6.

Columns 1 through 5 of all RPG statements are no longer used. In the
past when each line in a program was typed on a punch card, it was
important to number the cards in case they fell on the floor and needed to
be machine sorted back in sequence. RPG/400 defines 80 columns of
each form for your use. Since we do not have to deal with the first five
columns at all, you can see we are making terrific progress. All of the
form types that we are about to study below are typed in column 6 of the
forms in Figure 5-1.

H-- Header (Control) Specification Form

Only one control specification is permitted in a program. Yet, as shown in
statement 1 and statement 2 of the PAREG program, we clearly have two
H forms in this program. Whenever an * is placed in column 7 of any
RPG form type, the source line becomes a comment line. It does not
matter whether column 6 contains a valid form type. Whenever there is an
asterisk (*) in column 7 the line is a comment line. Thus, in our example
there are not two H specifications. The first one is a comment line in
which we have placed a comment. The second is the control statement
which has no entries in this case.

The control (Header – H) specification provides the RPG/400 compiler
with information about your program and your system. This includes the
following information:

Table of Contents 86

✓ Name of the program

✓ Date format used in the program

✓ Alternative collating sequence or file translation if used

✓ Debug Mode (1 in column 15)
.
The control (H) specification is optional and thus in program PAYREG,
since it has no entries, it was not necessary to specify it at all..

The detailed format of the RPG/400 Header specification is as follows:

H Columns 7-14 (Reserved)

H Column 15 (Debug)

Place a 1 in column 15 to turn on Debug.

H Columns 16-17 (Reserved)

H Column 18 (Currency Symbol)

Any character except zero (0), asterisk (*), comma (,), period (.),
ampersand (&), minus sign (-), the letter C, or the letter R may be
specified as the currency symbol.

H Column 19 (Date Format)

Specify the format of the RPG/400 user dates. The allowable entries are
as follows:

Blank Defaults to month/day/year if position 21 is blank. Defaults to
 day/month/year if position 21 contains a D, I, or J.
M Month/day/year.
D Day/month/year.
Y Year/month/day.

Table of Contents 87

H Column 20 (Date Edit)

The entry in this position specifies the separator character to be used
with the Y (date) edit code – typically slash (/), period (.), or dash (-).

H Column 21 (Decimal Notation)

Specify the notation to be used for the user date. This entry also specifies
the decimal notation and the separator used for numeric literals and edit
codes. The term decimal notation refers to the character that separates
whole numbers from decimal fractions.

H Columns 22-25 (Reserved)

H Column 26 (Alternate Collating
Sequence)

The allowable entries are as follows:

Blank Normal collating sequence is used.
S Alternate collating sequence is used.

H Columns 27-39 (Reserved)

H Column 40 (Sign Handling)

A blank entry is required. The sign is always forced on input and output
of zoned numeric fields.

Table of Contents 88

H Column 41 (Forms Alignment)

Should forms be aligned on first page printing? The allowable entries are
as follows:

Blank First line is printed only once.
1 First line can be printed repeatedly allowing the operator to adjust
 the printer forms.

If the program contains more than one printer file, the entry in position
41 applies to each printer file that has 1P (first-page) output. This
function may also be specified by the CL command OVRPRTF (Override
to Print File) or in the printer device file and can be affected by the
ALIGN option on the STRPRTWTR command. Use column 41 only
when the first output line is written to a printer file.

H Column 42 (Reserved)

H Column 43 (File Translation)

A blank entry says no translation occurs. An entry of F indicates that a file
translation table is to be used to translate all data in specified files.

H Columns 44-56 (Reserved)

H Column 57 (Transparency Check)

Sometimes data composition messes up the best coding. There are few
instances but they exist in which transparency of characters needs to be
checked. The allowable entries are as follws:

Blank No check for transparency.
1 Check for transparency.

Table of Contents 89

If you specify 1 in position 57 of the control specification, the RPG/400
compiler scans literals and constants for DBCS characters. It does not
check hexadecimal literals.

H Columns 58-74 (Reserved)

H Columns 75-80 (Program Identification)

Considering that most RPG programs are written today with No H
specification whatsoever, the typical way of naming an RPG program is
the default of taking the name of the source member and making it the
name of the program object.

The symbolic name entered in these positions is the name of the program
that can be run after compilation. You can override this name with the
PGM parameter in the CL command CRTRPGPGM (Create RPG
Program) which is used to create an object from your source RPG
program.

If you do not specify a name in positions 75 through 80 of the control
specification or on the CRTRPGPGM command, but the source is from a
database file, the member name is used as the program name. If the
source is not from a database file, the program name defaults to
RPGOBJ.

If you specify the program name on the control specification, its
maximum length is 6 characters. If you specify the program name in the
CRTRPGPGM command, its maximum length is 10 characters.

RPGIV Header (H) Specification

The Header specification is also called the CONTROL specification. It is
seldom used in RPG/400 programs written today. Just as in RPG, the H
spec provides information about generating and running programs.
However, with RPGIV, there are three different ways in which this

Table of Contents 90

information can be provided to the compiler and the compiler searches
for this information in the following order:

1. A control specification included in your source with an H in column 6
2. A data area named RPGLEHSPEC in *LIBL
3. A data area named DFTLEHSPEC in QRPGLE

Once one of these sources is found, the values are assigned and keywords
that are not specified are assigned their default values.

Header option 1 is similar to RPGIV in that you specify the options in the
program. With option 2, you get to include a prewritten H spec called
RPGLEHSPEC in a data area object in your program merely by
permitting the compiler to find the object in your library list. Header
option 3 is similar to option 2 and option 1 with nothing specified. In
other words, RPG finds the default H spec data area object that it stores
under the name of DFTLEHSPEC in the QRPGLE library from which
the compiler itself gets launched.

The fact that there is an option 1 is where the similarities end between the
standard H spec and the new RPGIV H spec.

As an introductory book to RPG, it is not the author’s intention to
provide all of the information that exists in IBM manuals on a given
topical area. Some of the keywords are self explanatory and thus will be
helpful immediately. However, some of them are not self explanatory and
demand that the reader be well versed in other topics that are not given
extensive treatment in this book. For example, there are a number fo
keywords that require a high level of understanding of the Integrated
language Environment as well as the notion of procedures in RPGIV.
Though these topics are touched on lightly in this book, we do not supply
enough information for a beginner to have a command of these features
and thus the keywords that may be used to invoke certain features and
options. The good news as with most of RPG is that the defaults do a fine
job of covering the options that a beginner would need to get a quick start
in programming RPGIV.

Table of Contents 91

The format of the new RPGIV H spec is very simple”

Column 6 H
Columns 7-80 Area for header spec keywords
Columns 81 – 100 Comments

The RPGIV Header spec is keyword driven in much the same way as
other System I artifacts, such as physical files, logical files, and display files
are specified to their respective compilers.

The keyword format is simply as follows:

Keyword(value)

A list of the RPGIV keywords and sample values is shown below:

Figure 5-2 shows each of the RPGIV keywords that can be used in the H
specification with a brief explanation. The table also shows one option
specified as a sample and other options in a separate column..

Figure 5-2 Header Keywords and Options

Keyword / Sample Other Options Meaning
ACTGRP(*NEW) *CALLER; 'activation-

group-name'
Type of activation
group

ALTSEQ{*NONE) *SRC; *EXT Alternate sequence?
ALWNULL(*NO) *INPUTONLY;

*USRCTL)
Nulls allowed?

AUT(*LIBRCRTAUT) *ALL; *CHANGE; *USE;
*EXCLUDE

Authority given to
users for use of
program

BNDDIR('BINDER') :'binding-directory-name'... List of binding
directories

CCSID(*GRAPH:
Ignore)

*SRC; number Set default graphic

CCSID(*UCS2: 13488) Number Set default UCS-2
CCSID

COPYNEST(32) Number Maximum nesting
depth for COPY
directives (1 – 2048)

COPYRIGHT('Kelly
Consulting’)

'copyright string' Set copyright info

Table of Contents 92

CVTOPT(*DATETIME) *{NO}DATETIME
*{NO}GRAPHIC
*{NO}VARCHAR
*{NO}VARGRAPHIC

How compiler
handles dates, etc.

DATEDIT(*DMY) *MDY, or *YMD Format for Y edit code
DATFMT(*ISO) Valid date formats Internal date format
DEBUG{*YES) *NO Debug on or off
DECEDIT(*JOBRUN) Value Char used for dec. pt.
DECPREC(30) 31 Decimal precision
DFTACTGRP(*YES) *NO Default activation
DFTNAME(MYPROG) RPG Name Specify pgm name
ENBPFRCOL(*PEP) ENTRYEXIT; *FULL Is full performance

collection enabled?
EXPROPTS
(*MAXDIGITS)

*RESDECPOS Precision rules

EXTBININT{(*NO) *YES Internal or external
binary format is used.

FIXNBR(*ZONED) *{NO}ZONED;
*{NO}INPUTPACKED)

Should decimal data
errors be auto-fixed?

FLTDIV{(*NO) *YES Use floating divide
FORMSALIGN{(*NO) *YES Repeat 1p output for

forms alignment
FTRANS{(*NONE) *SRC File translation?
GENLVL(10) Number 1 – 20 Errors > this value

will stop compile
INDENT(*NONE) character value Should structured

operations be
indented?

INTPREC(10) 20 (10 or 20) Intermediate
precision

LANGID(*JOBRUN) *JOB; language-identifier Language ID
NOMAIN For module No main proc
OPENOPT
(*NOINZOFL)

*INZOFL Set OF indicator to off
when file opened

OPTIMIZE(*NONE) *BASIC | *FULL) Level of optimization
OPTION(*XREF) *{NO}XREF; NO}GEN;

*{NO}SECLVL;
*{NO}SHOWCPY;
*{NO}EXPDDS; *{NO}EXT;
*{NO}SHOWSKP);
*{NO}SRCSTMT);
*{NO}DEBUGIO)

Specifies compiler
options

PRFDTA(*NOCOL) *COL Collect profile data?
SRTSEQ(*HEX) *JOB; *JOBRUN;

*LANGIDUNQ;
*LANGIDSHR; 'sort-table-
name'

Sort sequence table

TEXT(*SRCMBRTXT *BLANK; 'description' Descriptive text
THREAD(*SERIALIZE) Not specified Serialize thread?
TIMFMT(*ISO) Time format options Time format
TRUNCNBR(*YES) *NO Use truncated value or

Table of Contents 93

produce an errormsg.
USRPRF(*USER) *OWNER Which authority?

Table of Contents 94

Table of Contents 95

Chapter 6

The Specifics of RPG Coding –File
Description & Line Counter
Specifications – by Example

Talking to the Outside World

As in all programs that use files, the language must provide a means of
linking from the program to the outside world. The File Description
Specification, a.k.a. the “F” spec is the way this communication is
achieved in RPG.

F-- File Description Specification Form

We continue our decoding adventure for File Desctiptions and Line
Counters in this Chapter. A sample filled-in RPG/400 File description
coding sheet is shown in Figure 6-1. Column 66 of the line in which the
CUSMSTF file is defined has an A in it. For viewing purposes we moved
that column two columns away from the end of the form so it could be
seen.

Table of Contents 96

Figure 6-1 Sample File Description form (amalgamated & truncated)

* Note – The A in column 66 next to “DISK” has been moved for viewing.

Before SEU (See Appendix A ****), programmers painstakeingly coded
their RPG programs on coding sheets that were 8 ½ X 11” in size. Figure
5-3 reflects a hand-written coding sheet.

Notice in the area marked as 2 that column 19 contains an E for all of
these files. That means that the files are externally described and no
record length is required on the File Description statement for these three
files. Notice that there is no primary and no secondary file defined. That
means that this program does not depend on the RPG cycle.

The customer master file CUSMSTF and the customer display file
CUSDSPF each use an F designator in column 16 rather than the P or S
that we have used in the PAREG program. This means that the file is
fully procedural. Fully procedural (F) files can be processed by the many
RPG operations such as read (READ), read equal (READE), chain
(CHAIN) etc. that we will be covering in Chapter *****. The fully
procedural file gives the programmer great latitude in the calculations
specification to determine which operations occur at what times.

In the PAREG program, column 15 was coded with either an I for input
or an O for output. The sample lines for the first two files in Figure 6-1
are coded with a U and a C respectively. The U means that this file can
be used for input and that the records read will be locked for update. The

Table of Contents 97

program can then update the data in the record and with an update
operation write the changed data back to disk. The record gets unlocked
when the update is complete or when the program reads another record
in the same file.

The C (combined) designation is very similar to the U (update) operation
but it is reserved for device files such as terminals. For the program to be
able to write the screen and then read the data back, the display file must
be coded with a C in column 15 to designate that combined operations of
output and input are available.

Notice on the right of the form that the device type is coded as
WORKSTN. PAREG used just the DISK device and PRINTER device.
So now you know how to define a simple workstation device in your
programs. Workstation (WORKSTN) files can be designated as input (I)
or output (O) also but most programmers prefer to use the C designator
regardless of the type of operations that they will use against the file.

The CUSTMSTF file also has a K designation in column 31. This is to tell
the compiler that the file will be processed by a key, such as customer
number. It also says that the file has an index associated with it. The file
can be a keyed logical or physical file. Looking out on the right to column
66, you will notice an A designation. This tells the RPG compiler that this
file can not only be used for input and update operations but it can be
used for WRITE operations which add records to the file.

That’s a lot to know about file description specifications and it should
give you a head start in decoding and understanding the File description
specifications used in the PAREG example.

Why File Descriptions?

File description specifications describe all the files that your program uses.
The information for each file includes the following:

✓ Name of the file

✓ How the file is used

✓ Size of records in the file

Table of Contents 98

✓ Input or output device used for the file

✓ If the file is conditioned by an external indicator.

For your convenience we have collected the six “F” specs from the
external and internal versions of PAREG and have listed them again in
Figure 6-2 and 6-3 respectively. It may help to recall that the only
difference between the external and internal versions in this program is
the record length and the F instead of an E in column 19.

Figure 6-2 PAREG RPG/400 File Descriptions
 678911234567892123456789312345678941234567895123

0003.00 F*

0004.00 F* RPG FILE DESCRIPTION SPECIFICATION FORMS

0005.00 F*

0006.00 FEMPMAST IPEAE DISK

0007.00 FTIMCRD ISEAE DISK

0008.00 FQPRINT O F 77 OF PRINTER

 Figure 6-3 PAREG – File Descriptions Internally Described Data
 678911234567892123456789312345678941234567895123

0003.00 F*

0004.00 F* RPG FILE DESCRIPTION SPECIFICATION FORMS

0005.00 F*

0006.00 FPAYMAST IPEAF 55 DISK

0007.00 FEMPTIM ISEAF 7 DISK

0008.00 FQPRINT O F 77 OF PRINTER

Statements 3 through 5 contain asterisks in column 7, therefore, they are
comments used for documenting the program. Statements 6 through 8 are
very important to the functioning of this program as they define both the
two input files and the printer file.

Table of Contents 99

F Column 7-14 File Name

Columns 7-14 of the F spec are where you make the link to the outside
world in RPG. Every file must have a unique file name that is defined to
the i5/OS system. The file name can be from 1 to 8 characters
long, and must begin with an alphabetic character. As you can see in
Figures 6-2 and 6-3, the three file names we define in the PAREG
program are EMPMAST, TIMCRD, and QPRINT.

Using the DDS that we described in Figures 3-2 and 3-3, we created two
database files named EMPMAST and TIMCRD respectively. See
Appendix **** for the instructions on how to create a database file from
DDS. In statement 8, we see the name QPRINT which is the name of a
reserved printer file in i5/OS that IBM makes available for your use in
RPG. So, each time you create a program that prints a report, you may
use the print file QPRINT to permit this to happen. You may also create
your own print file. This is shown in Appendix ****. When you create
your own print file, you would use the name of that file in place of
QPRINT.

In RPGIV, the file name can be ten characters and it occupies columns 7
to 16.

F Column 15 File Type – I, O, Etc.

Column 15 is where you define the file type. The question you ask in
order to know how to fill in this column is: “How will I use this file –
input or output?” The choices of entries for Column 15 are as follows:

I Input file.
O Output file.
U Update file.
C Combined (input/output) file.

In our example program, we defined EMPMAST and TIMCRD as I for
input. These two database files will provide the input for our program.
We defined QPRINT as O for output since we will produce an output
report from the input data read from the database files. If we were going

Table of Contents 100

to write back records to the EMPMAST or TIMCRD databases, we
would have coded it as U for update. We have no use for the C for
combined in this program. Later when we work with display files in
which we write a program to interact with a terminal user, we will use the
C designation to indicate that we both write to the display and read from
the display using the same file description specification.

In RPGIV, the File Type is specified in position 17.

F Column 16 File Designation – Primary,
Secondary, etc.

Column 16 is used to designate that a file will use the RPG cycle or not
and it is used to provide a means for special files to be loaded into the
system to control processing. It also provides for files to be processed
outside the RPG cycle

The entries that can be used in column 16 and their meaning are
presented below:

Blank Output file
P Primary file
S Secondary file
R Record address file
T Array or table file
F Full procedural file

Blank, P, S-- Output, Primary, and Secondary

The QPRINT file defined in the File Description specifications of the
PAREG RPG program is output-only and thus, we describe it in column
16 with a blank entry. The EMPMAST file is designated as primary. This
means that it will be the first file read and it will be the first file read when
there is a matching time card record (secondary.) The TIMCRD file is
designated as secondary since it is not read until all of the matching
primaries are read for an employee. Since in our example, there will be

Table of Contents 101

just one payroll master for each time card, the actuality is that that after a
matched master, the matching time card record, designated as secondary
will be read. More than one secondary file can be specified but this is not
necessary in our example.

Though the PAREG program does not include any other entry types, the
possible choices are explained below for completeness.

R-- Record Address File

A record-address file (RA) is a sequentially organized file used to select
records from another file. Only one file in a program can be specified as a
record-address file. One of the frequent uses for an RA file is to process
the results of what is called and address sort. In other words, you can run
the FMTDTA AS/400 command to sort a file and instead of a big file
with big record lengths as your output, you can ask the sort to create a file
of record addresses. If your program were working with he output of
such a sort, you would designate it with an R in column 16 of the F
specification. In this book, since logical files have mostly replaced the
need for RA files in RPG, this book does not offer any examples of using
RA files.

T-- Array or Table File

Array and table files are specified by placing a T in position 16. Arrays
and tables are small files, often of codes that enable the code to be
checked for existence in some cases or to find a matching explanation for
a code. A table for code lookups might be used for payroll codes as an
example. The code M in the table might have a matching explanation
called Married and the code F might have a matching explanation called
Female. RPG provides a means of compiling these codes at the back of
the program and this is very convenient when the codes are not expected
to change frequently.

For codes that change frequently, such as the tax tables in a payroll
program, it is not wise to compile these with the program since each time
the government makes a change, you must alter the program contents and
you must recompile (retranslate into machine language) the program. For
situations such as this, RPG provides this nice facility in which the table

Table of Contents 102

or array can be pulled in from disk right before the program is executed.
In this way, the changes can be made to the table or array on disk without
the program having to be modified or recompiled.

F-- Full Procedural File

As the name implies, full procedural files are those that give the
programmer full procedural control of happenings in a program. This is a
very important entry and will be explored further in this book in far
greater detail. This entry is used when the input, output and update
functions are controlled by calculation operations. File operation codes
such as CHAIN or READ or UPDAT or WRITE are used to do input,
output, or input/output functions.

In RPGIV, the File Designation is specified in position 18.

F Column 17 (End of File)

This entry is used with primary and secondary files to instruct the
program about how it can end naturally. For RPG programs to end, the
LR indicator must be turned on. When just one file is used for input, the
entries are moot since LR will naturally be turned on when all records
from the file have been read. If a primary and a secondary file were
defined for input such as in our example, we would not want the LR
indicator to turn on and end the program after all the primaries are read
because we may still have a matching time card record to be processed.

The entries for this column are as follows:

E All records from the file must be processed before end

Blank This file does not have to be fully processed to end

However, if position 17 is blank for all files, then RPG defaults that all
records from all files must be processed before end of program (LR) can
occur. If position 17 is not blank for all files, all records from this file may
or may not be processed before end of program occurs in mult-ifile

Table of Contents 103

processing. In PAREG, both input files must finish being read before the
program can end.

In RPGIV, the End of File is specified in position 19. The Add records
column of RPG/400 (column 66) is specified in RPGIV in position 20.

F Column 18 (Sequence)

You use this handy facility to sequence check your input, combined our
update files when they are being read as primary and/or secondary files.

The possible entries for this column are as follows:

A Match fields are in ascending sequence.
Blank Same as A
D Match fields are in descending sequence.

This column works hand in glove with the match field indication on the
Input Specification form that is used to assure a match between two files
such as the EMPMAST and TIMCRD files. Both input files defined in
PAREG in Figure 6-2 have an A designation meaning that the match
fields (EMPNO) must be in ascending sequence. Jumping ahead just a
little, to show you exactly what I mean by match fields, I have duplicated
the Input lines in Figure 6-4 for your reading convenience:

Figure 6-4 PAREG Match Field Input Specifications
 678911234567892123456789312345678941234567895123456789612345678
0009.00 I*
0010.00 I* RPG INPUT SPECIFICATION FORMS
0011.00 I*
0012.00 IPAYR 01
0013.00 I EMPNO EMPNO M1
0014.00 I EMPCTYL1
0015.00 I EMPSTA EMPSTAL2
0016.00 ITIMR 02
0017.00 I EMPNO EMPNO M1

On line 12, the record format name PAYR from the primary file called
EMPMAST is specified. Following this on line 13 the EMPNO field from
EMPMAST is referenced. The M1 in column 61 next to the EMPNO

Table of Contents 104

tells the compiler that this field is a match field and it tells the compiler
that if there is an “A” or “D” entry in column 18 of the File description,
the file EMPMAST must be in sequence – either ascending or descending.
In PAREG of course it is ascending. If the file records as they are read by
the program are not in sequence, the RPG program will halt with an error
condition. The M1 in line 17 does the same thing for the TIMCRD file.

In RPGIV, the Sequence works the same but is specified in position 21.

F Column 19 (File Format)

This column is used to tell the compiler from what source the input and
output will come for this particular file in the program. The input /
output definitions may come from within the program on input and
output specification sheets. These files formats are referred to as program
described or internally described files. The definitions may also come
externally from within a database, workstation, printer or other file object
that is referenced within in the program. These file formats are referred to
as externally described files.

The possible entries for File Format are as follows:

F Program described file
E Externally described file

An F in position 19 indicates that the records for the file are described
within the RPG/400 program on input/output specifications. An E in
position 19 indicates that the record descriptions for the file are external
to the RPG/400 source program. The compiler obtains these descriptions
when the program is compiled and it then includes them in the source
program and in the accompanying source listing.

As you can see in line 8 of PAREG, the QPRINT print file is described
with an “F” entry in column 19. This means that the record length will be
provided by file description and the format of the output records will be
provided within the program as you can see in lines 25 through 65 of
Figure 5-1. .

Table of Contents 105

As you can also see in lines 6 and 7 of the external version of the
program, Figure 6-2, both the EMPMAST and the TIMCRD files have an
“E” entry in file description column 19 and thus they are externally
described. The internally described PAREG shown in Figure 6-3 has an F
in column 19 for internal fixed format. The external definitions will be
brought into the program at compilation time. A snapshot of a compile
listing showing the full inclusion of the data definitions brought in from
the external database file defined in the RPG program is shown in Figure
6-5.

Figure 6-5 Compile Listing of External Input Expanded
 1000 I* RPG INPUT SPECIFICATION FORMS

 1100 I*

 1200 IPAYR 01

 1300 I EMPNO EMPNO M1

 1400 I EMPCTYL1

 1500 I EMPSTA EMPSTAL2

 1500 INPUT FIELDS FOR RECORD PAYR FILE EMPMAST FORMAT PAYR.

 A000001 EMPNO 1 30EMPNO M1

 A000002 4 23 EMPNAM

 A000003 24 282EMPRAT

 A000004 29 48 EMPCTYL1

 A000005 EMPSTA 49 50 EMPSTAL2

 A000006 51 550EMPZIP

 1600 ITIMR 02

 1700 I EMPNO EMPNO M1

 1700 INPUT FIELDS FOR RECORD TIMR FILE TIMCRD FORMAT TIMR.

 B000001 EMPNO 1 30EMPNO M1

 B000002 4 72EMPHRS

The sequence designators in Figure 6-5 that begin with A are the
specifications that were brought in from the EMPMAST file from record
format name PAYR. The sequence designators that begin with B were
brought in from the TIMR record format from the TIMCRD file.

As a point of note, when external files are used with fully procedural files,
no input specifications need to be presented to the RPG program at all so
this can be a great saving in coding. However, when a program uses level
breaks or match fields as the PAREG program does, the program uses the
input form in order to tell the compiler what the match fields are and
what fields should be used for various level totals. Notice in Figures 5-1
and 5-4 that just the lines of input with the M1, L1, and L2 designated
input fields needed to be specified. The other input field definitions were
brought in from the external file definitions.

Table of Contents 106

In RPGIV, the File Format is specified in position 22.

F Columns 20-23 (Reserved)

As you can see in the program, there are no entries in positions 20
through 23. In fact, these must be blank. In older RPG’s these positions
were available to specify a block length. Since the database itself is used
to determine blocking during execution, there is no need for this in RPG.
When a block length is allowed, for example, there are parameters in the
CL command OVRDBF that permit a blocking factor to be specified.
Our simple program, PAREG uses not such facility.

F Columns 24-27 (Record Length)

Programmers use positions 24 through 27 to indicate the length of the
logical records contained in a program-described file. The maximum
record size that can be specified is 9999; however, record-size constraints
of any device may override this value.

Notice that the QPRINT file has a 77 as its record length. That is
because the longest print line ends printing in column 77. The
EMPMAST and the TIMCRD files are both externally described in Figure
6-2, therefore, their record lengths are provided by the external object and
this entry must be blank for externally described files. For the internally
described version, the record length for EMPMAST is specified as 55 and
for TIMCRD as 7.

In RPGIV, the record length can be longer by one column and is
specified in positions 23 to 27.

Table of Contents 107

F Columns 28-39 (Other Entries)

Positions 28-39 are not needed for the PAREG program. We show the
other entries here, however, so that this book can also be used for you as
a reminder guide and thus being complete at this point of the book is
important. We will revisit File Descriptions in later chapters when this
information is germane to a problem example we are solving.

F Column 28 Limits Processing

The entries for column 28 are as follows:

L Sequential-within-limits processing by a record-address file
Blank Sequential or random processing

You specify an L in column 28 to indicate limits processing otherwise let
the column blank. The default then is no limits processing. The limits file
is a file of limits in which each record contains a set of limits that consists
of the lowest record key and the highest record key from that particular
section of the indexed file to be processed. You may have multiple limits
records in the file. When a limits record is read, the corresponding record
with the key value in the file is processed.

The record address file with the limits record would require its own File
Description statement. The L in 28 is for the keyed file that will be
processed via the limits file.

In RPGIV, Limits processing is also specified in position 28.

F Column 29-30 Length of Key or Record
Address

The entries specified in columns 29 to 30 pertain to program described
keyed (indexed) database files. If you are not coding a program described
file or the file is not keyed, then leave these positions blank. Otherwise,
place the total length of the key field(s) in 29-30.

Table of Contents 108

In RPGIV, the length of key or RAF is specified in position 29 – 33..

F Column 31 Record Address File Type

A record address file is a file used to process another file. See limits file
explanation for column 28 above. Whereas the file that would have an L
specified in column 28 is the keyed master file, the entries in column 31
describe the RAF file that will control the processing of that file.

The FMTDTA command (a.k.a. the System I sort) has the ability to
produce a record address file of relative record numbers (also called an
address-out or ADDROUT file or record address file [RAF]).
ADDROUT sorts were very prevalent when disk was very expensive.
Instead of a fully sorted file that included all of the records in the file that
were part of the sort output, the ADDROUT file contained the addresses
of the records such that if the records were brought into the program in
the sequence of the ADDROUT records, the file data would appear to be
sorted in the program. In addition to being very clever, this saved much
disk space. CL programs using ADDROUT sorts continue to run in
System I shops today.

The entries for RAF include the following:

Blank Relative record numbers are used to process the file.
 Records are read consecutively.
 Record address file contains relative-record numbers.
 Keys in record-address-limits file are in the same format as
 keys in the file being processed.
A Character keys (valid only for program-described files
 specified as indexed files or as a record-address-limits file).
P Packed keys (valid only for program-described files specified as
 indexed files or as a record-address-limits file).
K Key values are used to process the file. This entry is valid only
 for externally described files.

Figure 6-1 shows the K entry for the CUSTMSTF designating that a key
would be used and that the file was indexed.

Table of Contents 109

In RPGIV, the RAF type is specified in position 34.

F Column 32 File Organization

Column 32 is used for Internally Described Files only.
.
Other than the blank entry which is for both program described and
externally described files, the two entries that may be specified in this
column are for program described files only. The possible entries are as
follows:

Blank The file is processed without keys, or the file is externally
 described.
I The file is an Indexed file. (program-described files).
T The file is a Record address file that contains relative-record
 Numbers (valid only for program-described files).

In RPGIV, the File Organization is specified in position 35.

F Columns 33-34 Overflow Indicator

When a printed form passes the last line of print on a form, RPG can
sense that the overflow has occurred and it can communicate that fact to
the programmer through a number of indicator choices OA-OG, and OF.
By habit, I use OF because it reminds me of the word overflow.
However, with some programmers writing programs that produce two or
more reports on different printers, it is good that RPG permits eight
different overflow indicators to be used – one for each of up to eight
printer files. This is the place in the program in which you tell RPG what
the overflow indicator is going to be for a particular printer file.

The entries for overflow are as follows:

Blank No overflow indicator is used.
OA-OG, Specified overflow indicator conditions the lines to be
OV printed when overflow occurs.

01-99 Set on when a line is printed on the overflow line, or

Table of Contents 110

 the overflow line is reached or passed during a space or
 skip operation.

Indicators OA through OG, and OV are not valid for externally described
printer files. Use positions 33 and 34 to specify an overflow indicator to
condition which lines in each PRINTER file will be printed when
overflow occurs. This entry is valid only for a PRINTER device.
Overflow only occurs if defined.

Only one overflow indicator can be assigned to a file. If more than one
PRINTER file in a program is assigned an overflow indicator, that
indicator must be unique for each file.

F Columns 35-38 (Key Field Starting
Location)

This entry if for internally described files only. The possible entries for
these RPG/400 columns are as follows:

Blank Key fields are not used for this program-described file, or
 the file is externally described.
1-9999 Record position in a program described indexed file in which
 the key field begins.

This area is not used for externally described files. For program described
index database files, use positions 35 through 38 to identify the record
position in which the key field for the indexed file begins. An entry must
be made in these positions for a program described indexed file. The key
field of a record contains the information that identifies the record. The
key field must be in the same location in all records in the file. The entry
in these positions must be right-adjusted. Leading zeros can be omitted.

In RPGIV, the information for the key field starting location for program
described files is now in a keyword with this format:

KEYLOC(number)

Table of Contents 111

F Column 39 (Extension Code)

As RPG was developed, the File Description specification could no
longer hold all of the information that was needed to handle the
requirements of the language. Since much of the information that needed
to be added had to do with data, IBM created what was originally called
the File Description Extension form. It was an extension to File
Description. We cover this form in detail in Chapter *****. Over time,
since the File Description Extension itself grew in size, and some of the
material did not relate at all to files, IBM reduced the size of the File
Description Extension moniker to just Extension. Without a historical
perspective, the word Extension has no real meaning.

As internal line control facilities began to take over in printers from the
old carriage control tapes, the line counter specification was also devised
as another file extension. However, since the word extension had already
been taken, IBM fashioned the L spec or Line Counter specification to
help with printer files.

To link the File with the extension or line counter, the compiler writers
included a column in File Descriptions that alerted the compiler that there
was an extension specification expected for the file being defined. The
entries for the Extension Code therefore are as follows:

Blank No extension or line-counter specifications are used.
E Extension specifications further describe the file.
L Line counter specifications further describe the file.

Use position 39 to indicate whether the program-described file is further
described on the extension specifications or on the line counter
specifications (printers). An E in position 39 applies only to array or table
files or to record-address files; an L in position 39 applies to files assigned
to the PRINTER device.

Extension and Line Counter specifications in RPGIV have been replaced
by a combination of keywords and the new “D” specification. This entry
is therefore moot in RPGIV.

Table of Contents 112

F Columns 40-46 (Device)

Positions 40-46 of file description is where you specify the name of the
generic device type that will be used in the program. In essence this is
where the file name is linked with the specific device type that the file
name references.

The possible entries for the device in RPG programs are as follows:

PRINTER File can have control characters for printers
DISK File is a database file on a disk device
WORKSTN File is a workstation file – terminal I/O
SPECIAL User supplies special routine for device

In the PAREG program, we used positions 40 through 46 to specify the
RPG/400 device name to be associated the three files in the program.
The file names EMPMAST, TIMCRD, and QPRINT were specified in
positions 7 through 14. EMPMAST and TIMCRD are designated as
DISK files and QPRINT is designated as a PRINTER files.

Sine the AS/400 has natural print spooling. The RPG program will not
ever have to communicate directly with a printer. However, it will send
the appropriate control characters for printing through the device file in
play (QPRINT in this case). The output will be in an output queue
associated with the user’s job and it can be printed by using the operating
system facility known as spooling by starting a “writer” against an output
queue. If this presents an issue for you in your shop, see your system
administrator since each shop may have different printers and different
printer standards.

The WORKSTN device in RPG (Figure 6-1) permits files that are
created using a tool called SDA (Described in Appendix *****) to be
linked with the RPG program. Using this facility, RPG programmers can
use the WRITE or READ operations to WRITE or READ full screen
panels of data to terminal or PC emulated displays. RPG also has an
operation that we will discuss that performs both a WRITE to a Display
and a READ from a display in just one operation. The RPG operation

Table of Contents 113

code for this is EXFMT. Since there are no interactive devices in the
PAREG program we defer this discussion until Chapter ******.

We have completed all we need to know about the very valuable File
Description Specification for our PAREG problem. There are some
more entries that can be made on file descriptions so, for completeness
these are examined below.

In RPGIV, the Device is specified in positions 36-42.

F Positions 47-52 (Reserved)

Positions 47 through 52 are not used in PAYREG and for all programs,
these positions must be blank.

F Position 53 (Continuation Lines)

RPG supports the ability to have special things defined in File
Descriptions for which there is no room on the F spec. So, a
continuation of the F spec is permitted by placing a K in position 53. This
indicates a continuation line. We need no continuation lines in the
PAREG program.

The functions implemented via File Description continuation line entries
are covered after column 80 of File Descriptions. Most of the facilities
provided via continuation entries are provided in RPGIV via keywords.

F Positions 54-59 (Routine)

When you must use SPECIAL as the device entry (positions 40 through
46), you also must name a routine in positions 54 through 59 to handle
the support for the special device. The routine name must be left-adjusted
within these columns. This entry is used by the compiler to produce the
linkage to the routine. The PAREG program used no special routines and
therefore these entries were not needed.

Table of Contents 114

F Positions 60-65 (Reserved)

Positions 60-65 are not used in PAYREG and for all programs, these
positions must be blank.

F Position 66 (File Addition)

Sine the PAREG program is database input-only, there was no need to
specify to the compiler that the file described in positions 7-14 might have
records added to it during processing. However, in future programs in
this book, we will be adding records to files, and when we do, this entry
will be needed.

The allowable entries for column 66 are as follows:

A Records will be added to the file
Blank Records will not be added to the file

An “A” in position 66 indicates whether records are to be added to a
DISK file during processing. A blank means records will not be added
For an output file (O in position 15), however, a blank is equivalent to an
A since by definition output means added records.

F Positions 67-70 (Reserved)

Positions 67-70 are not used in PAREG and for all programs, these
positions must be blank.

F Positions 71-72 (File Condition)

Programmers sometimes try to get all they can into one program and they
will often use the same program to provide two functions that are similar,
rather than write a second program. Sometimes, the difference in
program is the input or output form that the job requires. To help

Table of Contents 115

programmers in their efforts to be efficient, RPG provides the ability to
include or exclude certain files at execution time withng a facility called an
external program switch. The PAREG program does not use an external
switch nor do any other programs examples in this book. However, since
you may find it a handy tool, we are providing a description of the
function and how to make it work for you.

The entries that can be used in 71-72 are as follows:

Blank The file is used by the program, if input file, it is opened.
U1-U8 The file is used by the program only when the indicator is on.
UC The programmer controls the first open of the file

When switches 1 to 8, also known as U1 to U8 (U for user switch) are
used, the effect on the file description is ignored when the indicator is off.
Thus it is like a blank being specified. When UC is sued, RPG does not
automatically open the file for use as it usually does. Instead, the
programmer controls the first open using the OPEN operation in
calculations.

F Positions 73-74 (Reserved)

Positions 73-74 are not used in PAREG and for all programs, these
positions must be blank.

F Positions 75-80 (Comments)

Since most of the file description form is used with real, live potential
entries, there is not much left for comments. Positions 75 to 80 can be
used for comments, or left blank.

FC File Description Continuation Lines

Even with the File Description Extension specification as well as the Line
Counter specification, (column 39) both of which extend or continue the
File Description specification, there still is not enough room in the File

Table of Contents 116

Description area to provide for all of the options that must be specified.
Therefore, IBM has defined a continuation column (53) by which the
entries for File Description can be “extended even further.”

A continuation line can be specified on the main file-description
specification line if the functions use positions 54 through 65 for their
definition. However, the use of certain keywords defined below, such as
SFILE, RENAME, IGNORE, and PLIST cannot be defined on the same
spec with the main file description line. For these and for situations in
which multiple keywords need to be used, additional lines cane be used to
continue the File Description form. Any number of continuation lines can
be specified. A continuation line is indicated by a K in position 53.

FC Columns 7 – 18 Unused

These positions must be blank for a separate continuation line.

FC Columns 19 – 28 External Name of
Record Format

These columns positions are used to specify the external name of the
record format that is to be renamed (RENAME) or ignored (IGNORE).

FC Columns 29 – 46 Unused

These positions must be blank for a separate continuation line.

FC Columns 47 – 52 Record # Field for
Subfile

When programming to use interactive workstation capabilities in
RPG/400, there is a facility known as a subfile that can be appended to
the display file through the use of DDS and specific RPG entries to

Table of Contents 117

support the use of the subfile. A subfile in essence is a memory file of
repeating lines (records) that would appear on a display. The memory file
can be accessed within a program by record number. In columns 47 – 52,
you specify the name of the numeric field that will contain the relative
record # associated with the subfile.

This filed name gets specified ona subfile iptions keyword (SFILE). For
the SFILE options, these positions must specify the name of a
Relative Record Number (RECNO) field. For other continuation line
options, these positions (47 – 52) must be blank.

FC Column 53 Continuation Character (K)

A “K” indicates a continuation line.

FC Columns 44 – 59 & 60 – 67; “K” Options

These positions are used together. Positions 54 through 59 specify the
option, while positions 60 through 67 provide further explanation of the
option. See "Continuation Line Options Summary Chart" in Figure 6-6
for a look at the available continuation options and coding requirements.

FC Columns 68 – 74 Unused

These positions must be blank for a separate continuation line.

FC Columns 75 – 80 Optional Comments

This space is available for comments

FC Options and Entries for Continuation

Many of the entries in Table 6-6have to do with device files used for data
communications or for WORKSTN files. Though there is a place for
these options and entries, this is not a beginner’s topic so if this stuff is as
clear as mud as you look at the table, that’s OK for now. One day, when
you need a tool, such as those described in the table, you will know they

Table of Contents 118

exist, and you will know where to find them. The function and purpose of
the tools below are provided in very brief terms with the intention of
providing a light familiarity. When the reader chooses to use this material,
what is provided below will help you but for a complete explanation, you
will need to consult the IBM manuals to get the grit and detail. The valid
entries for positions 54 through 67 are shown in the chart in Figure 6-1.

Figure 6-6 Continuation Line Options Summary Chart

Option
(54-59)

Entry
(60-67)

Function & Purpose

COMIT Blank This entry is specified to indicate that the file is
opened for commitment control. This enables
the COMIT and ROLBK operation codes in
RPG/400.

ID Field
Name

Provide the name of a 10 character field to
capture the name of the device providing the
record to the program.

IGNOR
E

Blank Permits you to selectively ignore specific record
formats from files. The record format name
would be specified in positions 19 to 28 of the
continuation line

IND Indicator General indicators from 01 to the indicator
specified in 60-67 are saved and restored for
each device that is attached to this program.

INFDS DS Name Provide the name of a data structure that RPG
can use to contain the exception / error
information associated with device operations.
The DS name is entered in columns 60-65 and
left justified. If multiple INFDS are used in a
program, each must be given a unique name in
this area.

INFSR Subroutin
e
Name

The file exception/error subroutine named (left
justified) in positions 60 through 65 may receive
control following file exception/errors. The
subroutine name may be *PSSR, which
indicates that the user defined program
exception/error subroutine is to be given
control for errors on this file.

NUM Maximu
m

Workstation programs can acquire workstation.
In most programs, just one device, the
requester of the program, is used with a
program. However, some programs are written
to acquire devices and begin communication

Table of Contents 119

with them for a program purpose.
PASS *NOIND This facility exists mostly to accommodate

programs coming from other systems such as
System/3 or System/36. If you were to write a
program fresh today, you would not use
program described workstation input and this
keyword would be moot. However, to use this
facility, you would specify PASS *NOIND on
the file description specification continuation
line for a program described WORKSTN file if
you are taking responsibility for passing
indicators on input and output. With PASS
*NOIND, the RPG/400 language does not
pass indicators to data management on output
and does not receive them. In this scenario, you
would pass indicators by describing them as
fields (in the form *INxx, *IN, or *IN,xx) in
the input or output record.

PLIST Paramete
r
List
Name

This entry is valid only when the device name
specified in positions 40 through 46 of the main
file-description line is SPECIAL. Positions 60
through 65 give the left-justified name of the
parameter list to be passed to the special
routine. The parameters identified by this entry
are added to the end of the parameter list
passed by the program.

PRTCT
L

Data
Struc-
ture
Name

There is a facility for program described priner
files called dynamic printer control. If this
keyword is used, the option is being used

RECNO Field
Name

This entry is optional for disk files to be
processed by relative-record number. A
RECNO field must be specified for output files
processed by relative-record number, output
files that are referenced by a random WRITE
calculation operation, or output files that are
used with ADD on the output specification.

RENAM
E

Rec
Format
Name

This entry, which is optional, allows you to
rename record formats in an externally
described file. Positions 19 through 28 of the
continuation line specify the external name of
the record format that is to be renamed.
Positions 60 through 67 specify the left-justified
name of the record as it is renamed for use in

Table of Contents 120

the program.
SAVDS Data

Struc-ture
Name

Positions 60-65 contain the left-justified name
of the data structure saved and restored for each
device. Before an input operation, the data
structure for the device operation is saved. After
the input operation, the data structure for the
device associated with this current input
operation is restored.

SFILE Record
Fmt
Name

If the main file-description line contains E in
position 19 and WORKSTN in positions 40
through 46, this option must be used to define
any subfiles to be used in the file. Positions 60
through 67 must specify, left justified the
RPG/400 name of the record format to be
processed as a subfile.

Positions 47 through 52 must specify the name
of the relative-record number field for this
subfile. The relative-record number of any
record retrieved by a READC or CHAIN
operation is placed into the field named in
positions 47 through 52. This field is also used
to specify the record number that RPG/400
uses for a WRITE operation to the subfile
(memory file) or for output operations that use
ADD.

SLN Field
Name

Positions 60-65 contain the left-justified name
of a start line number (SLN) field. The SLN
field determines where (which line #) a record
format is written to a display file. The main
file-description line must contain WORKSTN
in positions 40 through 46 and a C or O in
positions 15. The data description
specifications for the file must specify the
keyword SLNO(*VAR) for one or more record
formats.

RPGIV File Description Keywords

Table of Contents 121

Just like with the Header Specification, RPGIV handles many of the items
that were required to be specified with columns in RPG/400 File
Descriptions using keywords. In Figure 6-7, we show a sample of six
lines of RPG code with some keywords being used.

Figure 6-7 Sample RPGIV File Descriptions with Keywords
FFILE1P O E DISK EXTMBR('FILE1ALL')

F RENAME(FILE1PR:ALLPR)

FFILE2P O E DISK EXTMBR('FILE2LST')

F RENAME(FILE2PR:LSTPR)

FFILE3P O E DISK EXTMBR('FILE3OTH')

F RENAME(FILE3PR:OTHPR)

Table 6-8 shows the keywords, samples in action, options, and the
meaning of File Description keywords. RPGIV provides positions 44 to
80 of the F specification for stringing out keywords. Multiple keywords
can be placed on each line and multiple lines can be used to accommodate
necessary keywords.

Table 6-8 RPGIV File Description Keywords
Keyword / Sample Other Options Meaning
BLOCK(*YES) *NO Should records fro this file

be processed in a block?
COMMIT(YESORNO) RPG_name Enable commit with a “1”

value
DATFMT(*ISO) Format{separator} Specifies the date fromat
DEVID(devname) Field name Field contains the name fo

the device supplying the
last record processed.

EXTFILE(RPGBOOK/
TIMECD)

Filename;
libname/filename
*LIBL/filename

EXTIND(*INU1) (*INUx) Open file if external
indicator is on.

EXTMBR(MEMBER2) *First; *All, member
name

Specify specific member
name in file to be opened

FORMLEN(50) number Specify forms length in
lines for line counter
function

FORMOFL(44) number Specify line # which turns
the overflow indicator on.

IGNORE(RFMT01: (recformat{:recform Ignore one or many record

Table of Contents 122

RFMT02)

at...}) formats from this file.

INCLUDE(RFMT01:
RFMT02)

(recformat{:recform
at...})

Include one or many record
formats from this file.

INDDS(INDICATORS) DS_Name Load workstation
indicators into this
structure during execution

INFDS(FEEDBACK) DS-Name Name the info DS that will
be associated with this file

INFSR(SUBNAME) *PSSR;
(SUBRname)

Name subroutine to get
control if error.

KEYLOC(45) Number Specify the location of the
key in an program
described file.

MAXDEV(*ONLY) *FILE Restricts # of acquired
devices such as
workstations

OFLIND(OF) OA-OG, OF Specify the overflow
indicator for a printer
device file

PASS(*NOIND) No other option Do programmers control
indicator passage?

PGMNAME(SPECDEV) program_name Provide name of program
to handle a special device.

PLIST(BIGPARMS) (Plist_name) Provide the name for a
parameter list to be used
with called or calling
programs.

PREFIX('GRP1.')

(prefix{:nbr_of_char
_replaced})

Prefix is appended to the
beginning of each field in
this file to avoid duplicate
names when used with
other files.

PRTCTL(FRMCTLDS) (data_struct{:*COM
PAT})

Provide name of forms
control data structure

RAFDATA(RAFFILE) Filename Specify the name of the
RAFFILE to control record
processing for this file

RECNO(RRN) (Fieldname) Specify the field name to
contain the record # to
write output records to a
direct file

RENAME(FM1:FM2) (Ext_format:Int_for
mat)

Rename the external record
format for program use to
avoid conflicts

SAVEDS(SAVEFIELDS) DS Name Provide a DS name so that
RPG will save fields for
each device before each
input operation.

SAVEIND(55) Number Similar to DAVEDS.
Specify how many
indicators you want saved.

SFILE(SFL3:RRN3) (recformat:rrnfield) Specify name of subfile
format and the field name
to be used for subfile record

Table of Contents 123

processing.
SLN(15) Number (1 to 24) Starting line # to place

record formats for this
workstn file. At least one
screen panel must use
SLNO(*VAR)

TIMFMT(*ISO) format{separator} Specify time format
USROPN No other values This file will be opened in

the program – RPG will not
automatically open it.

Table of Contents 124

L -- Line Counter Specification Form

The Line Counter specification was designed as an extension to File
Description for printer files. Its purpose is to provide the programmer
with a means of defining necessary things such as the forms length and
overflow position of special forms such as invoices, statements or checks.
The form is quite simple, and though we did not need a line counter in
the PAREG program, the entries in the example shown below reflect the
default line counter used in PAREG.

When you line up all the forms for an RPG program, you place the Line
Counter specifications right after File Description specifications unless
there are Extension specifications. If there are Extension specifications,
then Line Counter follows Extension. Figure 6-9 shows the Line Counter
specification default that was used in the PAREG program.

Figure 6-9 Default Line Counter Specification

FMT * *. 1 ...+... 2 ...+

0004.00 L*

FMT L LFilename066Fl060Ol.

0005.00 LQSYSPRT 066FL060OL

L Column 7-14 File Name

In columns 7-14, specify the file name of the PRINTER file as previously
specified on file description specification form.

L Column 15-17 Lines Per Page

In Columns 15 – 17, specify the number of printing lines on the form.
The available entries are 2 through 112.

Table of Contents 125

L Column 18-19 Form Length

Specify the letters “FL” in columns 18 – 19 to indicate that the entry in
positions 15 through 17 is the form length. Positions 18 and 19 must
contain FL if positions 15 through 17 contain an entry.

L Column 20-22 Overflow Line Number

The line number you specify in columns 20-22 is the overflow line
number. When printing hits this point on a page, the RPG program turns
on the overflow indicator OA-OG, OF to inform the program that the
last print line on the form has been reached..

L Column 23-24 Overflow Line Indicator

Specify the letters “OL” in columns 23 – 24 to indicate that the entry in
positions 20 through 22 is the overlow line. Positions 23 and 24 must
contain OL if positions 20 through 22 contain an entry.

L Column 25 - 74 Blank

L Column 75 - 80 Optional Comments

RPG IV Line Counter Information

In RPGIV, the columns of the Line Counter specification are handled by
the FORMLEN and FORMOFL keywords. They are specified in File
Description for the printer file. The File Description specification and the
RPGIV keywords are described in the next section.

Table of Contents 126

Chapter 7

The Specifics of RPG Coding –
Input – by Example

The Many Faces of RPG Input

RPG is an evolving language. At the time of its introduction in 1988, for
example the base RPG in RPG/400 was well over 30 years old. Each year
as the specifications for RPG got better and better, the challenge for the
designers was hot to fit the new function in the same number of
specifications and the 30-year old 80 column limitation.

From your reading of Chapter 6, you now know that File Descriptions
were expanded in three different ways. Line Counters specs (L) were built
to better describe more modern printers. Extension (E) specifications
were built to handle arrays and tables (– covered in Chapter ***), and the
File continuation was introduced to deal with the nuances of workstation
and telecommunications files. In fact, for a brief period, File Description
actually spawned a third spec called the Telecommunications (T)
specification which was used to talk to batch terminals in the 1970’s
before the System/38 was introduced.

So, you will not be surprised that the Input specification is also
overloaded with baggage. First of all, input specifications always had two
purposes: (1) identify records as they are read and (2) define the data. So,
there were always two formats to the Input specification. In 1978 with the
introduction of the System/38, IBM introduced RPGIII. This flavor of
RPG permitted the RPG input specifications to be fetched and formatted
from the database itself by the compiler at compile time.

Table of Contents 127

This saved tremendous amounts of coding but it added a new wrinkle to
input specs. When input needed to be defined or changed for one reason
or another, such as reducing the size of a database field from 10
characters to 6 for the RPG limitation, a means on the INPUT coding
sheet needed to be created. Since Database files do not like more than one
record type, the old way of identifying records needed to be replaced in
such a way that RPG could create a place in input for each different
screen format or each format in a logical file. Additionally, Input needed
to be provided for Control Fields and for Match fields even when the rest
of the data descriptors were fetched from the database.

IBM answered the call with two more forms of the RPG Input
specification, both to handle what is called externally described data. Since
the new formats handled externally described data, the old formats were
then said to use internally described data or program described data –
synonyms for the notion that the data elements used in the program were
the ones described in the program – regardless of what was in the
database. Just as with the program described data, the one format handled
record IDs and the other handled field definitions.

The System/38 also introduced new uses for the Input specification: Data
structures and named constants. Unlike COBOL which has a Data
Division that does not care about whether a data element is used for input
or output, RPG had only input and output specs for major data
definitions and operations. Since it did not make sense to define data in
output, the named constant took on a new format of the input spec as did
the data structures. Named constants are covered in Chapter 8 and Data
structures are covered both in Chapter 8 and in Chapter ****.

Though named constants and structures are important, we would be
getting ahead of ourselves at this point since the PAREG program which
is still our simple guiding example, gets along fine without either.

Internally & Externally Described Input

Externally described input files are far more efficient to code than
program described (internally described) input files. However, because
there are still many RPG programs that use program described data,
especially in shops that have migrated from System/36 machines, we

Table of Contents 128

cover program described data for completeness. Since PAREG uses
externally described data, this chapter first defines the structure of the
external form for input and then goes back for completeness and fills in
the blanks for the internal / programmed described format of Input.

I – Input Specification Form

For an externally described file, input specifications are optional. Yet, they
have value in instances in which the programmer would like to add
RPG/400 functions to the external description – such as matching
records and level breaks. The PAREG program is an example. So we use
Input specifications as we did in the PAYREG program, even though its
input is externally described. This enabled us to describe the matching
fields as well as the control fields needed in this program to create the
report.

To make it easier for you to follow along with the role and the format of
the input specification, we show the input portion of the compile listing
of the PAREG program in Figure 7-1. This is important in understanding
internal and external data descriptions in RPG, since as you can see in the
with the input specifications and the expanded source.

Figure 7-1 Compile Listing of External Input Expanded
 1000 I* RPG INPUT SPECIFICATION FORMS

 1100 I*

 1200 IPAYR 01

 1300 I EMPNO EMPNO M1

 1400 I EMPCTYL1

 1500 I EMPSTA EMPSTAL2

 1500 INPUT FIELDS FOR RECORD PAYR FILE EMPMAST FORMAT PAYR.

 A000001 EMPNO 1 30EMPNO M1

 A000002 4 23 EMPNAM

 A000003 24 282EMPRAT

 A000004 29 48 EMPCTYL1

 A000005 EMPSTA 49 50 EMPSTAL2

 A000006 51 550EMPZIP

 1600 ITIMR 02

 1700 I EMPNO EMPNO M1

 1700 INPUT FIELDS FOR RECORD TIMR FILE TIMCRD FORMAT TIMR.

 B000001 EMPNO 1 30EMPNO M1

 B000002 4 72EMPHRS

Table of Contents 129

We have already learned that any statement with an asterisk in column 7 is
a comment and thus, statements 10 and 11 are comments. Statement 12
is a record format identifier, whereas statements 13 through 15 are the
field definitions for the payroll master. As you may be able to tell by
looking at Figure 6-1, the format of the record identifier and the format of
the field definitions are substantially different. So, unlike the File
Description Specification (F- spec), which has just one format, for
externally supplied input, there are two very different types of input
specifications.

For the externally described files such as the two we have coded in the
PAREG program, entries on the input specifications are divided into the
following categories:

1. Record identification entries
 (positions 7 through 14, and 19 and 20)
 These identify the record (the externally described record
 format) to which RPG/400 functions are to be added.

2. Field description entries
 (positions 21 through 30, 53 through 62,and 65 through 70).
 These describe the RPG/400 functions to be added to
 the fields in the record.

Field description entries are always written on the lines following the
corresponding record identification entries. For data structures, which are
fully described in Chapters 8 and *****, the entries on input
specifications are divided into the following categories:

1. Data structure statements
 (positions 7 through 12, 17 through 30, and 44 through 51).
 These entries define data structures to RPG.

2. Data structure subfield specifications
 (positions 8, and 21 through 58)
 These entries describe subfields of the data structures.

Just as the field descriptors for input, data structure subfield specifications
are written on the lines following the data structure statements.

Table of Contents 130

Input Spec Quick Summary

As a quick summary on the externally described versions of the record
and field oriented input specification, it is clear to see that the I spec is a
real workhorse for RPG. Ironically, its overuse for non-input functions is
one of the major reasons why IBM created the data specification (“D”
spec) for RPG IV. This “D” spec resembles the Data Division in
COBOL. For RPG/400, however, since there is no “D” spec, you will
find machinations of the good old input spec helping you with the coding
for all of the following RPG facilities:

✓ Entries for program described files

✓ Entries for externally described files

✓ Entries for data structures

✓ Entries for named constants

RPG Input Form Types

To help you gain a better appreciation for the many combinations of
input specification formats, a picture is worth a thousand words. Years
ago, RPG programmers would code their programs on paper sheets such
as the one in Figure 7-2. As you can see by examining Figure 7-2, there
are many different formats for RPG for both program described and
externally described formats

Table of Contents 131

Figure 7-2 RPG Input Specification Form – Entry Choices

PAREG Record and Field Statements

The PAREG program needs the external form for both the Record ID
Entries and the Field Description Entries. As we examine the PAREG
coding in light of these forms, you will see how the Record ID part
helped us identify the primary and secondary files with record identifying
indicators. You will also see how the Field part provided space for the
entries necessary both match fields and control levels and you will see that
the match fields help assure that there is an in-sequence time card record
for each payroll master record. So, there is no doubt they both halves of
the external input format are necessary in RPG and no doubt that both
are absolutely necessary for the success of the PAREG program. Let’s
first look at the record ID part of input and then we’ll move to the field
description part.

Table of Contents 132

I Externally Described Record ID Entries

Externally described file input specifications provide additional coding for
records to be processed in an RPG program. Since their typically is no
Record ID character in database files with multiple record types, input
specs are used to differentiate records. Additionally, the record format can
be renamed as needed using input specifications specifically designed for
externally described files. On the field side, of course input specs permit
fields to be referenced so that level indicators and matching fields
indicators can be specified.

The following section describes in reasonable detail the entries for the
Record ID part of the External Input form. Since RPGIV in many cases
uses a different column for the same function, immediately after the
description of the RPG/400 entry, the RPGIV function location is
provided. The designator IEDRI is used to begin each header so it is easy
to spot the entries that belong with Input, Externally Described, Record
Identification.

IEDRI Columns 7-14 Record Name

For the record name specified in columns 7-14 of the Input specification,
the allowable entries include the following:

1. The external name of the record format. The file name cannot be used
or an externally described file.

2. The RPG/400 name specified by the RENAME option on the file
description specifications continuation line if the external record format
was renamed. A record format name can appear only once in positions 7
through 14 of the input specifications for an RPG program.

In RPGIV, the Record name is specified columns 7 – 16.

Table of Contents 133

IEDRI Columns 16 – 18 Reserved

Columns 15-18 of the externally described input form are reserved for
future use. No entries should be placed in these columns.

IEDRI Columns 19 – 20 Record Identifying
Indicator

When an optional record identifying indicator is specified in columns 19-
20, it will be turned on if the record format name in 7-14 is the one read
by the program.

In RPGIV, the Record ID Indicator is specified in columns 21 – 22.

IEDRI Columns 21 – 41 Unused

Columns 21 to 41 are unused for externally described input specifications.
They must be coded as blank.

IEDRI Columns 42 – 74 Reserved

Columns 42-74 are reserved for future use for externally described input
specifications. They must be coded as blank.

IEDRI Columns 75 – 80 Reserved

Positions 75-80 of the externally described record ID input form can be
used for comments, or left blank.

Applying INPUT Record IDs to PAREG

Now, let’s take a look at the input records coming in from the
EMPMAST and the TIMCRD files. In Chapter 3, we showed the DDS

Table of Contents 134

in Figure 3-2 for EMPMAST. You may recall that the first line of the
DDS described the record format. This line looked like this:

0001.00 A R PAYR

DDS specs have their own spec type “A” in column 6. The R in column
17 says this is a record format line. In DDS, you place an R in this column
to identify the record format by name. The name PAYR in column 19 is
the name we gave to the record format of the PAYMAST file. Look at
the similarities of this with the following RPG Input spec as originally
typed in the PAREG program (Figure 5-1)

0012.00 IPAYR 01

The notion of a record format name is very similar to the record id notion
within the RPG language as shown immediately above in the blown up
input specification from line 12. In most cases, the coding is that simple.

There is a notion in System i5’s DB2 native database coding called Logical
files or views. These logical views can be built over one or several
database files and can present data from multiple database files. All
relational databases can present a JOIN view in which pieces of multiple
records in multiple files make up one record in the joined logical view.

System i5’s DB2 is the only database that can provide a hierarchical view
of physical files with different formats in much the same way file systems
handled multiple record types years ago. When a multiple format logical
view is created over a number of physical files, the format name in the
physical file, such as EMPMAST’s PAYR and TIMECRD’s TIMR
becomes the format name used to differentiate the records in input specs
when processed through the logical file. Instead of two files being defined
to the program as in PAREG, for example, just the Logical File would be
coded and it would presents both record types with their differing formats
to the program in a pre-designated sequence such as by the EMPNO
field..

Table of Contents 135

So, if PAYR and TIMR record formats were in a logical view sequenced
by EMPNO, the 55 character PAYR format would come in and then the
7 character TIMR format would come in through the one file description
spec. The programmer would identify each of these with the IEDRI
form – one for each record format and then would specify each of the
format names in IEDRI exactly the same way as they are specified in the
PAREG program. When PAYR is read, indicator 01 would be turned on
as identification and when record TIMR is read, indicator 02 would be
turned on.

Therefore, both logical files with multiple formats as well as primary and
secondary files with one format each can be read by the fixed logic cycle
of an RPG program such as PAREG. Therefore it is incumbent on RPG
to have a vehicle to differentiate one record format from another. The
record format input specification IEDRI provides this vehicle.

To help us remember what the Input Specs are like in PAREG, we
present Figure 7-3. We have seen this Figure before as Figure 6-5 in
Chapter 6. You may recall it is the compiled input specs. Therefore it
includes external fields from the database that are not described in the
program code. The program code has regular statement #s to the left
whereas the code fetched from the database has long numbers such as
A000001 beginning with a vowel to the left.

Figure 7-3 Compile Listing of External Input Expanded
 1000 I* RPG INPUT SPECIFICATION FORMS

 1100 I*

 1200 IPAYR 01

 1300 I EMPNO EMPNO M1

 1400 I EMPCTYL1

 1500 I EMPSTA EMPSTAL2

 1500 INPUT FIELDS FOR RECORD PAYR FILE EMPMAST FORMAT PAYR.

 A000001 EMPNO 1 30EMPNO M1

 A000002 4 23 EMPNAM

 A000003 24 282EMPRAT

 A000004 29 48 EMPCTYL1

 A000005 EMPSTA 49 50 EMPSTAL2

 A000006 51 550EMPZIP

 1600 ITIMR 02

 1700 I EMPNO EMPNO M1

 1700 INPUT FIELDS FOR RECORD TIMR FILE TIMCRD FORMAT TIMR.

 B000001 EMPNO 1 30EMPNO M1

 B000002 4 72EMPHRS

Table of Contents 136

When an RPG programmer decides that matching or control fields must
be specified, the language requires that for an externally described file, a
record format must precede the field specs. After the “I” in column 6,
(columns 7 through 14) the programmer specifies the name of the format
that matches the name of the format in DDS, which to be more exact is
the format name in the physical database file itself.

After the format name, if you keep moving right along the RPG form,
you will come to an ‘01” starting in position 19. This is very important for
this program. The “01” is the record identifying indicator for the
EMPMAST file. Just what does this mean? It means that whenever a
record is read during the fixed logic cycle, RPG will check to see if it is a
record from the PAYR record format. in the database. If it is, then RPG
will turn on indicator “01” so it can be used within the program.

In older RPG’s, and for program described data, 7 – 14 would contain
the name of the File (EMPMAST) as defined in the File Descriptions this
the. For externally defined files, however, RPG demands that the
programmer specifies the same format name as the name used to build
the database.

Once we know how to describe an input record format for one RPG file,
we can describe it for any. Let’s take a shot at decoding the record format
for the TIMCRD file which is found on the PAREG program at
statement 16.

0016.00 ITIMR 02

Other than the sequence number and the I in column 16, again the
programmer needs just two entries to make this external record ID work
in the PAREG program The DDS for the TIMCRD database file were
originally shown back in Figure 3-3. Just as PAYR is the record name
specified in DDS in Figure 3-2 for the EMPMAST database file, TIMR is
the record format name specified in DDS for the TIMCRD database file.
Thus in the input statement defined at statement 16 in the PAYREG
RPG program, TIMR is the record format specified. Additionally, the
programmer has told RPG to turn on indicator “02” as a record
identifying indicator whenever a time card record is read.

Table of Contents 137

That’s’ the essence of the record format input specification. For the
PAREG program, by turning on indicator 01, it tells RPG that a
EMPMAST record was read and it is available for processing in this detail
cycle. By turning on indicator 02, it tells RPG that an TIMCRD record
was read and that it is available fro processing this detail cycle. As you
may recall from Chapter 1, right before RPG reads from the file last
processed, it does housekeeping by turning off all of the matching and
record identifying indicators so that when it turns on indicator “01” or
indicator “02” there is no residue left from other detail cycles. If the
status of Indicator 01 in the PAREG program is “ON,” then the Master
has just been read. On the other hand, if the status of indicator “02,” is
on, then the time card record has just been read.

I Externally Described Field Description
Entries

Unlike the program described record ID and field description portions of
the RPG input specification, which is really an 80 column form cut just
about in half, the externally described versions each start at position 7 of
the input specification. In this section, we examine the field description
entries for externally described files.

The designator IEDFD is used to begin each header so it is easy to spot
the entries that belong with Input, Externally Described, Record
Identification.

Field Specifications in RPG/400

There are more entries in the field specification form in RPG/400 than
we need for PAREG so while we are examining the entries in PAREG,
we will also explain any other entries on the form type. The field entries
from the EMPMAST are listed below followed by blank line and the
fields from the TIMCRD file.

Table of Contents 138

Figure 7-4 Field Entries as Coded in PAREG
 678911234567892123456789312345678941234567895123456789612
0013.00 I EMPNO EMPNO M1
0014.00 I EMPCTYL1

0015.00 I EMPSTA EMPSTAL2

0017.00 I EMPNO EMPNO

IEDFD Columns 7 – 20 Reserved

Columns 7 – 20 of the externally described field description form of the
input specification has reserved positions for future use, thus none of
these positions were coded for PAREG

IEDFD Columns 21 – 30 External Field
Name

For the PAREG program, no entries need to be made in this area. Yet, if
you look at the four field entries specified in this program, you will see
that three are entries for three of the four input fields. This area needs to
be used only when you have chosen to rename a field from the database.
Say, you want to reference the field called EMPNO, for example as
EMP# in the program. By specifying EMPNO in this area and then
specifying EMP# in the program field area (53-58) the field name will be
EMP# when referenced in this program

A big reason for renaming fields is that sometimes database
administrators use all ten positions of the field name in DDS. Since
RPG/400 field names can be just 6 characters in length, a rename would
be necessary to use the field in the program.

There are no such examples in the PAREG program. However, we did
add an entry for all fields but EMPCTY of the EMPMAST file in this
external name for rename area. This was unnecessary. It was done merely
to show you how a rename of a field could readily be accomplished.

In RPGIV, the External Field Name is also specified in columns 21 – 30.

Table of Contents 139

IEDFD Columns 31 – 52 Reserved

Columns 31 – 52 of the externally described field description form of the
input specification has reserved positions for future use.

IEDFD Columns 53 – 58 Field Name

For files that are externally described, no input specifications are required
unless the programmer uses special RPG functions that depend on input
lines being marked appropriately. In other words, the field name entry is
made only when it is required for the RPG/400 function (such as control
levels or matched fields or renamed fields) that must be added to the
external description.

The four field name entries (lines 13 to 15 from the EMPMAST database
and line 17 from the EMPTIN database) as defined in PAYREG are easy
to spot in Figure 7-4. The field name entry can be specified with one of
the following:

The name of the field as defined in the external record description (if 6
characters or less).

The name specified to be used in the program that replaced the external
name specified in positions 21 through 30.

In RPGIV, the Field Name is specified in columns 49 – 62.

IEDFD Columns 59 – 60 Control Level

The entry in position 59 and 60 indicates whether the field is to be used as
a control field in the program.

The allowable entries for positions 59 and 60 are as follws:

Blank This field is not a control field.
L1-L9 This field is a control field.

Table of Contents 140

The input specifications for the fields in the EMPMAST file used to
define control level totals are shown below:

0014.00 I… EMPCTYL1

0015.00 I… EMPSTA EMPSTAL2

The code above tells the RPG compiler that the State field (EMPSTA) is a
second level control field and any change in this field as primary (Payroll
Master) records are being read will trigger a control break from which
second level (L2) control level calculations and second level control level
output can be created during the RPG cycle. If the City (EMPCTY) field
changes while master records are being read, a first level break is triggered
and those calculations and output designated to occur during an L1 break
can then occur. A higher level break always triggers a lower level break.
Thus in this example, if the state field changes, the city calculations (L1)
will occur, followed by city total output (l1), followed by state total
calculations (L2) followed by state total output (L2).

In RPGIV, the Control Level is specified in columns 63 – 64.

IEDFD Columns 60 – 61 Match Fields

This entry indicates whether the field is to be used as a match field. The
allowable entries in columns 60 – 61 are as follws:

Blank This field is not a match field.
M1-M9 This field is a match field.

Match fields are the key to making this PAREG program work. The two
lines that specify the match fields in the PAREG program follow this
paragraph. The data records in both files are in sequence by EMPNO in
order for this to work. They get in sequence using the IBM fort known as
Format Data or FMTDTA. When the records match, RPG turns on a
special indicator called MR to help control the operations of the program.
Knowing a match has occurred is an extremely valuable piece of
information as you will see in the rest of this program. When the “MR”
indicator is turned on by RPG detecting a match between the primary and

Table of Contents 141

secondary files, it can be used to further condition operations in the
program.

0013.00 I… EMPNO… EMPNO M1

0017.00 I… EMPNO… EMPNO M1

The two fields above are shown in context in Figure 7-3 within their
specific record formats (from the EMPMAST and TIMCRD database
files respectively). Statement 13 belongs with EMPMAST and statement
17 belongs with TIMCRD.

As you can see on line 12 in Figure 7-3, the EMPNO field from the
EMPMAST file (format PAYR) is matched on line 17 with the EMPNO
field from the TIMCRD file (format TIMR from line 16) By placing M1
on each field, this entry is used to match the records of the one file with
those of the other.

Sometimes the names for fill-in items in RPG do not make sense in a
broad context. For example, the designator M1 can also be used to
sequence check match fields within one file. Obviously with just one file
specified, there could be no match and thus the designation of matched
fields does not really work in that case. Nonetheless, columns 61-62
would be where the programmer would specify matching for just one file
if the programmer would like the RPG compiler to sequence check the
incoming data (ascending or descending – depending on the code in the
file description specification). For PAREG, which has two input files, we
get sequence checking of both files as well as matching.

Table of Contents 142

What about M2 through M9?

M1 is the lowest order field that can be specified in a multi-field match.
If, for example the EMPNO field were duplicated in departments in an
organization, then the only way to assure a real match on employee would
be to include the department number as a match field. Assuming that
both databases were populated with a field called EMPDNO for
employee department number (Note lines 12.01 and 16.01) the code
would look like that shown in Figure 7-5.

Figure 7-5 Duplicate Employee # within Department #

0009.00 I*

0010.00 I* RPG INPUT SPECIFICATION FORMS

0011.00 I*

0012.00 IPAYR 01

0012.01 I EMPDNO… EMPDNO M2

0013.00 I EMPNO… EMPNO M1

0014.00 I EMPCTYL1

0015.00 I EMPSTA… EMPSTAL2

0016.00 ITIMR 02

0016.01 I EMPDNO… EMPDNO M2

0017.00 I EMPNO… EMPNO M1

Match field designators M3 to M9 work in the same fashion. Thus, in
RPG you can have up to nine match fields involved in a sequence check
or a match. If they are in match relationship, all fields specified, M1
through M9 must match in order for the MR indicator to be turned on.

One more point on this example. To keep matters simple we chose to use
the same field names in both databases for the EMPNO and EMPDNO
fields. This is not necessarily a good idea in practice but it helps in
teaching and learning. For the EMPMAST file, for example, it may be
appropriate in our shop standards to begin each field with the three
letters, EMP. However, for the TIMCRD file, using EMP for each field
can create confusion when both files are used in the same program.
Therefore, it would probably be more appropriate to use a prefix of TIM,
rather than EMP for the fields in the TIMCRD file. This is fine with
RPG. The field names do not have to be the same. In fact, the input
specifications to accommodate this are shown in Figure 7-6..

Table of Contents 143

Figure 7-6 Input Specs shown with Better Naming Conventions

0009.00 I*

0010.00 I* RPG INPUT SPECIFICATION FORMS

0011.00 I*

0012.00 IPAYR 01

0012.01 I EMPDNO… EMPDNO M2

0013.00 I EMPNO… EMPNO M1

0014.00 I EMPCTYL1

0015.00 I EMPSTA… EMPSTAL2

0016.00 ITIMR 02

0016.01 I TIMDNO… TIMDNO M2

0017.00 I TIMNO… TIMNO M1

Some other helpful rules are as follpws:

1. Match fields can be specified only for fields in primary and
 secondary files.

2. Match fields within a record are designated by an M1 through M9
 code entered in positions 61 and 62 of the appropriate field
 description specification line. A maximum of nine match fields
 can be specified.

3. The match field codes M1 through M9 can be assigned in any
 sequence.

4. When more than one match field code is used for a record, all
 fields can be considered as one large field. M1 or the lowest code
 used is the rightmost or low-order position of the field. M9 or the
 highest code used is the leftmost or high-order position of the
 field.

In RPGIV, the Match Fields are specified in columns 65 – 66. .

Table of Contents 144

IEDFD Columns 63 – 64 Reserved

Columns 63 – 64 of the externally described field description form of the
input specification has reserved positions for future use.

IEDFD Columns 65 – 70 Field Indicators

Though the program PAREG does not have a use for field indicators,
columns 65 to 70 of the I specification field spec is where they are
specified.

The entries for this area are as follows:

Blank No indicator specified
01-99 General indicators for programmer use
H1-H9 Halt indicators – cause the machine to halt
U1-U8 External indicators – externally supplied
RT Return indicator. – causes return to calling program

When you choose to supply entries in positions 65 through 70, you can
test the status of a field or of an array element as it is read into the
program during the input phase of the RPG cycle. The field indicators are
specified on the same line as the field to be tested. Depending on the
status of the field (65-66 - plus, 67-68 minus, 69-70 “zero, or blank”), the
appropriate indicator is set on and can be

In RPGIV, the Field Indicators are specified in columns 69 – 74.

IEDFD Columns 71- 74 Reserved

Columns 71-74 of the externally described field description form of the
input specification has reserved positions for future use

Table of Contents 145

IEDFD Columns 75 – 80 Comments

Columns 75 through 80 can be used for comments, or left blank.

Now, to put the whole INPUT specification, let’s start with the Record
ID area of program described files, work our way to the filed area of
program described files, then let’s look at record IDs in externally
described files and field entries for externally described files. Following
this, we’ll examine the Data Structure and the data structure subfield
formats of the input specification. In many ways, you can easily conclude
that there are in fact six different formats for the input specification and
some for them have nothing to do with input. If you have come to that
conclusion, you are correct.

I Program Described Record Identification
Entries

Now, to put the whole INPUT specification, let’s start with the Record
ID area of program described files, and work our way to the field area of
program described files. Following this, in Chapter 8, we examine the data
structure and the data structure subfield formats of the input
specification. From what we’ve done so far and where we are heading,
you can easily conclude that there are in fact six different formats for the
input specification and some of these have nothing at all to do with input.
If you have come to that conclusion, you are mostly correct. There is
actually one more variant of input that we cover in Chapter 8. This is the
named constant and clearly a constant is something that does not get read
in from an external device.

Program described input specifications describe everything about the
types of records within the file, the sequence of the types of records, the
fields within a record, the data within the field, the indicators based on the
contents of the fields, control fields, fields used for matching records, and
fields used for sequence checking.

Table of Contents 146

In Chapter 5, we showed both the externally described version and the
internally described version of the PAREG program. Figure 7-7 shows
the input specifications for the internally described version of PAREG.
The designator IPDRI is used to begin each header so it is easy to spot
the entries that belong with Input, Program Described, Record
Identification.

Figure 7-7 Internally (Program) Described Input for PAREG
0009.00 I*
0010.00 I* RPG INPUT SPECIFICATION FORMS
0011.00 I*
0012.00 IEMPMAST AA 01
0013.00 I... 1 30EMPNO M1
0013.01 I... 4 23 EMPNAM
0013.02 I... 24 282EMPRAT
0014.00 I... 29 48 EMPCTYL1
0015.00 I... 49 50 EMPSTAL2
0015.01 I... 51 550EMPZIP
0016.00 ITIMCRD AB 02
0017.00 I... 1 30EMPNO M1
0017.01 I... 4 72EMPHRS

IPDRI Columns 7-14 File Name

For program described files, you specify the File name of the input file
in 7-14 – EMPMAST and TIMCRD in PAREG. It must be the same file
name that you already described in the File Description area. In File
Descriptions, this file must have been described as an input file, an update
file, or a combined file. The file name must be entered on the first record
identification line for each file and it can be entered on subsequent record
identification lines for that file (lines 12 & 16 in Figure 7-7) but the file
name can be skipped if the record id being defined is from the same file
(such as in a multi-format logical file or a display file). All entries
describing one input file must appear together (12 – 15.01 and 16-17.01);
they cannot be mixed with entries for other files.

In RPGIV, the File name is in positions 7-16.

Table of Contents 147

IPDRI Positions 14-16 (Logical
Relationship)

For program described input, multiple tests can be performed on input
data to determine which record has been read. The logical relationship is
either coded in an RPG statement following a statement that has the file
name in 7-14 or it follows a subsequent record definition. The logical
relationship links multiple input tests together. The entries are as follows:

AND More than three identification codes are used.
OR Two or more record types have common fields.

PAREG has no logical relationships defined. If there were, the code
might look as shown in Figure 7-8 for EMPMAST.

Figure 7-8 Logical Relationship – One Record

 4567892123456789312345678941

IEMPMAST AA 01 56 CA 57 CB 58 CC

I AND 59 CD

Field Definitions here…

In this case, we are looking for real codes in the record (ABCD in 56 –
59) since that’s how internally described programs are most often
designed. If there were a second master record format in the file, say with
a record code of ABCE, the two program described record IDs would be
coded as in Figure 7-9.

Table of Contents 148

Figure 7-9 Logical Relationship – Multiple Records

 4567892123456789312345678941

IEMPMAST AA 01 56 CA 57 CB 58 CC

I AND 59 CD

Field Definitions here…

I BB 03 56 CA 57 CB 58 CC

I AND 59 CE

Field Definitions here…

In this example, indicator 01 would turn on for an “ABCD” master
format and indicator 03 would turn on for an “ABCE” master format.
The field from and to positions of each format with internally described
data can be substantially different. The other parts of the specifications
are about to be explained.

In RPGIV, the Logical Relationship is in positions 16-18.

IPDRI Positions 15-16 (Sequence)

The entries for Sequence are as follows:

AA-ZZ The program does not check for special sequence.
01-99 The program checks for special sequence within the group.

The Internally described PAREG program uses AA and AB for Sequence
(Figure 7-7). An alphabetic sequence entry tells RPG to not check the
record sequence of the input data. A numeric sequence entry does a lot of
work for the programmer if sequencing of records is important to the
application. Most often, especially with single record format disk files, the
alpha sequence is used.

The numeric sequence entry works in combination with the number
(position 17) and option (position 18) entries. It causes the program to
check the sequence of input records within a file. If the sequence is not
correct, control passes to the RPG/400 exception/error handling routine.

Table of Contents 149

If AND or OR lines are specified, the sequence check is performed on
the main record line of the group, not on the AND or OR lines.

Let’s suppose that our data is coming from a program described file with
multiple record types – payroll master file, time card file, and deduction
file. In this scenario, each record is the same length since each is in the
same file. Shorter record designs are merely padded with blanks at the
end of the record. But the fields in the records do not have to line up and
in fact will not. Each has its won layout though it exists in the same file.
Many former System/36 applications are built like this. Let’s look at the
abbreviated record layouts in Figure 7-10. As you can see, besides a record
identification field, we defined fields for each of these files. This figure
shows how the format of each record is different

Figure 7-10 Three Record Types from Same File
Emp Master From /

To
Time Card From /

To
Deduction From /

To
RECID 1 / 1 / A RECID 1 / 1 / B RECID 1 / 1 / C
EMPNO 2 / 5 EMPNO 2 / 5 EMPNO 2 / 5
EMPNAM 6 / 35 HOURS 6 / 8 DEDNO 6 / 7
EMPAD1 36 / 65 NA 9 DEDAMT 8 / 12
per
EMPNO

 1 Up to 4

In addition to the length of the RECID field, we also show the constant
contents. In this case, the master record has an A, the time card has a B,
and the deduction record(s) has a C. Thus, each of the record types in the
file are uniquely identified so that RPG can differentiate them on input
and be able to turn on the appropriate record identification indicator.

Each of the files also has an EMPNO (employee number) field which
permits the data to be presorted in record id within EMPNO sequence
prior to running the program. After the EMPNO field the records begin
to take different shapes. EMPNAM (employee name) for example is 30
positions in length, HOURS (hours) is 3 positions and DEDNO
(deduction number) is two positions. The next field defined in each
record starts in a different position – 36, 9, and 8 respectively. In fact,
there is not a third field defined for time card in this design since there is
already enough information in the record.

Table of Contents 150

The preprocessing sort is key to understanding sequencing. All records are
sorted within EMPNO sequence. If we have 100 employees and 3 records
are processed for each employee for each payroll, then 300 records are
processed. In groups of three each – one group of A, B, and C record
types for each. In other words, one master, one time card, and one
deduction record for each employee. The sequencing capabilities of RPG
are very powerful in that for every group of records, A, B, and C, you get
to say with a numeric value, whether the A should be first, the B, or the C.

In this example we defined our records in the sequence A,B, C that we
would like them processed in each group. Since pay rate is typically in the
master, we would have the master record (A record type) read 1st, then the
time card record (B record type). Once the time card is read, we can
calculate gross pay and “net pay before deductions.” The deductions, (C
record type) such as United Way and Savings bonds can then be
processed (deducted) from the net pay before deductions to get the
payroll check amount.

So, for RPG to assure that our records are in sequence, we can use the
sequence entry and we would assign a 1 sequence to master, a 2 sequence
to time card, and a 3 sequence to deductions. If ever the record types
were not in this sequence for each employee, RPG would halt the
program with an error message.

In RPGIV, Sequence is in positions 17 – 18.

IPDRI Positions 17 (Number)

For PAREG, since an alphabetic sequence # was used, no number entry
is required for column 17. The allowable entries for the number position
(column 17) are as follows:

Blank The program does not check record types for a special sequence
 (positions 15 and 16 have alphabetic entries).
1 Only one record of this type can be present in the sequenced
 group.
N One or more records of this type can be present in the sequenced
 group.

Table of Contents 151

This entry must be used when a numeric entry is made in positions 15 and
16. If an alphabetic entry is made in positions 15 and 16, this entry must
be blank.

To code for the example shown in Figure 7-10, the programmer would
place a 1 in column 17 for the A record (sequence 01) since there is to be
just one master; a 1 in column 17 for the B record (sequence 02) for the
time card since there is to be just one time card; and an N in column 17
for the deduction record since there can be one or many of them. In other
words, for each payroll group, we are asking RPG to check for one and
only one master as the first record (A) type of the group as well as one
and only one time card as the second record type (B) of the group. It gets
trickier for the deduction record as we are saying that there can be
multiples of the third record type . As your own experience with payroll
indicates, employees can have many deductions – loans, United Way,
Savings bonds etc.

In RPGIV, Number is in positions 19.

IPDRI Positions 18 (Option)

For PAREG, since an alphabetic sequence # was used, no Option entry is
required for column 18. The possible entries for column 18 are as
follows:

Blank The record type must be present if sequence checking is
 specified.
O The record type is optional (that is, it may or may not be present)
 if sequence checking is specified.

This entry must be blank if positions 15 and 16 contain an alphabetic
entry. Sequence checking of record types has no real meaning when all
record types within a file are specified as optional (alphabetic entry in
positions 15 and 16 or O entry in position 18).

Going back to the three record type sample in our payroll example from
Figure 7-10, we know that if there is a group of records for a particular
employee (EMPNO), there must be at least a master and a time card
record. The programmer would code column 18 as blank meaning that

Table of Contents 152

these records are required in each group. If it is possible, such as with
part-time workers, that an employee (even just one) would not have any
deductions, then this column must be coded as O for optional so that
RPG will not generate an error for these employees. So, if we code the
deduction record as optional, if it (C record type) is not there, it is OK but
of it is there, it must follow the B record type.

In RPGIV, Option is in position 20.

IPDRI Positions 19-20 (Record identifying
Indicators)

Both forms of the PAREG program use record identifying indicator 01
for the EMPMAST and record identifying indicator 02 for the TIMCRD
file. The possible entries for positions 19-20 (Record Identifying
Indicator, or **) are as follows:

Blank No indicator is used.
01-99 General indicator
L1-L9 Control level indicator used for a record identifying
 or LR indicator.
H1-H9 Halt indicator.
U1-U8 External indicator.
RT Return indicator.
** Lookahead field (not an indicator). Lookahead can be
 used only with a primary or secondary file.

The whole purpose of these columns and the record identification codes
in positions 21 through 41 are to be able to inform the program as to
which record has been read so it can be processed uniquely compared to
all other record types. For example, the program would code to test for an
A in the payroll example records first shown in Figure 7-10 and if the
record code is an A, the programmer would code an indictor in 19-20 so
the program would turn it on to indicate that an A record was read – So
also for a B and a C record.

Table of Contents 153

The indicators specified in these positions are used in conjunction with
the record identification codes (positions 21 through 41).

When ** is used with a primary and secondary file, RPG is able to peek
ahead in the file at the next record to be processed in a file.

In RPGIV, Record identifying Indicator is in position 21 – 22.

IPDRI Positions 21-41 (Record
Identification Codes)

The entries a programmer makes in positions 21 through 41 provide a
means for the program to identify each record type in an input file
consisting of multiple types of records. Up to three test sets can be
included on one statement and the tests can be extended by using the
AND/OR logical relationship column described above (columns 14-16).
The best example for this for a PAREG variant is shown in Figure 7-9.

If the file contains only one record type, which is the case with most files
used with System i, the identification codes can be left blank. However, a
record identifying indicator entry (positions 19 and 20) and a sequence
entry (positions 15 and 16) must be made. It is OK for the sequence entry
to be alphabetic meaning no sequence.

Three sets of entries to be tested can be made in positions 21 through 41:
Set 1 is 21 through 27; set 2 is 28 through 34; and set 3 is 35 through 41.
Each set is shaped the same and each is divided into four groups. For
want of better names, we will call these parts: (1) position, (2) not, (3)
code part, and (4) character.

It helps to remember that we are coding at this point to test input record
types so that RPG will turn on an indicator that we can use in our
program to process a particular record type. We are not defining anything
here. We are merely testing conditions to see if they meet a particular
record type’s criteria.

(1) Position refers to the specific position in a data record that we will be
testing for its contents. If a record is 100 characters long, we can test in

Table of Contents 154

any of 100 places for a record code that differentiates this record from
others. If we use the three record types defined in Figure 6-3, we can see
that there is just one record code that differentiates each record and it is
located in position 1 of the record.

There are applications that build standard messages so that data can be
passed from program to program and depending on the code in the
message, the data with the message is formatted specifically for that
message and it differentiates that message from all other messages. If an
organization chose a four digit code for example for that message ID, the
ID itself could be examined in this input area provided there were fewer
than 99 different combinations of codes that were deployed in the
application. To test for four codes, all three groups on one input
statement would need to be used and the AND relationship would need
to be used to examie the fourth position.

(2) Not refers to the negative of the test. If the test, for example is looking
for an A in column 1, and the N was specified in the record ID group, if
there was NOT an A in column 1, the indicator specified in columns 19
and 20 would turn on to ID the record.

(3) Code part refers to the part of the one character that is being tested.
You can choose the whole character, the zone of the character or just the
digit portion.

(4) Character refers to what you are looking for in that particular area of
the record. In our example, if we were looking for an A record code we
would test position 1 of the record with not being blank and a C in the
Code part and an A in the character part so that an indicator – let’s say
indicator 1 in 19 and 20 would get turned on each time the program read
a master record.

Table 7-11 shows which input test sets use which positions in each set.

Table of Contents 155

Table 7-11 Test Set Positions

Test Set 21-27 38-34 35-41

Position 21-24 28-31 35-38

Not 25 32 39

Code Part 26 33 40

Character 27 34 41

Entries in these sets need not be in any particular sequence. For example,
the programmer can make an entry in positions 28 through 34 without
requiring an entry in positions 21 through 27. Entries for record
identification codes are not necessary if input records within a file are of
the same type.

A catch-all can be coded as an input specification containing no record
identification code. This defines the last record type for the file, thus
allowing the handling of any record types that may be in the file but have
not specifically been coded in the program.

If no record identification codes are satisfied during the an input cycle,
control passes to the RPG/400 exception/error handling routine.

In RPGIV, Record Identification codes are in positions 23 – 46.

I Program Described Field Description
Entries

Column 42 is reserved for future activity in RPG/400 but since there is
no future development of the RPG/400 compiler in RPG, it is s safe bet
we do not have to learn about whatever column 42 is about. From
column 43 over to the right for program described data, RPG provides
space to describe the fields and their attributes as they are to be read in
from files.

Table of Contents 156

The data description part of RPG begins with column 43 of the input
specification as described below. Just as the record identification entries
were all prefixed with IPDRI, field entries for the Input Program
Described Field Descriptions shall be prefixed with IPDFD:

Figure 7-7 is repeated here as Figure 7-12 for your convenience Take
another look at the field definitions before you continue.

Figure 7-12 Internally (Program) Described Input for PAREG
0009.00 I*
0010.00 I* RPG INPUT SPECIFICATION FORMS
0011.00 I*
0012.00 IEMPMAST AA 01
FMT PFromTo++DField+L1M1FrPlMnZr
0013.00 I... 1 30EMPNO M1
0013.01 I... 4 23 EMPNAM
0013.02 I... 24 282EMPRAT
0014.00 I... 29 48 EMPCTYL1
0015.00 I... 49 50 EMPSTAL2
0015.01 I... 51 550EMPZIP
0016.00 ITIMCRD AB 02
0017.00 I... 1 30EMPNO M1
0017.01 I... 4 72EMPHRS

IPDFD Position 43 (Data Format)

The PAREG program uses two files which have two data types –
character and signed decimal. Neither of these types needs to be coded in
column 44 and therefore, PAREG has no entries. The allowable entries
for the data format area in position 43 are as follows:

Blank The input field is in zoned decimal format or is a character field.
P The input field is in packed decimal format.
B The input field is in binary format.
L The numeric input field has a preceding (left) plus or minus sign.
R The number input field has a following (right) plus or minus sign.

The RPG programmer uses position 43 of program described input to
specify the format of the data in the records in the file that are to be read.
This entry has no effect on the format used for internal processing of the

Table of Contents 157

input field in the program. For example, a nun-packed numeric entry will
be read from disk and converted to internal packed decimal form for
processing since that is how the System i likes to do its math.

In RPGIV, Data Format is in position 36.

IPDFD Position 44-51 From / To Record
Positons

The PAREG program described input is shown in Figure 7-12. As you
can see, it is best to think of this 8 position as two four position areas.
The programmer specified the beginning position of the record in the first
half and the ending position of the record in the second half. The
allowable entries in these two “half areas” are as follows:

From:
Columns 44-47
1-9999 Specify a 1- to 4-digit number. This entry is for the
 beginning of a field (from position)

To:
Columns 48-51
1-9999 Specify a 1- to 4-digit number This entry is for the end of
 a field (to position).

The from and to location entry describes the location and size of each
field in the input record. Most other programming languages require a
beginning position and length or just a length in describing input. RPG is
much easier to deal with for the novice since the field specifications also
serve as a nice and neat record layout.

In positions 44 through 47 the programmer specifies the location of the
field's beginning position in the record being read; and in positions 48
through 51 the programmer specifies the location of the field's end
position in the record being read. To define a single-position field, just
enter the same number in positions 44 through 47 as in positions 48
through 51. Numeric entries must be right-adjusted; leading zeros can
and most often be omitted.

Table of Contents 158

Additional Information re: from / to length

The maximum number of positions in the input record for each type of
field is as follows:

Pos. Type of Field
 30 Zoned decimal numeric (30 digits)
 16 Packed numeric (30 digits)
 4 Binary (9 digits)
 256 Character (256 characters)
 31 Numeric with leading or trailing sign (30 digits)
 9999 Data structure.

In RPGIV, the From / To positions are 37 to 46.

IPDFD Position 52 Decimal Positions

The PAREG program has three different entries for the # of decimal
positions. For EMPNO and EMPZIP, for example the entries are zero.
This means that the field is numeric (signed decimal format) but it has no
decimal places. For EMPNAM, EMPCTY, and EMPSTA, the entries are
blank. This means that these fields are of character type. For EMPHRS
and EMPRAT, the entries are both 2, This means that the fields are
numeric (signed decimal) and that two positions of the field length is
reserved for decimal positions. The allowable entries for column 52 are as
follows:

Blank Character field
0-9 Number of decimal positions in numeric field.

In combination with the data format entry in position 43, this entry
describes the full format of the field. This entry indicates whether the field
described on this line is a character field or a numeric field. If the field is
numeric, an entry must be made (0 to 9). This entry represents the
number of decimal positions to be carried for the field coming in. For a

Table of Contents 159

numeric field, obviously the number is limited by and cannot exceed the
length of the field.

In RPGIV, Decimal positions are in positions 47 – 48.

IPDFD Position 53-58 Field Name

The Field names for the files defined in PAREG are clearly shown in
Figure 7-12. The allowable entries for field name in positions 53 to 58 are
as follows:

Symbolic name Field name, data structure name, data structure
 Subfield name, array name, array element,
 PAGE, PAGE1-PAGE7, *IN, *INxx, or
 *IN,xx.

These positions name the fields of an input record that are used in an
RPG/400 program. This name must follow the rules for RPG symbolic
names.

In RPGIV, Field Name is in positions 49 – 62.

IPDFD Position 59 – 60 Control Level

The following entries in EMPMAST have control level indication
specified.

29 48 EMPCTYL1
49 50 EMPSTAL2

City has an L1 indicator and State has an L2 indicator. The allowable
entries in columns 59-60 for control level are as follows:

Table of Contents 160

Blank This field is not a control field. Control level indicators
 cannot be used with full procedural files.
L1-L9 This field is a control field.

Specify the control level indication in positions 59 and 60 to indicate the
fields that are used as control fields. A change in the contents of a control
field causes all operations conditioned by that control level indicator and
by all lower level indicators to be processed.

Sometimes it is appropriate to use two or more fields for the same control
field. This is called a split control field. It is a control field that is made up
of more than one field, each having the same control level indicator. The
first field specified with that control level indicator is placed in the high-
order position of the split control field, and the last field specified with
the same control level indicator is placed in the low-order position of the
split control field.

In RPGIV, Control Level indicators are specified in positions 63 – 64.

IPDFD Position 61 - 62 Matching Fields

The following asterisked entries in EMPMAST have matching fields
specified.

0012.00 IEMPMAST AA 01
FMT PFromTo++DField+L1M1
**13.00 I... 1 30EMPNO M1
0016.00 ITIMCRD AB 02
**17.00 I... 1 30EMPNO M1

This shows that the EMPNO field in EMPMAST file is set up to match
the EMPNO field in the TIMCRD file. Just one field is sued for the
PAREG match definition.

The allowable entries for positions 61-62, matching fields are as follws:

Blank This field is not a match field.
M1-M9 This field is a match field.

Table of Contents 161

This entry is used to match the records of one file with those of another
or to sequence check match fields within one file. Match fields can be
specified only for fields in primary and secondary files.

To specify that you are using matching records or match fields, place an
M1 through M9 code in positions 61 and 62 of the appropriate field
description specification line. A maximum of nine match fields can be
specified.

The match field codes M1 through M9 can be assigned in any sequence.
For example, M3 can be defined on the line before M1, or M1 need not
be defined at all.

When more than one match field code is used for a record, all fields can
be considered as one large field. M1 or the lowest code used is the
rightmost or low-order position of the field. M9 or the highest code used
is the leftmost or high-order position of the field.

If match fields are specified for only a single sequential file (input, update,
or combined), match fields within the file are sequence checked to assure
they are in ascending or descending sequence. In this case, the MR
indicator is not set on (just one file) and cannot be used in the program.
An out-of-sequence record causes the RPG/400 exception/error handling
routine to be given control.

In addition to sequence checking, match fields are used to match records
from the primary file with those from secondary files. When all the
specified match indicators in the primary match those specified for the
secondary, a special indicator called MR is turned on by RPG.

In RPGIV, Matching Fields are specified in positions 65 – 66.

Table of Contents 162

IPDFD Positions 63 - 64 Field Record
Relation

The PAREG program does not use field record relation.

The possible entries for field record relation includes blank which means
that the field is common for all record types. The entries can be any of
the various indicators that are available in RPG/400 from 01 to 99, l1 to
l9, MR, U1 to U8, H1 to H9, to RT.

Field record relation is a means of reducing the coding required when the
same field exists in multiple record formats of the same file. Indicators are
used to associate fields within a particular record type when that record
type is one of several in an OR relationship. This entry reduces the
number of lines that must be coded. The field with the same indicator
specified in 63 - 64 as an ORed record identifying indicator gets used if
the corresponding record is read..

It is a simple concept. The field described on a line is extracted (included
in the input fields) from the record by the RPG/400 program only when
the indicator coded in positions 63 and 64 is on or when positions 63 and
64 are blank. When positions 63 and 64 are blank, the field is common to
all record types defined by the OR relationship.

In RPGIV, Field Record Relation is specified in positions 67 – 68.

IPDFD Positions 65-70 Field Indicators

The PAREG program does not use Field Indicators.

The entry can also be any of the various indicators that are available in
RPG/400 from 01 to 99, MR, U1 to U8, H1 to H9, to RT. Level
indicators and MR are not allowed..

Entries in positions 65 through 70 save coding in calculations for field
values. By specifying an indicator in the +, -, Or 0 area of 65 – 70, each
entry is examined for positive, negative or zero as it is read into the
program. Field indicators are specified on the same line as the field to be

Table of Contents 163

tested. Depending on the status of the field (plus, minus, zero, or blank),
the appropriate indicator is set on and can be used to condition later
specifications.

Positions 65 and 66 (plus) and positions 67 and 68 (minus) are valid for
numeric fields only. Positions 69 and 70 can be used to test a numeric
field for zeros or a character field for blanks.

In RPGIV, Field Indicators are specified in positions 69 – 74.

IPDFD Positions 71 – 74 Unused

The area in the input spec from columns 71-74 are unused for program
described files.

IPDFD Positions 76 – 80 Comments

Positions 75 through 80 can be used for comments, or left blank. These
positions are not printed contiguously with positions 6-74 on the compiler
listing.

RPGIV Program Described Files

RPGIV has several input field specifications that do not exist in
RPG/400. These are captured in the section below with the header IPIV.

IPIV Columns 31-34 Data Attributes

Positions 31-34 specify the external format for a date, time, or variable-
length character, graphic, or UCS-2 field. If this entry is blank for a date
or time field, then the format/separator specified for the file (with either
DATFMT or TIMFMT or both) is used. If there is no external date or
time format specified for the file, then an error message is issued.

Table of Contents 164

For character, graphic, or UCS-2 data, the *VAR data attribute is used to
specify variable-length input fields. If this entry is blank for character,
graphic, or UCS-2 data, then the external format must be fixed length.

IPIV Column 35 Date/Time Separator

Position 35 specifies a separator character to be used for date/time fields.
The & (ampersand) can be used to specify a blank separator. For an entry
to be made in this field, an entry must also be made in RPGIV input
positions 31-34 (date/time external format).

Table of Contents 165

Chapter 8

The Specifics of RPG Coding –
Input Structures & Constants – by
Example

What is a Data Structure?

A data structure is simply a packaging of data elements as in a record. In
fact, a record is a data structure. In programming for computer science
applications and business alike, a data structure is a way of storing data in
a computer so that it can be used efficiently. In computer science, a
carefully chosen data structure will allow a more efficient algorithm to be
used. In business programming careful design of data structures can
provide an ease of understanding and application standardization. A well-
designed data structure allows a variety of critical operations to be
performed using as little resources, including programmer coding time, as
well as both execution time and memory space, as possible.

In this chapter we show how to code both program-described and
externally described data structures. A program described data structure is
identified by a blank in position 17 of the data structure statement. The
subfield specifications for a program-described data structure must
immediately follow the data structure statement. An externally described
data structure is identified by an E in position 17 of the data structure
statement. The subfield descriptions for this are contained in an externally
described file with one record format. The file merely serves as a means of
grabbing the data definition.

The data contents of the file are irrelevant to the data structure. To bring
the data structure definition from the external file into the program, at

Table of Contents 166

compile time, the RPG/400 program uses the external name to locate and
extract the external description of the data structure subfields. An external
subfield name can be renamed in the program, and additional subfields
can be added to an externally described data structure in the program.

In RPG, Data structures are very powerful data configurations that have a
number of purposes. For example, a data structure can be used to:

1. Allow the division of a field into subfields without using the
MOVE or MOVEL operations.

2. Operate on a subfield and change the contents of a subfield.
3. Redefine the same internal area more than once using different

data formats.

Data Structure Record ID Entries

Data structures are defined on the input specifications in RPG/400 and in
the “D” spec in RPGIV. In RPG/400, they are defined the same way
records are defined. The record specification line contains the data
structure statement (DS in positions 19 and 20) and the data structure
name is optional. The field specification lines contain the subfield
specifications for the data structure.

Though Data Structures (DS) use the Input specification, programmers
must use care when arranging the structures so that they appear in the
program after the normal input specifications for records. All entries
describing a data structure and its subfields must appear together

In RPGIV, the data structure is defined on the new “D” type specification
which is covered in Chapter **** along with any additional detail and
sample code using RPG/400 Data Structures. The PAREG program that
we have been working with uses no data structures. Therefore, the
examples we choose will not be completely reflective of code that is
found in the sample program to this point. However, they will be similar.
The designator IDSRI is used to begin each header so it is easy to spot
the entries that belong with Input, Data Structure, Record Identification.

Table of Contents 167

Let’s start our examination of data structures with a hypothetical example
shown in Figure 8-1 that has some basis in our EMPMAST file, but as
you can see this data structure has a different format than the EMPAST
file and it has more fields defined. Thus, it makes a better example for us
for this topic.

Figure 8-1 Sample Employee Data Structure

 IEMPDS1 DS... 100

 I... 1 50EMPNO

 I... 6 30 EMPNAM

 I... 31 60 EMPAD1

 I... 61 90 EMPAD2

 I... 91 110 EMPCTY

 I... 111 112 EMPSTA

 I... 113 1170EMPZIP

 I... 118 1252EMPPAY

 I... 126 1310EMPHIR hiredate

 I... 126 1270EMPYR

 I... 128 1290EMPMO

 I... 130 1310EMPDA

This data structure is internal. It is named EMPDS1. It has 100
occurrences of a record layout that has 12 fields. One field, EMPHIR
(Employee date of hire) is subdivided by the structure into separate
YEAR, MONTH and DAY fields. See how convenient it is to redefine a
structure within RPG/400.

IDSRI Positions 7-12 Data Structure Name

Positions 7 through 12 of the DS format of the Input Spec can contain
the name of the data structure being defined. The name in the example in
Figure 8-1 is EMPDS1. The data structure name is optional, and is

limited to the 6 character spaces provided. A data structure name can be
specified anywhere a character field can be specified. If the data structure
is externally described and positions 21-30 are blank, this entry must
contain the name of an externally described file.

Table of Contents 168

IDSRI Positions 13-16 Reserved

Columns 13-16 of the data structure record format form of the input
specification has reserved positions for future use

IDSRI Positions 17 External Description

The example in Figure 8-1 is internal so this column is blank. The
External Description area in column 17 can have the following entries:

Blank Subfield definitions for this data structure follow this
 specification.
E Subfield definitions are described externally. Positions 7 through
 12 must contain the name of an externally described file if
 positions 21 through 30 are blank. The file name must be limited
 to 6 characters.

IDSRI Positions 18 Option

The example in Figure 8-1 uses no Option entry.

The Option field has just a few entries but it enables a number of very
powerful facilities of data structures – initialization, program status, and
data area data structure. Initialization involves the filling of subfields with
zeros or blanks; program status provides information about program
operations in a handy special purpose data structure. A data area is akin to
a one record disk file that is external to the program and brought in
during program startup or during data area operations. Adding a data
structure to a data area provides the one record with a layout of fields and
field names that are available to the program.

The allowable entries include he following:

Blank This data structure is not a program status or data area data
 structure, and this data structure is not globally initialized.

Table of Contents 169

I Data structure initialization. All subfields in the data structure are
 initialized; characters to blank, numerics to zero, in the order in
 which they are defined, during program initialization.
S This data structure is the program status data structure. Only one
 data structure can be specified as the program status data
 structure.
U This is a data area data structure. The external data area (named
 in positions 7 through 12) is retrieved when the program starts
 and rewritten when the program ends. If you put blanks in
 positions 7 through 12, the local data area is used. It is important
 to note that the data area specified by the data structure is locked
 for the duration of the program.

IDSRI Columns 19 – 20 Record Identifying
Indicator

Since the example in Figure 8-1 reflects a real data structure, positions 19-
20 contain the letters “DS.” In the position typically reserved for an input
record identifying indicator to be specified, for a data structure record ID,
the letters “DS” must be provided in columns 19 – 20.

IDSRI Positions 21 – 30 External File
Name

The example in Figure 8-1 is internal so this column is blank. The
external name of the database file from which the data structure
definitions are pulled is specified in columns 21 – 30. Using External
structures accommodates standardization and it reduces the amount of
coding – especially for long data structures. The allowable entries are as
follows:

Blank The data structure subfields are defined in the program.
File name This is the name of the file whose first record format
 contains the field descriptions used as the subfield
 descriptions for this data structure.

Table of Contents 170

IDSRI Positions 31 – 43 Reserved

Columns 31 – 43 of the data structure record format form of the input
specification has reserved positions for future use

IDSRI Positions 44-47 Data Structure
Occurrences

The example in Figure 8-1 is set up to contain 100 records (occurrences)
in memory. A simple data structure is similar to a one record memory file.
Data structures however can have multiple memory records called
occurrences. In columns 44-47, you specify the number of occurrences
that this particular data structure should have. The allowable entries are
as follws:

Blank This is not a multiple-occurrence data structure.
1-9999 The number (right-adjusted) indicating the number of
occurrences of a multiple-occurrence data structure.

These positions must be blank if the data structure is the program status
data structure (indicated by an S in position 18), a file information data
structure (INFDS), or a data area data structure.

IDSRI Positions 48 – 51 DS Length

In the example in Figure 8-1, the length of the data structure is 131 but
the compiler must calculate that by adding up the subfields. The length of
a data structure can either be specified in positions 48-51 of the Data
Structure Record Format or it can be calculated by the compiler. It is
optional. The possible entries are as follows:

Blank Length of the data structure is either the length specified on the
 input field specifications if the data structure is an input field or

Table of Contents 171

 the highest To position specified for a subfield within the data
 structure if the data structure is not an input field.
1-9999 Length of the data structure.

If the length is specified, it must be right-adjusted. If this entry is not
made, the length of the data structure is one of the following:

A. The length specified on the input field specifications if the data
 structure name is an input field.
B. The highest To position specified for a subfield within the data
 structure if the data structure name is not an input field.

IDSRI Positions 52 – 74 Reserved

Columns 52 – 74 of the data structure record format form of the input
specification has reserved positions for future use

IDSRI Columns 75 – 80 Comments

Columns 75 through 80 can be used for comments, or left blank. These
positions are not printed contiguously with positions 6-74 on the compiler
listing.

I Data Structure Subfield Entries

In this section, the subfield entries required for data structures are
examined in detail. See the I Data Structure Record Format header above
for more information on data structures as well as Chapter **** The
designator IDSSF is used to begin each header so it is easy to spot the
entries that belong with Input, Data Structure, SubField..

IDSSF Column 7 Reserved

Column 7 of the data structure subfield form of the input specification
has reserved this position for future use

Table of Contents 172

IDSSF Column 8 Initialization Option

The example in Figure 8-1 is basic and it uses no initialization options.

That which the record format giveth the subfield can taketh more.
Position 18 of the DS record format provides an I option to initialize the
subfields to either zeroes or blanks. This option trumps that option by
permitting the subfield to be initialized with a real value, rather than a
zero or blank. The allowable entries for this option include the following:

Blank No subfield initialization other than that specified in record
 format.
I Subfield is initialized to value specified in positions 21 to 42 of
 this statement.

IDSSF Columns 9 – 20 Reserved

Columns 9 – 20 of the data structure subfield form of the input
specification has reserved these positions for future use

IDSSF Columns 21 – 30 External Field
Name

The example in Figure 8-1 is internal so this column is blank.

When an externally described data structure is coded in a program,
sometimes there is a field name conflict and the subfield in the external
structure must be renamed to be able to be used properly in the program.
To rename a subfield in an externally described data structure, specify the
external name in positions 21 through 30, and specify the name to be used
in the program in positions 53 through 58. The remaining positions of
the DS subfield form must be blank.

Table of Contents 173

IDSSF Columns 21 – 42 (Initialization
Value)

The example in Figure 8-1 uses no initialization. When a subfield is to be
initialize with a specific value, specify a literal value or a named constant
in these positions. If no value is specified and position 8 contains I, the
subfield is initialized to zero or blanks, depending on the field type. The
value may be continued on the next line. Obviously the initialization
value cannot be sued with an externally described DS since the fields are
mutually exclusive.

IDSSF Columns 31 – 42 Reserved

Columns 31 through 42 of the data structure subfield form of the input
specification must be blank, if an external field name is specified in
positions 21 to 30.

IDSSF Column 43 Internal Data Format

The subfields in the example in Figure 8-1 use only character or zoned
decimal format and therefore, for all subfields described , this column is
blank.

Since data fields can be defined with the DS subfield form, the
programmer must specify what type of data is to be stored in each
subfield of a data structure. Unlike the external data format field, the entry
determines the internal format of the data. The allowable entries include:

Blank Subfield is in zoned decimal format or is character data if position
 52 (decimal positions) is blank.
P Subfield is in packed decimal format.
B Subfield is in binary format.

Table of Contents 174

IDSSF Column 44 – 51 Field Location

The subfields in the example in Figure 8-1 use these columns to specify
the from and to positions of each subfield. The EMPHIR field uses the
same are of the structure as does the EMPYR, EMPMO, and EMPDA
fields combined.

In columns 44-47 you specify the “From” position and in columns 48-51
you specify the “To” position of the subfield. Both the “From” and the
“To” values must be right-justified, and leading zeroes may be omitted.
The allowable entries are as follows:

From:
Columns 44-47
1-9999 Specify a 1- to 4-digit number. This entry is for the
 beginning of a field (from position)

To:
Columns 48-51
1-9999 Specify a 1- to 4-digit number This entry is for the end of
 a field (to position).

IDSSF Column 52 Decimal Positions

The subfields in the example in Figure 8-1 use this position for the
number of decimal places. The only field with more than zero decimal
places is EMPPAY with two places defined out of the length of the field.
Those subfield entries with 0 decimals are by default numeric zoned
decimal format and those with no entry for decimal places are character.
format.

The allowable entries for column 52 are as follows:

Blank Character field
0-9 Number of decimal positions in numeric field.

In combination with the data format entry in position 43, this entry
describes the full format of the field. This entry indicates whether the field

Table of Contents 175

described on this line is a character field or a numeric field. If the field is
numeric, an entry must be made (0 to 9). This entry represents the
number of decimal positions to be carried for the field coming in. For a
numeric field, obviously the number is limited by and cannot exceed the
length of the field.

IDSSF Column 53-58 Field Name

In positions 53 through 58, enter the name of the subfield that is being
defined. The name can be an array name, but cannot be an array element
name. Twelve meaningful subfield names are provided for your
inspection if Figure 8-1.

IDSSF Columns 59 – 74 Reserved

Columns 59 through 74 of the data structure subfield form of the input
specification must be blank. This space is reserved for future use.

IDSSF Columns 75 – 80 Comments

Columns 75 through 80 can be used for comments, or left blank. These
positions are not printed contiguously with positions 6-74 on the compiler
listing.

I Named Constant Entries

The input specification in RPG/400 is definitely overworked. It is the
major utility player for a language that evolved past the logical means of
supporting it without change. The major changes to the RPGIV language
have addressed all of these concerns. In RPGIV, the Named Constant is
defined on the new “D” type specification which is covered in Chapter
**** along with some additional detail and sample code.

Table of Contents 176

But, before we get to RPGIV we need to take a look at how to define
constants in RPG/400 and provide them with a name. That is what this
section is about. The designator INC is used to begin each header so it is
easy to spot the entries that belong with Input, Named Constant.

The example to keep in mind as we examine the structure of the named
constant variant of the INPUT specification is shown in Figure 8-2.

Figure 8-2 Continued Named Constant

 I… 'Press Enter to con- C… CONTNU

 I… 'tinue operation.’

The name of this constant is CONTNU and it is continues so that it can
fit in all of the words, “Press Enter to continue operation.’ The text on
the first line continues to the second. The first line contains a C in
position 43 and the second line is blank in position 43 meaning it is
continued.

INC Columns 7 – 20 Reserved

Columns 7 through 20 of the named constant form of the input
specification must be blank. This space is reserved for future use.

INC Columns 21 – 42 Constant

Columns 21-42 are reserved in the named constant form of the input
specification for the contents of the named constant field which may hold
a real constant or an edit word. The constant may be continued on
subsequent lines by coding a hyphen as the last character. For character
named constants the hyphen replaces the ending quote. A continued
numeric constant must result in a valid decimal number with at most 30
digits, a maximum of 9 being to the right of the decimal point. Named
constants can be declared anywhere in the input specifications.

Table of Contents 177

INC Columns 43 Type / Continuation

Just as a DS entry differentiates a data structure from an input spec, a C in
column 43 tells the compiler that this is a named constant. If one or more
lines above this entry contain a C, then this line may be a blank meaning it
if only other blanks for comments separate this from the C entry then this
is a continuation of a named constant.

The allowable entries are as follows:

C Type of name is constant
Blank Constant continuation line

INC Columns 44 – 52 Reserved

Columns 44 – 52 of the named constant form of the input specification
must be blank. This space is reserved for future use.

INC Columns 53 – 58 Constant Name

Place the name of the constant in columns 53 – 58. Normal RPG field
naming rules apply

INC Columns 59 – 74 Reserved

Columns 59 – 74 of the named constant form of the input specification
must be blank. This space is reserved for future use.

INC Columns 75 – 80 Comments

Columns 75 through 80 can be used for comments, or left blank. These
positions are not printed contiguously with positions 6-74 on the compiler
listing.

Table of Contents 178

Chapter 9

The Specifics of RPG Coding –
Calculations – by Example

Mathematics and Logic

The Calculation Form is where most of the action takes place in RPG
programs. All programming languages provide a vehicle for arithmetic
and logical operations and RPG programmers use the calc form to get
these functions accomplished. Of course, when the RPG cycle is used as
in the PAREG program, the calculation form does not get the
input/output action since that is handled by the cycle itself.

The calculation specifications for the external PAREG program (Figure 5-
1) and internal PAREG program (Figure 5-2) that we have been decoding
over the last few chapters are repeated below for your convenience as we
examine them in detail in this chapter. You will first notice that in
column 6, there is the “C” official specification designator to differentiate
the calc format of this RPG form from all others. The statements coded
on this spec form are executed in the RPG cycle during either detail time
calculations (Step 7) or total time calculations (Step 3). This is the place in
RPG in which the bulk of the decision making as well as the
computations take place. One can expect lots of action with a stop at the
“C” spec during the fixed logic cycle..

Table of Contents 179

As you examine the calculation specification shown in Figure 9-1, you
will notice that each statement is divided into three parts that specify the
following:

1. The conditions under which the calculations are to be done: The
conditioning indicators specified in positions 7 through 17 determine
when and under what conditions the calculations are to be done.

2. The type of calculations to be done: The entries specified in positions
18 through 53 determine the kind of calculations to be done, specify the
data (such as fields or files) upon which the operation is to be done, and
they specify the field that is to contain the results of the calculation.

3. The type of tests that are to be made on the results of the operation:
Indicators may be specified in positions 54 through 59 of RPG/400
specs. These are used to test the results of the calculations and the
indicators that are turned on or off can affect subsequent calculations or
output operations. The resulting indicator positions (54 to 59 in
RPG/400) have various uses, depending on the specific operation code.
For a perspective on the uses of these positions for various operations,
see the individual operation codes in Chapter ****,
“Operation Codes.”

All detail operations that are unconditioned are performed each cycle. All
unconditioned operations that are specified at a total level will be executed
unconditionally when RPG passes through that particular total cycle. Any
arithmetic operation that is performed, including the compare operations,
which internally subtract Factor 2 from Factor1, sets the status of the
indicators specified on the right side of the calculation spec. This section
is known as the resulting indicator area.

Three indicators can be specified in this area and RPG will turn one of
them on during a calculation operation depending on the result. The
three conditions that can be specified in RPG/400 are (1) columns 54 &
55 [greater than zero – non-blank and positive], or (2) columns 56 & 57
[less than zero --negative or minus], or (3) columns 58 & 59 [equal to each
other -- or equal to zero]. Only one of these conditions will occur after an
arithmetic or logic operation and thus if indictors 01, 02, and 03 are
selected respectively as resulting indicators, If the results are positive, 01 is
turned on; if the results are negative, 02 is turned on, and if the results are

Table of Contents 180

equal or zero, 03 is turned on. The positive, negative or equal status is
determined when the field in Factor 1 is compared, added, subtracted,
multiplied, or divided to/by the field in Factor 2 as B. When this happens
as part of RPG’s magic, the other two indicators specified that are not
true (not set on) for this operation are actually set off. So, just one of the
three conditions will be reflected by the status of the indicators.

The process works exactly the same in RPGIV. However, since the RPG
IV calculation specification is shaped differently than the RPG/400
statement, the three resulting indicators in an RPGIV calculation are
reflected in columns 71-72, 73-74, and 75-76 respectively. Figure 9-1
shows how indicators 01, 02, and 03 would be specified in statement 21
of the PAREG program if we had a reason to test the results of the
multiplication operation. Indicator 01 would turn on if the result was
positive. If negative or zero, 01 would be turned off. Indicator 02 would
turn on if the result was negative. If positive or zero, 02 would be turned
off. Indicator 03 would turn on if the result was zero. If positive or
negative, 03 would be turned off.

Figure 9-1 Resulting Indicators Specified in Multiply
678911234567892123456789312345678941234567895123456789
C*
C* RPG CALCULATION SPECIFICATION FORMS
C*
C 02 MR EMPRAT MULT EMPHRS EMPPAY 72 010203

The RPG Calculation Specification

To give you a head start to decoding the PAREG calculations, lets’ take a
shot at decoding the filled in entries in Figure 9-2. Of course, we have no
real idea of what this program is, where it came from, who wrote it, what
it does, etc. But isn’t that what you will experience when you get to look at
your first program written by somebody in the “shop.” So, let’s take a
shot at decoding this program one line at a time. Let’s first see what it
would look like in Figure 9-3 if we typed it up nice with a source editor
such as SEU.

Table of Contents 181

Figure 9-1 Old-Time Filled-In Calc Spec

Figure 9-2 Typed Version of Written Code
FMT C CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEq

0026.00 C START TAG

0027.00 C EXFMTPROMPT

0028.00 C N21 ACTNUM CHAINCUSMST 30

0029.00 C ADD IFNE 'A'

0030.00 C *IN30 ANDEQ'1'

0031.00 C SETON 40

0032.00 C N21 40 GOTO START

0033.00 C END

0034.00 C N21 EXFMTRESPONSE

0035.00 C N21 30 WRITECUSMST

0036.00 C N21N30 UPDATCUSMST

0037.00 C N21 GOTO START

0038.00 C WRITEHEADER

0039.00 C PRINT TAG

Table of Contents 182

0040.00 C READ CUSMST 45

0041.00 C N45 10 WRITEHEADER

0042.00 C N45 WRITEDETAIL

0043.00 C N45 GOTO PRINT

0044.00 C CLOSE*ALL

0045.00 C SETON LR

Now, let’s examine each of these specifications in detail and decode them
as best we can. After you have done your best with the limited operations
knowledge that you have at this point, come back and look at the results
in Table 9-4.

Table 9-4 Decoding CUSTMST Program

St# What does it do?
26 Provides a spot in the program to which a GOTO can

branch. Sine this is in the beginning, it is probably a return
point for processing or for errors.

27 The EXFMT sends out a screen panel named in Factor 2 as
PROMPT from a display file described in file descriptions.
When this operation starts it sends out the PROMPT panel.
Then it waits for the user to enter something into the prompt
screen. Then, the operation reads the data into the program
and fills up the input fields defined for that particular display
format.

28 It looks like indicator 21 means that the user selected an
option in the program (possibly an indicator on the
PROMPT panel) to print a report and if indicator 21 is not
on the CUSMST file will be updated. The ACTNUM field
which came in from the prompt panel is used to chain to
(random read) the customer master file to pull up that
account record. More than likely indicator 21 turns on as a
result of some action on the screen, such as a user hitting
F21 and the indicator is passed to the program along with
the screen panel. Set indicator 30 on If the record does not
exist in the customer master file. If the account is found,
load the fields with the CUSMSTcusmst account information

29 The “ADD” field which was read in from the PROMPT
panel is tested for the negative of a value “A” (anything but
A is true) It looks like they are testing to see if the user
wants to add a record if it is not found in the customer

Table of Contents 183

master.

30 Indicator 30, (meaning the CUSMST record was not found
on the CHAIN operation) is tested to see if it was turned on.
If this condition is true (record not found) and the prior
condition is true (not A), then the if statement evaluates as
true If either are false, the If statement is false..

31 If both are true, indicator 40 is turned on to record this status
meaning that no record was found and the use does not want
to create a record.

32 If both are true which sets indicator 40 on, and if indicator 21
is not on, the GOTO will be executed and the program will
go back to start. If 40 is not on or 21 is on, the next statement
(34) will be executed. So, if the record is not found and the
user did not say to add the record, then go back to start. If
the user said to add the record, proceed. with the program. If
indicator 21 is on, the program passes on and goes to the
PRINT routine after writing headings.

33 This ends the action for the IF group 30-33
 What does it mean to have arrived here in the program.

Indicator 40 is not on and 21 is or is not on not on. If 21 is not
on, this means that either the terminal operator typed an A to
say it was OK to create a new record or there was no A but
the record was found. – therefore the record from
CUSTMAST is OK to update. That’s what we know at this
point. So we write a new record if no 40 and the A was keyed
or we update the record read if no 40 and the record was
founf (30 not on) If 21 is on, we are ehading to the print
routine but first we will print headings.

34 If indicator 21 is not on, 40 is not on, so Send out the
response display with the EXFMT operation to get the
information to update or create a data record in the customer
file, then wait for a response from the screen user to get the
customer fields from the panel, then load the input fields and
indicator fields from the RESPONSE panel to the
CUSTMST record format for update or output.

35 If indicator 21 is not on, and indicator 30 is on (customer
master does not exist) write out a customer master record

36 If indicator 21 is not on, and indicator 30 is not on (customer
master was found and in memory, go ahead and update the

Table of Contents 184

customer master with the information that was received in
the RESPONSE display panel.

37 If 21 is not on, go to start (26) to get more data. If 21 is on,
proceed to next statement in program (38) to start the print
routine

38 Write the headings from an externally defined print file to a
printer (spooled).

39 Provides a spot in the program to which a GOTO can
branch. Since this is in the beginning of a routine loop called
PRINT, this is where the CUSMST file gets read and
printed..

40 Read the CUSMST file from the beginning to create a report.
Turn on Indicator 45 if all the records have been read from
the CUSMST file.

41 If 45 is not on (not the end of the CUSMST file yet) and 10 is
on because of an overflow condition on the printer, print the
headings again

42 If 45 is not on (not the end of the CUSMST file yet) print out
a detail line to the externally described print file record
format named detail.

43 If 45 is not on (not the end of the CUSMST file yet) go to
PRINT at line 39 to read another record and go through the
print cycle again.

44 When the report is printed, close all the files
45 Set on LR so the program can end

Now, wasn’t that fun. If you stay with that little menagerie of operations
as in Figure 9-2 and 9-3, until you know it cold or are fairly clued in, you
will already have a jump start on learning what RPG is all about. Now,
let’s examine each of the calculation statements in the PAREG program
starting with the four functional lines of code in Figure 9-5.

Figure 9-5 RPG Calculations for PAREG

Table of Contents 185

 67891123456789212345678931234567894123456789512
0018.00 C*
0019.00 C* RPG CALCULATION SPECIFICATION FORMS
0020.00 C*
0021.00 C 02 MR EMPRAT MULT EMPHRS EMPPAY 72
0022.00 C 02 MR EMPPAY ADD CTYPAY CTYPAY 92
0023.00 CL1 CTYPAY ADD STAPAY STAPAY 92
0024.00 CL2 STAPAY ADD TOTPAY TOTPAY 92

Statement numbers 18, 19 and 20. are comments (* in column 7) so they
have no bearing on the logic of the program whatsoever. Following the
comments are the detail calculations. These are the calculations without
an * in column 7 and without an “L1 or L2 ” in columns 7 and 8. They
are shown in statement 21 and 22 in Figure 7-2. As you have learned
Each time a record is read from the primary or the secondary file(s) (Steps
2 and 6) the next step in the cycle (Step 7) is for RPG to execute these
detail calculations.

The first detail calculation specified in statement 21 occurs when the 02
record (TIMCRD) is read and there is a match with the payroll master
record for that employee.

Statement 23 and 24 show total calculations. In the RPG cycle at Step 3,
whenever there is a change in the value of the control field that is marked
by L1, those calculations with an L1 such as statement 23 above are
performed. This processing occurs after the last record read from the
prior group of records with the same control field value (EMPCTY -city)
and before the first record of a group with a new control field value is
processed. In the RPG cycle, we might say that all level calculations occur
“in-between time.” For the PAREG program, the level 1 break occurs
when the City value in the group of pay records change from say,
Scranton to Wilkes-Barre.

L2 calculations work the same as L1. In this case, a change in the
EMPSTA field -- state, creates an L2 control break and L2 calculations
occur In the PAREG program, the only L2 calculation line is shown as
statement 24 above. For the PAREG program, the level 2 break occurs
when the State value in the group of pay records change from say, Alaska
to Pennsylvania. Of course whenever there is a higher level such as when
the state changes forcing a Level 2 break, there is also a corresponding
Level 1 break forced by the L2 change. This makes lots of sense logically

Table of Contents 186

for if we were processing Anchorage Alaska and the next record were
Anchorage, Pennsylvania, the two of these are definitely different cities.

Calculation Specification Statement Format

Now that we have examined the calculations specification in light of the
CUSTMST program snippet in 9-2 and 9-3 and the PARGE calculations
in Figure 9-5, let’s look at the full calculation specification in much the
same way as we examined the Header, File Description, Line Counter,
and the many Input variants. As you know by now, the specification form
begins with the requisite “C” that must appear in position 6 to identify
this line as a calculation specifications. In addition to column, 6, the calc
spec has many other options that we can specify. Let’s review them now.
For the calculation specification we use the header designation of C to
easily differentiate this form from all others.

C Columns 7-8 (Control Level)

The possible entries for the control level are as follows:

Blank A. Operation is performed at detail calculation time
 for each program if conditions are met
 B. Operation is performed within a subroutine

L0 The operation is done at total calculation time for
 Each program cycle – independent of control fields

L1-L9 The operation is done when the appropriate control
 Break occurs at total calculation time, or when the
 indicator is set on.

LR The operation is done after the last record has been
 Processed or after the LR indicator has been set on.

SR The calculation operation is part of an RPG/400
 subroutine. A blank entry is also valid for subroutines

AN, OR “And” and “Or” Indicators are used to group

Table of Contents 187

 calculations to have more than one line condition
 the calculation.

The RPGIV calc specification also uses columns 7 & 8 for the control
level information

PAREG and Control Levels

There are only two calculation specifications in PAREG that occur at
total time. They are listed in Figure 9-6.

Figure 9-6 Total Calculations – Occur After Control Break
0023.00 CL1 CTYPAY ADD STAPAY STAPAY 92

0024.00 CL2 STAPAY ADD TOTPAY TOTPAY 92

Notice in the PAREG program calculations specifications shown
completely in Figure 9-5 that the Control Level calculations are specified
after the detail calculations. This is not by happenchance. Detail
calculations (no L indication in column 7) come before L1 come before
L2 come before L3 etc. come before LR calculations.

We must relate this to the RPG cycle since in order to have level
calculations, you must be using the RPG cycle. Control level calculations
occur in Step 3 of the RPG cycle that we described in Chapter 3. Though
they are specified in the program after detail calculations, in fact, they
occur in the cycle at step 3 whereas detail calculations occur in Step 7
right before the cycle goes back to the top for detail output..

Let’s spend just a little time to refresh your memory. Figure 9-6 is shown
to help jog your RPG cycle learning from Chapter 3. The cycle starts with
1P output to provide a means to get headings on reports prior to records
ever being read. PAREG dutifully produces its 1P output in accordance
with the cycle. This first cycle of course, there is no detail output from
data since no data has been read. So, RPG goes ahead starts the next
input process in step 2 to get the next record for processing.

Table of Contents 188

Figure 9-6 The 7 Major Steps to the RPG Fixed Logic Cycle

RPG however, does not make the information from the fields it just read
available to the cycle until step 6, so it still has the stuff from the last
record read by the time it hits step 3 in the cycle. To get the gist of total
calculations, lets move away from the RPG first cycle. Let’s say instead
that RPG has just read in a record in which the state field EMPSTA in
PAREG is different from the last state field that was read. Using the data
from Figure 4-1 as an example, suppose Pennsylvania (PA) changed to
Alaska (AK).

Table of Contents 189

This means that the totals for Pennsylvania can be accumulated and
printed. The state creates a level 2 break which always forces a Level 1
break. The L1 break is processed first. So, when the state changes, the city
by definition is also different and it changes also. During this time in
which the data from the last record is available though the next record is
read, RPG learns of the control field change and starts the L1 calculations
and then the L2 calculations as specified in Figure 9-6.

Thus, by the time the L2 calc in line 24 of Figure 9-6 is executed, the pay
total for the last city processed for PA is added to the state total
(STAPAY) at L1 total time. Then the L2 calc is executed which takes the
STAPAY (state total for PA) and adds it to the total pay for all states
(TOTPAY). After level calculations, PAREG moves to step 4 of the
cycle which is total output which is covered in Chapter 10.

As a sneak peak into total output, consider that we have the city and state
totals prepared to print at the end of Pennsylvania and before the record
from Alaska that has been read actually has its fields available for
processing. So, if we were to print a State by the state total, it would be
PA, not AK because the data from the record has not yet been moved to
the fields at this point of the cycle.

C -- Columns 9-17 (Indicators)

Logic type decisions are what separate computers from calculators. A
logic decision in all cases begins with a test of one value against another
and that test can provide three different results

1. Is Value 1 greater than Value 2 (+, HI,>)
2. Is Value 1 less than Value 2 (-, LO, <)
3. Is Value 1 equal to Value 2 (0, EQ, =)

Logic tests in typical programming are followed by branch operations. A
branch operation after a logic test can alter the address of the next
program instruction to be someplace in the program other than the enxt
sequential instruction. If you have three different routines that you would
like to fire up, based on the results of the value test (HI, LO, EQ), then
there would be three different branches that could be taken by the

Table of Contents 190

program. Each branch could take the program to a different routine based
on the result of the test. That’s program logic.

RPG calculations can be set to execute each detail cycle or they can be set
to execute under certain “conditions.” In most programming language, a
form of an “IF” operation provides a means for the bulk of the logic
decisions in a program.

RPG/400 and RPGIV have many variations of the IF statement available
but there is also a mechanism that is unique to RPG called conditioning
indicators. Three ANDed sets of these can be specified in RPG/400 in
columns 9-17. In RPGIV, one set can be specified in columns 9-11.

Pseudo Code

In our PAREG program, we know that whenever we have just read a
TIMCRD record and it matches the EMPMAST record that was just read,
we would like to calculate the gross pay by multiplying the hours by the
hourly pay rate. The pseudo-code logic to perform this function using an
“IF” operation is shown in Figure 9-6.

Figure 9-6 Pseudo Code for PAREG

IF (Time Card Record is in process

and If Time Card Record Field EMPNO =

EMPNO in PAYMAST) then GROSS PAY

(SIZE 7,2) EQUALS PAYRATE TIMES HOURS

WORKED ELSE READ NEXT RECORD.

That’s pretty verbose pseudo code if I don’t say so myself. Let’s see if we
can’t get that pseudo code down to a more manageable size by using
some things that we already know about this RPG program. We know
that if there is a match between the M1 specified fields that an indicator
MR is turned on for us. That means that the value of indicator MR is
equal to 1. We also know that if the time card record is in process, then
RPG will turn on its record identifying indicator, which we have told the
compiler is Indicator 02 So if Indicator 02 is equal to 1, we are processing
the correct record. We also have database fields for the rate and hours

Table of Contents 191

from their respective files and we know that RPG would like any field we
create on the fly to have no more than 6 characters in its name. The size
for the result field of GROSS PAY must be given to the compiler since
the field is being created on the fly. It is not a database field.

So, now our pseudo code can look like as teeny as the code shown in
Figure 9-7.

Figure 9-7 Reduced Pseudo Code for PAREG

If (INMR = “1” and IN02 = ‘1”) THEN

EMPPAY (SIZE 7,2) = EMPRAT MULT

EMPHRS

This can read in English as follows: “if indicators MR and 02 are both on
then create the field EMPPAY seven positions in length with two decimal
places and store in it the results of the multiplication of the EMPPRAT
and EMPHRS fields.” The EMPRAT in the EMPMAST file is set up
with two decimal places. There is also an implied else and that is if the
condition is not true, go to the next statement.

The pseudo “IF” statement provides the means of specifying that we
want the operation to take place only if two conditions are true. This
means that the conditions are logically “ANDed” and linked since both
need to be true for the operation to take place. Moving away from pseudo
code to RPG, it is in columns 9 through 17 of the CALC spec that these
conditions cane be specified in straight, unstructured RPG. Let’s look
more closely at the first calculation from statement 21 to see how this
logic fits.

Figure 9-8 Detail Calculations from PAREG
 67891123456789212345678931234567894123456789

0021.00 C 02 MR EMPRAT MULT EMPHRS EMPPAY

Table of Contents 192

Yes, all of that pseudo code and all of that reduced pseudo code is
accomplished in this simple statement. You can see that there is an 02
and an MR indicator specified in 9 through 17. Any indicator specified
here is a conditioning indicator and all of the indicator sets that are
specified for the multiplication operation to take place.

This example shows there is room for a third indicator in positions 16 and
17 so three indicators can be ANDed on the same statement to condition
just one calculation. You may also have noticed that three positions are
reserved for each indicator. MR, for example is in columns 12 to 14 right
justified. So, you may be wondering what can be placed in position 12?
The answer includes the option blank which means that we are
conditioning with a positive of the indicator value. If, on the other hand,
we placed an “N” for not in position 12, then we would be testing for the
negative of the indicator or an off condition.

Moving away from PAREG for just a minute, let’s show how this
operation would look if we were to look for the Not condition (N) of
three indicators, 02, MR, and 01.

Figure 9-9 Not Condition in Play for Calculations Spec
 67891123456789212345678931234567894123456789

00xx.00 C N02NMRN01EMPRAT MULT EMPHRS EMPPAY

The RPG calculation spec example in Figure 9-9 tests for the negative of
02, MR, and 01 respectively. The negative must be true in the example,
meaning that the indicator must be off for any of the sets to be true. All
three sets are ANDed and therefore all need to be true for the condition
to be true and for the multiplication operation to take place.

When three indicator tests are not enough for one calculation there is the
option to place the AN operation in positions 8 and 9 as explained above.
Also, if we would like to make these conditions OR’s instead of AND’s,
the letters “OR” can be placed in positions 7 and 8 of a new line. The
code in Figure 9-10 demonstrates this.

Table of Contents 193

Figure 9-10 ANDing and ORing CALC specs
 67891123456789212345678931234567894123456789

00xx.00 C N02NMRN01

00xx.00 COR 06 07 08

00xx.00 CAN 67 EMPRAT MULT EMPHRS EMPPAY

A maximum of seven AND/OR lines can be specified in one group.
This reads that if 02 is not on and MR is not on and 01 is not on perform
the operation, or if 06 is on and 07 is on and 08 is on and 67 is on,
perform the operation. If either side of the or condition is true, the
operation is performed.

 The entry in positions 7 and 8 of the line immediately preceding an
AND/OR line or a group of AND/OR lines determines when the
calculation is to be processed (detail or total time). The entry in positions
7 and 8 on the first line of a group applies to all AND/OR lines in the
group. Since the control level indicator (L1 through L9, L0, or LR) is
entered for total calculations or an SR or blanks for subroutines, or a
blank for detail calculations, the subsequent AN/OR line knows whether
it is part of detail calculations, subroutine calculations, or total calculations
and it behaves accordingly.

You can see how efficient traditional RPG is in its use of space for
calculation statements. As we go through the rest of the calc statement
columns, you will see that it is even more efficient than the examples that
we have shown..

Taking Totals

Since we have already shown just one detail calc which calculates the gross
pay, let’s now examine the next three statements in PAREG since we
have already discussed the notion of detail calculations and level
calculations.

Figure 9-11 PAREG Total Accumulation Calculations

Table of Contents 194

0022.00 C 02 MR EMPPAY ADD CTYPAY CTYPAY 92

0023.00 CL1 CTYPAY ADD STAPAY STAPAY 92

0024.00 CL2 STAPAY ADD TOTPAY TOTPAY 92

In statements 22 to 24 in Figure 9-11, the program is preparing totals for
printing during the creation of the report. The City total is first and each
time a gross pay value is calculated, it is added to the total in City Pay.
When City Pay is printed on the report after a city changes, the CTYPAY
field is cleared so it can accumulate again. Each time the city changes (L1),
an L1 break occurs. During L1 calculations, you can see that the state total
is accumulated (added to). The city total is added to the state total for later
printing. When the state total is printed, so also is the city total and both
are cleared and reset.. Whenever the state changes (L2) , an L2 break
occurs and the state total (STAPAY) is added to TOTPAY to create a
final total for the report.

Yes, it is probable that all of these defined totals and totals of all kinds
(including the STAPAY and TOTPAY totals in Figure 9-11) could be
created by detail time additions to the collection buckets. Instead we use
an approach that uses less resources. Rather than first filling a city total
collection bucket and then a state total collection bucket and dumping
each bucket at each level of collection, we could have added EMPPAY to
all totals at detail time. And, yes, RPG might be far easier to understand in
this case if we chose to do that. However, totaling items at level time
instead of detail time takes less machine instructions --- and that is a fact.
If there are six records for example worth of totals in the CTYPAY
bucket when it gets added in statement 23, then that would be five ADD
calculations that we saved by doing it that way. So, the RPG cycle does
offer IT RPG shops opportunities to conserve precious processor cycles.

Every chance we get, we try to help the learner understand that RPG is
very understandable. It does so much that even pseudo-code appears
complex when real RPG is exposed. Yet, we have advanced no more than
column 17 of the calc spec. It’s almost time to move on.

Before we move on, since the conditioning section of each calculation
specification can be triggered by so many unusual options, it’s time we
explained how they might gain influence:

Table of Contents 195

The least understood of all RPG notions is that of the “indicator.”
However, that is not where the conundrum is finished. In all other
languages, especially COBOL, conditions, such as those specified in
columns 9-17 of the calc spec, that are detected at a logic point in the
program that need to be remembered later in the program are stored in
things that are colloquially described as “switches.” If you understand the
notion of a COBOL switch, you know that the purpose and meaning of
an RPG indicator is the same as that of a switch.

One of the major revisions to calculations in RPGIV is the elimination of
second two indicator blocks in columns 12-17. RPGIV has room for just
one indicator block from positions 9 to 11.

C – Columns 18-52 Factors and Operators

The inventors of RPG considered that in every calculation there are at
least two factors, an operation, and a result, so they named the two areas
in which the factors are placed “Factor 1 and “Factor 2” respectively and
they aptly named the operation area as “Operation,” and the area for the
result of the calculations as the Result Field. The optional field length
comes next followed quickly by the number of decimal positions. Within
this vast area of 45 columns in RPG/400 and 59 columns in RPGIV, the
meat of the calculation operations takes place. The collective format of
the sub areas for both RPG/400 and RPGIV are shown in Table 9-12.

Table 9-12 Meat of the Calculation Spec – RPG/400 and RPGIV

Function RPG/400 RPGIV
Factor 1 18- 27 12-25
Operation (plus op
extender)

28-32 (none) 26-35 (extender)

Factor2 33-42 36-49
Extended Factor 2 NA 36-80
Result Field 43-48 50-63
Length 49-51 64-68
Decimal places 52 69-70
Operation Extender 53 NA (26-35)

Table of Contents 196

C -- Columns 18 – 27 Factor 1

In Factor 1 you specify the name of a field or you can provide actual data
(literals) or RPG/400 special words such as (*NAMVAR DEFN) on
which an operation is to be done. The entry must begin in position 18.
The entries that are valid for factor 1 depend on the specific operation
specified in positions 28 through 32.

C -- Columns 28 – 32 Operation

Columns 28 through 32 specify the type of operation to be done using
other elements on the calc form - Factor 1, Factor 2, and the Result Field
entries. The operation code must begin in position 28. The program
processes the operations in the order specified on the calculation
specifications form.The RPG operations are examined in detail in Chapter
****.

C -- Columns 33 – 42 Factor 2

You specify the name in Factor 2 of a field or you give the actual data
(literals) on which you want a particular calculation is to be done. For the
file operation codes, factor 2 names a file or record format to be used in
the operation. The entry must begin in position 33. Just as for Factor 1,
the entries that are valid for Factor 2 depend on the specific operation
code used on the CALC spec. in n positions 28 through 32.

C -- Columns 43 – 48 Result Field

You specify a result field to catch the result of operations. After an
arithmetic operation for example, the result field contains the result of the
calculation operation specified in positions 28 through 32

C -- Columns 49 – 51 Length

Table of Contents 197

In columns 49 through 51 specify the length of the result field. This entry
is optional, but can be used to define a field that is not defined elsewhere
in the program or in an external database. The below entries for the
length are allowed if the result field contains a field name.

1-30 Numeric field length.
1-256 Character field length.
Blank The result field is defined elsewhere.

The length entry specifies the number of positions to be reserved for the
result field. The entry must be right-adjusted. The unpacked length
(number of digits) must be specified for numeric fields.

If the result field is defined elsewhere in the program, no entry is required
for the length. However, if the length is specified, and if the result field is
defined elsewhere, the length must be the same as the previously defined
length.

If half-adjustment is specified in position 53 of the calculation
specifications, the entries for field length (positions 49 through 51) and
decimal positions (position 52) refer to the length of the result field after
half-adjustment.

C -- Columns 49 – 51 Decimal Positions

In column 52 indicate the number of positions to the right of the decimal
in a numeric result field that is defined in columns 49 – 51. The allowable
entries are:

Blank The result field is character data or has been defined elsewhere in
 the program.
0-9 Number of decimal positions in a numeric result field.

If the defined result field is numeric and it contains no decimal positions,
enter a '0' (zero). For character data, this position must be blank. This
position can also be left blank if the result field is numeric but was
described by input or calculation specifications or in an external
description. In this case, field length (positions 49 through 51) must also

Table of Contents 198

be left blank. Obviously, the number of decimal positions specified
cannot exceed the length of the field.

C- Column 53 (Operation Extender)

Various operations use this extender operation for different purposes.
We have not examined the use of input output operation codes, such as
READ as of yet, but when we do, the Operation Extender will take on
even more meaning.

The possible entries for the extender field are as follows:

Blank No operation extension supplied.

H Half adjust.

N Record is read but not locked (Update files).

P Pad the result field with blanks.

An H indicates whether the contents of the result field are to be half
adjusted (rounded). Half-adjusting is done by adding 5 (-5 if the field is
negative) one position to the right of the last specified decimal position in
the result field. The half adjust entry is allowed only with arithmetic
operations.

The “P” operation will also make sense after we study the various
operations that can be used in RPG. For example, the “P” entry indicates
that, for CAT, SUBST, MOVEA, MOVEL, or XLATE operations, the
result field is padded on the right after executing the instruction if the
result field is longer than the result of the operation. Padding is done from
the left for MOVE. This will make more sense in Chapter **** as we
explore operations in greater detail.

RPGIV does not have a column corresponding to the operation extender.
Instead in the expanded operation area, each op code that has an extender
adds the extender or extenders by adding a set of parentheses to the
operation and the extenders are placed in between the parentheses right
next to the operation code. RPGIV operations are covered in Chapter
*****.

Table of Contents 199

C – Columns 54-59 (Resulting Indicators)

These six positions used to hold up to three indicators can be used, for
example, to test the value of a result field after the completion of an
operation, or to indicate an end-of-file, error, or provide an indication that
a record was not found. Depending on the operation, the three areas that
are often associated with a +, =, or – or grater, equal, or less than
arithmetic result conditions can be used for other purposes. Each
operation that is studied may have its own specific use for these three
indicator areas.

The resulting indicator positions have different uses, depending on
the operation code specified. See the individual operation codes in
Chapter **** for a description of the associated resulting indicators.

Remember the following points when specifying resulting indicators:
When the calculation operation is finished, before the resulting indicator
conditions are set, any resulting indicators that are on are set off. Then the
new resulting indicators are set.

Our program PAREG is so simple, there are no resulting indicators in
play. Figure 7-1 shows an RPG/400 program with the resulting indicators
specified. RPGIV resulting indicators are specified in positions 71 to 76.

C- Columns 60-80 (Comments)

Positions 60 through 80 of each RPG/400 calculation specification line
can be used for comments to document the purpose of that calculation.
That’s 15 more positions than the File Description and Input
specifications and it comes in handy often to identify the purpose of the
resulting indicators that are turned on during calculations. RPGIV
provides the same number of comment lines in positions 81 to 100.

Another Look at PAREG Example CALCS

Let’s take another look in Figure 9-13 at the four calculation operations
from PAREG to see how the factors and operations that we just
examined in detail look in practice.

Table of Contents 200

Figure 9-13 Closer Look at PAREG CALCS

 Factor 1 OP Factor2 ResultLGTD

 89212345678931234567894123456789512

1 EMPRAT MULT EMPHRS EMPPAY 72

2 EMPPAY ADD CTYPAY CTYPAY 92

3 CTYPAY ADD STAPAY STAPAY 92

4 STAPAY ADD TOTPAY TOTPAY 92

Depending on the type of operation, calculation oriented or input/output
oriented, the types of values placed in Factor 1 and Factor 2 will vary. In
the multiply operation (MULT) in the line labeled 1 above, the field or
value placed in Factor 1 (EMPRAT) is multiplied by the field or value
placed in Factor 2 (EMPHRS) to produce a value that gets loaded into the
result field (EMPPAY). The three ADD operation lines labeled 2 through
4 above are fairly readable and self explanatory. The value in the field
specified in Factor 1 in all cases is added to the value in the field specified
in Factor 2 to produce the result that is stored in the Result field.

Notice the length of 7 for EMPPAY and the length of 9 for all the other
values. RPG/400 has no single area in which field declarations are made
and there is no working storage section as in COBOL in which to define
independent variables. This may sound like a disadvantage of the
language until you see that you can actually define new fields on the fly in
calculations. When you want to take a total, for example, you invent a
field name such as EMPPAY that does not exist in any database used in
the program.

Since EMPPAY is not defined within a database or an input specification,
it can be defined in calculations with a length and a decimal designation. If
there is a number placed in a the Decimals column from 0 to 9, the field is
numeric. If no decimal is specified then the field is alphabetic. The largest
numeric field is 32 bytes and the largest alphabetic field that can be
defined on the fly is 256 bytes. In the PAREG program section above,
each of the fields were defined as numeric with 2 decimal places.

Table of Contents 201

Factor 1 and / or factor two, depending on the operation used can
contain a field, a numeric value or an alphabetic constant. For numeric
operations, the factors both must be numeric as they are in the sample
program.

There is a more simple way, a short cut form of CALCS, to specify the
three calculation lines labeled 2 through 4 above. This is shown in Figure
9-14.

Figure 9-14 Short Form of Calc Operations

 Factor 1 OP Factor2 ResultLGTD

 89212345678931234567894123456789512

2 ADD EMPPAY CTYPAY 92

3 ADD CTYPAY STAPAY 92

4 ADD STAPAY TOTPAY 92

In this shorter form of the ADD statement, for example, the compiler
assumes that Factor 1 is the same named field as the result field.

The various operations and combinations of formats with Factor 1 and
Factor 2 to support those operations are described in Chapter *********

Table of Contents 202

Chapter 10

The Specifics of RPG Coding –
Output – by Example

Showing the Results

For all the good describing files, reading input, and computing results
does for programming, it provides no value to regular human beings
unless the results are communicated in the form of a printed report or a
display. In RPG, the output specification is used to provide a means of
coding this communication.

O-- Output Specification Form

The Output Specification Form is where most of the coding takes place in
the PAREG program, which we have been decoding for the last set of
chapters. Since PAREG is a report-writing style fixed cycle program, it is
understandable that the bulk of the programming is done with the output
form. All of the output specifications for the PAREG program originally
shown in Figure 5-1 that we are about to decode are repeated below for
your convenience. The output for the PAREG program is all program
described and since there is so little externally described printed output in
RPG, this topic is not covered in this book. Therefore, the output for
Figure 5-1 and Figure 5-2 is repeated below since it is the same. Notice
that in column 6, there is the “O” designator to differentiate the format of
this RPG form from all others.

Table of Contents 203

Figure 8-1 RPG/400 Output Specs for PAREG
 678911234567892123456789312345678941234567895123456789612345678
0026.00 O* RPG OUTPUT SPECIFICATION FORMS

0027.00 O*

0028.00 OQPRINT H 206 1P

0029.00 O OR 206 OF

0030.00 O 32 'THE DOWALLOBY COMPANY'

0031.00 O 55 'GROSS PAY REGISTER BY '

0032.00 O 60 'STATE'

0033.00 O UDATE Y 77

0034.00 OQPRINT H 3 1P

0035.00 O OR 3 OF

0036.00 O 4 'ST'

0037.00 O 13 'CITY'

0038.00 O 27 'EMP#'

0039.00 O 45 'EMPLOYEE NAME'

0040.00 O 57 'RATE'

0041.00 O 67 'HOURS'

0042.00 O 77 'CHECK'

0043.00 O D 1 02NMR

0044.00 O 46 'NO MATCHING MASTER'

0045.00 O EMPNO 27

0046.00 O EMPHRS1 67

0047.00 O D 1 02 MR

0048.00 O EMPSTA 4

0049.00 O EMPCTY 29

0050.00 O EMPNO 27

0051.00 O EMPNAM 52

0052.00 O EMPRAT1 57

0053.00 O EMPHRS1 67

0054.00 O EMPPAY1 77

0055.00 O T 22 L1

0056.00 O 51 'TOTAL CITY PAY FOR'

0057.00 O EMPCTY 72

0058.00 O CTYPAY1B 77

0059.00 O T 02 L2

0060.00 O 51 'TOTAL STATE PAY FOR'

0061.00 O EMPSTA 54

0062.00 O STAPAY1B 77

0063.00 O T 2 LR

0064.00 O TOTPAY1 77

0065.00 O 50 'FINAL TOTAL PAY'

The first two statements (26, 27) in calculations are comments as they
each have an asterisk in column 7.

Record Identification and Control Entries

Just like the Input Specification which have two major formats for both
externally described and internally described files, so also does the Output
form. The first format of the Input form is called the Record
Identification and Control Entries. Whereas in input, we place indicators

Table of Contents 204

in this area to test which record format was read, in out put we use
indicators to tell the RPG compiler which record it should write.

Just as RPG permits record IDs to be tested on input using the left half of
the Input form, so also does it condition and control output using the left
half of the RPG output form. For the PAREG program, the left half of
the RPG/400 form ends in position 31 while for those programs that use
a more modern form of exception (calculation-driven) output, the area
from 32 to 37 is used for what is referred to as an exception name. The
notion of an exception name will be examined in Chapter ****** so for
now, we end the Record Intensification and Control Entries for the
PAREG program at column 31 for RPG/400. For RPGIV, the area ends
in column 51

The output section of PAREG is shown in its entirety in Figure 8-1
above. For our analysis on how output is controlled let’s take all of the
record ID code from Figure 8-1 and place it in a separate figure (Figure 8-
2) so we can get a closer look at it. To do this, we will just eliminate the
right half of the output form in which control is not included. Take a look
at Figure 8-1 now and see if you can spot all of the record conditioning
and control statements that should be in Figure 8-2.

Hopefully you spotted them all. There are nine of them and they are
presented below in Figure 8-2 for your immediate and close-up
examination. The original line numbers have been included to make it
easier for you to compare back to the full output form in Figure 8-1.

Figure 8-2 Record Conditioning and Control Output for PAREG

0028.00 OQPRINT H 206 1P

0029.00 O OR 206 OF

0034.00 OQPRINT H 3 1P

0035.00 O OR 3 OF

0043.00 O D 1 02NMR

0047.00 O D 1 02 MR

0055.00 O T 22 L1

0059.00 O T 02 L2

0063.00 O T 2 LR

Table of Contents 205

OPDRI -- Specification Columns 7-14

Immediately following the O, since we have designated the printer file to
be a program described output file, we get to do lots more describing
column by column. The first thing you notice is that in statement 28
above, the file name (7-14) is QPRINT. This is the same name as defined
in File Descriptions. Because this is a program described file for the
printer, we use the file name as described in File Descriptions instead of
the record format name as we did for input.

Though RPG programmers sometimes define their own print files to the
System i5 to provide special formatting for certain reports such as
invoices and statements, many continue to use any of the IBM default
printer files such as QPRINT. (See Appendix ***** to see how to create
your own printer file). The key thing in output is that when you begin to
code the Record Identification and Control format of the output
specification, if you have just one print file to which to refer, you must
use the same name to reference the print file you have defined in the F
specification. In this case the name is QPRINT.

Printing to Multiple Printers

Of course, RPG/400 programs can have multiple printers defined for
output. For this, additional F specs would be used with different file
names. To assure that the correct output goes to the correct printer, when
there are multiple printers, the programmer uses the File Name area from
7 to 14 of the O spec to designate the file that is related to the printer to
which output is to be directed.

In RPGIV, the File name is expanded to 10 positions from 7 to 16.

Table of Contents 206

OPDRI Columns 14-16 (Logical
Relationship)

Statements 29 and 35 in the output specifications of program PAREG
make use of this logical relationship area. Looking above just a bit, you
may recall that the File Name was within positions 7 and 14 of the O
spec. Yet, the logical relationship is taking up one of those columns. The
only reason that is OK is that the File Name does not get repeated on a
logical relationship continuance line.

You must decode the Logical Relationship column in statements 29 and
35 and recognize that this continues the conditional testing as to whether
the output record will be written. If either set of conditions exist
(indicators 1P or OF as specified on lines 28 and 29) for example, that
means that the output line will be printed.

We will be examining the specific conditions (1P or OF or other
indicators) under which lines print below, but for this lesson it is
important to gain that the logical relationship column of a second and
possibly even a third line of Record ID and Control Entries broadens the
conditions under which a line will print or a record will be written. If
instead of the “OR” relationship which we show, the actual relationship
were AND, the logical relationship column again can serve to expand the
conditions under which an output record will be written. For the AND
condition, you would place the letters AND on the second and
subsequent Record ID and Control Entries. A modified sample of lines
28 and 29, using an “AND” linkage is shown below:

0028.00 OQPRINT H 206 1P

0029.00 O AND 206 OF

Now that you know how to “AND” out put conditions together, it is
helpful to know that RPG provides a natural way to provide “ANDing.”
Without any words you can see the “ANDed” conditions below:

Table of Contents 207

0028.00 OQPRINT H 206 1P OF

This line is conditioned by the 1P indicator and the OF indicator,
meaning it should print in the first output cycle before input and it should
print whenever the OF indicator is turned on as printing fills up the prior
page. We will be examining those columns very shortly… and by the way,
don’t run away yet, because the coding we did above for AND, though
syntactically correct, is illogical.

For RPGIV, the logical relationship is specified in columns 16-19.

OPDRI — Column 15 (Type)

Though seemingly innocuous, the infamous Output Type column has
created as much frustration for procedural programmers as the notion of
L1 and L2. The idea of conditioning indicators for output lines is very
logical. In the big picture, however, it takes a good knowledge of the
RPG cycle in order to know just when those conditioning indicators
might be on or off. Since we have made it through the CALC spec, it
may help to know that the notion of total time output is really not much
different than the notion of level calculations (columns 7 and 8) that are
used for calculations to occur in between control breaks.

In fact a look at the cycle would reveal that as soon as Control Level
calculations are performed, the RPG cycle moves on a mythical journey to
something called total output time so that it can print what it has
accumulated.. For those watching at home, total output time is another of
these in-between time cycle notions that occur in between control break
changes.

To be specific, the RPG cycle saga continues right here from calculations
since this “in between time” is really the part of the cycle from step 2 in
which a record gets read until step 6 in which RPG makes the data from
that record available. During this time totals for the prior group can be
taken in Cycle step 3 and then in Cycle step 4, the totals that were
accumulated can be printed with the heading information from the prior
record, not the record just read. See Figure 4-1 for verification. Thus, the

Table of Contents 208

total for Pennsylvania that prints right before the detail record for Alaska
gets processed, can actually print PA next to the total since PA has not yet
been replaced by AK – even though the AK record is in. AK does not
replace PA in memory until step 6 of the RPG cycle.

The coding for column 15 is self revealing and is as follows:

H Heading records in a printed report (occur only when the first
 Report page is to be printed or when the printer has passed the
 last line on the prior page – a condition called “overflow” or
 printer overflow. This is relevant only with printers.

 Heading records usually contain constant identifying information
 for reports such as titles, column headings, page numbers, and
 date. What typically differentiates these records from pure detail
 records is that they require no variable input. The data is typically
 coded as constants or reserved words. RPG can print headings
 even before it has gone its first input cycle.

 Heading records are printed during the detail print cycle.
 There is no structural difference in RPG between H and D
 specifications other than the intention of the programmer.

D Detail records usually contain data that comes directly from
 the input record or that is the result of calculations processed at
 detail time in the RPG cycle. For example, the field in our
 program named EMPPAY is created at detail calculation time
 within the RPG cycle.

T Total records usually contain data that is the end result of specific
 calculations on several detail records. In the PAREG program,
 the City, State and Final totals fir this mold

E Exception records are not needed for the PAREG program.
 These are lines of output that will print when triggered by a
 specific calculation operation for output known as EXCPT.
 EXCPT is described in detail in Chapter *********

They type specification in RPGIV is located in column 17.

Table of Contents 209

OPDRI – Column 16 (Fetch Overflow /
Release)

PAREG does not use the Fetch Overflow / Release facility. There are a
number of mythical notions that many who have toiled learning the RPG
cycle have wrestled with. Fetch Overflow is one of them. In a nutshell,
because RPG records can be written at detail, total or exception output
time, sometimes the wrong cycle is in play to print the overflow headings.
Fetch overflow (F) option is a way around this problem. It has enough of
its own issues that if you learn that you need Fetch overflow in one of
your programs, you will already be in graduate level RPG. We do not
need Fetch overflow in the PAREG program.

We do not need the RELEASE facility or the “R” code in column 16 in
this PAREG program either. The “R” for release comes about in
programs that control their own access to databases (non cycle programs)
and after they have made a request for input and a record is inside the
RPG program staged for update, circumstances in the program may alter
the requirement to actually update the database record. So, for those using
the RPG cycle, the R code in column 16 will release the exclusive update
lock on the record and make that particular record available to other
programs.

Fetch Overflow and Release options are provided in RPG IV column 18.

OPDRI – Columns 17-22 (Space and Skip)

Figure 8-2 is repeated below so that we can examine the Space and Skip
entries used in PAREG

Table of Contents 210

Figure 8-2 Record Conditioning and Control Output for PAREG

0028.00 OQPRINT H 206 1P

0029.00 O OR 206 OF

0034.00 OQPRINT H 3 1P

0035.00 O OR 3 OF

0043.00 O D 1 02NMR

0047.00 O D 1 02 MR

0055.00 O T 22 L1

0059.00 O T 02 L2

0063.00 O T 2 LR

Line 28 & 29 skips to line 6 of the form and prints the 1P 1st line of
headings or overflow 1st line headings which in PAREG is the report title.
It then spaces 2 lines after printing the report title. Lines 34 and 35 print
The report column headings and then space three lines to begin printing
the detail lines. The detail lines (43 and 47) print when data is read after
each line the printer spaces one to the next line and awaits printing. In line
55, the City total spaces 2 lines and then prints the City total. It hen
spaces two lines. In line 59, the printer spaces 0 lines (city already moved
it down two lines) and then it prints the State total followed spacing of
two lines. In line 63, for the final total, the printer spaces another two
lines for big separation between the final total and the last state total and
then the line prints the final total information.

Powerful Report Writing

Only a programmer who has never tried to perfect the look of a spiffy
aged trial balance report or a sales report with five dimensions of totals or
a properly formatted GL financial statement would even consider pooh
poohing the raw power in RPG that intrinsically enables report
formatting. Yet, they are out there and some would choose to double or
triple the number of statements in a program rather than use RPG’s
(that’s Report Program Generator folks) innate reporting facilities. If I
were to correct myself on this statement, I would change the word “use”
to learn. Hey, you are struggling through the cycle and soon you will
understand that the cycle is remarkable once you have made that “4GL”
reporting investment in your career.

Table of Contents 211

Spacing & Skipping

Let’s envision a physical printer. In other words, a physical printer would
be one that actually is forced to print on paper and not to PDF. Spooling
has separated most of us in the tech community from the care and feeding
of printers. Yet, they have their needs. Let’s not look at HP’s or Xerox’s
big lasers now or we won’t get the right picture and we will miss the
learning opportunity. Let’s envision a line printer of any name. It can
print one line at a time. Coincidentally, the RPG cycle prints one detail
line at a time.

Now, let’s go back even ten years from this. You can’t get the notion of
spacing and skipping without this. The big behemoth printers were
capable of printing upwards o 4,000 lines per minute mechanically by
impact. Such printers still exist today and their owners do not want to get
rid of them though maintenance is now quite prohibitive.

These printers were equipped with a paper tape which controlled a
skipping carriage. When a program sent out a skip command it was to one
of 12 channels in the paper tape. So, a high speed skip to channel 6 might
bypass 30 lines or more on a preprinted form and go ahead and print the
needed total at the bottom of the form on the correct line every time.
These little carriage tapes were Mickey-Mouse to computer operations so
printer companies such as IBM made the little tape electronic and then
gave the programs the control to send the printer to an exact line on a
page – no matter how many lines had to be skipped. Almost
instantaneously a printer could go from line 5 to line 35 and print the next
line of the form. It worked just as well as the carriage control printers but
now, instead of skipping to a channel, the programs were able to skip to a
specific line number. It was a great advancement in technology and the
RPG language matched the ability of the system by providing skip to line
facilities instead of carriage control slots.

Yet, sometime, no matter where you were on a form or a report printout,
you would need to skip one more line to print a total or such. Thus, the
notion of line spacing persisted even after the skipping technology
advancement. Whether the following is true or not does not matter sine it
is a constraint regardless. RPG was devised so that the compiler would
support no more than three lines of spacing before or after a print line.

Table of Contents 212

IBMers told me over the years that this was a printer issue, not an RPG
issue. I think it was neither. I think now that it was IBM believing that a
programmer ought to be using skipping if they have to leave three blank
lines on a report. So, IBM would not permit more than 3 lines to be
spaced before and 3 lines to be spaced after each of those Record
Identification and Control Entries. For printer control, “them” are still
the rules in RPG today.

The column specifications in RPG and RPGIV today that provide spacing
and skipping before and after are shown in Table 8-3.

Table 8-3 Printer Spacing and Skipping

Printer Function RPG/400 RPGIV
Spaces before 17 40-42
Spaces after 18 43-45
Skip to line before 19, 20 46-48
Skip to line after 21, 22 49-51

If a space/skip entry is left blank, the particular function with the blank
entry (such as space before or space after) does not occur. If entries are
made in position 17 (space before) or in positions 19 through 22 (skip
before and skip after) and no entry is made in position 18 (space after), no
space occurs after printing.

OPDRI – Columns 23-31 (Output
Indicators)

The same notion of conditioning indicators applies to output as it does to
calculations. In calculations, for example, we learned that there were three
distinct slots on one calculation specification in which the programmer
could specify three indicators to condition operations and all of those
indicators were automatically involved in an “AND” condition. They all
had to be on for the line to be executed.

Positions 23 to 31 of output represent the same notion. Three indicators
are permitted – that’s two positions each or six positions of the nine. Just

Table of Contents 213

like CALCS, each one of the indicators can be negated with the “not”
modifier by simply placing an N in position 23, 26, or 29 as long as an
indicator was specified in the two right adjacent columns.

To show you what this looks like let’s take a peek at statements 43 and 47
of PAREG in Figure 8-4.

Figure 8-4 Detail Record Conditioning

0043.00 O D 1 02NMR

0047.00 O D 1 02 MR

These two Record Identification and Control Entries each use two of the
natural “ANDed” slots for indicators to condition the output. Both use
indicator 02 and indicator MR, meaning a time card record was read and
there is a match. Well, at least that is what statement 47 does. Statement
43 tests to see if the time card just read does not have a matching master
(PAYMAST). Of course that means that the 02NMR is clearly an error
condition. It is fair to ask, as we decode this section, what are we asking
the program to do when this condition occurs?

To know the answer to this, we must also look at the field codes (which
we have not yet explained). However, we can rough up an explanation
with what is obvious. The print line and the error conditioning (02 NMR)
are shown immediately below:

Figure 8-5 Error Conditioned Output
0043.00 O… D 1… 02NMR

0044.00 O… 46 'NO MATCHING MASTER'

0045.00 O… EMPNO 27

0046.00 O… EMPHRS1 67

Right after the detail (D) indicator there is a blank and then in position 17
of Line 43, there is a “1.” This tells the printer to space one before
printing an error message if indicator 02 (a time card) is on and indicator
MR is not on (NMR). If both are true then this is a non match with
PAYMAST. So, after executing a one space before, this code tells the
RPG compiler to go ahead and print the employee number and the

Table of Contents 214

number of hours next to an error message of “NO MATCHING
MASTER,” that ends in printer position 46 of the report. Thus, the RPG
cycle MR technique as coded in this program with 02 and NMR permits
the program to identify a condition in which we have a time card with a
missing master. We could do the same type of check if we have a
PAYMAST record with a missing time card. This condition would be
made known by an indicator 01 on condition along with the NMR.
However, we have not coded that in this example.

The output field conditioning indicators for RPGIV have the same
meaning and they live in columns 21 to 29 of the RPGIV calc spec
respectively.

Field Description and Control Entries

Using the Record Identification and Control Entries as we have above,
the objective is to specify the conditions under which a print line is
produced by the program. Via the conditioning indicators that we have
used in this program, 1P, OF, 01, 02, and MR, we have conditioned lines
to print in a sequence that can produce the output report that we defined
first in Figure 4-1.

Before we discuss the Field description part of the Field Description and
Control Entries form, let us first look at the control entries. Just as we
conditioned print lines at the record level, the Control entries portion of
this form permits us to condition specific fields to print when and if a line
is printed. Theoretically a line can be enabled to print at the record level
and because no fields are conditioned to print, a blank line may be
produced

OPDFD- Columns 7 through 22 Reserved

No entries are permitted in the RPG/400 Field Description Form from
column 7 to column 22.

Table of Contents 215

OPDFD- Columns 23–31 Output Indicators

The conditioning output indicators occupy the same relative space in this
Field Form as they do in the Record Form – 23 to 31 and they work the
same way. If all of the indicator statuses that are tested on a field line
create a true condition, then the field will be printed. Of course, there are
no such controls needed in the PAREG program since no fields need to
be conditioned for printing. Each line that is conditioned in the PAREG
program prints all fields and literals that are defined for the print line in
the end positions noted on this form.

RPGIV’s output indicators are provided for in columns 21 to 29.

The variable output fields printed on the report defined in Figure 5-1 are
shown in Figure 8-6 twice with their original line numbers. There are lots
of lines missing in this example. As you may recall from the full PAREG
program in Figure 5-1, the end positions on the print line to print these
fields are often the same because they in fact print on different lines –
Heading, detail, Level 1, Level 2, and LR.

Figure 8-6 Output Fields for PAREG

 67891123456789212345678931234567894123
0033.00 O UDATE Y 77
0046.00 O EMPHRS1 67
0052.00 O EMPRAT1 57
0053.00 O EMPHRS1 67
0054.00 O EMPPAY1 77
0058.00 O CTYPAY1B 77
0062.00 O STAPAY1B 77
0064.00 O TOTPAY1 77

0033.00 O 45 46N47UDATE Y 77
0046.00 O NMRN1PNOFEMPHRS1 67
0052.00 O 31 EMPRAT1 57
0053.00 O n29 EMPHRS1 67
0054.00 O 01 EMPPAY1 77
0058.00 O 36CTYPAY1B 77
0062.00 O N56STAPAY1B 77
0064.00 O N83 TOTPAY1 77

Table of Contents 216

There is one difference as you can see. Some of the fields in the repeated
group have numbers next to them to the left. These numbers are in
columns 23 to 31 and are field conditioning indicators. For the PAREG
program, they are absolutely meaningless but they sure give you an idea of
how to code field indicators. The UDATE field for example only prints in
position 77 if indicator 45 and 46 are on and 47 is off. EMPHRS only
prints in 67 if MR, 1P, and OF are all off. TOTPAY prints in 77 only if 83
is off.. As you can surmise, field indicators can create holes in output lines
for information that should not be printed. You can also specify two
different fields to print in the same position on the same line and before
printing assure that just one of the printing conditions is true.

OPDFD-- Columns 32-37 Field Name

When coding output for PAREG, we placed the names of the fields that
we wanted to print in positions 32 through 37. In Figure 8-6, you can see
not only the field names and the end positions but also the editing codes
which will soon be discussed. Because other elements besides fields are
also specified in columns 32-37, let’s a get a full appreciation for all the
entries and their meanings:

✓ Field name

✓ Blanks if a constant is specified in positions 45 through 70

✓ Table name, array name, or array element

✓ Named constant

✓ RPG/400 reserved words such as PAGE, PAGE1 through
PAGE7, \PLACE, UDATE, \DATE, UDAY, \DAY,
UMONTH, \MONTH, UYEAR, \YEAR, \IN, \INxx, or
\IN,xx

✓ Data structure name or data structure subfield name.

Field Names, Blanks, Tables and Arrays

Tables and Arrays are described in Chapter *****. To be used for output,
the field names used must be defined in the program, either explicitly or
implicitly from being within an externally described file.

Table of Contents 217

You should not enter a field name if a constant or edit word is used in
positions 45 through 70. The end positions represent an either / or
scenario. If a field name is entered in positions 32 through 37, positions 7
through 22 must be also be blank.

The RPGIV field name is coded in positions 30 – 33 and the field name
can be indented (leading blanks).

OPDFD Column 38 Edit Codes

The PAREG program takes advantage of another very powerful facility in
RPG known as Edit Codes. These codes get specified on a field line in
column 38 of the output specification. A snippet from the PAREG
program showing all of the lines that have edit codes is shown in Figure
10-7.

Figure 10-7 Output Fields for PAREG

 67891123456789212345678931234567894123
0033.00 O UDATE Y 77
0046.00 O EMPHRS1 67
0052.00 O EMPRAT1 57
0053.00 O EMPHRS1 67
0054.00 O EMPPAY1 77
0058.00 O CTYPAY1B 77
0062.00 O STAPAY1B 77
0064.00 O TOTPAY1 77

As you can see by walking down column 38, we were not very picky in
our use of edit codes. In line 33, for example, we use the reserve word
UDATE to print the system data along with a special Y edit code that
makes sure the slashes are placed properly. The rest of the fields above
from PAREG use the “1’ edit code.

Table 10-7 shows some of the fields from the report in Figure 4-1 and
how the edit code has made the printed data look much better

Table of Contents 218

Table 10-7 Output Editing of PAREG Fields

Field Represents No Edit With Edit
UDATE 022106 2/21/06
RATE 780 7.80
HOURS 3500 35.00
CHECK 27300 273.00
TOTAL CITY PAY FOR WILKES-
BARRE

58900 589.00

TOTAL CITY PAY FOR
SCRANTON

114475 1,144.75

FINAL TOTAL PAY 289360 2,893.60

We picked these two (Y and 1) edit codes for PAREG because that’s all
we needed. But, they came from a very wide and diverse barrel. Let’s take
a look at all of the edit codes in the barrel in Figure 10-8 as well as what
they actually mean. Edit codes do so much work with so little work
involved that it is best to best explain it all with combinations of minus
signs and CR signs and slashes and dashes. So we borrowed the table
from IBM’s AS/400 Reference Manual and it is shown in Figure 10-8 just
to show you how much can really be stashed in this one column.

In RPGIV, the Edit Code place is column 44.

OPDFD —Column 39 Blank After

PAREG uses the notion of blank after for two output fields as follows:

0058.00 O… CTYPAY1B 77

0062.00 O… STAPAY1B 77

The total for city pay is collected by adding the individual’s gross pay to
the city pay total for each time card record read that also has a match (02
MR). When the city total is printed, the next logical step would be to clear
out the total accumulator so that the prior city’s total does not get mixed
in with the new city’s total. So also for the state total when it is printed. In
typical programming languages, a separate operation or small routine

Table of Contents 219

would be invoked to reset the city accumulator. In RPG it can be done
with one column called blank. This very handy tool shows the power of
RPG for report writing. And it certainly saves programmer coding.
Immediately after RPG prints CTYPAY and STAPAY fields, it clears
them (blanks them out) to prepare the fields for collecting the next city or
state’s total pay.

Figure 10-8 Complete RPG Edit Code Table and Meanings

The entries for column 39 are as follows:

Blank The field is not cleared (reset).
B The field is reset to blank or zero after the output operation

In RPGIV, the Blank after code is placed in column 45.

Table of Contents 220

OPDFD - Columns 40-43 End Position

Figure 10-1 shows all the output and Figure 10-9 sets up a learning sample
from PAREG to show the end positions in header (literal) output from
the beginning of the output section in Figure 10-1. In Figure 10-1, both
literals and variables for the PAREG program are coded along with their
end positions, which do not overlap in the PAREG program..

Fields in output can be specified in any order because the sequence in
which they appear on the output records is determined by the end
position entry in columns 40 through 43. If fields overlap, the last field
specified is the only field completely written. In other words, RPG moves
all the fields you specify into the output record prior to printing it. As it
moves them in, it builds the print line in the sequence that the fields are
specified taking care to end each field as it is placed in the print buffer in
the position defined in 40-43 as the end position. The last field specified
may very well overlap another field. In this case, RPG dutifully places the
full contents of that field in the buffer and overlays whatever value may
have been there from a field specified in a lower numbered statement.

The PAREG program has no fields that overlap so this is not an issue in
our sample program. When edit codes are used, the programmer must
leave room to the left on the print line to assure that the fully edited field
can fit without creating an overlay issue with the low order positions of
the field to the left.

The entries that can be specified in the END position area from 40 – 43
are as follows:

1-n Numeric value for print line end position
K1-K8 Length of format name for WORKSTN file
 RPG provides a facility to program describe format
 names in the RPG II style.
+nnn Number of spaces to leave between last field specified
 Sometimes programmers do not want to precisely
 calculate the exact end position for a printed field or
 constant. RPG provides the “+” option to leave a
 certain amount of space in between fields saving the

Table of Contents 221

 programmer the work of figuring out specifically
 where everything ends The sign must be in position
 40.
-nnn Negative of above
 nnn Same position as last

Let’s take a look at the first section of output in the PAREG program
shown in Figure 10-9 for a real example:

Figure 10-9 End Positions
 678911234567892123456789312345678941234567895123456789612345678
0028.00 OQPRINT H 206 1P

0029.00 O OR 206 OF

0030.00 O 32 'THE DOWALLOBY COMPANY'

0031.00 O 55 'GROSS PAY REGISTER BY '

0032.00 O 60 'STATE'

0033.00 O UDATE Y 77

Positions 40 through 43 define the end position of a field or constant on
the output. Lines 30 to 32 specifies constants and their end positions on
the print line while line 33 specifies the reserved word UDATE which
tells the RPG compiler to access the system date and print it ending in
position 77.

Valid entries for end positions are blanks, +nnn, -nnn, and nnnn. All
entries in these positions must end in position 43. Enter the position of
the rightmost character of the field or constant. The end position must
not exceed the record length for the file.

The plus (+) and minus (-) additions are a tool to help programmers
design simple forms without having to use detailed printer spacing charts.
The +nnn or -nnn entry specifies the placement of the field or constant
relative to the end position of the previous field. The sign must be in
position 40. The number (nnn) must be right-adjusted, but leading zeros
are not required. To calculate the end position, use these formulas:

EP = PEP +nnn + FL
EP = PEP -nnn + FL

EP is the calculated end position. PEP is the previous end position. For
the first field specification in the record, PEP is equal to zero. FL is the

Table of Contents 222

length of the field after editing, or the length of the constant specified in
this specification. The use of +nnn is equivalent to placing nnn positions
between the fields. A -nnn causes an overlap of the fields by nnn
positions.

For example, if the previous end position (PEP) is 6, the number of
positions to be placed between the fields (nnn) is 5, and the field length
(FL) is 10, the end position (EP) equals 21.

In RPGIV, the end position is specified in columns 47-51.

OPDFD - Column 44 (Data Format)

The PAREG program does not need this column to get its job done. This
area is not needed for printed reports. The entries are for disk files and are
as follows:

Blank The field is written as zoned decimal numeric or
 character or a constant.
P The field is written in packed decimal format.
B The field is written in binary format.
L The numeric output field is written with a preceding
 (left) plus or minus sign.
R The numeric output field is written with a following
 (right) plus or minus sign.

This position must be blank if editing is specified. In RPGIV, the data
format code is specified in columns 52.

OPDFD - Columns 45-70 Constant or Edit
Word

Let’s look at Figure 10-10 for some of the constant (literal) data from
PAREG and two edit word examples in statement 99.03 and 100 that are
not in PAREG. The extra code shows a seven position field being edited
with an edit word. In 99.03, the zeroes are replaced by a floating dollar

Table of Contents 223

sign that prints to the left of the high order non-zero digit. In 100, the
same field is edited with a fixed place dollar sign.

Figure 10-10 Constant & Edit Word Examples from PAREG etc.
 678911234567892123456789312345678941234567895123456789
0034.00 OQPRINT H 3 1P
0035.00 O OR 3 OF
0036.00 O 4 'ST'
0037.00 O 13 'CITY'
0038.00 O 27 'EMP#'
0039.00 O 45 'EMPLOYEE NAME'
0040.00 O 57 'RATE'
0041.00 O 67 'HOURS'
0042.00 O 77 'CHECK'

0099.00 O*

0099.01 O* Floating dollar sign followed by fixed dollar sign

0099.02 O+

0099.03 O NUM7 90 ' $0. '
0100.00 O NUM7 90 '$ 0. '

As we decode the PAREG output specifications, we quickly see that the
only use that the PAREG program makes of columns Positions 45
through 70 is for program literals which are also called constants since
they do not change. Statements 36 to 42 of the program as shown above
represents the headings for the columns of the report and this “line” or
record is formatted by its end positions as specified in 40 to 43. In
position 45 in the referenced PAREG statements, there is a required
quote and immediately following the literal is a second single quote to
signify the end of the literal. When the line prints each of the described
literals will print ending in the positions specified next to them in
positions 40 to 43.

Coding literals is one of the easiest things in RPG and it makes the
language very powerful in being able to provide descriptive report titles
and column headings as noted above.

Figure 10-11 Literals Used for Totals
 678911234567892123456789312345678941234567895123456789
0055.00 O T 22 L1
0056.00 O 51 'TOTAL CITY PAY FOR'
0057.00 O EMPCTY 72
0058.00 O CTYPAY1B 77
0059.00 O T 02 L2
0060.00 O 51 'TOTAL STATE PAY FOR'
0061.00 O EMPSTA 54
0062.00 O STAPAY1B 77
0063.00 O T 2 LR
0064.00 O TOTPAY1 77
0065.00 O 50 'FINAL TOTAL PAY'

Table of Contents 224

Literals are not always used for headings, however. As you can see in the
output snippet from PAREG in Figure 10-11, literals are marked at the
appropriate spot of output to provide a caption for the intermediate (city
and state) and the final totals. The literal prints to the left of the fields in
this case as shown in Figure 10-12 below:

Figure 10-12 Literals Used to Mark Totals

Columns 45 to 70 can be used for other functions, though our sample
program PAREG does not deploy any of those functions. For example it
can be used to specify an RPG II style screen format name or an edit
word as shown in Figure 10-10 w. See Chapter **** for a discussion of
screen formats.

RPG/400 Edit Words

Though PAREG does not used Edit words, there is no better place to
describe this facility than right here. If you have editing requirements that
cannot be met by using the edit codes described above, you can use an
edit word or named constant. An edit word allows you to directly specify:

✓ Blank spaces

✓ Commas and decimal points, and their position

✓ Suppression of unwanted zeros

✓ Leading asterisks

✓ currency symbol, and its position

✓ Constant characters

✓ Negative sign, or CR, as a negative indicator.

Describing Edit words can make up lengthy book chapter in itself. Yet, a
whole chapter on edit words simply is not worth your time. So, we will
explain the notion and then show you some examples. As many things in
RPG, it is good to know they are there in case you ever need them for

Table of Contents 225

coding or decoding but when you move from learning to having reference
needs, IBM’s free RPG manuals will be your best tool.

As you can see in the 26 spaces space provided on the output spec, RPG
edit words can be up to 24 characters long and must be enclosed by
apostrophes, unless of course it is a named constant which is covered in
Chapter *********.

What are the parts of an edit word?

An edit word consists of three parts: the body, the status, and the
expansion. The following shows the three parts of an edit word:

Figure 10-13 Make Up of an Edit Word

Body - Status - Expansion

The body is the space for the digits transferred from the source data field
to the output record. The body begins at the leftmost position of the edit
word. The number of blanks (plus one zero or an asterisk) in the edit
word body must be equal to or greater than the number of digits of the
source data field to be edited. The body ends with the rightmost character
that can be replaced by a digit.

The status defines a space to allow for a negative indicator, either the two

letters CR or a minus sign (-). The negative indicator specified is output
only if the source data is negative. All characters in the edit word between
the last replaceable character (blank, zero suppression character) and the
negative indicator are also output with the negative indicator only if the
source data is negative; if the source data is
positive, these status positions are replaced by blanks. Edit words without

the CR or - indicators have no status positions.

Table of Contents 226

The status must be entered after the last blank in the edit word. If more

than one CR follows the last blank, only the first CR is treated as a status;

the remaining CRs are treated as constants. For the minus sign to be
considered as a status, it must be the last character in the edit word.

The expansion is a series of ampersands and constant characters entered
after the status. Ampersands are replaced by blank spaces in the output;
constants are output as is. If status is not specified, the expansion follows
the body.

Since a picture is worth a thousand words, the following examples, taken
from IBM’s reference manual should help in bringing home the notion of
edit codes and how useful their use can be in your report creation.

Figure 10-14 Zero Suppression

Figure 10-15 More Zero Suppressions

Figure 10-16 Zero Suppression with Two Decimals

Figure 10-17 Zero Suppression, Two Decimals, Asterisk Front Fill

Table of Contents 227

Figure 10-18 Zero Suppression, Two Decimals, Asterisk Front & Back Fill

Figure 10-19 Zero Suppression, Two Decimals, Floating Dollar Sign

Figure 10-20 Miscellaneous Edit Words / Results
Input Edit Word Edited Result

0042 "0_HRS.__MINS.&0""CLOCK" _0HRS.42MIN._0"CLOCK

000000 "_,___.0_" _____.00

000000 "_,___.0_" | _______0

000000 "_,_0_DOLLARS__CENTS&CR" ____0DOLLARS00CENTS___

+000002 "__0LBS.&__OZ.TARE&-" ____0DOLLARS00CENTS___

013579 "&_,*_0,___" ***130,579

100199 "__/__/__" 10/01/99

00123456 "_,__$,0__.__" ___1$,234.56

-0000000000 "_________*&CR" **********___

0000135678 "__,___,___DOLLARS__CENTS" _____1,356DOLLARS78CENTS

-0034567890 "___,___,_&0.__CR**" ___$345,678.90CR**

Besides the fancy edit word tricks shown in Figure 10-20, there are plenty
more than those that we have the opportunity to show in this book, But,
now you know how powerful the edit word facility is in RPG/400 and
you have seen a number of interesting uses for this tool. If you can’t find
an edit code to do the formatting that you are looking for, it helps to
know that there is not much you can’t do with an edit word. Again, if it is
taking you time to get your edit word working, and you still have issues,
all of the rules are well explained in IBM’s RPG/400 Reference Manual
for the latest release.

The Constant Edit Word area in RPGIV is in columns 53-80.

Table of Contents 228

OPDFD -- Columns 71-74 Reserved

For a field definition, positions 71 through 74 must be blank.

OPDFD -- Columns 75-80 Comments

For output, there is a paucity of space provided for comments as there is
overall in RPG. Positions 75 through 80 can be used for comments, or
left blank. Most programmers, who make meaningful and formatted
comments in RPG, use multiple statements with the “*” in column 7 for
their verbiage.

Comments in RPGIV are in columns 81 – 100.

Table of Contents 229

Chapter 11

Decoding and Debugging RPG
Programs

The PAREG Program Decoded

Now that we have been fully introduced to RPG/400 specifications and
many of the options on each of the various coding forms, it’s time to
examine the PAREG program one more time to assure that we can
decode it (read it with understanding) in anticipation of a potential
maintenance change.

That is the other half of the development cycle in which you write and
implement and then fix or enhance and implement. The enhancement
that we will be making after we do the once through on the PAREG
program is the introduction of the DEBUG operation to the program. In
my personal experience and as I witnessed others learning RPG for the
first time, a key factor in understanding the RPG cycle is to watch what is
happening through the eyes of a debug listing. This is not “Source Level
Debugging” but it is an innovative operation code called DEBUG which
opens up the RPG cycle for viewing while a report is being printed. For
the RPG craftsman needing that special look in a report or a form, the
DEBUG operation is priceless.

To get the decoding process moving, let’s repeat the objects that are
involved in our study. Figure 11-1 is the report; Figure 11-2 and 11-3 are
the data and Figure 11-4 is the compile listing of the program.

Table of Contents 230

Figure 11-1 Program Output from Running Sample Learning Program

Table of Contents 231

Figure 11-2 Query Listing of EMPMAST File Data
 EMP EMPNAM EMP EMPCTY EMP EMP

 # RAT STA ZIP

000001 1 Bizz Nizwonger 7.80 Wilkes-Barre PA 18702

000002 2 Warbler Jacoby 7.90 Wilkes-Barre PA 18702

000003 3 Bing Crossley 8.55 Scranton PA 18702

000004 4 Uptake N. Hibiter 7.80 Fairbanks AK 99701

000005 5 Fenworth Gront 9.30 Fairbanks AK 99701

000006 7 Bi Nomial 8.80 Fairbanks AK 99701

000007 8 Milly Dewith 6.50 Juneau AK 99801

000008 9 Sarah Bayou 10.45 Juneau AK 99801

000009 10 Dirt McPug 6.45 Newark NJ 07101

****** ******** End of report ********

Figure 11-3 Query Listing of TIMCRD File Data

 EMPNO EMPHRS

000001 1 35.00

000002 2 40.00

000003 3 65.00

000004 4 25.00

000005 5 33.00

000006 6 40.00

000007 7 39.00

000008 8 40.00

000009 9 40.00

000010 10 35.00
****** ******** End of report ********

Figure 11-4 Expanded Fields Compile Listing PAREG
 S o u r c e L i s t i n g

 100 H* RPG HEADER SPECIFICATION FORMS
 200 H

 300 F*

 400 F* RPG FILE DESCRIPTION SPECIFICATION FORMS
 500 F*

 600 FPAYMAST IPEAE DISK

 RECORD FORMAT(S): LIBRARY RPGBOOK FILE PAYMAST.

 EXTERNAL FORMAT PAYR RPG NAME PAYR
 700 FEMPTIM ISEAE DISK

 RECORD FORMAT(S): LIBRARY RPGBOOK FILE EMPTIM.

 EXTERNAL FORMAT TIMR RPG NAME TIMR

 800 FQPRINT O F 77 OF PRINTER
 900 I*

 1000 I* RPG INPUT SPECIFICATION FORMS

 1100 I*
 1200 IPAYR 01

 1300 I EMPNO M1

 1400 I EMPCTY EMPCTYL1

 1500 I EMPSTA EMPSTAL2
 1500 INPUT FIELDS FOR RECORD PAYR FILE PAYMAST FORMAT PAYR.

A000001 1 30EMPNO M1

A000002 4 23 EMPNAM
A000003 24 282EMPRAT

A000004 EMPCTY 29 48 EMPCTYL1

A000005 EMPSTA 49 50 EMPSTAL2

Table of Contents 232

A000006 51 550EMPZIP
 1600 ITIMR 02

 1700 I EMPNO EMPNO M1

 1800 C*

 1900 C* RPG CALCULATION SPECIFICATION FORMS
 2000 C*

 1700 INPUT FIELDS FOR RECORD TIMR FILE EMPTIM FORMAT TIMR.

B000001 EMPNO 1 30EMPNO M1
B000002 4 72EMPHRS

 2100 C 02 MR EMPRAT MULT EMPHRS EMPPAY 72

 2200 C 02 MR EMPPAY ADD CTYPAY CTYPAY 92

 2300 CL1 CTYPAY ADD STAPAY STAPAY 92
 2400 CL2 STAPAY ADD TOTPAY TOTPAY 92

 2500 O*

 2600 O* RPG OUTPUT SPECIFICATION FORMS

 2700 O*
 2800 OQPRINT H 206 1P

 2900 O OR 206 OF

 3000 O 32 'THE DOWALLOBY COMPANY
 3100 O 55 'GROSS PAY REGISTERBY'

 3200 O 60 'STATE'

 3300 O UDATE Y 77

 3400 OQPRINT H 3 1P
 3500 O OR 3 OF

 3600 O 4 'ST'

 3700 O 13 'CITY'
 3800 O 27 'EMP#'

 3900 O 45 'EMPLOYEE NAME'

 4000 O 57 'RATE'

 4100 O 67 'HOURS'
 4200 O 77 'CHECK'

 4300 O D 1 02NMR

 4400 O 46 'NO MATCHING MASTER'

 4500 O EMPNO 27
 4600 O EMPHRS1 67

 4700 O D 1 02 MR

 4800 O EMPSTA 4

 4900 O EMPCTY 29

 5000 O EMPNO 27

 5100 O EMPNAM 52

 5200 O EMPRAT1 57
 5300 O EMPHRS1 67

 5400 O EMPPAY1 77

 5500 O T 22 L1
 5600 O 51 'TOTAL CITY PAY FOR'

 5700 O EMPCTY 72

 5800 O CTYPAY1B 77

 5900 O T 02 L2
 6000 O 51 'TOTAL STATE PAY FOR'

 6100 O EMPSTA 54

 6200 O STAPAY1B 77
 6300 O T 2 LR

 6400 O TOTPAY1 77

 6500 O 50 'FINAL TOTAL PAY'

 * * * * * E N D O F S O U R C E * * * * *

The Decoding Process

You start the full decoding process from top to bottom. There are no
entries in the Headers specification so it is moot to decode for this run.

Table of Contents 233

Then as you examine the File Descriptions in the PAREG program the
world of the logic in this RPG program begins to unfold before you.

There is a primary database file for master records, a secondary database
file for time card records and a printer file for a report. A quick look at
the output specs and you can verify that this program’s mission is to print
a report. From file description, you also know that the data will be in
ascending sequence and a drop down look at Input tells you that there is
just a sequenced field designated as M1 and its name is EMPNO. While
in the Input area, as you look down to statement 17, you can see that
there is a second M1 specified for the time card file. This tells you that
the reading of the primary and secondary files will be controlled by the
matching records logic of the RPG fixed cycle. You have learned a lot
about the program already.

Looking a little closer at the INPUT specs, you will see that there is an L1
indicator specified on City and an L2 indicator on State. That typically
means that the program will be performing some intermediate (in-
between detail time) calculations and intermediate output probably for
totaling functions when a state and/or city control break occurs. If you
take a quick look at calculations, at statements 23 and 24 respectively, you
can see that this hypothesis (speculation) is true as there is a total
calculation for city and one for state.

Now, looking down to output, you can see that the L1 and L2 totals are
defined on total cycle “T” lines at statements 55 to 65. You can see an L1
printout for a city break, an L2 printout for a state break, and a final total
when the last record (LR) is processed.

You have covered a big part of the logic already in trying to get a handle
on what this program does (decoding).

Going back to the input record area at statements 12 and 16, you can see
that a payroll master record is identified with indicator 01 when it is read
and a time card record is identified by indicator 02 when it is read. Below
each of these records, you can see the input specifications that you typed
in the program so as to provide the matching and control level selections
and since this is a compile listing, you can also see the other fields that
automatically come into the program from the externally described
databases. Looking into the fields printed in the output lines, you can see

Table of Contents 234

that the names are the same as the input fields. RPG does not make a
programmer move input to output records for printing. Just by specifying
the name on output, RPG will provide the move from the input files to
the print line for you.

We have looked at just about everything so far other than what happens
at detail time in the cycle. The two detail calculations shown in statements
21 and 22 are executed only when a time card record (indicator 02) is
read. The two detail output lines at statements 43 and 47, are printed only
when a time card record (indicator 02) is on.

Though the payroll master (PAYMAST) as processed in the primary file
has its own indicator (01), the indicator is not used at all in this program.
In fact, if I showed you the bottom of the compile listing, you would see
that indicator 01 is unused and the compiler is complaining about it. It
conditions nothing. That means that each time a master is read, nothing
happens in the detail cycle. And we know that RPG intersperses the
reading of the masters and the time cards through its matching records
logic based on the ENPNO match fields (M1).

Of course you would also see that it is not just the 02 indicator that causes
calculations to occur and lines to be printed. It has a partner in crime. In
this case, the partner is the MR indicator which comes on when there is a
match between the primary and secondary file. When indicator 01 and
MR are on however, this means that the program has read a master record
and it matches the time card about to be processed. We do nothing in
this program with this information. The fact is that we need the time card
information in order to have a complete unit of information for an
employee. So when the condition of 02 on and MR on is true, we know
that the last master read was the master for the time card being processed
so the master fields and the time card fields represent the fields for the
same employee. Thus, a look at lines 21, 22, and 47, shows the calculation
of pay taking and the accumulation of the city total and then the printing
of the line with the master, time card and the just calculated gross pay
field.

There is one more condition for which this program tests and it causes
output to be produced if the condition is true. The program tests to see if
there is a time card record (indicator 02 is on) has been read without a
corresponding matching master (indicator MR is off). In other words, if

Table of Contents 235

02 and NMR are both true, then an error message gets printed by the
output record at statement 43.

And that’s that for simple decoding of the PAREG program. Once you
have decoded a program, you then can maintain it. The next logical step
for you to learn this stuff cold would be to walk through the RPG cycle
with the data and see what happens. I’ll get you started on that right now.

RPG Cycle and PAREG Decoding

We learned that the very first ting that happens in an RPG program that
uses the cycle is that output is produced. We call this type of output
“heading output,” though in fact the “H” and “D” for heading and detail
occur at almost the same exact spot in the detailed RPG cycle. In other
words, though there is a separate heading cycle and detail cycle, in many
ways they appear to be the same and not many programs need to know
that they are not the same. So, now walking though this program from the
start, what would happen the first cycle?

Looking at the output specifications we see some good documentation for
headings in that we used the “H” designator rather than the D in lines 28
and 34. So, during the first cycle, RPG is willing to print whatever we
specify in an unconditioned state or if any of the conditions are met in any
of our detail or heading output lines.

So, while RPG is hoping to print something at the beginning of the
program, we have both of these lines conditioned with an indicator called
1P and another called OF. These are both special indicators. RPG makes
the 1P indicator available every time it passes through this very first cycle.
The second time around, it will not be on. RPG turns on the OF indicator
if you specify it in the “F” spec for the print file whenever the last print
line of a defined print page is passed. Since our report is just one page
with the data provided, OF will never come on. But, we are staged for
more employees. If we have more employees and the number of print
lines increases, the OF indicator will cause the print headings to print on
every subsequent page in the report.

1P stands for 1st Page indicator and it is most often ORed with the OF
indicator to assure that headings are printed on each page. So, in our

Table of Contents 236

sample printout in Figure 11-1, the headings were created by the 1P
indicator being on the first cycle of the program. Here’s a question for
you. If we chose to not put a 1p indicator there at all but left it blank,
would any heading printing have occurred on the 1st page?

In essence we are saying to RPG that the line is to print unconditionally
during the detail cycle in which heading output is produced. So, yes, we
would have headings? Now, what happens on the second cycle if we have
removed 1P as a conditioning indicator? Now, you’ve got to start looking
at the data in Figures 11-2 and 11-3, because when we hit output in the
second cycle, we have read our first 01 record (PAYMAST). Well, we
know that we do nothing in the cycles in which a 01 record is read and
RPG very nicely takes the data from the database and moves it into the
PAYMAST fields, replacing the blanks and zeroes that were there from
the beginning of the program. What about heading output when an 01
record is read?

If our heading lines are unconditioned, then they will print every cycle.
The 1p and the OF not only tells RPG to print when 1P and OF are on, it
also tells RPG to “not print” when they are not on. So, by using these
indicators, we are spared from having headings on top of each detail line.
In fact, if we got a heading fro 01 and then got another the next cycle for
01, we would have two sets of headings for each one detail line.

Let’s go back to having the 1P there and we have just read an 01 record.
When RPG takes us to detail calculations, do we have anything to
calculate or print? No! Nothing is unconditioned and nothing is
conditioned for 01. So, we pass through the cycle and read the next
record. It comes from the secondary because matching records logic says
intersperse the reading from both file base don the match field
(EMPNO). The 02 record is read and MR is on. We perform the two
CALCS conditioned on 02 and MR and now RPG takes us to the detail
output cycle. We print the 02 MR line at statement 47 and that’s it for
detail output. Now, RPG takes us to total output. Do we have a control
break?

Yes, The state for employee 001 is PA and the city is Wilkes-Barre. At
the beginning of the program L1 and L2 fields compare against blank
fields since this is the first employee for the city. Therefore, L2 and L1
calculations and L2 and L1 output should occur when we go to the total

Table of Contents 237

output cycle. But it doesn’t. RPG “knows that this is the first control
break of the first cycle so it holds off on doing total calculations and total
output until the next set of data comes in.

When the two records, 01 and 02 are read for employee 2, the same thing
happens as for employee 1. However, RPG looks up when it is finished
with the employee 02 detail stuff and it says hey, there is a change here for
the city but not the state for employee 003. So, before employee 03 is
processed, at in-between time in total calculations and total output, RPG
first calculates based on L1 conditioning and then it prints the L1 totals
before it goes back to read another record.

When the matching records for employee 3 are processed, RPG again
looks ahead and it sees that with the next record for employee 004, there
is both a state and a city change coming so it turns on indicators L1 and
L2 and the L1 and L2 calculations are executed and the L1 and L2 totals
for both city and state are printed. Now, if you move to the bottom of
the report in Figure 9-2, you see three totals. When there are no more
records to be read, RPG turns on LR which automatically turns on L2 and
L1 and so the total calculations are performed and the total output is
produced for city and state and also for the grand total.

Now, you might want to pick up with record 4 and walk it through the
elements of the cycle that are in play and assure yourself that you now
understand the one thing in RPG that most find most difficult to master –
the RPG cycle. Congratulations.

Debugging for Learning and Decoding

RPG has a built in facility to help you figure out what is going on during
the cycle or actually anytime you want. DEBUG has some disadvantages
that skeptics may say make the tool worth less but I would argue that its
simplicity and its ability to teach RPG make it a very powerful tool and
one that deserves mention early in a book on learning about RPG.

The major disadvantage of the DEBUG is that you must alter your code
to use it. Therefore, you must recompile your code. Then, when you have
figured out the problem, you have to change the program to recompile it.
Though this is true it is not as bad as all that.

Table of Contents 238

The first action that you must take is to place a 1 in column 15 of the
RPG Header Specification. This tells the compiler to honor the DEBUG
calculations that are imbedded in the code. The second thing you must
do is find a printer file or database file with a record length of at least 80
to accept the output of the debug. If your program has no such file then
for the Debug to provide its output, you need to add one. The disk option
helps in debugging reports in which you do not want the output format
changed and it also helps in the event that you are trying to trap an elusive
problem and you never know when it will strike. Notice that I had to
change the QPRINT file specification by giving it a record length of 80
instead of 77 since DEBUG needs at least 80 to do its job. The third
thing that you must do is to add DEBUG statements in the code where
you would like RPG to provide program status information.

The modified PAREG code for the DEBUG problem is shown in Figure
11-5.

Figure 11-5 PAREG Program modified to support DEBUB Operation
0001.00 F* RPG HEADER SPECIFICATION FORMS

0002.00 H 1

0003.00 F*

0004.00 F* RPG FILE DESCRIPTION SPECIFICATION FORMS

0005.00 F*

0006.00 FPAYMAST IPEAE DISK

0007.00 FEMPTIM ISEAE DISK

0008.00 FQPRINT O F 80 OF PRINTER

0019.00 C* RPG CALCULATION SPECIFICATION FORMS

0020.00 C*

0021.00 C 01 'MR01' DEBUGQPRINT EMPNO

0022.00 C 02 MR EMPRAT MULT EMPHRS EMPPAY 72

0023.00 C 02 MR EMPPAY ADD CTYPAY CTYPAY 92

0024.00 CL1 CTYPAY ADD STAPAY STAPAY 92

0025.00 CL2 STAPAY ADD TOTPAY TOTPAY 92

0026.00 CL2 'L1L2' DEBUGQPRINT TOTPAY

Statements 2 and 8 above are changed from the original PAREG program
and statements 21 and 26 are added. In statement 21, you can see that I
have asked RPG to give me a snapshot called MR01 whenever indicator
01 is on and with the snapshot, provide the value of the field called
EMPNO in the snapshot output. Thus, only at 01 time will the debug be
operation since as you can see, the DEBUG can be conditioned to

Table of Contents 239

execute only when you want it to execute. We get no output from this
DEBUG statement when an 02 record is read.

I added statement 26 to the program to show the status of the indicators
during the total calculations cycle. This information can eb very revealing
when you control breaks are not working correctly.

Figure 11-6 shows the way the report now looks with the DEBUGS on in
the program. Notice that the first page headings worked fine as they did
before since no DEBUG operations have occurred at all at this time (1P)
in the program. Now, take a look down further in the report for more
headings. For illustrative purposes, I have labeled this area as *** Second
Page. This is not printed by the program.

Right after the 1P headings, during detail calculations after the first 01
record has been read by the input cycle, the first debug statement fires.
You may recall that this is conditioned by indicator 01. Notice also that
there are no detail lines printed before the DEBUG calculation. That is
because the printout fired from detail calculations before RPG has even
hit its second detail output cycle. During the first detail output cycle, of
course, headings were printed but there were nor records read and thus,
no non heading output was produced.

Figure 11-6 PAREG Report with RPG/400 DEBUG
 THE DOWALLOBY COMPANY GROSS PAY REGISTER BY STATE 3/11/06

 ST CITY EMP# EMPLOYEE NAME RATE HOURS CHECK

DEBUG = 2100 MR01 INDICATORS ON = MR IR L1 L2 01

FIELD VALUE = 1

 PA Wilkes-Barre 001 Bizz Nizwonger 7.80 35.00 273.00

DEBUG = 2100 MR01 INDICATORS ON = MR IR 01

FIELD VALUE = 2

 PA Wilkes-Barre 002 Warbler Jacoby 7.90 40.00 316.00

 TOTAL CITY PAY FOR Wilkes-Barre 589.00

DEBUG = 2100 MR01 INDICATORS ON = MR IR L1 01

FIELD VALUE = 3

 PA Scranton 003 Bing Crossley 8.55 65.00 555.75

DEBUG = 2600 L1L2 INDICATORS ON = MR IR L1 L2 01

FIELD VALUE = 114475

 TOTAL CITY PAY FOR Scranton 555.75

 TOTAL STATE PAY FOR PA 1,144.75

DEBUG = 2100 MR01 INDICATORS ON = MR IR L1 L2 01

FIELD VALUE = 4

 AK Fairbanks 004 Uptake N. Hibiter 7.80 25.00 195.00

DEBUG = 2100 MR01 INDICATORS ON = MR IR 01

FIELD VALUE = 5

 AK Fairbanks 005 Fenworth Gront 9.30 33.00 306.90

 006 NO MATCHING MASTER 40.00

DEBUG = 2100 MR01 INDICATORS ON = MR IR 01

FIELD VALUE = 7

 AK Fairbanks 007 Bi Nomial 8.80 39.00 343.20

 TOTAL CITY PAY FOR Fairbanks 845.10

Table of Contents 240

DEBUG = 2100 MR01 INDICATORS ON = MR IR L1 01

FIELD VALUE = 8

 AK Juneau 008 Milly Dewith 6.50 40.00 260.00

DEBUG = 2100 MR01 INDICATORS ON = MR IR 01

FIELD VALUE = 9

 AK Juneau 009 Sarah Bayou 10.45 40.00 418.00

DEBUG = 2600 L1L2 INDICATORS ON = OF 1F 2F MR IR L1 L2 01

FIELD VALUE = 266785

 TOTAL CITY PAY FOR Juneau 678.00

 TOTAL STATE PAY FOR AK 1,523.10

*** Second Page

 THE DOWALLOBY COMPANY GROSS PAY REGISTER BY STATE 3/11/06

 ST CITY EMP# EMPLOYEE NAME RATE HOURS CHECK

DEBUG = 2100 MR01 INDICATORS ON = OF MR IR L1 L2 01

FIELD VALUE = 10

 NJ Newark 010 Dirt McPug 6.45 35.00 225.75

DEBUG = 2600 L1L2 INDICATORS ON = MR L1 L2 L3 L4 L5 L6 L7 L8 L9 LR

FIELD VALUE = 289360

 TOTAL CITY PAY FOR Newark 225.75

 TOTAL STATE PAY FOR NJ 225.75

 FINAL TOTAL PAY 2,893.60

The field value for EMPNO in the first DEBUG is 1 or an edited “001”
as the field data is available during the processing of the 01 record in
calculations. Now look across the line to something called INDICATORS
ON. There is a world of information there. You can see that five
indicators, MR IR L1 L2 01, are on. So, w e can see that though the 02
record has never been read for this employee, RPG has turned on MR to
designate that this 01 record matches the 02 record that will be read. The
IBM RPG/400 Reference manual offers me no clue as to what indicator
IR is and I have found no reference on the Internet so I guess it is
something that RPG thinks it needs to be OK. Perhaps it means internal
routine??

Why are L1 and L2 on while we are processing the first record that has
been read? Can you figure that out? We are in the detail calculations
phase right now. Why is L1 and L2 on when we have yet to have one in-
between time. It has to do with the first cycle test. RPG does turn these
indicators on and they stay on until right before RPG tests again to see if
there is a break in the next record to be read. So, the L1 and L2 indicators
stays on through detail calculations and detail output. What good is this
and What can be done with it if it is good?

Well, it is good because it signifies to RPG that it is processing the first
record of a new group. Whereas total level time is in-between, and we
have yet to actually read the record that caused the break, detail L1 / L2 is
when the record is actually being processed. It helps to know that this is

Table of Contents 241

the first record of a group because sometimes report designers like to
group indicate.

Group indication is a formatting trick that provides just the first line of
detail print with the control field value, say state for L2 and city for L1.
The next line would not print the state since it is the same state. The
same notion goes for City as you can see in the sample report shown in
Figure 11-6

Figure 11-6 Group Indication of PAREG Report
 THE DOWALLOBY COMPANY GROSS PAY REGISTER BY STATE 3/11/06

ST CITY EMP# EMPLOYEE NAME RATE HOURS CHECK

PA Wilkes-Barre 001 Bizz Nizwonger 7.80 35.00 273.00

 002 Warbler Jacoby 7.90 40.00 316.00

 TOTAL CITY PAY FOR Wilkes-Barre 589.00

 Scranton 003 Bing Crossley 8.55 65.00 555.75

 TOTAL CITY PAY FOR Scranton 555.75

 TOTAL STATE PAY FOR PA 1,144.75

To make this work, you would use field indicators. On State, for example,
on the detail record report line, you would place L2, as a field indicator
and for city, you would place L1. Then the report would print just as in
Figure 9-6. What makes it work is that L1 and L2 and the other L
indicators stay on through detail output then they go off. When they are
off, the state and city does not print. They print only on the first record of
a new group – or detail L1 / detail L2 time.

Figure 11-7 Snippet Of Debug Listing
 PA Scranton 003 Bing Crossley 8.55 65.00 555.75

DEBUG = 2600 L1L2 INDICATORS ON = MR IR L1 L2 01

FIELD VALUE = 114475

 TOTAL CITY PAY FOR Scranton 555.75

 TOTAL STATE PAY FOR PA 1,144.75

DEBUG = 2100 MR01 INDICATORS ON = MR IR L1 L2 01

FIELD VALUE = 4

 AK Fairbanks 004 Uptake N. Hibiter 7.80 25.00 195.00

Figure 11-7 is a smaller snippet of the big debug listing shown first in
Figure 11-5. It shows the data that caused the first L2 control break in the
program between states PA and AK. The last employee for Pennsylvania

Table of Contents 242

is shown on the top and the first employee for Alaska is shown on the
bottom. Notice that the DEBUG marked L1L2 on the second line. It
fired from an L2 calculation in the program at statement 26 as shown
below:

0026.00 CL2 'L1L2' DEBUGQPRINT

So, we know that in order for this DEBUG to fire, L2 must be on. The
L1L2 in Factor 1 merely creates a marker in the reports so you can see
where your DEBUGS are firing.

Clearly from Figure 11-7 we can see control field changes in both the city
and the state fields and the DEBUG in line 2 shows us, that among a
bunch of other particulars, L1 and L2 are on as you would expect. Notice
also that at total calculation time, when this Debug fired, indicator 01 is
also on. Yet, the last record processed for employee # 003 was an 02
(time card) record. So, why is 01 on?

It is the record identifying indicator of the next record to be processed.
The fields for the 02 record still contain employee 003’s data, however,
RPG has turned off indicator 02 already at this point in the total
calculations cycle and it has turned on the identifying indicator 01 of the
next record to be read. This tells the programmer a bunch of interesting
things.

First, it tells the programmer that record identifying indicators cannot be
used at in-between time for prior groups. So, and 02 on line 26 would not
fly. The other thing it says is that if need be, a programmer can know
ahead of time, which record type was about to be read in. Sometimes this
knowledge could help a programmer take a different logic path than
otherwise. It also shows us that record identifying indicators get turned
off during “in- between time” and they get turned on during in-between
time. When the 01 record data is actually read, the 01 record DI will
continue to be on until in-between time when the next record is looked at.

For a detail lesson in RPG, take another go at running the data through
this program and you will have a pretty good idea of how the RPG cycle
works and when it turns on stuff and when it turns stuff off. After

Table of Contents 243

awhile, it will all seem logical because of course, it is. See the PAREG
with an even more detailed RPG cycle in Figure 11-8.

Figure 11-8 PAREG and the RPG Cycle

Points in RPG Cycle PAREG Activity- RPG Cycle

0. Start PAREG program is loaded and started.

1. Heading & Detail Output -- What is
there to output?

0028.00 OQPRINT H 206 1P

0029.00 O OR 206 OF

0034.00 OQPRINT H 3 1P

0035.00 O OR 3 OF

2.1 Turn off record id & Level
Indicators. None on the first cycle

Time card or pay master records (01, 02). Level
indicators between control fields -- L1, L2

2.2 Read a record from file just
processed. At start, read a record from
each file in sequence specified

Read primary and secondary at start to see which gets
processed first.

2.3 Check for end of file If all files are at end, set on the last record indicator and
indicators L0 through L9

2.4 Are matching fields specified Select highest priority record from appropriate file based
on match field primary, secondary and match field value.

2.5 Turn on record ID indicator.
You pick the #, the cycle turns it on7.

First cycle through the primary (01) record (Master) is
selected, Subsequently the primaries and secondaries
alternate based on matched field values.

3.0 Have any control fields changed, if
so, turn on Level indicators – also test
for first cycle... If first cycle, skip total
calcs & total output by going to Step
6.0 If not first cycle, go to step 3.1

First cycle always creates a false control break because
the control fields compare against a blank or zero value.
When a city changes at this point, L1 turns on and when
a state changes, L2 and L1 are turned on.

3.1 Perform total calcs (caused by
control field change). You pick the
control fields, RPG does the tests.
When the fields change, the level
indicator is turned on.

City and state total calculations are taken during this
time in the cycle
23.CL1 CTYPAY ADD STAPAY STAPAY 92

24.CL2 STAPAY ADD TOTPAY TOTPAY

4.0 Perform total output(caused by
control field change) You pick the
field, RPG does the tests. Output
conditioned with a T and a level
indicator is performed.

City and state total output (subtotals) are performed at
this time during the cycle
55.T 22 L1

56. 51 'TOTAL CITY PAY FOR'

57. EMPCTY 72

58. CTYPAY1B77

59.T 02 L2

60. 51 'TOTAL STATE PAYFOR'

61 EMPSTA 54

Table of Contents 244

62 STAPAY1B77

63.T 2 LR

64. TOTPAY1 77

65. 50 'FINAL TOTAL PAY'

5.0 Check to see if LR is on. If LR is
on, go to end of cycle and end job.

LR will not turn on in this program until the last
secondary record (time card is read from the secondary
file.

5.1 If LR not on, check to see if
overflow has occurred and overflow
indicator (s) are on.

RPG offers another time in the cycle not described in
the 7 point cycle in which overflow printing occurs. It is
close to detail cycle calculations and output but the data
from the last record read has not yet become available.

5.2 If a print line has overflowed,
perform overflow output cycle. Print
those lines conditioned by an overflow
indicator such as OF.

PAREG has overflow defined and in the debugged
program, it occurs.
0028.00 OQPRINT H 206 1P

0029.00 O OR 206 OF

0034.00 OQPRINT H 3 1P

0035.00 O OR 3 OF

6.0 Move data from input area to fields Fields are now available from the master or time card
record – whichever was read last.

6.1 Is selected record a matching
record? If so, turn on MR. Is there a
match of the PAYR record from the
master with the TIMR record from the
time card file?

PAREG uses matched fields (M1) to identify matching
records.
0012.00 IPAYR 01

0013.00 I EMPNO M1

0014.00 I EMPCTYL1

0015.00 I EMPSTAL2

0016.00 ITIMR 02

0017.00 I EMPNO M1

6.2 If there is a match, turn on the MR
indicator. If there is no match, turn off
the MR indicator.

RPG processes just one record at a time. If the master is
in process and there is a match with a to-be-read
secondary, then the record ID (01) for the master is also
on. If the time card is in process, 02 is on.

7.0 Perform Detail Calculations 21.C 02 MR EMPRAT MULT EMPHRS EMPPAY 72

22.C 02 MR EMPPAY ADD CTYPAY CTYPAY

Repeat Cycle PAREG goes another cycle

When you have the two machinations of the RPG fixed logic cycle
digested and you want even greater detail on the cycle, it’s time to get out
the IBM reference manual. For your convenience we have provided a link
to the RPG cycle in the IBM Boulder online books library:

http://publib.boulder.ibm.com/iseries/v5r2/ic2924/books/c092508347.
htm#FIGDETLOBJ.

Table of Contents 245

Chapter 12

Introduction to RPGIV

You’ve Already Seen RPGIV?

So far in this book as we decomposed and decoded the PAREG program
using the RPG/400 specification templates, we also presented the
formatting of the RPG/400 specifications used in PAREG for RPGIV.
To an extend then, this chapter on RPGIV is somewhat redundant – at
least as far as we have gotten in our study of the RPG language.

The Fact is, however, RPGIV is not just RPG/400 with a better coding
sheet design. It’s lots more than that and in this chapter we begin a series
of chapters in which we differentiate the two languages better than was
necessary in earlier chapters.

A Better RPG

In 1988, with the introduction of its highly successful AS/400 series of
machines, IBM introduced a somewhat new name for an old language.
The language was RPG III and the new moniker was RPG/400. There
was little if any difference between RPG III on System/38 and the new
version of RPG for the AS/400 known as RPG/400.

To be correct, RPG/400 is actually a compiler package that contains RPG
II for System/36 compatibility, RPG III for System/38 compatibility and
the RPG III for the AS/400 which also took on the name RPG/400.

As of OS/400 Version 3 release 1, IBM changed the name of this
compiler package to "AS/400 ILE RPG/400". With this the company

Table of Contents 246

introduced the RPG IV language which is a version of RPG that targets
the Integrated Language Environment (ILE).

ILE is the latest "native" runtime environment for programs on the
System i5. Way back in OS/400 Version 2 Release 3, IBM introduced this
new program model that in many ways essentially changed the way the
operating system works with languages. This new programming model
now provides support for a mixed set of high-level languages. But, in
V2R3, C/400 was the only ILE language and it became the basis for the
other ILE languages soon to follow.

Prior to ILE, RPG for example had its own runtime environment. To be
fair, CL had its own; COBOL had its own, and C also had its own. Thus,
there were often issues trying to get two different languages to work well
together in the same job. With ILE, all programming languages now run
in ILE. Thus, the same "environment" is now used for COBOL, C, C++,
RPG and CL.

To take advantage of the functionality built into the ILE, however, IBM
had a lot of work to do. New compilers needed to be created. With its
new RPG IV compiler introduced first in 1994, IBM decided to make full
use of the ILE. This had the double advantage of providing a new
version of RPG with an ILE targeted compiler.
Though ILE wasn’t really ready for RPG IV in 1994 with V3R1 of CISC
architecture OS/400, RPGIV made its debut and it’s initial syntax
addressed many of the ills that programmers had begged IBM for years to
correct – especially the multiple faces of RPG/400 input.

In 1994 in its CISC processors (that’s all IBM had back then), Big Blue
delivered a new language with a new syntax. Yet, this new language with
its new syntax had a nice familiar flavor so that the RPG/400
programming community were able to almost immediately understand it
as a new language. The new ILE notions were somewhat more
problematic for the RPG community.

The new RPGIV defined a new look for all of RPG’s specifications. The
specs were revitalized and made much better. Since IBM had not really
made any substantial changes to RPG for ten or more years at the time,
there was lots of long overdue facility made available with this “new
language.”

Table of Contents 247

Besides the changes to all the forms, IBM also added a new data
specification – the “D spec.” The “D” spec helped make the formerly
stodgy language much easier to learn and much more similar to other
languages. The “D” spec in many ways brought to RPG the capabilities
that had been in COBOL’s Data Division from the outset.

Programmers from other systems and other languages on the AS/400
were then able to learn RPG coding without having to learn the RPG
cycle and many of the other RPG nuances that you have just learned in
the prior 11 chapters. And, though this was mostly good, a disadvantage
was that new RPG programmers often were not introduced to the old
RPG. This created two RPG camps that today still have some
disagreements. There are those that know, understand and love the RPG
cycle, who use it as a 4GL, and there are those who think that the RPG
cycle is worth about as much as one of those electromechanical monsters
from which the cycle originated would be worth in today’s world.

Popular thought has RPGIV first being developed for the RISC models
but this is not true. IBM created RPGIV in 1994 and released it with
V3R1 for its CISC processors. It originally ran under a programming
model that got its name only after ILE was introduced. If the Integrated
Language Environment was the new name for how IBM would bring all
of the code produced by all of its compilers together, then, what was it
that had existed prior to this new model? It was the same dilemma as
RISC vs. CISC. CISC got its name when RISC came out.

With OS/400 V3R1, They christened the old “no name” model as "the
original program model," or simply OPM. Thus OPM is just a name that
has been given to the original runtime environment of RPG and CL under
OS/400.

Since about 1995 with the availability of the RISC boxes, ILE has become
the native mode and now the OPM a.k.a. the original native environment
is emulated. Reading between the lines you can see that once ILE was the
way, everything else became part of ILE. It was that good of an idea. ILE
isn't really an environment at all, today it is in fact, the native OS/400.

So, where does that leave OPM? It still exists but it is a somewhat Rube
Goldberg emulated environment running under ILE. Because of this

Table of Contents 248

emulation factor, and the machinations that IBM had to perform to
perfect it, the new wave of RPG IV purists who understand the
underpinnings of this issue in detail, do not think so well of RPG/400 in
the ILE world. Yet, despite their thoughts and the concerns of skeptics
over the years, RPG/400 performs very well within its new ILE home. In
many ways, RPG/400’s fine performance is a big reason why there has
been no compelling need for the full adoption of RPG IV in the one-
language RPG shop. Twelve years after its introduction, full adoption of
RPGIV is under 50%

Yet, as you will note RPGIV is a far superior language than is RPG/400.
Just the specification changes alone with the addition of the “D” spec
were major improvements and enough to make the language a worthy
replacement for RPG/400 code. You’ll see for yourself shortly.

One of the tools that IBM built to help in the transition from RPG/400
to RPGIV is a program source conversion command. This tool converts
RPG/400 to RPGIV in the most natural way. In other words, the flavor
of the original program is preserved and the programmer can recognize
the RPGIV version of the code quite readily without having to do
substantial decoding.

The format of the CVTRPGSRC command is shown in Figure 12-1.:

If you have never used the CVTRPGSRC command, it will definitely burp
the first time because there is no log file (QRNCVTLG). The message
you get will tell you exactly how to create the log file. The key things
about this command and how the new RPGIV code is stored are as
follows:

1. You specify the QRPGSRC file for the RPG/400 code.
2. You specify the library for the RPG/400 code – RPGBOOK.
3. You specify the source member –PAREG.
4. You specify the QRPGLESRC file for the RPGIV code
5. You specify the library in which QRPGLESRC is located.
 The record length is 112 characters to accommodate the
 expanded source record (100 characters in RPGIV).
6. You specify “yes” for source template to get formats intersperses
 inside of your program to more easily see the new RPG
 specification formatting.

Table of Contents 249

Figure 12-1 IBM’s CVTRPGSRC Command

 Convert RPG Source (CVTRPGSRC)

Type choices, press Enter.

From file > QRPGSRC

 Library > RPGBOOK

From member > PAREG

To file QRPGLESRC

 Library > RPGBOOK

To member *FROMMBR

 Additional Parameters

Expand copy member *NO

Print conversion report *YES

Include second level text . . . *NO

Insert specification template . *yes

Log file QRNCVTLG

 Library *LIBL

Log file member *FIRST

 Bottom

The converted code for PAREG is shown in Figure 12-2. Before we
examine the coding changes, let’s take a look at some of the nuances that
are shown in Figure 12-2. The first item of interest is the formatting lines
themselves. Because I specified “yes” for a source template, lines, 2. 7,
14, 15, and 26 were automatically generated and included in the converted
source as comments. These statements takes us through calculations and
then there are no more format records.

You cans see that each of added source records for formatting was also
numbered by the converter. Yet, for some reason, this command did not
place the format lines for output into the file. For our learning purpose, I
had requested formats to make it easier to read the source. When I
examined the code in the source file, I added the two SEU FMT lines for
output and I left the FMT in the source to differentiate these lines from
those auto-generated.

Table of Contents 250

The other two nuances regarding the format lines are (1) in some cases,
the format was inserted before the first spec form of a given type and in
others it was after the first. and (2) for INPUT, the record format and the
field format were added together, one line after the other, and were not
separated by record and field form type.

To make the code easier for you to read, I highlighted the format
statements as you can see in Figure 12-2. To make It easier for you to
compare the programs, The RPG/400 version is shown in Figure 10-2.

The first difference you would notice is that the RPGIV program has 72
statements whereas the RPG/400 program has just 65. However, five of
the RPGIV statements are used for formatting and none are used for
formatting in the RPG/400 version. Therefore there are two extra lines in
the RPGIV code. Where are they?

If you add up all the spec types, there is a one for once conversion in this
program except for one specification type – calculations. With the
structured operations that were placed in RPG III years ago, many RPG
programmers had begun to use IF statements and DO statements to
control conditioning. So, when IBM redesigned the calculation
specification, rather than three “Anded” areas on one calculation spec,
RPGIV was designed with space fro just one conditioning indicator. The
RPG/400 PAREG program uses both indicators 02 and MR to condition
the detail calculations. Since RPGIV offers just one spot, to get MR and
02 as conditioning indicators, the converter needed two calc specs that
use the AN linkage to extend the condition. See lines 25 to 29 in Figure
12-2. So now, everything else in this program is one to one.

Table of Contents 251

Figure 12-2 RPGIV Version of PAREG
 6789112345678921234567893123456789412345678951234567896123456789712
001.00 H* RPG HEADER SPECIFICATION FORMS
002.00 H*eywords++
003.00 H
005.00 F* RPG FILE DESCRIPTION SPECIFICATION FORMS
006.00 F*
007.00
F*ilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++
008.00 FPAYMAST IPE AE DISK
009.00 FEMPTIM ISE AE DISK
010.00 FQPRINT O F 77 PRINTER OFLIND(*INOF)
011.00 I*
012.00 I* RPG INPUT SPECIFICATION FORMS
013.00 I*
014.00
I*ilename++SqNORiPos1+NCCPos2+NCCPos3+NCC............................
015.00
I*.............Ext_field+Fmt+SPFrom+To+++DcField+++++++++L1M1FrP1MnZr
016.00 IPAYR 01
017.00 I EMPNO EMPNO M1
018.00 I EMPCTY L1
019.00 I EMPSTA EMPSTA L2
020.00 ITIMR 02
021.00 I EMPNO EMPNO M1
022.00 C*
023.00 C* RPG CALCULATION SPECIFICATION FORMS
024.00 C*
025.00 C 02
026.00
C*0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLo
027.00 CAN MREMPRAT MULT EMPHRS EMPPAY 7 2
028.00 C 02
029.00 CAN MREMPPAY ADD CTYPAY CTYPAY 9 2
030.00 CL1 CTYPAY ADD STAPAY STAPAY 9 2
031.00 CL2 STAPAY ADD TOTPAY TOTPAY 9 2
032.00 O*
033.00 O* RPG OUTPUT SPECIFICATION FORMS
034.00 O*
FMT O
O*ilename++DF..N01N02N03Excnam++++B++A++Sb+Sa+.......................
035.00 OQPRINT H 1P 2 06
036.00 O OR OF 2 06
FMT P
O..............N01N02N03Field+++++++++YB.End++PConstant/editword/DTfor
037.00 O 32 'THE DOWALLOBY
COMPANY’
038.00 O 55 'GROSS PAY REGISTER
BY’
039.00 O 60 'STATE'
040.00 O UDATE Y 77
041.00 OQPRINT H 1P 3
042.00 O OR OF 3
043.00 O 4 'ST'
044.00 O 13 'CITY'
045.00 O 27 'EMP#'
046.00 O 45 'EMPLOYEE NAME'
047.00 O 57 'RATE'
048.00 O 67 'HOURS'
049.00 O 77 'CHECK'
050.00 O D 02NMR 1
051.00 O 46 'NO MATCHING MASTER'
052.00 O EMPNO 27
053.00 O EMPHRS 1 67
054.00 O D 02 MR 1
055.00 O EMPSTA 4
056.00 O EMPCTY 29
057.00 O EMPNO 27
058.00 O EMPNAM 52
059.00 O EMPRAT 1 57
060.00 O EMPHRS 1 67
061.00 O EMPPAY 1 77
062.00 O T L1 2 2
063.00 O 51 'TOTAL CITY PAY FOR'
064.00 O EMPCTY 72
065.00 O CTYPAY 1B 77
066.00 O T L2 0 2
067.00 O 51 'TOTAL STATE PAY FOR'
068.00 O EMPSTA 54
069.00 O STAPAY 1B 77
070.00 O T LR 2
071.00 O TOTPAY 1 77
072.00 O 50 'FINAL TOTAL PAY'

Table of Contents 252

Figure 12-3 RPG/400 Version of PAREG

 *************** Beginning of data ***********************

 678911234567892123456789312345678941234567895123456789612345678
0001.00 H* RPG HEADER (CONTROL) SPECIFICATION FORMS
0002.00 H
0003.00 F*
0004.00 F* RPG FILE DESCRIPTION SPECIFICATION FORMS
0005.00 F*
0006.00 FEMPMAST IPEAE DISK
0007.00 FTIMCRD ISEAE DISK
0008.00 FQPRINT O F 77 OF PRINTER
0009.00 I*
0010.00 I* RPG INPUT SPECIFICATION FORMS
0011.00 I*
0012.00 IPAYR 01
0013.00 I EMPNO EMPNO M1
0014.00 I EMPCTYL1
0015.00 I EMPSTA EMPSTAL2
0016.00 ITIMR 02
0017.00 I EMPNO EMPNO M1
0018.00 C*
0019.00 C* RPG CALCULATION SPECIFICATION FORMS
0020.00 C*
0021.00 C 02 MR EMPRAT MULT EMPHRS EMPPAY 72
0022.00 C 02 MR EMPPAY ADD CTYPAY CTYPAY 92
0023.00 CL1 CTYPAY ADD STAPAY STAPAY 92
0024.00 CL2 STAPAY ADD TOTPAY TOTPAY 92
0025.00 O*
0026.00 O* RPG OUTPUT SPECIFICATION FORMS
0027.00 O*
0028.00 OQPRINT H 206 1P
0029.00 O OR 206 OF
0030.00 O 32 'THE DOWALLOBY COMPANY'
0031.00 O 55 'GROSS PAY REGISTER BY '
0032.00 O 60 'STATE'
0033.00 O UDATE Y 77
0034.00 OQPRINT H 3 1P
0035.00 O OR 3 OF
0036.00 O 4 'ST'
0037.00 O 13 'CITY'
0038.00 O 27 'EMP#'
0039.00 O 45 'EMPLOYEE NAME'
0040.00 O 57 'RATE'
0041.00 O 67 'HOURS'
0042.00 O 77 'CHECK'
0043.00 O D 1 02NMR
0044.00 O 46 'NO MATCHING MASTER'
0045.00 O EMPNO 27
0046.00 O EMPHRS1 67
0047.00 O D 1 02 MR
0048.00 O EMPSTA 4
0049.00 O EMPCTY 29
0050.00 O EMPNO 27
0051.00 O EMPNAM 52
0052.00 O EMPRAT1 57
0053.00 O EMPHRS1 67
0054.00 O EMPPAY1 77
0055.00 O T 22 L1
0056.00 O 51 'TOTAL CITY PAY FOR'
0057.00 O EMPCTY 72
0058.00 O CTYPAY1B 77
0059.00 O T 02 L2
0060.00 O 51 'TOTAL STATE PAY FOR'
0061.00 O EMPSTA 54
0062.00 O STAPAY1B 77
0063.00 O T 2 LR
0064.00 O TOTPAY1 77
0065.00 O 50 'FINAL TOTAL PAY'
 ****************** End of data ******************************

Table of Contents 253

Decoding the PAREG RPGIV Program

Before we give a general column definition for the newer RPGIV specs,
let’s see if the resulting program looks like RPG or something else. Since
you are quite familiar with the RPG/400 version, take a good look at the
RPGIV version before you read any more and see if you can decode it as
we did the RPG/400 version in Chapter 11.

The RPGIV Header Specification

Let’s start with the PAREG RPG/400 Header specification in Figure 12-4
and note its changes in RPGIV as shown in Figure 12-5. Then, let’s move
on to the rest of the specs from there. Just as there is no H information at
all provided for the RPG/400 version, there is none provided for RPG IV
as you can see. The H entry has no entries at all – no keywords.
However, the format line at statement 2 provides a clue that something is
different.

Figure 12-4 Header RPGIV Spec – No Debug
 678911234567892123456789312345678941234567895123456789612345678
0001.00 H* RPG HEADER (CONTROL) SPECIFICATION FORMS
0002.00 H

Figure 12-5 Header RPGIV Spec – No Debug
 6789112345678921234567893123456789412345678951234567896123456789712345

001.00 H* RPG HEADER SPECIFICATION FORMS

002.00 H*eywords++

003.00 H

H*eywords in line 2 of Figure 12-4 is a comment using a HEADER
spec. This comment was inserted by CVTRPGSRC when it converted the
RPG/400 source to RPGIV. If we replaced the asterisk with a “k” it
would read “Keywords.” That is the difference in a nutshell. The H spec
now is keyword only. There are no columnar designations at all for the
RPGIV Header.

In Figure 12-6, to demonstrate the DEBUG facility, we added a “1” in
column 15 to the RPG/400 H spec to tell it to turn on debug for the
program. Since there is no longer a spot for a 1 in column 15 of the
RPGIV H specs, how do you handle the notion of debug as in RPG/400?

Table of Contents 254

There is a keyword. And the keyword is DEBUG as shown in Figure 12-
7. In fact, if you explored the H spec for RPG/400, you would find that
those values that were once in H spec columns now are all represented by
RPGIV keywords. It makes it easier to remember and hard to get in the
wrong column.

Figure 12-6 Header RPGIV Spec Debug
 678911234567892123456789312345678941234567895123456789612345678
0001.00 H* RPG HEADER (CONTROL) SPECIFICATION FORMS
0002.00 H 1

Figure 12-7 Header RPGIV Spec with DEBUG Keyword
 6789112345678921234567893123456789412345678951234567896123456789712345

001.00 H* RPG HEADER SPECIFICATION FORMS

002.00 H*eywords++

003.00 H DEBUG

RPGIV File Description Specification

Let’s move on down to the File Description section. The RPGIV code is
shown in Figure 12-8 and the RPG/400 code is shown in Figure 12-9.

Figure 12-8 RPG IV File Description Spec
 6789112345678921234567893123456789412345678951234567

07.00 F*ilename++IPEASFRlen+LKlen+AIDevice+.Keywords++++++

08.00 FPAYMAST IPE AE DISK

09.00 FEMPTIM ISE AE DISK

10.00 FQPRINT O F 77 PRINTER OFLIND(*INOF)

Figure 12-9 RPG/400 File Description Spec
 6789112345678921234567893123456789412345678951234567

FMT… Filename IPEAF........L..I........Device+......KExit

06.00 FEMPMAST IPEAE DISK
07.00 FTIMCRD ISEAE DISK
08.00 FQPRINT O F 77 OF PRINTER

Doing a quick compare, you can readily see that the RPGIV code is a little
bit tighter and not as spread out. Moving from left to right, the first
difference is that there are 10 spaces for the File name compared to 8.

Table of Contents 255

Since AS/400 objects have a natural max name length of 10 characters,
this makes RPG capable of handling a file with a name length of 10.

Continuing the trek from left to right, you can see that there is a space
between the glob of code for the primary and secondary files – IPEAE
and ISEAE respectively. The new layout adds a column between the end
of file designator and the ascending sequence columns. It is blank in the
PAREG program. Its meaning is File addition. In other words, the
RPG/400 column 66 entry has been moved to column 20 of the new
RPGIV File description specification.

Moving again from left to right, you will notice that the OF indicator
from RPG/400 is removed completely and that the device name is moved
further to the left, now starting in column 36 instead of column 40. The
OF indicator is put back via a keyword starting in column 44.

OFLIND(*INOF)

The OFLIND keyword is one of many RPGIV File Description
keywords. In this case, the keyword says to use the *INOF a.k.a. the
reserved word OF as the overflow indicator. Its purpose is exactly the
same as the OF entry in RPG/400. Ant that does it for the F spec RPGIV
entries needed for the converted PAREG program.

RPGIV Input Spec Changes

One of my personal observations regarding the CVTRPGSRC command
is that IBM did not invest a lot of resources in assuring that all was clean.
Just as an example, the record format name PAYR in statement 12 of the
RPG/400 input specs when converted shows a format line in statement
14 with *ilename and this is not correct even if you replace the asterisk
with the “F.” It presents the internally described record format instead of
the external format. For a facility that has been out for over ten years, this
problem should already be fixed. In Figure 12-10, to make up for the
wrong formatted provided by the converter, I placed correctly shaped
format records on top of record line 16 and field line 21.

Table of Contents 256

Figure 12-10 Converted RPGIV Input Specs

 6789112345678921234567893123456789412345678951234567896123456
14.00 I*ilename++SqNORiPos1+NCCPos2+NCCPos3+NCC...................

15.00 I*.............Ext_field+Fmt+SPFrom+To+++DcField+++++++++L1M1

FMTIX IRcdname+++....Ri.............

16.00 IPAYR 01

17.00 I EMPNO M1

18.00 I EMPCTY EMPCTY L1

19.00 I EMPSTA EMPSTA L2

20.00 ITIMR 02

FMTJX I..............Ext-field+..................Field+++++++++L1M1

21.00 I EMPNO EMPNO M1

Figure 12-11 RPG/400 Input Specs

 678911234567892123456789312345678941234567895123456789612345
FM IX IRcdname+....In..........
FM JX.I..............Ext-field+......................Field+L1M1
12.00 IPAYR 01
13.00 I EMPNO EMPNO M1
14.00 I EMPCTYL1
15.00 I EMPSTA EMPSTAL2
16.00 ITIMR 02
17.00 I EMPNO EMPNO M1

Record ID in RPGIV

Let’s walk down the specifications for Input first looking at RPG/400
right above and then RPGIV. Lines 12 and 16 in Figure 10-8 represent
the record format. This converts to lines 16 and 20 in Figure 10-7. If you
were glancing without concentrating at the RPG/400 and RPGIV record
format statements, you might conclude that they were exactly the same.
That’s how close they are. The both RPGs are extremely easy to read
because of this. The two difference to the record format are that the
format name area is expanded to 10 positions and that instead of
positions 19 and 20, the Record ID Indicator in RPGIV is found in
positions 22 and 23.

Input Field Spec in RPGIV

Four fields are defined in the RPG/400 program at statements 13, 14, 15,
and 17. These are converted to statements 17, 18, 19, and 21 respectively.
Besides all of the “from and to” positions changing, the major change to

Table of Contents 257

RPGIV is that the field name area is now 14 positions long. The length
of the field name itself has been increased to 10 positions but the area in
RPG in which to specify the field has grown by an additional 4 positions
so that indented The field is specified from positions 49 to 62 of the
record. And thus the programmer now has the latitude of indentation of
input to make it more readable.

In case you want to rename a field, the external name is still in positions
21 – 30. The area in which group levels and match fields are coded has
moved from positions 59 – 62 to 63 – 66 respectively. And, that’s about
it for significant change to INPUT.

RPGIV Calculation Spec Changes

Figure 12-12 Converted RPGIV Calc Specs
 67891123456789212345678931234567894123456789512345678961234567890
FMT C CL0N01Factor1+++++++Opcode&ExtFactor2+++++++Result++++++++Len++D+
23.00 C* RPG CALCULATION SPECIFICATION FORMS

24.00 C*

25.00 C 02

26.00 C*0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+

27.00 CAN MREMPRAT MULT EMPHRS EMPPAY 7 2

28.00 C 02

29.00 CAN MREMPPAY ADD CTYPAY CTYPAY 9 2

30.00 CL1 CTYPAY ADD STAPAY STAPAY 9 2

31.00 CL2 STAPAY ADD TOTPAY TOTPAY 9 2

Figure 12-13 RPG/400 Calc Specs
 6789112345678921234567893123456789412345678951234567896123
 CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments+
0018.00 C*
0019.00 C* RPG CALCULATION SPECIFICATION FORMS
0020.00 C*
0021.00 C 02 MR EMPRAT MULT EMPHRS EMPPAY 72
0022.00 C 02 MR EMPPAY ADD CTYPAY CTYPAY 92
0023.00 CL1 CTYPAY ADD STAPAY STAPAY 92
0024.00 CL2 STAPAY ADD TOTPAY TOTPAY 92

If it were not for the formatting lines and the two AN lines, the RPGIV
calc specs in Figure 10-9 would very similar to the RPG/400 version in
Figure 10-10. The biggest change so far in this program is that the
number of “ANDed” conditioning indicators has been reduced from
three to one per each RPG calculation statement. Thus, for those heavily
indicator driven calculations, as many as three RPGIV statements may be

Table of Contents 258

needed for each RPG/400 operation conditioned by three “AN”
indicators. In this case, we need one extra statement for each detail
calculation as shown in lines 25 and 28 of Figure 12-12.

Besides the AN indicator changes, the space for just about everything has
become larger in the new RPG Calculations Specification. Factor 1 and
Factor 2 and the Result Field now begin in columns 12 and 36 and 50
respectively and each entry has been widened to 14 positions. This
enables indented calculations with ten character field names as well as
larger literals / constants.

The operation code area is also larger providing from positions 26 to 35
supporting operation codes with extenders up to ten characters. The
operation extender was formerly specified in column 53 and was
traditionally labeled as the half-adjust column. For numeric operations, an
H in column 53 told the compiler to round up. In RPG IV, operations
such as an ADD with half adjust as you will see when we cover operations
in Chapter **** is specified as such:

ADD(H)

The parentheses are required. There are now many operations with
RPGIV that can use the extender portion. Still, compared with the five
position operations from RPG/400 that once were happy to exist in
columns 28 to 32, there is plenty of room for the operation, the extenders
as well as a lengthening of the base operation to make it more readable in
English. Though I would like to tell you that IBM redid the multiply
(MULT) in RPGIV but it did not. So, for me to give you an example, let
me say that the operation for updating a record on disk in RPG/400 is
UPDAT. That’s about all you can get in a 5 character space. However, in
RPGIV, IBM added the E at the end to make the new UPDAT command
in RPGIV read much better as:

UPDATE

Table of Contents 259

RPGIV Field Length and Decimals

The new field length columns (64-68) and the number of decimals in (69-
70) have grown by one each from the RPG/400 calc spec and in V5R1
the largest numeric field has grown from 15 to 31 characters and the
largest alphabetic field has gone from 256 to 65535. To support this, the
length is now five columns and the length of the # of decimal positions in
RPGIV is now 2, now permitting more than 9 decimal positions in a field.

RPGIV Output Spec Changes

To make it very convenient to compare the differences and mostly the
similarities between RPGIV and RPG/400 output in Figure 12-14 and
Figure 12-15, both programs are squeezed onto the same one page. But,
to contrast individual features of RPGIV with RPG/400, as we did for all
other spec sheets, we ill narrow in and blow-up lines for a more
concentrated examination. For example, to get a better idea of the new
output record format, take a look at Figures 12-14 and 12-15.

RPGIV Output Record Format and Control

Just as with every other RPGIV spec sheet, the size reserved for name
lengths has increased for the output spec. From left to right on the output
record format, the filename has grown to 10 positions starting at 7. The
detail or total (D or H) indication has been relocated to column 17 instead
of 15 because of the longer file name.

The printer device control area has been completely moved from its
original position of importance when RPG was a report writing language.
The RPG IV designers, who have a mission to minimize the report
writing facility of RPG and concentrate on its strong database and
workstation facilities, seem to have hidden the printer control portion of
output, but they have added a PRTCTL keyword to File Descriptions to
help out. Without printer control as was the next area of consequence in
RPG/400, RPGIV goes right on to conditioning indicators. So, the new
RPGIV output record form now finds its nine position conditioning
indicator area starting in column 21. Yes, with a few more changes to the

Table of Contents 260

spec, IBM was able to line up the indicators just as they are in RPG/400.
The next item is the Exception name. The Exception name facility is
described in Chapter *******. Just as in RPG/400, it begins in position 30
right after the three sets of indicators.

Continuing the examination of what’s next for output, we eventually
bump into the area in which the RPGIV designers chose to put the
printer controls. Since printers of today have way more capabilities than
RPG could ever have imagined in the 1950’s, the designers extended the
power of spacing and skipping to limits few had imagined or requested.
So, with RPGIV, you now get to specify expanded print controls way

down in the O spec in positions 40 through 51.

Figure 12-14 RPGIV New PAREG Output Record Format
 67891123456789212345678931234567894123456789512
FMT O OFilename++DF..N01N02N03Excnam++++B++A++Sb+Sa+.
035.00 OQPRINT H 1P 2 06
036.00 O OR OF 2 06

Figure 12-15 RPG/400 PAREG Output Record Format
 67891123456789212345678931234567894123456789512

FMT O OName++++DFBASbSaN01N02N03Excnam...............

028.00 OQPRINT H 206 1P

029.00 O OR 206 OF

The definitions of spacing and skipping have not changed with RPGIV,
but there are apparently no physical printer reasons for a programmer to
use either skipping or spacing. Both are greatly enhanced and based on
your printer with spooling, it may not even matter from a performance
perspective. Spacing still refers to advancing one line at a time, and
skipping refers to jumping from one print line to another lines. But RPG
has gotten lots smarter inside as to how it executes these operations.

Because choosing spacing and skipping before and after can get messy
and there are since there are lots more spacing options than ever before,
let’s examine some facts in this area that can help bring some real order
out of it all. If spacing and skipping are specified for the same line, it
would help to know what happens first?

Table of Contents 261

Figure 12-16 Converted RPGIV Output Specs

 67891123456789212345678931234567894123456789512345678961234567
FMT O O*ilename++DF..N01N02N03Excnam++++B++A++Sb+Sa+.......................
035.00 OQPRINT H 1P 2 06
036.00 O OR OF 2 06
FMT P O..............N01N02N03Field+++++++++YB.End++PConstant/editword/DTfor
037.00 O 32 'THE DOWALLOBY COMPANY’
038.00 O 55 'GROSS PAY REGISTER BY’
039.00 O 60 'STATE'
040.00 O UDATE Y 77
041.00 OQPRINT H 1P 3
042.00 O OR OF 3
043.00 O 4 'ST'
044.00 O 13 'CITY'
045.00 O 27 'EMP#'
046.00 O 45 'EMPLOYEE NAME'
047.00 O 57 'RATE'
048.00 O 67 'HOURS'
049.00 O 77 'CHECK'
050.00 O D 02NMR 1
051.00 O 46 'NO MATCHING MASTER'
052.00 O EMPNO 27
053.00 O EMPHRS 1 67
054.00 O D 02 MR 1
055.00 O EMPSTA 4
056.00 O EMPCTY 29
057.00 O EMPNO 27
058.00 O EMPNAM 52
059.00 O EMPRAT 1 57
060.00 O EMPHRS 1 67
061.00 O EMPPAY 1 77
062.00 O T L1 2 2
063.00 O 51 'TOTAL CITY PAY FOR'
064.00 O EMPCTY 72
065.00 O CTYPAY 1B 77
066.00 O T L2 0 2
067.00 O 51 'TOTAL STATE PAY FOR'
068.00 O EMPSTA 54
069.00 O STAPAY 1B 77
070.00 O T LR 2
071.00 O TOTPAY 1 77
072.00 O 50 'FINAL TOTAL PAY'

Figure 12-17 RPG/400 Output Specs
028.00 OQPRINT H 206 1P
029.00 O OR 206 OF
030.00 O 32 'THE DOWALLOBY COMPANY'
031.00 O 55 'GROSS PAY REGISTER BY '
032.00 O 60 'STATE'
033.00 O UDATE Y 77
034.00 OQPRINT H 3 1P
035.00 O OR 3 OF
036.00 O 4 'ST'
037.00 O 13 'CITY'
038.00 O 27 'EMP#'
039.00 O 45 'EMPLOYEE NAME'
040.00 O 57 'RATE'
041.00 O 67 'HOURS'
042.00 O 77 'CHECK'
043.00 O D 1 02NMR
044.00 O 46 'NO MATCHING MASTER'
045.00 O EMPNO 27
046.00 O EMPHRS1 67
047.00 O D 1 02 MR
048.00 O EMPSTA 4
049.00 O EMPCTY 29
050.00 O EMPNO 27
051.00 O EMPNAM 52
052.00 O EMPRAT1 57
053.00 O EMPHRS1 67
054.00 O EMPPAY1 77
055.00 O T 22 L1
056.00 O 51 'TOTAL CITY PAY FOR'
057.00 O EMPCTY 72
058.00 O CTYPAY1B 77
059.00 O T 02 L2
060.00 O 51 'TOTAL STATE PAY FOR'
061.00 O EMPSTA 54
062.00 O STAPAY1B 77
063.00 O T 2 LR
064.00 O TOTPAY1 77
065.00 O 50 'FINAL TOTAL PAY'

Table of Contents 262

The spacing and skipping operations are processed in the following
sequence:

Skip before

Space before

Print a line

Skip after

Space after.

If the PRTCTL (new RPGIV printer control option) keyword is not
specified on the file description specifications, an entry must be made in
one of the following positions when the device is PRINTER:

40-42 (space before)

43-45 (space after)

46-48 (skip before)

49-51 (skip after)

If a space/skip entry is left blank, the function on the record line with the
blank entry (such as space before or space after) does not occur.

If entries are made in positions 40-42 (space before) or in positions 46-51
(skip before and skip after) and no entry is made in positions 43 - 45
(space after), no space occurs after printing.

When PRTCTL is specified, it is used only on records with blanks
specified in positions 40 through 51. If a skip before or a skip after a line
on a new page is specified, but the printer is already on that line, the skip
does not occur.

Considering that there were just two positions for skipping and one for
spacing in RPG/400, it will be interesting to see if print programs for

Table of Contents 263

printers of the future can ever take advantage of the vastly expanded
printer capabilities in RPGIV.

RPG IV Field and Control Specification

As a sample of a field and control specification from the converted
PAREG program, let’s pick some print lines that have both variable detail
time data (fields) and constant detail time data (literals.). Looking first at
the RPG/400 code, statements 43 – 46 show exactly the type of print line
that demonstrates the major change with RPGIV. This code snippet in
RPG/400 form is shown in Figure 12-19 below. The corresponding
RPGIV code is shown in Figure 12-18.

Figure 12-18 Converted RPGIV Output Field Specs

 678911234567892123456789312345678941234567895123456789612345670

FMT P O..............N01N02N03Field+++++++++YB.End++PConstant/editword/DTfo

050.00 O D 02NMR 1

051.00 O 46 'NO MATCHING MASTER'

052.00 O EMPNO 27

053.00 O EMPHRS 1 67

Figure 12-19 RPG/400 Output Field Specs

 678911234567892123456789312345678941234567895123456789612345

FMT P O................N01N02N03Field+YBEnd+PConstant/editword

043.00 O D 1 02NMR

044.00 O 46 'NO MATCHING MASTER'

045.00 O EMPNO 27

046.00 O EMPHRS1 67

Comparing statement 44 in RPG/400 to Statement 51 in RPGIV, if there
were no template, the trained RPG programmer would not be able to tell
them apart. With RPGIV, one noticeable change is that the end position
length is now 5 positions ending in column 51 v. 4 positions in RPG/400
ending in column 43. Additionally, the constant area begins in position 53
v. 45 in RPG/400.

Looking at the field names in RPG/400 and RPGIV respectively, the six
position space for EMPNO from statement 45 begins in position 32

Table of Contents 264

whereas the 14 positions of space permit up to 10-character field names
that begins anywhere from column 30 to 33 and end anywhere from
column 39 to 43. IBM provides all this space for field names so that the
programmer can indent subfields, thereby making the program more
readable. The end position for the length of the field is column 51. With
5 positions available, the largest record position that can be defined in this
space for a field is 65535. Of course, we wouldn’t be expecting that field
to be printed on a real print line any time soon.

The changes in the other lines of the PAREG program follow the same
principals that we have outlined for all of the code that has been
transitioned to RPGIV.

Summary

You now have seen how to code RPG Fixed logic cycle programs in both
RPG/400 and RPGIV. From what you have learned in this chapter, you
should already be able to conclude that with the expanded capabilities and
minimal additional learning required for moving to RPGIV, there is no
real technical reason, even for what some might call “legacy code” to stay
in the RPG/400 environment for new program development..

The RPGIV Definition “D” Specification

The RPGIV Definition specifications is the most natural innovation to hit
the RPG language from its conception. Just a walk down the many faces
of RPG/400 input and you can readily see that IBM was running out of
places for programmers to code the most innovative new notions to the
language. The “D” spec was long overdue when it hit the streets in 1994.
Though there are no “D” specifications required in the PAREG RPGIV
version, this is the natural place to cover this most revealing RPGIV
topic.

Many of us want to call it the Data Definition specification but that is not
correct. IBM does not limit itself to data, though lots of data can be coded
and coded logically using the “new” “D” spec. For example, the D spec
can be used to define:

✓ Standalone fields

Table of Contents 265

✓ Named constants

✓ Data structures and their subfields

✓ Prototypes

✓ Procedure interface

✓ Prototyped parameters

For more information on data structures and constants see Chapter ****.
For more information on the more advanced RPGIV notions such as
Prototypes, Procedure Interfaces, and Prototyped parameters, see Chapter
****.

Arrays and tables that formerly used the RPG/400 Extension “E”
specification, which is covered in detail in Chapter **** can be defined as
either a data-structure subfield or a standalone field. Definition
specifications can appear in two places within a module or program: in the
main source section and in a subprocedure. These notions are described
in Chapter *****. Within the main source section, you define all global
definitions.

A built-in function (BIF) can be used in the keyword field as a parameter
to a keyword. It is allowed on the definition specification only if the
values of all arguments are known at compile time. See BIFs in Chapter
****.

D Spec Keyword Continuation Line

Because RPGIV is so keyword oriented, it makes sense before we cover
the columns of the “D” spe to show the “D” continuation spec. As you
begin to code RPGIV, you will be looking for more space fro more “D”
keywords and the continuationspec provides a nice and easy vehicle for
you to accomplish this.

If additional space is required for keywords, the keywords field can be
continued on subsequent lines as follows:

Position 6 Continuation line must contain a “D”
Positions 7 to 43 Continuation line must be blank
Positions 44 – 80 Continue the prior D spec keywords here

Table of Contents 266

Posiitons 81 – 100 Comments

Figure 12-20 D Continuation Line Specification
*.. 14 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10

D.............Keywords+++++++++++++++++++++++++++++Comments++++++++++++

“D” Spec Continued Name Line

There are a number of surprises in RPGIV even if you already think you
have an idea of what it is all about. One of the surprises is the “D” Spec
Continued Name Line. Here’s where this comes into play. A name that is
up to 15 characters long can be specified in the Name entry of the
definition specification without requiring continuation. Any name (even
one with 15 characters or fewer) can be continued on multiple lines by
coding an ellipsis (...) at the end of the partial name. A name definition
consists of the parts identified in Table 12-21. The format for the spec
line is shown in Figure 12-22

Table 12-21 Three Parts to Name Definition

Parts 1 to 3 Description
(1) Zero or more
continued name
lines

Continued name lines are identified as having
an ellipsis as the last non-blank character in the
entry. The name must begin within positions 7
to 21 and may end anywhere up to position 77
(with an ellipsis ending in position 80). There
cannot be blanks between the start of the name
and the ellipsis character. If any of these
conditions is not true, the line is parsed as a
main definition line.

(2) One main
definition line,

Contains name, definition attributes, and
keywords. If a continued name line is coded,
the Name entry of the main definition line may
be left blank.

(3) Zero or more
keyword
continuation

Self explanatory

Table of Contents 267

lines

Figure 12-22 D Continuation Line Specification
*.. 1 ...+... 2 7 ...+... 8 ...+... 9 ...+... 10

DContinuedName++++…++++++++++++++Comment s++++++++++++

D – Columns 7-21 Name

Use columns 7-21 of the D spec to supply the name for whatever you are
defining. Besides the name, you may leave this position blank if the
purpose is to define filler fields in data-structure subfield definitions, or an
unnamed data structure in data-structure definitions.

The name can begin in any position in the space provided. Thus,
indenting can be used to indicate the shape of data in data structures. For
continued name lines, a name is specified in positions 7 through 80 of the
continued name lines and positions 7 through 21 of the main definition
line. As with the traditional definition of names, case of the characters is
not significant. For an externally described subfield, a name specified here
replaces the external-subfield name specified on the EXTFLD keyword.

For a prototype parameter definition, the name entry is optional. If a
name is specified, the name is ignored. (A prototype parameter is a
definition specification with blanks in positions 24-25 that follows a PR
specification or another prototype parameter definition. See Chapter ****)

D – Column 22 External Definition

This column is used to identify a data structure or data-structure subfield
as externally described. If a data structure or subfield is not being defined
on this specification, then this field must be left blank.

The allowable entries for data structure are as follows

E Identifies a data structure as externally described: subfield

Table of Contents 268

 definitions are defined externally. If the EXTNAME keyword is
 not specified, positions 7-21 must contain the name of the
 externally described file containing the data structure definition.

Blank Program described: subfield definitions for this data structure
 follow this specification.

The allowable entries for data structure subfields are as follows
E Identifies a data-structure subfield as externally described. The
 specification of an externally described subfield is necessary only
 when keywords such as EXTFLD and INZ are used.

Blank Program described: the data-structure subfield is defined on this
 specification line.

D – Column 23 Type of Data Structure

When you are defining a data structure, code the type of data structure in
column 23. This entry is used to identify the type of data structure being
defined. If you are not defining a data structure then this space must be
left blank.

The allowable entries are as follows:

Blank The data structure being defined is not a program status or data-
 area data structure; or a data structure is not being defined on this
 specification

S Program status data structure. Only one data structure may be
 designated as the program status data structure.

U Data-area data structure. RPG IV retrieves the data area at
 initialization and rewrites it at end of program. If the DTAARA
 keyword is specified, the parameter to the DTAARA keyword is
 used as the name of the external data area. If the DTAARA
 keyword is not specified, the name in positions 7-21 is used as the
 name of the external data area. If a name is not specified either by
 the DTAARA keyword, or by positions 7-21, *LDA (the local
 data area) is used as the name of the external data area.

Table of Contents 269

D - Columns 24-25 Definition Type

Specify the type of definition that this D statement line represents. The
allowable entries are as follows:

Blank The specification defines either a data structure subfield or a
 parameter within a prototype or procedure interface definition.

C The specification defines a constant. Position 25 must be blank.

DS The specification defines a data structure.

PR The specification defines a prototype and the return value, if any.

PI The specification defines a procedure interface, and the return
 value if any.

S The specification defines a standalone field, array or table.
 Position 25 must be blank.

Definitions of data structures, prototypes, and procedure interfaces end
with the first definition specification with non-blanks in positions 24-25,
or with the first specification that is not a definition specification. For a
list of valid keywords, grouped according to type of definition, please
refer to Figure ****. Data structures and constants are covered in Chapter
****. Procedures are covered in Chapter ****.

D Columns 26-32 (From Position)

Positions 26-32 may contain an entry only if the location of a subfield
within a data structure is being defined. The allowable entries are as
follows:

Blank A blank FROM position indicates that the value in the
 TO/LENGTH field specifies the length of the subfield,
 or that a subfield is not being defined on this

Table of Contents 270

 specification line.

nnnnnnn Absolute starting position of the subfield within a data
 structure. The value specified must be from 1 to 65535
 for a named data structure (and from 1 to 9999999 for an
 unnamed data structure), and right-justified in these
 positions.

Reserved Words: Reserved words may also be specified. Reserved words
for the program status data structure or for a file information data
structure are allowed (left-justified) in the FROM-TO/LENGTH fields
(positions 26-39). These special reserved words define the location of the
subfields in the data structures. Reserved words for the program status
data structure are *STATUS, *PROC, *PARM, and *ROUTINE.
Reserved words for the file information data structure (INFDS) are
*FILE, *RECORD, *OPCODE, *STATUS, and *ROUTINE. This
information is given for completeness only. These keywords are not
covered in any detail in this book.

Columns 33-39 (To Position / Length)

The allowable entries and their explanations follows:

Blank If columns 33-39 are blank: a named constant is being
 defined on this specification line, or the standalone field,
 parameter, or subfield is being defined LIKE another
 field, or the standalone field, parameter, or subfield is of
 a type where a length is implied, or the subfield's
 attributes are defined elsewhere, or a data structure is
 being defined. The length of the data structure is the
 maximum value of the subfield To-Positions.

nnnnnnn Columns 33-39 may contain a (right-justified) numeric
 value, from 1 to 65535 for a named data structure (and
 from 1 to 9999999 for an unnamed data structure)If the
 From field (position 26-32) contains a numeric value,
 then a numeric value in this field specifies the absolute
 end position of the subfield within a data structure. If
 the From field is blank, a numeric value in this field

Table of Contents 271

 specifies : the length of the entire data structure, or the
 length of the standalone field, or the length of the
 parameter, or the length of the subfield. Within the data
 structure, this subfield is positioned such that its starting
 position is greater than the maximum to-position of all
 previously defined subfields in the data structure.
 Padding is inserted if the subfield is defined with type
 basing pointer or procedure pointer to ensure that the
 subfield is aligned properly.

+|-nnnnn This entry is valid for standalone fields or subfields
 defined using the LIKE keyword. The length of the
 standalone field or subfield being defined on this
 specification line is determined by adding or subtracting
 the value entered in these positions to the length of the
 field specified as the parameter to the LIKE keyword.

Reserved Words : Reserved words may also be specified in these
columns. If columns 26-32 are used to enter special reserved words, this
field becomes an extension of the previous one, creating one large field
(positions 26-39). This allows for reserved words, with names longer than
7 characters in length, to extend into this field. See Columns 26-32 (From
Position), 'Reserved Words' above.

D - Column 40 (Internal Data Type)

This entry allows you to specify how a standalone field, parameter, or
data-structure subfield is stored internally. This entry pertains strictly to
the internal representation of the data item being defined, regardless of
how the data item is stored externally on disk if it is stored on disk or tape
or other media. To define variable-length character, graphic, and UCS-2
formats, you must specify the keyword VARYING to have it take effect;
otherwise, the format will be fixed length. The allowable entries and
explanations are as follows:

Blank When the LIKE keyword is not specified: If the decimal
 positions entry is blank, then the item is defined as character If
 the decimal positions entry is not blank, then the item is defined
 as packed numeric if it is a standalone field or parameter; or as

Table of Contents 272

 zoned numeric if it is a subfield.
 Note: The entry must be blank when the LIKE keyword is
 specified.

A Character (Fixed or Variable-length format)

B Numeric (Binary format)

C UCS-2 (Fixed or Variable-length format)

D Date

F Numeric (Float format)

G Graphic (Fixed or Variable-length format)

I Numeric (Integer format)

N Character (Indicator format) |

O Object

P Numeric (Packed decimal format)

S Numeric (Zoned format)

T Time

U Numeric (Unsigned format)

Z Timestamp

* Basing pointer or procedure pointer.

The simple internal data types that we cover in this book are described in
Chapter ****.

D -- Columns 41-42 (Decimal Positions)

Table of Contents 273

Use Columns 41-42 to indicate the number of decimal positions in a
numeric subfield or standalone field. If the field is non-float numeric,
there must always be an entry in these positions. If there are no decimal
positions enter a zero (0) in position 42. For example, an integer or
unsigned field (type I or U in position 40) requires a zero for this entry.

The allowable entries and explanations are as follows:

Blank The value is not numeric (unless it is a float field) or has been
 defined with the LIKE keyword.

0-30 Decimal positions: the number of positions to the right of the
 decimal in a numeric field. This entry can only be supplied in
 combination with the TO/Length field. If the TO/Length field is
 blank, the value of this entry is defined somewhere else in the
 program (for example, through an externally described data base
 file).

D -- Column 43 Reserved

 This column is reserved for future use.

D -- Columns 44-80 (Keywords)

Columns 44 to 80 are provided for definition specification keywords.
Keywords are used to describe and define data and its attributes. This area
is used to specify any keywords necessary to fully define the field. If you
don’t have enough room for all the keywords you need, use the
continuation form which was described at the beginning of this section.

 D -- Columns 81-100 Comments

 These columns can be used for optional comments.

Table of Contents 274

D Specification Keywords.

From column 7 to 42 the D specification provides a standard means of
defining data and other items to the RPGIV compiler. However, there are
lots more options that the D specification handles besides what can be
specified within the 7 – 42 column boundaries. As with the other RPGIV
specifications, these other items are enabled through the use of keywords
in positions 44 – 80 of the D spec. Table 12-23 provides a look at these
powerful keywords as well as an explanation as to what they are all about.

Table 12-23 D Specification Keywords & Parameters
ALIGN The ALIGN keyword is used to align float, integer, and

unsigned subfields. When ALIGN is specified, 2-byte
subfields are aligned on a 2-byte boundary, 4-byte
subfields are aligned on a 4-byte boundary and 8-byte
subfields are aligned on an 8-byte boundary. Alignment
may be desired to improve performance when accessing
float, integer, or unsigned subfields.

ALT (array_name) The ALT keyword is used to indicate that
the compile-time or pre-runtime array or table is in
alternating format.

ALTSEQ (*NONE) When the ALTSEQ(*NONE) keyword is
specified, the alternate collating sequence will not be
used for comparisons involving this field, even when the
ALTSEQ keyword is specified on the control
specification.

ASCEND The ASCEND keyword is used to describe the sequence
of the data in arrays, tables, or prototyped parameters

BASED (basing_pointer_name) When the BASED keyword is
specified for a data structure or standalone field, a
basing pointer is created using the name specified as the
keyword parameter. This basing pointer holds the
address (storage location) of the based data structure or
standalone field being defined. In other words, the name
specified in positions 7-21 is used to refer to the data
stored at the location contained in the basing pointer.

CCSID (number | *DFT) This keyword sets the CCSID for
graphic and UCS-2 definitions. The number must be an
integer between 0 and 65535. It must be a valid graphic
or UCS-2 CCSID value.

CLASS (*JAVA:class-name) This keyword indicates the class

Table of Contents 275

for an object definition. Class-name must be a constant
character value

CONST {(constant)} The CONST keyword is used to specify the
value of a named constant or to indicate that a
parameter passed by reference is read-only.

CTDATA The CTDATA keyword indicates that the array or table
is loaded using compile-time data. The data is specified
at the end of the program following the ** or
**CTDATA(array/table name) specification.

DATFMT (format{separator}) The DATFMT keyword specifies
the internal date format, and optionally the separator
character for a Date; standalone field; data-structure
subfield; prototyped parameter; or return value on a
prototype or procedure-interface definition

DESCEND The DESCEND keyword is used to describe the
sequence of the data in arrays, tables, or prototyped
parameters

DIM (numeric_constant) The DIM (Dimension) keyword
defines the number of elements in an array; a table; a
prototyped parameter; or a return value on a prototype
or procedure-interface definition. The numeric constant
must have zero (0) decimal positions. It can be a literal,
a named constant or a built-in function.

DTAARA {(data_area_name)} The DTAARA keyword is used to
associate a standalone field, data structure, data-
structure subfield or data-area data structure with an
external data area. You can create three kinds of data
areas: (1) *CHAR Character, (2) *DEC Numeric, and
(3) *LGL Logical. You can also create a DDM data area
(type *DDM) that points to a data area on a remote
system.

EXPORT {(external_name)} The EXPORT keyword allows a
globally defined data structure or standalone field
defined within a module to be used by another module
in the program. The storage for the data item is
allocated in the module containing the EXPORT
definition. The external_name parameter, if specified,
must be a character literal or constant. The EXPORT
keyword on the definition specification is used to export
data items and cannot be used to export procedure
names. To export a procedure name, use the EXPORT
keyword on the procedure specification.

EXTFLD (field_name) The EXTFLD keyword is used to rename
a subfield in an externally described data structure.

Table of Contents 276

Enter the external name of the subfield as the parameter
to the EXTFLD keyword, and specify the name to be
used in the program in the Name field (positions 7-21).

EXTFMT (code) The EXTFMT keyword is used to specify the
external data type for compile-time and prerun-time
numeric arrays and tables. The external data type is the
format of the data in the records in the file. This entry
has no effect on the format used for internal processing
(internal data type) of the array or table in the program.
The values specified for EXTFMT will apply to the files
identified in both the TOFILE and FROMFILE
keywords, even if the specified names are different.
The possible values for the parameter are:
B The data for the array or table is in binary format.
C The data for the array or table is in UCS-2 format.
I The data for the array or table is in integer format.
L The data for a numeric array or table element has a
 preceding (left) plus or minus sign.
R The data for a numeric array or table element has a
 following (right) plus or minus sign.
P The data for the array or table is in packed decimal
 format.
S The data for the array / table is in zoned decimal
 format.
U The data for the array or table is in unsigned format.
F The data for the array or table is in float numeric
 format.

EXTNAME (file_name{:format_name}) Use the EXTNAME
keyword to specify the name of the file which contains
the field descriptions used as the subfield description for
the data structure being defined. The file_name
parameter is required. Optionally a format name may be
specified to direct the compiler to a specific format
within a file. If format_name parameter is not specified
the first record format is used. If the data structure
definition contains an E in position 22, and the
EXTNAME keyword is not specified, the name
specified in positions 7-21 is used

EXTPGM (name) Use the EXTPGM keyword to indicate the
external name of the program whose prototype is being
defined.

EXTPROC ({*CL|*CWIDEN|*CNOWIDEN|{*JAVA:class-
name:}}name) There are a number of formats as noted
that can be used with this keyword. The EXTPROC

Table of Contents 277

keyword indicates the external name of the procedure
whose prototype is being defined.

FROMFILE (file_name) Use the FROMFILE keyword to specify the
input data file for the prerun-time array or table.. The
FROMFILE keyword must be specified for every
prerun-time array or table defined/used in the program.

IMPORT {(external_name)} Use the IMPORT keyword to
specify that storage for the data item being defined is
allocated in another module, but may be accessed in this
module.

INZ {(initial value)} The INZ keyword initializes the
standalone field, data structure, |data-structure subfield,
or object to the default value for its data type or,
|optionally, to the constant specified in parentheses.

LIKE (name) Use the LIKE keyword to define an item like an
existing |one. When you specify the LIKE keyword, the
item you are defining takes on the length and the data
format of the item specified as the parameter. You may
define standalone fields, prototypes, parameters, and
data-structure subfields using this keyword.

LIKEDS (data_structure_name) Use the LIKEDS keyword to
define a data structure, prototyped return value, or
prototyped parameter like another data structure. The
subfields of the new item will be identical to the
subfields of the other data structure.

NOOPT The NOOPT keyword indicates that no optimization is
to be performed on the standalone field, parameter or
data structure for which this keyword is specified.
Specifying NOOPT ensures that the content of the data
item is the latest assigned value. This may be necessary
for those fields whose values are used in exception
handling.

OCCURS (numeric_constant) Use the OCCURS keyword to
specify (in the num constant parm) the number of
occurrences of a multiple-occurrence data structure.

OPDESC The OPDESC keyword specifies that operational
descriptors are to be passed with the parameters that are
defined within a prototype.

OPTIONS (*NOPASS *OMIT *VARSIZE *STRING
*RIGHTADJ) The OPTIONS keyword is used to
specify one or more parameter passing options:
(1) Whether a parameter must be passed (2) Whether the
special value *OMIT can be passed for the parameter
passed by reference. (3) Whether a parameter that is

Table of Contents 278

passed by reference can be shorter in length than is
specified in the prototype. (4) Whether the called
program or procedure is expecting a pointer to a null-
terminated string, allowing you to specify a character
expression as the passed parameter. The single
parameter passed with this keyword can have different
values.

OPTIONS (*NOPASS) Use this option so that the called program
or procedure will simply function as if the parameter list
did not include that parameter.

OPTIONS (*OMIT) Use this to allow the value *OMIT for that
parameter. *OMIT is only allowed for CONST
parameters and parameters which are passed by
reference

OPTIONS (*VARSIZE) Use this for parameters passed by
reference that have a character, graphic, or UCS-2 data
type, or that represent an array of any type.

OPTIONS (*STRING) Use this for a basing pointer parameter
passed by value or by constant-reference. You may
either pass a pointer or a character expression.

OPTIONS (*RIGHTADJ) Use this for a CONST or VALUE
parameter in a function prototype. In this case, the
character, graphic, or UCS-2 parameter value is right
adjusted.

OVERLAY (name{:pos | *NEXT) Use the OVERLAY keyword to
overlay the storage of one subfield with that of another
subfield, or with that of the data structure itself. This
keyword is allowed only for data structure subfields. The
Name-entry subfield overlays the storage specified by
the name parameter at the position specified by the pos
parameter. If pos is not specified, it defaults to 1.

PACKEVEN Use the PACKEVEN keyword to indicate that the
packed field or array has an even number of digits. The
keyword is only valid for packed program-described
data-structure subfields defined using FROM/TO
positions.

PERRCD (numeric_constant) Use the PERRCD keyword to
specify the number of elements provided per record for a
compile-time or a prerun-time array or table.

PREFIX (prefix{:nbr_of_char_replaced}) Use the PREFIX
keyword to change the field names of all of the fields
from a particular external data structure so there is no
conflict with fields already coming in to the program.
Specify a character string or character literal, which is to

Table of Contents 279

be prefixed to the subfield names of the externally
described data structure being defined. In addition, you
can optionally specify a numeric value to indicate the
number of characters, if any, at the beginning of the
existing name to be replaced.

PROCPTR The PROCPTR keyword defines an item as a procedure
pointer. The internal Data-Type field (position 40) must
contain a *.

QUALIFIED Use the QUALIFIED keyword to specify that the
subfields of a data structure will be accessed by
specifying the data structure name followed by a period
and the subfield name.

STATIC Use the STATIC keyword to specify that a local variable
is stored in static storage and thereby hold its value
across calls to the procedure in which it is defined or to
specify that a Java method is defined as a static method.

TIMFMT (format{separator}) Use the TIMFMT keyword

to specify an internal time format, and optionally the
time separator, for type Time: standalone field; data-
structure subfield; prototyped parameter; or return value
on a prototype or procedure-interface definition.

TOFILE (file_name) Use the TOFILE keyword to specify a

target file to which a prerun-time or compile-time array
or table is to be written.

VALUE Use the VALUE keyword to indicate that the parameter
is passed by value rather than by reference. Parameters
can be passed by value when the procedure they are
associated with are called using a procedure call.

VARYING Use the VARYING keyword to indicate that a character,
graphic, or UCS-2 field, defined on the definition
specifications, should have a variable-length format. If
this keyword is not specified for character, graphic, or
UCS-2 fields, they are defined as fixed length.

Chapter 13

RPG Operations

http://publib.boulder.ibm.com/iseries/v5r2/ic2924/books/c0925083324.htm#HDRD40

Table of Contents 280

How RPG Gets Things Done!

In RPG/400 and RPGIV, if you are not fixed on the fixed cycle, you will
quickly see that almost all of the action occurs in the calculations (calc)
specifications. Moreover, the heart of the CALC spec as you learned
earlier in this book is the operation area in which you place the specific
op-code to tell RPG which operation to conduct on your behalf. In
Chapter 9 we examined the CALC spec and how it is formatted for fill-in
the blank operations. In this chapter, we take a real close look at those
operations in their RPG/400 format. Better than 90% of these operations
are also usable with RPGIV. We’ll get to RPGIV calculations in Chapter
15***.

There are many different operations available and they are implemented
via the codes that a programmer can specify in the op-code column (28 in
RPG/400 and 26 in RPGIV) of the CALC form. RPG operations can be
classified in a number of ways. The various op-code charts and tables
shown in this chapter starting with Figure 7-1 provide a complete picture
of all of the operations available in RPG and RPGIV. The first chart,
shown in Figure 7-1 is a summary of all operations by type and it shows
the classification and a number of specific the op code examples that are
available in each classification.

This chapter breaks tutorial-like stride temporarily to present the complete
set of RPG/400 operations that you can deploy in calculation
specifications. It covers major language elements in RPG/400 to
familiarize the student with the full capabilities of the RPG/400 language.
It would be impossible to teach all of this with examples and text in an
introductory book. By showing all of the RPGIV operations and by
default over 90% of the RPGIV operations in this chapter, it sets the
stage for further work with examples starting in Chapter 13.

In most cases, the operations for RPG/400 are the same in RPGIV, other
than perhaps an expanded columns in RPGIV. So, to repeat somewhat,
the intent of this chapter is to demonstrate the programming capabilities
of the language by examining the operations that are found in both

Table of Contents 281

modern forms of the RPG language – RPG/400 and RPGIV. By doing
this, you can see and learn operations in one form (RPG/400 in this
chapter) and unless otherwise noted, the same operation is available in
just about the same form in RPGIV. In other words, when the reader
learns an operation in RPG/400, the corresponding RPGIV operation is
understandable by default.

You are about to see that in this chapter, the author has taken every RPG
operation and has condensed its explanation into something that is
germane and understandable without losing its meaning in simplicity. In
fact, the RPG charts in this chapter are so comprehensive that they can be
used as a reference for how to code operations without having to
understand all of the intricacies and options that are provided in IBM’s
four RPG manuals.

When you become an RPG programmer instead of an RPG learner,
because of these operation charts and other unique function charts, this
book will continue to provide value to you to quickly recap your learning.
However, when you are moving deeper into the language, you will be
pleased that IBM’s entire library for the AS/400 is included on-line. To
get to the IBM RPG manuals, first RPG/400, then RPGIV, take the
following links:

RPG/400 IBM Links

www.iseries.ibm.com
>>Support
>>iSeries Information Center
>>(your language – such as English) V5R1
>>Left frame > Programming
>>RPG
>>Right Frame – Scroll to bottom
>>Look for

RPG/400

1. RPG/400 Reference - PDF
 Also available in HTML version

2. RPG/400 User's Guide - PDF

http://www.iseries.ibm.com/

Table of Contents 282

 Also available in HTML version

ILE RPG (RPGIV) IBM Links

www.iseries.ibm.com
>>Support
>>iSeries Information Center
>>V5R4
>>Printable PDFs and Manuals
>>Scroll down almost to the bottom of the list:
>> You will find these valuable manuals:

1. WebSphere Development Studio:
 ILE RPG Programmer's Guide
 Programming Manual

2. WebSphere Development Studio:

 ILE RPG Reference

With this book and IBM’s manuals, you have all the tools you need to
become and to be an effective RPG programmer. For those enjoying
the tutorial nature of this book, who would prefer not to absorb al of the
language operations before continuing, I would recommend reading
through the RPG BASIC Operations Set, browsing through the rest of
the operations through Table 13-4. Then, you might want to check out
the handy operations summary chart in Table 13-12 and walk quickly
through RPGIV specific operations in Chapter 14 before continuing in
tutorial mode in Chapter 15. You will find that the PAREG program that
we have been working with so far in this book goes through another
metamorphosis to be able to provide all of its function without the use of
the RPG fixed logic cycle – no level time and no MR match fields. There’s
lots to do in Chapter 15. See you there

RPG Operations

To introduce you to the plethora of operations in RPG, let’s first take a
look at Table 13-1. This table provides a quick summary of the types of

http://www.iseries.ibm.com/

Table of Contents 283

operations that you will find in RPG along with a number of
representative operations as shown by their op-codes. The detail for
these types of operations is provided in the subsequent tables.

Table 13-1 Types of Operations & Op-Codes

Types Of
Operations

Representative Op- Codes

Basic Operations

ADD– add two numbers
BEGSR– begin a subroutine
MULT-- multiply two numbers

Compare & Branch
Operations /
Subroutines

GOTO -- Go to
EXSR – Execute a subroutine
CABXX -- Compare and branch if
EQ,GT… .

Data Manipulation
Operations

CLEAR– houseclean a structure
BITON– Turn bits on
RESET– Reset a structure

Database & Device
File Operations

READ—read a record
REDPE– read a prior equal record
SETLL-- set file index position EXFMT–
write then read a screen

Data Structure,
Table, Array, String
Operations

LOKUP—find item in table/array
MOVEA– move data to-from array

Program Control
Operations

DUMP—take a dump
ACQ-- acquire a device in program

Structured
Operations

DOWXX—do while EQ, GT etc.
SELEC-- Select
ITER—Repeat Do loop

RPGIV Free Form
Syntax
Calculation spec

Eval—evaluate expression
EvalR-evaluate expression, rt adjust

RPGIV Free Form
Operations

/FREE compiler directive signifies free
form RPGIV is coming
/END-FREE self explanatory

Table of Contents 284

Basic Operations - Including Arithmetic

It can be readily argued that COBOL is the most English-like language
ever devised. With its lengthy field names, data attributes are able to be
naturally explained well within the confines of the variable name itself. As
you examine the list of operations in 13-1, you can see that the five
character operation names available in RPG/400, though reasonably easy
to understand are no match for COBOL.

RPG operations are logical and they are somewhat English-like. Once
read and understood, they are difficult to forget. The op-codes are very
unlike the computer science languages operations available in languages
such as C. Moreover, it can be argued that despite their conciseness, the
RPG operations resemble COBOL, the Common Business Oriented
Language more than any other language.

Clearly RPG is much more concise and thus much more precise than
COBOL, PL/1 and any other business language. In fact, compared to
mostly all languages, RPG is the most concise, rendering many less
statements per equivalent program than all of the other languages du jour.
There is no room for verbosity in RPG operations. The language iis built
to solve business problems. In earlier chapters we demonstrated the utility
of RPG for basic input and output and report writing facilities. Now, let
us move from the overview in Table 13-1 to a look at a number of the
most elemental operations available in the RPG language.

Table of Contents 285

For your review, the columns of the CALC spec are as follows:

Column 6 C for calc spec
Columns 7- 17 Level and detail conditioning indicators
Column 18- 27 Factor 1
Column 28- 32 Operation Code
Column 33- 42 Factor 2
Column 43- 48 Result Field
Column 49- 53 Field Length- 3, Decimals-1, Op Extender-1
Column 54- 58 HI LO EQ Resulting Indicators

As you can see in Table 13-2, RPG Basic Operations. The operation is
shown on the left, followed by the provided function on the right. The
first area within the provided function is a one phrase shortened synopsis
of the operation. This is then followed by a detailed description of the
function and purpose of the operation and how it needs to be coded in
RPG/400 to achieve the desired result. To prepare you better for the
operations journey you are about to take, we begin this tour with a
concise definition of the calculation specifications for RPG/400. The
operation codes that we explain in the many tables that follow place the
operation in column 28 of the calc spec.

Table 13-2 RPG Basic Operations

Operation Provided Function

ADD Add two factors to produce a result. The ADD
 operation adds Factor 1 to Factor 2 and places the sum
 in the Result field. If Factor 1 is not specified, the
 contents of Factor 2 are added to the Result field and the
 sum is placed in the Result field. Factor 1 and Factor 2
 and the Result field must be defined as numeric.
CHAIN Random Retrieval from a File. The CHAIN is a very
 powerful operation in RPG and is used in most
 programs for record retrieval by relative record # or by
 key. The operation retrieves a record from a full
 procedural file (F in position RPG/400 position 16) of
 the file description specifications), and places the data
 from the record into the input fields. The search

Table of Contents 286

 argument is provided in Factor 1. It must contain the key
 or the relative record number used to retrieve the record.
 Factor 2 specifies the file or record format name
 (externally described files) that is to be read. For a
 WORKSTN subfile, the CHAIN operation retrieves a
 subfile record. Files specified as input, read all records
 without locks and position 53 in RPG/400 must be
 blank. To lock all records, the file must be specified as
 update and RPG/400 position 53 is blank. Specify an
 “N” in RPG/400 53 so that no lock should be placed
 on a record when it is read. The HI positions 54 and 55
 must contain an indicator that is set on if no record in
 the file matches the search argument. The LO positions
 can contain an indicator that is on if the CHAIN
 operation is not completed successfully Error). The EQ
 positions must be blank. A successful chain repositions
 the file cursor such that if it is followed by a READ
 operation the next sequential record following the
 retrieved record is read. If an update (on the calculation
 or output specifications) is done on the retrieved record
 after a successful CHAIN operation and before other
 access to that file, the last record retrieved is updated.
DEBUG Shows internal variables and indicators. Output is to
 A print device or a disk file at specific points in
 calculations
DELET Delete a specific record in a database.
 If no search argument is placed in Factor1, this
 operation deletes the last locked record retrieved from
 the file or record format specified in Factor 2. If a search
 argument is specified and the record is found, it is
 deleted. A status indicator area is provided in the HI (not
 found) and LO (error) indicator areas to show the results
 of the DELET. When indicators are specified and none
 are turned on, the delete is successful.
DIV Divide two numbers, produce a result and a
 remainder. The DIV operation divides Factor 1 by
 Factor 2. Without Factor 1 specified, it divides the result
 field by Factor 2. The quotient (result) is placed in the
 result field. If Factor 1 is 0, the result of the divide
 operation is 0. Any remainder resulting from the divide

Table of Contents 287

 operation is lost unless the move remainder (MVR)
 (See this table) operation is specified as the next
 operation. If move remainder is the next operation, the
 result of the divide operation cannot be half-adjusted
DSPLY Display function - show values immediately. The
 DSPLY operation allows the program to communicate
 with the display work station that requested the program.
 The operation can display a message from Factor 1 and
 send a value in the result field into which can be keyed a
 response. Specify a literal of a field in factor 1 to be used
 as the message to be displayed. The result field is
 optional. If specified, the user response is placed in it and
 the program can take immediate action based on this
 communication with the user. The result field can
 contain a field name, a table name, or an array element
 the contents of which are displayed and into which the
 response is placed. If no data is entered, the result field
 is unchanged. The DSPLY can also be used as a handy
 and quick interactive debugger because it does not mess
 up printouts or displays to get its job done.
EXCPT Calculation Time Exception Output. This program
 described file operation initiates immediate output to
 internally described disk or printer files. Output triggered
 for this operation is coded with a special “E” designation
 for exception output record headers in place of the RPG
 cycle’s typical H or D records. The lines of output can be
 conditioned or unconditioned using record indicators.
 The EXCPT also has a special name facility that can be
 specified in Factor 2. When the EXCPT is executed with
 an except name, only the records with that particular
 name in the output record area are written to a printer
 or a disk file.
EXFMT Write/then Read Interactive Screen Format. This
 powerful operation is a combination put screen, wait,
 and get screen operation. The format name specified in
 Factor 2 is defined in a display file that is typically created
 using the Screen Design Aid. A display file can have
 multiple record formats (screen panels) defined. A
 screen panel with input fields can be sent using the
 EXFMT operation, specifying the panel name, to a

Table of Contents 288

 display. The program then waits for the user to enter
 data and signify they are finished. The user provides
 input and presses Enter or a function key. Control is
 then returned to the statement in the RPG program
 following the EXFMT.
MOVE Move data field right to left. This operation
 moves each corresponding character from the Factor 2
 field to the Result field starting with the rightmost
 character and stopping with the leftmost character in
 Factor 2.
MOVEL Move data field left to right. This operation
 moves each corresponding character from the Factor 2
 field to the Result field starting with the leftmost position
 to the leftmost position and stopping with the last
 character in Factor 2.
MOVEA Move Array – Array to Field and Vice Versa. This
 operation moves each corresponding character from the
 array or field specified in Factor 2 field to the field or
 array specified in the result field -- starting with
 the leftmost position of the field or array to the leftmost
 position and stopping with the last character in Factor 2.
MULT Multiply one field or value by another and store the
 result. Factor 1 is multiplied by Factor 2 and the
 product is placed in the result field. The Result field
 must be large enough to hold it. If Factor 1 is not
 specified, Factor 2 is multiplied by the Result field and
 the product is placed in the Result field. The fields in
 Factor 1, Factor 2, and the Result field must be defined
 as numeric. You can specify half adjust (position 53 in
 RPG/400).
 MVR Move the remainder after a divide operation into a
 field. This operation moves the remainder from the
 previous DIV operation to a separate field named in the
 result field. Factor 1 and Factor 2 must be blank. The
 MVR operation must immediately follow and be
 processed after the DIV operation. The MVR operation
 Be careful with conditional operations surrounding an
 MVR operation. If the MVR operation is processed
 before the DIV operation, undesirable results occur.

Table of Contents 289

READ Read a record from a file or format. The READ
 operation reads the current record, from a procedural file
 (identified by an F in position 16 of the RPG/400 file
 description specifications). Factor 2 must contain the
 name of a file. A record format name in Factor 2 is al-
 lowed only with an externally described file (E in pos. 19
 of the RPG/400 F spec. A READ-by- format-name
 operation will receive a different format than the
 one you specified in factor 2. If so, the READ
 operation ends in error. This operation is most often
 associated with database files but it also works with other
 files including WORKSTN files in which the record
 format name on the READ. In database operations,
 specify an indicator in the EQ indicator position to have
 the READ operation check for end of file (no more
 records left to read). The indicator turns on when the file
 is at end.
SQRT Take the square root of a number and store it in a
 field. The SQRT operation derives the square root of
 the field named in Factor 2 and it places it in the
 Result field. If the value of the factor 2 field is zero, the
 Result field value is also zero. If the value of the Factor
 2 field is negative, the RPG/400 exception/error
 handling routine receives control.
SUB Subtract one field from another and store the result.
 Factor 2 is subtracted from Factor 1 and the difference is
 placed in the result field. If Factor 1 is not specified, the
 contents of Factor 2 are subtracted from the contents of
 the Result field and the results are stored in the Result
 field. Indicators specified in the HI, LO, EQ resulting
 indicator area are turned on depending on a +, -, or 0
 value in the result field.
TIME Get time of day and store in a field.
 The TIME operation accesses the system time
 of day and, if specified, the system date at any
 time during program processing. The system time is
 based on the 24-hour system clock. The result field must
 specify the name of a 6-, 12- or 14-digit numeric field (no
 decimal positions) into which the time of day or the time
 of day and the system date are written. To access the

Table of Contents 290

 time of day only, specify the result field as a 6-digit
 numeric field. To access both the time of day and the
 system date, specify the result field as a 12- (2-digit year
 portion) or 14-digit (4-digit year portion) numeric field.
 The time of day is always placed in the first six positions
 of the result field in the following format: hhmmss
 (hh=hours, mm=minutes, and ss=seconds)
UPDAT Modify Existing Record The UPDAT operation
 rewrites (updates) the last record retrieved for processing
 from an update disk file or subfile. Data changes that
 occurred through normal processing will be made to the
 updated record. No other file operation should be
 performed between the input operation that retrieved the
 record and the UPDAT operation. Specify the file or
 record format name in factor 2 for the database file to be
 updated. For externally defined files, the record format
 name must be used with this operation. UPDAT follows
 a read type operation. Data in the record’s fields are
 updated in program memory and then the new contents
 of the record are written over the former contents of the
 record in the database.
WRITE Create new DB Records (Add Records) or write a
 format to a display screen. The WRITE operation
 writes a new record to a file. In essence, it creates new
 records. Factor 2 must contain the name of a file or a
 record format name for an externally described file. A
 file name in factor 2 is required with a program described
 file. In this case, a data structure must be defined in for
 the result field. For program described files, the record is
 written directly from the data structure to the file. The
 result field must be blank if factor 2 contains a record
 format name. The Write operation can also be used to
 send a panel (screen) to a display station.
XFOOT Sums the elements of an array. Powerful operator that
 adds each of the elements of an array to create a total
 and it stores the total in a result field.
Z-ADD Zero and Add. Zeroes out a result field first and then
 adds the content of the Factor 2 field or constant to the
 zeroed total. Similar to a numeric MOVE operation.
 Indicators specified in the resulting HI, LO, EQ area are

Table of Contents 291

 turned on according to their +, - 0, result.
Z-SUB Zero and Subtract Zeroes out a result field first and
 Then subtracts the content of a Factor 2 field or a
 constant from the zeroed result creating in most cases a
 negative value. Has the same arithmetic result as
 subtracting a number from zero to create its negative.
 Indicators specified in the resulting HI, LO, EQ area are
 turned on according to their +, - 0, result.

Compare & Branch / Subroutine
Operations

The basic operations in Table 13-2 consist of mostly database and
arithmetic operators. Though you definitely need a computer with nice
healthy disk drives for database, the arithmetic operations in Table 13-2
are done just as handily with a calculator. Besides database capability, the
major factor which differentiates computers from calculators is logic. The
logic of a computer machine provides the ability to compare values, and
based on those values take different courses of actions. The term used for
taking those “different courses of action” is called branching. Through
comparisons of values and branches which alter the sequential pattern of
instructions, computer systems achieve a somewhat human-like, logical
capability that enable them to far surpass the capabilities of the most
advanced calculator.

As a language known for providing an easy means to quantify business
rules for programmed decision making, RPG is well equipped for the
tasks necessary to provide programs the compare and branch instructions
necessary to run the business on the AS/400 or System i5. Table 13-4
below summarizes all of the compare and branch operations that an RPG
programmer their disposal. As you examine the table, it will help you in
deciphering the meaning of the operations that provide the decision
making capabilities for RPG. This notion also applies to the operations
listed under Structured Operations as shown in Table 13-8.

A number of compare and branch and structured decision operations are
listed with XX as the last two characters of the operations. XX is a

Table of Contents 292

convenient means of specifying the type of test that you can call upon
using the operation. For example, the IFXX is much more meaningful if it
is coded as IFEQ (If Equal) or IFGT (IF Greater Than). The meaning of
these operation suffixes are shown in Table 13-3.
.

Table 13-3 XX Operation Meanings

XX Meaning
GT Factor 1 is greater than factor 2.
LT Factor 1 is less than factor 2.
EQ Factor 1 is equal to factor 2.
NE Factor 1 is not equal to factor 2.
GE Factor 1 is greater than or equal to factor 2.
LE Factor 1 is less than or equal to factor 2.
Blanks Unconditional processing -- (CAS).

Table 13-4 Compare & Branch Operations

Operation Provided Function

ANDxx And if another condition is true, then... This
 operation links two operations together. If you specify
 this optional operation, it must immediately follow a
 ANDxx, DOUxx, DOQxx, IFxx, ORxx, or WHxx. With
 ANDxx, you can specify a complex condition for the
 DOUxx, DOWxx, IFxx, and WHxx operations. The
 ANDxx operation has higher precedence than the ORxx
 operation. The comparison of factor 1 and factor 2
 follows the same rules as those given for the compare
 operations. See COMP in this table.
BEGSR Beginning of Subroutine. Defines the beginning
 point of a subroutine. Subroutine ends with an ENDSR
 opcode. Factor 1 contains the name of the subroutine.
COMP Compare Two values and set on status indicators
 Based on the relationship of the first value (field or
 literal) in Factor 1 to the second value (Factor 2). Status
 indicators can be specified for HI, LO, EQ. The
 COMP operation compares Factor 1 with Factor 2. As a
 result of the comparison, indicators are set on in RPG/
 400 and RPG IV as follows: HI – if Factor 1 is greater
 than Factor 2; LO – if Factor 1 is less than Factor 2;

Table of Contents 293

 EQ – if Factor 1 equals Factor 2. When specified, the
 resulting indicators are set on or off each time through
 the operation to reflect the results of the latest compare.
CABxx Compares two values and branches if the tested
 condition is satisfied. The condition, xx = EQ or GT
 etc is specified as part of the op-code. The branch-to
 label is taken if the condition is satisfied. This combin-
 ation operation first compares Factor 1 with factor 2. If
 the condition specified by xx in the op-code is true, the
 program branches to the TAG operation associated with
 the label specified in the result field. Otherwise, the
 program continues with the next operation in the
 sequence.
CASxx Conditionally Invoke Subroutine on Compare. Very
 similar to the CABXX operations. Instead of a straight
 go to like branch, a specified subroutine is invoked if the
 conditions are met. This operation allows you to
 conditionally select a subroutine for processing. The
 selection is based on the relationship between Factor 1
 and Factor 2, as specified by the “xx” portion of the op-
 code.. If the relationship denoted by xx exists (true)
 between Factor 1 and Factor 2, the subroutine specified
 in the result field is processed.
DO Starts a straight Do loop – Loop ends with ENDDO
 The DO operation begins a group of operations and
 indicates the number of times the group will be
 processed. You specify an index field, a starting
 value, and a limit value. You also specify an ENDDO
 statement to mark the end of the DO group. Specify the
 numeric starting value in Factor1 with no decimal
 positions. If you do not specify Factor 1, the starting
 value is 1. Specify the limit value in Factor 2. If you do
 not specify a limit, the default is 1. Specify the current
 index value in the Result field. (The loop does not have
 to begin with “1.”) Any value in the index field is
 replaced by Factor 1 when the DO operation begins.
 Factor 2 of the associated ENDDO operation specifies
 the value to be added to the index field, otherwise, 1 is
 the default.
DOUxx Starts a Do until loop xx = the relationship. Loop

Table of Contents 294

 Ends with ENDDO Do until xx is true. DO until
 and DO while are similar operations. The Do until
 (DOUxx) operation begins a group of operations you
 want to process more than once (but always at least
 once). The group of instructions in the loop are
 sandwiched between the statement defining the
 beginning of the loop (DOUxx) and the statement
 defining the end of the loop (ENDDO). Factor 1 and
 Factor 2 are required. On the DOUxx statement, you
 indicate a relationship xx. However, you can specify a
 more complex condition by pacing ANDxx or ORxx
 statements immediately following the DOUxx. The
 instructions within the DO loop are processed once, and
 then the group is repeated until the ENDDO test. At
 the end of the loop, when the ENDDO is processed, if
 the relationship xx exists between Factor 1 and Factor 2
 or the specified condition exists, the DO group is
 finished and control passes to the next calculation
 operation after the ENDDO statement.
DOWxx Starts a Do while loop xx = the relationship. Loop
 ends with ENDDO Do while xx continues to be
 true. DO while and DO until are similar operations.
 The Do while (DOWxx) operation begins a group of
 operations you want to process while the relationship xx
 exists between Factor 1 and Factor 2.
 The group of instructions in the loop are
 sandwiched between the statement defining the
 beginning of the loop (DOWxx) and the statement
 defining the end of the loop (ENDDO). Factor 1 and
 Factor 2 are required. On the DOWxx statement, you
 indicate a relationship xx. However, you can specify a
 more complex condition by pacing ANDxx or ORxx
 statements immediately following the DOUxx. If the
 relationship xx between factor 1 and factor 2 or the
 condition specified by a combined operation does not
 exist, the DO group is finished and control passes to the
 next calculation operation after the ENDDO statement.
 If the relationship xx between factor 1 and factor 2 or
 the condition specified by a combined operation exists,
 the operations in the DO group are repeated.

Table of Contents 295

DO**** This is a further Doxx explanation, not an operation.
 DOUxx (=Do Until xx) tests at the end of the loop and
 therefore always gets executed at least once. DOWxx
 (=Do While xx) tests for the condition first, before
 executing the loop and thus it is possible that no
 instructions in the DOW loop get executed.
ELSE The ELSE operation is an optional part of the IFxx
 operation. If the IFxx comparison is met, the
 instructions before ELSE are processed; otherwise,
 the instructions after ELSE are processed.
ENDSR End of Subroutine. Use this as the ending statement in
 A subroutine that would begin with a BEGSR operation.
 There are no other operands (Factor 1, Factor 2, Result)
END Generic End of If or Do Operations. This Generic
 operation will end a DO block or an If block of
 instructions. There are no other operands (Factor 1,
 Factor 2, Result)
ENDDO Ends DO, DOUXX or DOWXX Operations. There
 Are no other operands (Factor 1, Factor 2, Result)
ENDIF Ends If Operations. There are no other operands
 (Factor 1, Factor 2, Result)
EXSR Invoke Subroutine. This operation branches to an in-
 line subroutine, causes the subroutine code to be exec-
 uted, and when the subroutine ends, it passes control to
 the statement following the EXSR operation. The EXSR
 (execute subroutine) operation causes the RPG
 subroutine provided in Factor 2 to be performed. The
 subroutine name must be a unique symbolic name and
 must appear as Factor 1 of a BEGSR operation in
 another section of the same program. Whenever the
 EXSR appears in calculations, the subroutine that is
 named is immediately executed. Following the processing
 of all the subroutine, control is passed to the statement
 following the EXSR operation except when a GOTO
 within the subroutine sends the program to a label
 outside the subroutine or when the an error subroutine is
 being processed.
GOTO Unconditional branch statement. This operation causes

 the next operational instruction to be the statement
 following a named (labeled) TAG Statement. The

Table of Contents 296

 GOTO Label is provided in Factor 2.
IFxx If a condition xx is true, execute statements that
 follow the IFxx statement and continue to the group-
 ending END or ENDIF statement. Other than the
 requisite RPG columnar formatting, the RPG standard
 IFxx operation is similar in function to the “IF”
 statement varieties in other languages. As such it allows a
 group of calculations to be processed if a certain
 relationship, specified by xx, exists between Factor 1 and
 Factor 2. The “ENDIF” statement is the last statement
 in an “IF Group.” The If tests can be made more
 complex by adding the “ANDxx” and “ORxx.”
 operations. The If statement itself can have conditioning
 indicators but it does not use resulting indicators. Factor 1

 and Factor 2 are compared just like the RPG COMP
 operation. If the relationship specified by the IFxx and
 any associated ANDxx or ORxx operations exists, the
 statements are executed, if it does not exist, control
 passes to the calculation operation immediately following
 the associated ENDIF operation. If an “ELSE” is also
 specified as described above under ELSE, when the
 group is finished, control passes to the first calculation
 operation that can be processed following the ELSE
 operation.
ITER Iterate the instructions in a Do group from the
 beginning. Run through Do group another time,
 bypassing the instructions between the ITER and the
 ENDDO. There are no operands (Factor 1, Factor2, or
 Result)
ORxx OR -- if another Condition is True, then... the “or”
 operation works with a preceding operation that has
 established a condition, (HI, LO, EQ). This operation
 ties the prior operation with this operation so that if
 either are true, the statement is true .
OTHER The “Otherwise Select” or (OTHER) operation
 Begins the sequence of operations to be processed if no
 WHxx condition is satisfied in a SELEC group. The
 Sequence ends with the ENDSL or END operation. See
 SELEC and WHxx operations. There are no operands
 (Factor 1, Factor2, or Result)

Table of Contents 297

LEAVE Leave a Do Group. A very similar statement
 to ITER, but very different. Whereas an ITER causes the
 loop to repeat, the Leave statement says that the Do loop
 is over… move on to an instruction after the DO. There
 are no operands (Factor 1, Factor2, or Result)
SELEC The SELEC operation begins a selection grouping.
 The “select group” conditionally processes one of several
 alternative sequences of operations. It works with the
 WHxx group operation, and optionally with the OTHER
 group operation. A SELEC group ends with an ENDSL
 or END statement. The SELEC packaging consists of
 the SELEC statement, zero or more groups, an optional
 OTHER group, and the requisite ENDSL or generic
 END statement. It works like this: When the SELEC
 operation is processed, control passes to the statement
 following the first WHxx condition that is satisfied. All
 statements within the WHxx group are then executed
 until the next WHxx operation. Control then passes to
 the ENDSL statement. If no WHxx condition is satisfied
 and an OTHER action is specified, control passes to the
 statement following the OTHER operation. If no
 WHxx condition is satisfied and no OTHER operation is
 specified, control transfers to the statement following the
 ENDSL operation of the select group. There are no
 operands (Factor 1, Factor2, or Result)
TAG Destination label for a GOTO operation. “Where a
 ‘GOTO’ goes.
TESTB Test Bit– Individual Bit Testing. Each individual bit in a
 byte can be tested for on /off (0, 1) status. RPG has a
 number of bit operations that can be used to test and
 manipulate the individual bits in characters. The TESTB
 operation compares the bits identified in factor 2 with
 the corresponding bits in the field named as the result
 field. Only one character is tested in this operation so
 the result field must be a one-position character field.
 Resulting indicators in HI, LO, EQ, reflect the status of
 the result field bits. Factor 2 is always a source of bits for
 the result field. The bits to be tested are identified by the
 numbers 0 through 7. (0 is the leftmost bit.) The bit
 numbers must be enclosed in apostrophes, and the entry

Table of Contents 298

 must begin in the first position of Factor 2.
TESTN Test Numeric: The TESTN operation tests a character
 result field for the presence of zoned decimal digits and
 blanks. The result field must be a character field. To be
 considered numeric, each character in the field, except
 the low-order character, must contain a hexadecimal F
 zone and a digit (0 through 9). The low-order character is
 numeric if it contains a hexadecimal C, hexadecimal D,
 or hexadecimal F zone, and a digit (0 through 9). An
 indicator is turned on in the HI indicator area if
 either the result field contains numeric characters, or it
 contains a 1-character field that consists of a letter from
 A to R. An indicator is turned on in the LO area if the
 result field contains both numeric characters and at least
 one leading blank. For example, the values b123 or
 bb123 set this indicator on. An indicator is turned on in
 the EQ area when the result field contains all blanks
TESTZ Test Zone: The TESTZ operation tests the zone of the
 leftmost character in the result field. Resulting indicators
 are set on according to the results of the test. The
 characters &, A through I, and any character with the
 same zone as the character A set on the indicator in the
 HI position. characters - (minus), J through R, and any
 character with the same zone as the character J set on the
 indicator in the LO position. . Characters with any other
 zone set on the indicator in the EQ position
WHxx “When True Then Select” (WHxx) These are the
 operations of a select group which determine where
 control passes after the "SELEC (Begin a Select Group)"
 operation is processed. The WHxx conditional operation
 is true if factor 1 and factor 2 have the relationship
 specified by xx If the condition is true, the operations
 following the WHxx are processed until the next WHxx,
 OTHER, ENDSL, or END statement is encountered.

Call Operations (Inter-program)

Table of Contents 299

One of the simplest ways to create applications is to build small programs
/ routines and link them together to form a cohesive complete application
system. In Table 13-4, we introduced the notion of an inline subroutine
which is a set of “stand-alone” instructions which get invoked
independently throughout a program. Though the notion of building
small modules does work somewhat with subroutines, being able to get
outside your program and link to routines that are not buried within one
big program provides an even more powerful and flexible way to build
applications.

Without getting into a computer science discussion about call by
name/value or call by reference, let’s just say that the natural way to call a
program in RPG/400 has always been to use the dynamic call. The beauty
of this is that there is little thinking and as a new RPG programmer before
you can even see the value of various calling mechanisms, you are using
the AS/400’s innate ability to dynamically call programs from one
language to the same or another.

For argument purposes, let’s just say that you need to write an application
that needs some major calculations to produce your answers. Let’s also
say that there is an existing RPG/400 program written by your
predecessor that provides all of these calculations. You merely have to
pass it a few parameters and receive a few back and that’s all there is. Let’s
also say that each set of answers that are provided need to be stored in the
database and be indexed for later access. Let’s also say that your
predecessor has written a routine in CL that accepts parameters from a
program and calls other programs and does all the work necessary to
create a new database for each new program run. There is no reason for
you to have to rewrite these programs. RPG/400 has a very nice and very
easy to use dynamic program call facility that is at your disposal.

The operations to call, pass parameters, return, and deal with program
resources are shown in Table 13-5. The list is not long and for RPG/400,
that’s all there is. With RPGIV, the language has been expanded to use
what are called bound programs / procedures and/or prototyped
procedures with various flavors of CALL operations. We’ll pick that up in
Chapter ****. For now, Table 13-5 shows you all you need to make inter
program communication work for you in RPG/400.

Table of Contents 300

Table 13-5 CALL Operations

Operation Provided Function

CALL Calls a program written in the same or a different
 language from the same system. The program name to
 call can be provided in a quoted literal name or in a
 variable. A parameter list can be provided via multiple
 PARM statements following the CALL operation or a
 PLIST operation provided in the result field
FREE Deactivate a Program. The FREE operation removes a
 program from the list of activated programs that have
 been “called,” frees static storage, and ensures that
 program initialization (first cycle processing) occurs the
 next time the program is called. This operation does not
 close files or unlock data areas. It is not supported in
 RPGIV.
PARM Identify Parameters for Program. The “Identify
 Parameters” operation defines the parameters that
 compose a parameter list (PLIST). PARM operations
 can appear anywhere in calculations as long as they
 immediately follow a PLIST or a CALL operation to
 which they refer. PARM statements must be in the order
 expected by the called program. One PARM statement,
 or as many as 255 PARM statements in RPG/400, can
 follow a PLIST or CALL.
PLIST Identify a Parameter List for Program. The “Identify
 Parameter List” (PLIST) operation defines a unique
 symbolic name for a list of parameters (PARMs) to be
 specified in a CALL operation. The PLIST operation
 must be immediately followed by at least one PARM
 operation. The name of the list is supplied in Factor 1.
 For programs that are passed parameters by a calling
 program a special factor 1 entry containing “*ENTRY”
 must be provided to catch the parameters passed by a
 calling program. The list is ended when an operation
 other than PARM is encountered.
RETRN Return to Caller (Calling Program). The RETRN
 operation causes a return to the calling program. If a halt
 indicator (H1 to H9) is on, the program ends abnormally.
 In this case, all open files are closed and an error is sent
 to the caller. If no halt indicators are on, the last record

Table of Contents 301

 LR indicator is checked. If it is on, the called program
 ends normally and closes files and data areas. If no halt
 condition exists and LR is not on, the program returns to
 the calling routine. Data is preserved for the next time
 the program is called. Files and data areas are not written.

Data Manipulation Operations

Business computer systems need lots of ways to manipulate and shape
data for testing and for storage purposes. As a business-first language
RPG has operations ranging from the bit level to the byte level to the field
level that provide they types of data manipulation facilities that you would
expect in a high-quality business programming language. Table 13-6 gives
us a good look at these operations.

Table 13-6 Data Manipulation Operations

 Operation Provided Function

BITOF Set Bits Off – Individual Bit Manipulation. Each
 individual bit in a byte can be set off to a binary “0”
 value. Similar to BITON.l
BITON Set Bits On -- Individual Bit Manipulation. Each
 individual bit in a byte can be set on to a binary “1”
 value. The BITON operation causes bits identified in
 factor 2 to be set on (set to 1) in the result field. Bits not
 identified in factor 2 remain unchanged. Therefore, when
 using BITON to format a character, you should use both
 BITON and BITOF
CLEAR Clear a structure. The CLEAR operation sets elements
 In a structure (record format, data structure, array, or
 table) or a variable (field, subfield, or indicator), to zero,
 blank or '0', depending on field type (numeric, char, or
 indicator). It is a convenient way to clear structures on a
 global basis, as well as element by element, during run
 time. Factor 1 must be blank unless factor 2 contains a
 DISK record format name; in which case, it can contain
 *NOKEY to indicate that all fields except key fields are
 to be cleared.

Table of Contents 302

MOVE Move data from one field to another right to left. See
 Table 13-2 Basic Operations
MOVEA Move data from an array to a field or vice verse, left
 to right. See Table 13-2 Basic Operations
MOVEL Move data from one field to another, left to right. See
 Table 13-2 basic Operations
MHHZO Move High to High Zone Nibble Operation. The
 Move High to High Zone (MHHZO) operation moves a
 half-byte or “nibble” of data. It moves the zone portion
 of a character from the leftmost zone in the character
 field in Factor 2 to the leftmost zone in the Result field.
MHLZO Move High to Low Zone Nibble Operation. The
 Move High to Low Zone (MHHZO) operation moves a
 half-byte or “nibble” of data. It moves the zone portion
 of a character from the leftmost zone in the character
 field in Factor 2 to the rightmost zone in the result field.
MLHZO Move Low to High Zone- Nibble Operation. The
 Move Low to High Zone (MHHZO) operation moves a
 half-byte or “nibble” of data. It moves the zone portion
 of a character from the rightmost zone in the character
 field in Factor 2 to the leftmost zone in the result field.
MLLZO Move Low to Low Zone-- Nibble Operation. The
 Move Low to Low Zone (MLLZO) operation moves a
 half-byte or “nibble” of data. It moves the zone portion
 of a character from the rightmost zone in the character
 field in Factor 2 to the rightmost zone in the result field.
RESET Reset a structure. The RESET operation is similar to
 the CLEAR operation. It sets elements in a structure
 (record format, data structure, array, or table) or a
 variable (field, subfield, or indicator), to its initial value, It
 is a convenient way to reset structures on a global basis,
 as well as element by element, during run time. This
 initial value can be established using data structure
 initialization, or you can use the initialization subroutine
 to assign an initial value to the structure or variable. The
 RESET operation causes a snapshot of the variable or
 structure to be taken and this becomes the RESET value.
 Factor 1 must be blank unless factor 2 contains a DISK
 record format name; in which case, it can contain
 *NOKEY to indicate that all fields except key fields are

Table of Contents 303

 to be reset.
SETON Turn Indicator ON. This operation immediately sets
 the indicators specified in the HI LO EQ area to the
 “on” or “1” condition.
SETOF Turn Indicator OFF. This operation immediately sets
 the indicators specified in the HI LO EQ area to the
 “off” or “0” condition

Database & Device File Operations

Just as a business computer system needs its compare and branch
operations to provide business logic, a business programming language
needs natural integrated database operations to maximize the productivity
of programmers and minimize the need for high-priced database
administrators. The RPG/400 and the RPGIV language compilers have
been built from the ground up with full knowledge of the system’s
integrated database. As such programmers are not burdened with coding
input or output or update specifications in RPG programs. The compiler
fetches the descriptions right from the database at compile time. This
makes RPG business programmers the most productive programmers in
the world.

Add to this notion a series of powerful database record at a time
operations unprecedented on any other computer system or any other
language. For example the CHAIN operation provides random read or
random read by key. The UPDAT operation is always ready to update the
record just read by a CHAIN, or any type of READ operation. The
WRITE operation adds records to a database file and of course the
DELET operation can delete the record just read or it can be used to
directly access a record via a search argument for deletion.

How many different ways do you want to read data? In addition to the
CHAIN operation, for example the SETXX (EQ or GT) positions the
database to a specific record from which a subsequent READ operation
can be performed. So speaking of read operations, you can READ the
next record consecutively, READP (READ prior) the prior record one
back and one back after that etc. You can also READE (READ equal)

Table of Contents 304

the next record whose key is equal to a search argument and you can
specify. You can also REDPE (READ prior equal) if you want to read
backwards by key. RPG programmers don’t like RPG because it is
simple. They like it because it is rich in function and easy to use as
witnessed by the host of database operations shown in Table 13-7.

But, then again, that’s just database. A number of these operations also
work with other types of devices such as tape drives. Despite all of the
accolades I can get from showing these types of operations against
database and media, there is no set of operations more powerful than
those dealing with the IBM-unique notion of a WORKSTN file. You just
cannot beat it.

In its traditional Program Development Manager toolset, for example,
and in its WebSphere Development Studio Client IDE (intelligent
development environment) IBM offers a facility that enables workstation
screens to be designed in a WYSIWYG style. Groups of these screens or
panels as they are sometimes called are combined and compiled for use in
a specific program. The result of the compilation is an AS/400 object
called a display file. It is a *File type object but it is associated with a
device that has the characteristics of an IBM 5250 terminal.

Just as RPG removes the requirement for programmers to code database
input and output specifications, it provides the same facilities for
WORKSTN device files. Each record format in a Workstation device file
is in essence a display panel with both output and input fields available on
the display.

When you write a program that is to use screen panels, you first send out
prompts and then you read in the input that was entered. On many
systems this is a very difficult task and requires highly skilled
programming. IBM has made the notion of interactive much more easy
than traditional methods by including compiler operation codes within the
COBOL and RPG compilers.

So, if an RPG programmer wants to send out a screen panel, they would
first specify the device file name as a WORKSTN file in the File
Description specifications. Then, as you would expect the first operation
to the screen would be a WRITE op-code. You would then want the
program to wait a bit for input before continuing and as it turns out, if

Table of Contents 305

you immediately follow-up with a READ operation, the program will wait
for input before continuing. As simple as this is, it is actually more
simple. The RPG compiler designers recognized that the typical sequence
of operations is a WRITE followed by a READ, so they devised a new
operation specific to the WORKSTN file that does both a WRITE and a
READ. The operation is called EXFMT for Execute Format.

This operation as well as all of the wonderful RPG database and device
file operations are included in Table 13-7 for your review and learning
pleasure.

Table 13-7 Database & File Operations

Operation Provided Function

ACQ Acquire a device for program use
CHAIN Random retrieval from a file. The chain is a read
 operation by either relative record number or via a search
 argument against a key value in an indexed file database..
 See Table 13-2 Basic Operations.
CLOSE Close files. This operation closes the file specified in
 Factor 2
COMIT Commit records to DB and post to journal. For
 applications using commitment control with database
 journaling, this operation commits the last set of writes
 and updates to the database.
DELET Delete DB File Record. See Table 13-2 Basic
 Operations
DSPLY Displays variable values during program execution.
 Unlike Debug, this command sends its results
 immediately to the job’s message queue from where it
 can be viewed. See table 13-2 Basic Operations
EXCPT Calculation Time Output – outside RPG cycle. This
 commend immediately outputs disk records or print lines
 from within calculations rather than through the fixed
 logic cycle. See Table 13-2 Basic Operations
EXFMT Write/then read a screen format for interactive
 Programming. This is the major op code for sending a
 Screen panel to a display and then waiting for input from
 The user to the program. When the user inputs data it is

Table of Contents 306

 returned to the program in this one operation. It is a
 combination of a Write screen operation followed by a
 wait followed by a read screen. See table 13-2 Basic
 Operations.
FEOD Force End of Data on File. The FEOD operation
 Signals the logical end of data for a primary, secondary,
 or full procedural database file. By placing a file at end of
 data it effectively means that the next READ operation
 for the file will return an “end of file” condition; no
 record will be read, an error indicator will be returned,
 and no data will be received by the program. A CHAIN
 or SETLL operation against a file will undo the FEOD
 and reposition the file cursor on some record someplace
 before end of data.
FORCE Force Certain DB File to Read Next RPG Cycle.
 This operation permits the program to change the
 Normal sequencing of a primary or secondary file by
 picking the file to be read (input) and processed on the
 next RPG cycle.
NEXT Causes Specific Device to Be Read Next. Similar in
 nature to FORCE, this operation selects the specific
 device in a multi-device file that will be selected next
 cycle for input.
OPEN Open file NOW for processing. To simplify the
 language, RPG files are by default opened automatically
 when the program is invoked. However, there may be
 times that it would best serve a program to open the files
 only if and when they are needed. Files that are opened
 by the explicit RPG OPEN operation, named in factor 2,
 must be designated as user controlled by specifying
 “UC” (user control) in positions 71 and 72)of the
 RPG/400 file description specifications. The OPEN
 operation requires that Factor 2 contain the name of the
 file to be opened.
POST Post – Loads File Info Data Structure. This infre-
 quently used operation posts information in an INFDS
 (file information data structure). The information is
 either on the status of a specific program device or I/O
 feedback associated with a file. In Factor 1, you can
 specify a program device name to get information about

Table of Contents 307

 that specific program device. If a program has no
 POST operation code, or if it has only POST operation
 codes with factor 1 specified, the INFDS is updated with
 each input/output operation or block of operations. If
 you leave factor 1 blank, you get I/O feedback
 information. Specify a file name in Factor 2. The
 information for this file is posted in the INFDS
 associated with this file.
READ Read a Record from a file at the point of the file
 cursor. Also used to read a display format form a
 WORKSTN file. See Table 13-2 Basic Operations for
 more detail.
READC Read Next Changed Record – Subfile. The READC
 operation can be used only with an externally described
 WORKSTN file to obtain the next changed record in a
 subfile. When a subfile is displayed to a user, the RPG
 program “disconnects.” The user may then roll through
 the file changing any of many records. The Read changed
 (READC) operation looks for only the records that were
 changed after the disconnect and before the reconnect.
 to the RPG program. Factor 2 is required and must be
 the name of a record format defined as a subfile by the
 SFILE keyword on the file description specifications.
READE Read Equal by key. The READE operation retrieves
 the next sequential record from a full procedural file. (F
 in position 16 of the RPG/400 file description specs) if
 the key of the record matches the search argument. If
 the key of the record does not match the search
 argument, the indicator that must be specified in
 RPG/400 positions 58 and 59 (EQ) is set on, and the
 record is not returned to the program.
READP Read Prior Record (Consecutive) The READP
 operation reads the prior record from a full procedural
 file (F in position 16 of the F spec). This operation goes
 against the data and does not use an index. Place the
 name of a file or record format to be read in Factor 2. A
 record format name in factor 2 is allowed only with an
 externally described file. If a record format name is
 specified in factor 2, the record retrieved is the first prior
 record of the specified type (in the event of a multi

Table of Contents 308

 format logical file). Intervening records are bypassed.
REDPE Read Prior Equal (Key) The REDPE operation
 retrieves the next prior sequential record from a full
 procedural file if the key of the record matches the
 search argument. In essence it reads backwards by key
 and only picks those records equal to the search
 argument specified in Factor 1. If the key of the record
 does not match the search argument, the indicator in
 RPG/400 positions 58-59 (EQ) is set on and the record
 is not returned to the program. Factor 1, is optional and
 it identifies the record to be retrieved. If factor 1 is left
 blank and the full key of the next prior record is equal to
 that of the current record, the next prior record in the
 file is retrieved. The full key is defined by the record
 format or file specified for Factor 2.
REL Release the program device (WORKSTN) acquired
 Via the ACQ operation.
ROLBK Roll Back uncommitted DB records. When program
 operations write or update records to a database while
 under commitment control, the before and after images
 are also written to a journal. If after performing these
 operations a program wants to undo the transactions and
 updates, the ROLBK operation does just that. It takes
 the database back to where it was before the transaction
 began (transaction boundary).
SETGT Set Greater Than Key or Relative Record # The
 SETGT operation positions a database file at the next
 record with a key or relative record number (RRN) that
 is greater than the key or relative record number
 specified in factor 1. The file must be a full procedural
 file (F in position 16 of FD). The operation requires that
 Factor 1 be specified as the key or RRN search
 argument. Factor 2 is
 also required and can contain either a file name or a
 record format (externally described file only).
SETLL Set Lower Limit – key or relative record #. The
 SETLL operation positions a file at the next record that
 has a key or relative record number RRN that is greater
 than or equal to the search argument (key or RRN) as
 specified in factor 1. The file must be full procedural (F

Table of Contents 309

 in position 16 of FD) Factor 1 is required. Factor 2 is
 also required and can contain either a file name or a
 record format (externally described file only).
UNLCK Unlock a Data Area or release a locked record. Use
 the UNLCK operation to unlock data areas and release
 database record locks in a program. Specify the name of
 the data area or the name of an update disk file or the
 word, *NAMVAR. The data area must already be
 specified in the result field of an *NAMVAR DEFN
 statement. When *NAMVAR is specified in factor 2, all
 data areas in the program that are locked are
 unlocked. Using the UNLCK operation releases the most
 recently locked record for an update disk file.
UPDAT Modify an existing database record. Follows a read
 Type operation. Data in the record’s fields are updated
 In program memory and then the new contents of the
 record are written over the former contents of the record
 in the database. See Figure 13-2 Basic Operations.
WRITE Create (Add) new records to file. Unlike a file update
 which writes an existing record back to the database, the
 WRITE operation creates or adds a brand new record to
 the database. See Figure 13-2 Basic Operations

Data Structure, Data Area, Table, Array,
String Operations

In Table 13-6, we took a good look at the basic operations that are
available in RPG to manipulate data once it arrives in memory. As you
may from this section, recall the data manipulation operations that we
studied are based on field, character, or bit data elements. Though the list
in Table 13-6 is comprehensive for basic structures, it does not include all
of the manipulation operations. We saved some special operations on
some special structures for Table 13-8 below.

The operations in this table are provided to work with data structures. A
data structure is a superset of the other types of data that we studied in
Table 13-6. Other than the disk and device operations described in Table

Table of Contents 310

13-7, a “field” is the largest data element that we have covered to this
point. A data structure, as a superset of a field, can contain multiple fields
or data elements. As the title of this section suggests, the four different
types of data structures that we are about to discuss are as follows:

1. Data Structure
2. Table
3. Array
4. String

The various operations that can be used against these structures are
described in detail in Chapter ****. You may have noticed that we did
not list the “Data Area” as one of the structures under study. That is
because it is not a data structure. However, as you will learn in Chapter
****, a Data Area is an AS/400 object, similar in nature to a one field, one
record, database file. For the data that is contained in a Data Area to make
sense when it arrives in a program, IBM has provided the ability for a
Data Area to use a Data Structure for its data definition.

All of us have learned that we should not use the word we are defining as
the definition of the word itself. Yet, here we are, about to explore the
operations provided in Table 13-8 for all sorts of data structures and yet,
against the rules, one of them is actually named Data Structure.

Data Structure (as a data structure)

A Data Structure is a particular structure of data that combines a number
of different fields of varying length and type into a meaningful structure
that can be referenced and manipulated by one name, rather than having
to reference each item in the structure individually. In essence, a Data
Structure is the memory equivalent of a record format in a database file,
though it does not have to be associated with a database file.

So, the Data Structure is a memory artifact into which data can be applied
and manipulated. Data Structures can be one record or multiple record in
nature. When there are multiple records in a data structure, it is known as
a Multiple Occurrence Data Staructure.

Table

Table of Contents 311

A Table is a data structure (grouping of data) of similar sized and shaped
elements in tabular form. Tables can either be one column or two
columns wide. A single column table, for example might consist of the
fifty states as in the United States, properly spelled. A programmer could
check this table to assure that a valid state abbreviation was used in an
application. A two-column table is officially called an Alternating Table.
Carrying the states example into two columns, by adding a second column
or alternating table, the name of the state could be provided in the
alternate table. Then, in addition to verifying the validity of the state code
in the look up, the operation could also return the name of the state in the
same operation. Thus, PA would beget Pennsylvania and NJ would beget
New Jersey, etc. As you will learn in Chapter ****, tables in RPG always
begin with the three letters “TAB.”

An Array is a data structure that consists of all similarly sized and typed
data elements. Each element in an array for example is a field in its own
right but once defined it is accessible only through array operations. A
common application example for arrays over the years is to store monthly
sales figures. By definition, all of the monthly totals would be stored in
fields of the same size and type – often in the neighborhood of nine
numeric digits, two of which would represent decimal positions.
Programmers learned quickly that they could define an array of 108
characters to hold the twelve sales values for the year.

Arrays also permit indexing. Thus, January can be accessed in an array
called SAL, for example as SAL,1. That is read SAL sub 1. In RPGIV, the
index is in parentheses as in SAL(1). The index can also be a variable so
that all elements of the array can be processed individually in a loop by
adding 1 to the index value. Arrays can also be processed using the lookup
that is often used with tables. Once the lookup operation completes, the
specific array element can be processed, just as with a table.

Strings

A String in all computer languages is a group of alphameric characters. In
the AS/400 RPG world, strings are held in fields. Thus, the String
operations to which you are about to be introduced in Table 13-8 operate
within the AS/400 type called “field,” which, for the String operations,
works just fine.

Table of Contents 312

Though RPG’s basic string operations provide many of the same facilities
as provided by other languages, please do not read that to mean the
structure of the string in RPG (a field) is the same as the structure of the
string in languages which treat a string as something special to the
language. For example, an RPG string is not compatible with a Java
String object. Thus when RPG and other languages exchange strings, it is
not a straight-forward process.

Table 13-8 Data Area, Table, Array, String Operations

Operation Provided Function

CAT Concatenate two character strings. The concatenate
 (CAT) operation combines the character string specified
 in Factor 2 to the end of the character string specified in
 Factor 1 and places it in the result field. If no Factor 1 is
 specified, factor 2 is concatenated to the end of the result
 field string.
CHECK Check for Certain Chars in a String (L to R) The
 CHECK operation verifies that each character in the
 base string (Factor 2) is among the characters indicated
 in the comparator string (Factor 1). All of the string
 operations are complex instructions with many
 specifications. See Chapter *****. Checking begins at the
 leftmost character of factor 2 and continues character by
 character, from left to right. Each character of the base
 string is compared with the characters of factor 1. If a
 match for a character in factor 2 exists in factor 1, the
 next base string character is verified. If a match is not
 found, an integer value is placed in the result field to
 indicate the position of the first incorrect character. The
 whole base string does not have to be checked, however.
 You can specify a start position in factor 2, separating it
 from the base string by a colon. This start position is
 optional and defaults to 1. If it is > 1, the value in the
 result field is still relative to the leftmost position in the
 base string, regardless of the start position. If no incor-
 rect characters are found, the result field is set to zero.
CHEKR Check Reverse for Chars in a String (R to L). This
 command works very similarly to the CHECK

Table of Contents 313

 command. However, checking is done from right to left.
 Although checking is done from the right, the position
 placed in the result field will be relative to the left. See
 Chapter *****
CLEAR Sets values in structure to zero or blank. See details
 in Table 13-6 Data Manipulation Operations
IN Retrieve a Data Area Object into Program. The
 IN operation retrieves a data area and optionally allows
 you to specify whether the data area is to be locked from
 update by another program. For a data area to be
 retrieved by the IN operation, it must be specified in the
 result field of an *NAMVAR DEFN statement. See
 "DEFN” for information on *NAMVAR DEFN. in
 Table 13-9, Pgm Control, Declarative & Informational
 Operations. Factor 1 can contain the reserved word
 *LOCK or can be blank. The lock is held until (1) an
 UNLCK operation or (2) an OUT operation with no
 Factor 1 or (3) when the RPG program ends. Factor 2
 must be either the name of the result field used when
 you retrieved the data area or the reserved word
 *NAMVAR. When *NAMVAR is specified, all data
 areas defined in the program are retrieved.
LOKUP Look up argument in a memory table or array. The
 LOKUP operation causes a search to be made for a
 particular element in an array or table. Factor 1 is the
 search argument (data for which you want to find a
 match in the array or table named). For a table LOKUP,
 the result field can contain the name of a second table
 from which an element (corresponding positionally with
 that of the first table) can be retrieved. The name of the
 second table can be used to reference the element
 retrieved. The result field must be blank if Factor 2
 contains an array name. Resulting indicators can be
 assigned to EQ and HI or to EQ and LO. The program
 searches for an entry that satisfies either condition with
 equal given precedence; that is, if no equal entry is found,
 the nearest lower or nearest higher entry is selected.
MOVEA Move Array to Field and Vice Versa. See Table 13-6
 Data Manipulation Operations for details
OCUR Specifies occurrence of the DS to be used. When

Table of Contents 314

 there is more than one record in a data structure it is
 called a multiple OCURrance data structure. Similar to
 an array index, the records in the DS can be retrieved by
 their relative position in the structure. For a DS, this is
 called an occurrence. For example, record 3 would be
 occurrence3. The OCUR operation code specifies which
 Occurrence (record) of the data structure that is to be
 used next within the program. After an OCCUR op is
 specified, the occurrence of the data structure that was
 established by the OCUR operation is used. Factor 1 is
 optional. If specified, it sets the occurrence of the DS. If
 blank, the value of the current occurrence of the data
 structure in factor 2 is placed in the result field during the
 OCUR operation. The result field is optional. The value
 of the current occurrence of the data structure specified
 in factor 2 is placed in the result field.
OUT Write out a data area object from a program. The
 OUT operation updates the data area specified in Factor
 2. The rules for this operation include the following: (1)
 The data area must also be specified in the result field of
 a *NAMVAR Statement. (See "DEFN” for information
 on *NAMVAR DEFN. in Table 13-9, Program Control,
 Declarative & Informational Operations.) and (2) The
 data area must have been locked previously by a *LOCK
 IN statement or it must have been specified as a data
 area data structure by a U in position 18 of the RPG/400
 input specifications. The RPG language implicitly
 retrieves and locks data area data structures at program
 initialization. When factor 1 contains *LOCK, the data
 area remains locked after it is updated. When factor 1 is
 blank, the data area is unlocked after it is updated. Factor
 2 must be either the name of the result field used when
 you retrieved the data area or the reserved word
 *NAMVAR. When *NAMVAR is specified, all data
 areas defined in the program are updated.
RESET Resets structure values. See Table 13-6 Data
 Manipulation Operations for details
SCAN Scan Character String for a Certain String. The
 SCAN operation scans a character string (base string)
 contained in Factor 2 for a substring (compare string)

Table of Contents 315

 contained in Factor 1. The scan begins at a specified
 location contained in Factor 2 and continues for the
 length of the compare string which is specified in Factor
 1. Factor 1 must contain either the compare string or the
 compare string, followed by a colon, followed by the
 length. If no length is specified, it is that of the compare
 string. Factor 2 must contain either the base string or
 the base string, followed by a colon, followed by the start
 location of the SCAN. If no start location is specified, a
 value of 1 is used. The result field contains the numeric
 value of the leftmost position of the compare string in
 the base string, if found. The result field is set to 0 if the
 string is not found. If the result field is specified and the
 start position is greater than 1, the result field contains
 the position of the compare string relative to the
 beginning of the source string, not relative to the start
 position. If no result field is specified, a resulting indica-
 tor in RPG/400 positions 58 and 59 (EQ) must be
 specified. See Chapter XXX for more detail and string
 examples.
SUBST Substring – Results in a Portion of a String The
 SUBST operation returns a substring from factor 2,
 starting at the location specified in factor 2 for the length
 specified in Factor 1, and places this substring in the
 result field. If factor 1 is not specified, the length of the
 string from the start position is used. Factor 1 can
 contain the length value of the string to be extracted
 from the string specified in factor 2. Factor 2 must
 contain either the base character string, or the base
 character string followed by a colon, followed by the
 start location. If the start position is not specified,
 SUBST starts in position 1 of the base string. The result
 field must be character If the substring is longer than the
 field specified in the result field, the substring will be
 truncated from the right. See Chapter XXX for more
 detail and string examples.
SORTA Sort an array in ascending or descending sequence.
 Factor 2 contains the name of an array to be sorted. The
 array is sorted into sequence (ascending or descending),
 depending on the sequence specified for the array in

Table of Contents 316

 position 45 of the RPG/400 extension specifications. If
 no sequence is specified, the array is sorted into
 ascending sequence.
XLATE Translate String (eg Upper Case to Lower Case).
 Characters in the source string (Factor 2) are translated
 according to the from and to strings (both in Factor 1)
 and put into the result field. Source characters with a
 match in the from string are translated to corresponding
 characters in the to string. XLATE starts translating the
 source at the location specified in Factor 2 and continues
 character by character, from left to right. If a character
 of the source string exists in the from string, the corres-
 ponding character in the to string is placed in the result
 field. Any characters in the source field before the
 starting position are placed unchanged in the result field.
 Factor 1 must contain the from string, followed by a
 colon, followed by the to string. Factor 2 must contain
 either the source string or the source string followed by a
 colon and the start location. If no start location is speci-
 fied, a value of 1 is used. The result field must be speci-
 fied – typically as a character field. See Chapter XXX for
 more detail and string examples.
XFOOT Sum the elements of an array to a result field. See
 Table 13-6 Data Manipulation Operations for details
UNLCK Unlock a data area or release a record.
 See Table 13-7 - Database & File Operations for details

.

Program Control, Declarative,
Informational & Other Operations

Table 13-9 provides a description for a number of operations that can
make coding easier and / or provide additional information without a lot
of work during the programming cycle. Starting with the Field Definition
operation, which permits like fields and special constructs to be defined to
the KFLD and KLIST operations to make using composite keys easier,
to the PARM and PLIST operations which ehlp line up data for program

Table of Contents 317

passage, to the DEBUG, SHTDN (shutdown) and TIME operations, this
table offers a lot of variety and utility and the operations contained herein
will come handy as you become an accomplished RPG programmer.

Table 13-9 Program Control, Declarative, Informational & Other Operations

Operation Provided Function

DEBUG Show Internal Variables and Indicators. See
 Table 13-2 RPG Basic Operations
DEFN Field Definition. Depending on the Factor 1 entry, the
 declarative DEFN operation can do either of the
 following: (1) *LIKE -- Define a field based on the
 attributes (length and decimal positions) of another field.
 (2) *NAMVAR Define a field as a data area.You can use
 the DEFN operation anywhere within calculations The
 *LIKE DEFN operation defines a new field based up-
 on the attributes (length, decimal positions) of another
 field. Factor 2 must contain the name of the field being
 referenced, and the result field must contain the name of
 the field being defined. The *NAMVAR DEFN oper-
 ation associates an RPG program defined field, a data
 structure, a data-structure subfield, or a data-area data
 structure with an AS/400 data area (outside your
 RPG program). In factor 2, specify the external name of
 a data area. Use *LDA for the name of the local data
 area or use *PDA for the Program Initialization
 Parameters (PIP) data area. If you leave Factor 2 blank,
 the result field entry is both the RPG name and the
 external name of the data area. In the result field, specify
 the name of one of the following that you have
 defined in your program.
DUMP Program dump to help debug programs. The
 UMP operation provides a dump (all fields, all files,
 indicators, data structures, arrays, and tables defined) of
 the program.
KFLD Define parts of a key search argument – by
 field name. The KFLD operation is a declarative
 operation that indicates that a field is part of a search
 argument identified by a KLIST name. The result field
 must contain the name of a field that is to be part of the

Table of Contents 318

 search argument. The result field cannot contain an
 array name or a table name. Each KFLD field must
 agree in length, data type (character or numeric), and
 decimal position with the corresponding field in the
 composite key of the record or file.
KLIST Define a composite key of KFLDs. The KLIST
 operation is a declarative operation that gives a name to a
 list of KFLDs used as a search argument to retrieve
 records from files that have a composite key. Factor 1
 must contain a unique name.
PARM Identify parameters for a program. See Table 13-5
 CALL Operations
PLIST Identify a parameter list for program. See Table 13-5
 CALL Operations.
TAG Tag – Destination for a GOTO. Label “Where a
 ‘GOTO’ goes.
SHTDN Test for system shut down request. The SHTDN
 operation provides a means for the programmer to test
 whether the system operator has requested a system
 shutdown. If the system operator has requested
 shutdown, the resulting indicator specified in RPG/400
 positions 54 and 55 (HI) is set on.
TIME Get time of day and store in a field. See Table 13-2
 Basic Operations

Structured Operations

Some time after RPGIII was introduced, IBM substantially enhanced the
RPG language with the addition of a number of structured operations.
These are fully covered in Chapter ****. As you will see as you examine
the structured operations in Table 13-10, each of these operations has
been explained fully in another table. For your convenience in being able
to recognize this powerful RPG structured operators, we repeat them
below together and provide specific referene to the table in which they are
more fully explained.

Table of Contents 319

Table 13-10 Program Control, Declarative, & Informational Operations

Operation Provided Function

ANDxx And If another condition is true, then.. See Table 13-4
 Compare & Branch Operations
CASxx Conditionally Invoke Subroutine on compare. See
 Table 13-4 Compare & Branch Operations
DO Straight DO Loop. See Table 13-4 Compare & Branch
 Operations
DOUxx Do until xx is true. See Table 13-4 Compare & Branch
 Operations
DOWxx Do while xx is true. See Table 13-4 Compare &
 Branch Operations
ELSE Else. See Table 13-4 Compare & Branch Operations
ENDSL End of Select Group. See Table 13-4 Compare &
 Branch Operations
ENDSR End of Subroutine. See Table 13-4 Compare &
 Branch Operations.
ENDyy End a Group yy = IF or DO etc. See Table 13-4
 Compare & Branch Operations
IFxx If a condition is xx, perform a set of operations. See
 Table 13-4 Compare & Branch Operations
ITER Iterate– run through do group another time. See
 Table 13-4 Compare & Branch Operations
LEAVE Leave a do group after ENDxx. See Table 13-4
 Compare & Branch Operations
ORxx Or If another condition is true, then... See Table
 13-4 Compare & Branch Operations
OTHER Otherwise select operation in select group. See
 Table 13-4 Compare & Branch Operations
SELEC Begin a select group. See Table 13-4 Compare &
 Branch Operations
WHxx When true then select. See Table 13-4 Compare &
 Branch Operations

Table of Contents 320

All RPG Operations / Parameters

Now that we have examined all of the RPG/400 operations in this
chapter, we have just one more task to accomplish. In the next short
section, we provide a comprehensive table of all the RPG/400 operations
that shows the Factor 1, Factor 2, and Result Field components and the
potential status of resulting indicators after the operation.

To help in our examination of all these op-codes, there are a number of
abbreviations and symbols that we must briefly define in Table 13-11.
You may find these anywhere in Table 13-12 but primarily, you will see
them in the resulting indicators area showing which columns turn on
indicators for what purpose.

Table 13-12 can serve as a very handy summary guide to RPG operations.
It shows how most of the RPG/400 operations that we described in
terms of capabilities earlier in this chapter are used in actual calculation
specifications. Additionally, the resulting indicators are explained
according to the following key:

To make it much easier to look up operations in Table 13-12, the
operations are presented in alphabetic sequence by op-code. If you need
more information than the format and options of the operations in this
table, check out the first column. It is a direct link to the first Table in
which the operation is explained in more detail. For example, B is basic
operations, C is Compare, D is database/device, M is manipulation, P is
program call, S is data structure, and O is other operations.

Table of Contents 321

Table 13-11 Op Code Symbols / Indicators

+ If the result is positive, the indicator placed in these columns is
set on.

- If the result is negative, the indicator placed in these columns is
set on.

0 If the result is zero, the indicator placed in these columns is set
on.

BL Blank(s)
BN Blank(s) then numeric

BOF Beginning of file

EOF End of database file has been reached via READ type operations

ER Error – indicator specified in these columns is set on indicating
that an error occurred in the operation

EQ Equal condition also If factor 1 is equal to factor 2, set on
indicator specified in these columns

FD Found

HI If factor 1 is greater than factor 2, set on indicator specified in
these columns

IN Indicator

LO If factor 1 is less than factor 2, set on indicator specified in these
columns

LR Last record indicator

NA Not applicable

NR No record found – indicator is set on signifying no record found

NU Numeric

Of Indicator to be set off

On Indicator to be set on

Z If the result is zero, the indicator placed in these columns is set
on.

ZB Zero or blank

Table 13-12 All RPG Operations / Parameters Alphabetical
T Code Factor1 Factor2 Result I1 I2 I3
D Acq Device

name
Workstn file NA ER NA

B ADD Addend Addend Sum + - 0

C ANDxx Comparan
d

Comparand

C BEGSR Subr.
Name

M BITOF Bit #s in byte Char field

M BITON Bit #s in byte Char field

Table of Contents 322

C CABxx Comparan
d

Comparand Go to instr.
label

HI LO EQ

P CALL &OS ‘Program name’
or variable
name

Plist name
optional

NA ER LR

M CAT Source str
1

Source string 2:
#blanks

Target
string

C CASxx Comparan
d

Comparand Subroutine
label

HI LO EQ

B CHAIN Search arg. File/record
name

 NR ER NA

M CHECK Comparato
r str

Base string:
start pos

Left-pos NA ER FD

S CHEKR Comparato
r str

Base string:
start pos

Right-pos NA ER FD

M CLEAR *nokey Structure,
variable, record

D CLOSE File name NA ER NA

D COMIT Boundary NA ER NA

C COMP Comparan
d

Comparand HI LO EQ

B DEBUG Identifier Output file
name

Debug
Info

M DEFN *like Reference field Defined
field

M DEFN *namvar or
*extrn

External /
internal data
area

Internal
program
area

B DELET Search arg. File / record
name

 NR ER NA

B DIV Dividend Divisor Quotient + - 0

C DO Start value Limit value Index val

C DOUxx Comparan
d

Comparand

C DOWxx Comparan
d

Comparand

O DUMP Identifier

D DSPLY Msgid or
literal

Outq or
variable to view

Response NA ER NA

C ELSE

C END Increment
val

C ENDCS

C ENDD
O

 Increment
value

C ENDIF

C ENDSL

C ENDSR Label Return point

D EXCPT EXCPT name

Table of Contents 323

B EXFMT Screen name NA ER NA

C EXSR Subroutine
name

D FEOD File name NA ER NA

D FORCE File name

P FREE Program name NA ER NA

C GOTO Program Label

C IFxx Comparan
d

Comparand

S IN *Lock Data Area
name

 NA ER NA

C ITER

O KFLD Key field
name

O KLIST Klist name

C LEAVE

S LOKUP (Array)
Search arg.

Array name HI LO EQ

S LOKUP (Table)
Search arg.

Table Name Alternate
Table
name

HI LO EQ

M MHHZ
O

 Source field Target fld

M MHLZ
O

 Source field Target fld

M MLHZ
O

 Source field Target fld

M MLLZO Source field Target fld

B MOVE Source field Target fld + - ZB

B MOVEL Source field Target fld + - ZB

B MOVEA Source array or
field

Target
array/field

+ - ZB

B MULT Multiplican
d

Multiplier Product

B MVR Remainder + - Z

D NEXT Program
device

File name NA ER NA

S OCUR Occurrenc
e value

Data structure
name

Occurrenc
e value

NA ER NA

D OPEN File name NA ER NA

C ORxx Comparan
d

Comparand

C OTHER

S OUT *lock Data Area
name

 NA ER NA

P PARM Target
field

Source Field Parameter

P PLIST Plist name

D POST Program File Name INFDS NA ER NA

Table of Contents 324

device name
B READ File/record

name
Data
structure

NA ER EO
F

B READC Record Name /
SFL

 NA ER EO
F

D READE Search arg. File/record
name

Data
structure

NA ER EO
F

D READP File/record
name

Data
structure

NA ER BO
F

D REDPE Search arg. File/record
name

Data
structure

NA ER BO
F

D REL Program
device

File Name NA ER NA

M RESET *NKEY Structure or
variable

P RETRN

D ROLBK NA ER NA

S SCAN Comparato
r string :
lgth

Base string :
start

Left-most
position

NA ER FD

C SELEC

D SETLL Search arg. File/record
name

 NR ER EQ

D SETGT Search arg. File/record
name

 NR ER NA

M SETON OF OF OF

M SETOF ON ON ON

O SHTDN ON NA NA

S SORTA Array name

B SQRT Field name/
value

Square
root

B SUB Minuend Subtrahend Difference + - Z

S SUBST Length to
extract

Base string:
start

Target
string

NA ER NA

C TAG

C TESTB Label Bit #s Char field OF ON EQ

C TESTN Char field NU BN BL

C TESTZ Char field

B TIME Num field

D UNLCK Data Area or
file name

 NA ER NA

B UPDAT File / record
format name

Data
structure

NA ER NA

C WHxx Comparan
d

Comparand

B WRITE File / record
format name

Data
structure

NA ER NA

S XFOOT Array name Sum + - Z

S XLATE Fron : To String : Start Target NA ER NA

Table of Contents 325

string
B Z-ADD Addend Sum + - Z

B Z-SUB Subtrahend Difference + - Z

Table of Contents 326

Chapter 14

RPGIV Operations and Built-In Functions

After studying all the RPG/400 operations in Chapter 7, the best place to
start now for RPGIV is to examine what is the same. Let’s look at what
you already know and how much of your new knowledge is portable to
RPGIV.

Of the 101 RPG/400 op codes that we studied in Chapter 7, only one, the
FREE op-code has been eliminated. Surely IBM has its reasons but you
can think of it as IBM’s attempt to bring the number of operations to an
even hundred. IF Big Blue had not added another 22 instructions (Table
14-2) and a bunch of built-in functions (Table 14-9) to RPGIV, then
maybe that supposition would stand. To make it easy for you to know
how much you already know about RPGIV, we have included the 100
operations and the name of its equivalent in RPGIV. It should be a pretty
quick exercise because only fifteen operations have changed and the
change in all cases was for readability. So, without more ado, take a look
at Table 14-1 below so you can learn about how much you already know.

 Table 14-1 RPG/400 and RPGIV OP-Code Differences
RPG/400
OP-Code

RPGIV
OP-Code

RPG/400
OP-Code

RPGIV
OP-Code

ACQ ACQ CLEAR CLEAR
ADD ADD CLOSE CLOSE
ANDxx ANDxx COMIT COMMIT *
BEGSR BEGSR COMP COMP
BITOF BITOFF * DEBUG DEBUG
BITON BITON DEFN DEFINE *
CABxx CABxx DELET DELETE *
CALL CALL DIV DIV
CAT CAT DO DO
CASxx CASxx DOUxx DOUxx
CHAIN CHAIN DOWxx DOWxx
CHECK CHECK DUMP DUMP
CHEKR CHECKR * DSPLY DSPLY

Table of Contents 327

RPG/400
OP-Code

RPGIV
OP-Code

RPG/400
OP-Code

RPGIV
OP-Code

ELSE ELSE PARM PARM
END END PLIST PLIST
ENDCS ENDCS POST POST
ENDDO ENDDO READ READ
ENDIF ENDIF READC READC
ENDSL ENDSL READE READE
ENDSR ENDSR READP READP
EXCPT EXCEPT * REDPE READPE *
EXFMT EXFMT REL REL
EXSR EXSR RESET RESET
FEOD FEOD RETRN RETURN *
FORCE FORCE ROLBK ROLBK
FREE NA SCAN SCAN
GOTO GOTO SELEC SELECT *
IFxx IFxx SETLL SETLL
IN IN SETGT SETGT
ITER ITER SETON SETON
KFLD KFLD SETOF SETOFF *
KLIST KLIST SHTDN SHTDN
LEAVE LEAVE SORTA SORTA
LOKUP LOKUP SQRT SQRT
LOKUP LOOKUP * SUB SUB
MHHZO MHHZO SUBST SUBST
MHLZO MHLZO TAG TAG
MLHZO MLHZO TESTB TESTB
MLLZO MLLZO TESTN TESTN
MOVE MOVE TESTZ TESTZ
MOVEL MOVEL TIME TIME
MOVEA MOVEA UNLCK UNLOCK *
MULT MULT UPDAT UPDATE *
MVR MVR WHxx WHENxx *
NEXT NEXT WRITE WRITE
OCUR OCCUR XFOOT XFOOT
OPEN OPEN XLATE XLATE
ORxx ORxx Z-ADD Z-ADD
OTHER OTHER Z-SUB Z-SUB
OUT OUT

Table of Contents 328

RPGIV-Only Operations

In 1994, the major changes in no particular order that everybody was
talking about for the “new” RPGIV were the following:

1. Columns expanded to support longer field names.
2. Keywords for column functions
3. EVAL statement with extended Factor 2
4. Elimination of the E specification
5 D specification for defining fields, arrays, and structures
6. New date operations including date arithmetic.

Some might suggest that the major change immediately in 1994 was the
introduction of the EVAL operation that provided RPG with the ability
to enable equations and expressions following this operation code.
Eventually RPGIV became a fully functional ILE language and IBM gave
many more facilities to the language. Not all of these were provided with
new operation codes but a number were.

Procedures and prototyped procedures were quick to arrive giving the
language some of the flavor of the traditional block structured languages.
As the supply of RPG-trained programmers dwindled, this language
change helped C programmers from other platforms more readily
understand RPG and its benefits. Pointers and pointer operations were
also added to the language extending it into areas that had been reserved
for low-level functions written in other languages.

To make the language even more likeable to those who had become
accustomed to the FOR Loops in BASIC, the FOR Loop was also made
available. In the last few years additional expression logic was added to the
EVAL statement along with a fully free form of RPGIV. In essence, IBM
enhanced the EVAL statement and then eventually removed its
requirement for free- form operations

Error monitoring facilities were also added as operations to make the
language more similar in its ability to trap various errors during execution.
Additionally, IBM began work on providing full XML facilities into the
language with the first installment being included in the operations shown
in Table 14-2.

Table of Contents 329

Table 14-2 RPGIV-Only Operations

Operation Provided Function

ADDDUR Add a Duration to a Date (Days, Months, Years) The
 ADDDUR is an original RPGIV operation that works
 with dates. It adds the duration specified in Factor 2 to a
 date or time or timestamp field or constant specified in
 the Result field and places the resulting Date, Time or
 Timestamp in the result field. Factor 1 is optional if
 The programmer prefers the longer way of coding the
 operation. If factor 1 is not specified the duration is
 added to the field specified in the result field. Factor 2 is
 required and contains two subfactors. The first is a
 numeric duration and the second must be a valid
 duration code indicating the type of duration (year *Y,
 month *M, etc.). The duration code must be consistent
 with the result field data type. For example, You can add
 a year, month or day duration but not a minute duration
 to a date field. For list of duration codes and their short
 forms see Table 14-3.
ALLOC Allocates main storage and sets a pointer. RPGIV
 has extended the RPG language with pointer operations.
 The ALLOC operation allocates storage in the default
 heap of the numeric length specified in Factor 2. The
 Result field is a pointer set to point to the new heap
 storage. This storage, though allocated is uninitialized
 and thus needs additional work to be usable. The result
 field must be a basing pointer scalar variable (a
 standalone field, data structure subfield, table name, or
 array element).
CALLB Call Bound Procedure written in any ILE Language.
 RPGIV is an ILE language. As such it uses the ILE
 programming model which permits incomplete modules
 to be bound (linked) together to create executable
 programs or *PGM objects. RPGIV also supports
 procedures. Procedures are most often referred to as the
 natural building blocks for ILE applications. You can
 think of a procedure then as a hybrid between
 subroutines and external called programs. The CALLB
 operation is used to call bound procedures written in any
 of the ILE languages. The notion of an operation

Table of Contents 330

 extender as implemented in the RPG/400 half-adjust
 column has been expanded with RPGIV. Extenders are
 now suffixes to normal op-codes. The operation
 extender “D” may be used to include operational
 descriptors for the procedure call. Operational
 descriptors provide the programmer with run-time
 resolution of the exact attributes of character or graphic
 strings passed (that is, length and type of string). Factor 2
 is required and must be a literal or constant containing
 the name of the procedure to be called, or a procedure
 pointer containing the address of the procedure to be
 called. See RPGIV procedure operations in Chapter ****
 for more details.
CALLP Call Prototyped Procedure or Program. CALLP uses
 a “free-form” syntax. You use the name operand to
 specify the name of the prototype of the called program
 or procedure, as well as any parameters to be passed.
 (similar to calling a BIF) The compiler uses the prototype
 name to obtain an external name, if required, for the call.
 If the keyword EXTPGM is specified on the prototype,
 the call will be a dynamic external call; otherwise it will
 be a bound procedure call. A prototype for the program
 or procedure being called must be included in the
 definition specifications preceding the CALLP. See
 RPGIV procedure operations in Chapter **** for more
 details
DEALLOC Deallocates storage back to the default heap. The
 operation frees one previous allocation of heap storage.
 The pointer name that you provide in Factor 2 is a
 pointer that must be the value previously set by a heap-
 storage allocation operation (either an ALLOC operation
 in RPG, or some other heap-storage allocation
 mechanism). It is not sufficient to simply point to heap
 storage; the pointer must be set to the beginning of the
 specific allocation that is to be deallocated. The storage
 pointed to by the pointer is freed for subsequent
 allocation by this program or any other in the activation
 group. If operation code extender N is specified, the
 pointer is set to *NULL after a successful deallocation.
DOU Do Until (Free Form) RPGIV also brings with it free

http://publib.boulder.ibm.com/iseries/v5r1/ic2924/books/c0925083616.htm#HDRZZALLOC

Table of Contents 331

 format operations (covered in Chapter ****.) The DOU
 operation code is a free format RPG operation that
 precedes a group of operations which you want to
 execute at least once and possibly more than once. Its
 function is similar to that of the DOUxx operation code.
 As with the DOUxx, the associated ENDDO statement
 marks the end of the group. It differs in that the logical
 condition is expressed by what is called an “indicator
 valued expression.” An example of such an operation
 follows: dou *in01 or (Field2 > Field3). As with
 normal DO operations, those instructions within the
 loop are performed until the indicator valued expression
 is true. There are also two op code extenders, “M” &
 “R” available which may be needed to affect the
 precision of the operation.
DOW Do While (Free Form) DOW is a free format
 operation code that precedes a loop of instructions,
 which you want to process when a given condition exists.
 It is very similar in function to that of the DOWxx
 operation code but it differs in form. An associated
 ENDDO statement marks the end of the Do group.
 Rather than a mix of op-code and factors, the logical
 condition of the DOW is expressed by an “indicator
 valued expression.” The loop is performed while the
 indicator valued expression is true. “M” and “R” op-code
 extenders are available to affect the precision of the
 expression if necessary.
ENDFOR Ends a FOR Group. An ENDFOR operation indicates
 the end of the FOR group. There are no operands.
ENDMON Ends a Monitor Group. An ENDMON operation
 Indicates the end of the MONITOR group. There are no
 operands.
ELSEIF Else and IF Combination Operation. The ELSEIF
 operation is a clever combination of an ELSE operation
 with an IF operation. Its major advantage over the split
 operation is that it avoids the need for an additional level
 of nesting. It uses the extended Factor 2 facility of
 RPGIV to provide the space for what is called the
 “indicator valued expression.” The IF part of the
 operation code allows a series of operation codes to be

http://publib.boulder.ibm.com/iseries/v5r1/ic2924/books/c0925083652.htm#HDRZZENDYY

Table of Contents 332

 processed if a condition is met. Its function is similar to
 that of the IFxx operation code. Rather than comparing
 Factors, the IF expression is evaluated. The operations
 controlled by the ELSEIF operation are performed when
 the expression in the indicator-expression operand is true
 (and of course the expression for the previous IF or
 ELSEIF statement was false).
EVAL Evaluate Expression. The EVAL operation code
 permits semi-free form expressions to be used in the
 Extended Factor 2 area of the RPG calculations
 statement. It evaluates an assignment statement of the
 form result=expression. The expression is evaluated and
 the result placed in result (left side of equal sign).
 The expression may yield any of the RPG data types. On
 a free-form calculation specification, the EVAL
 operation code name itself may be omitted if no op-code
 extenders are needed.
EVALR Evaluate Expression – Right Adjust Result. The
 EVALR is similar to EVAL. However, the result will be
 right justified and padded with blanks on the left, or
 truncated on the left as required. Unlike the EVAL
 operation, the result of EVALR can only be of type
 character, graphic, or UCS-2.
EXTRCT Extracts part of date / time/ timestamp into a field.
 The EXTRCT operation code is a very powerful RPGIV
 operator which returns to the Result field, the requested
 sub field from the date, time, or timestamp specified in
 Factor 2. This can be (1) the year, month or day part of a
 date or timestamp field, (2) the hours, minutes or
 seconds part of a time or timestamp field, (3) the
 microseconds part of the timestamp field to the field
 specified in the Result field. The duration code
 (Table 14-3) must be consistent with the data type of
 Factor 2. For a character result field, the data is put left
 adjusted into the result field.
FOR FOR loop with index and increment. FOR is another
 loop type made famous in the BASIC language that is
 similar in function to a DO loop. The FOR operation
 begins the loop which consists of a group of operations
 and it controls the number of times the group will be

Table of Contents 333

 processed. The operation uses only the Extended Factor
 2 form and is thus specified in much the same way as an
 Extended Factor 2 expression. To indicate the number
 of times the group of operations is to be processed, you
 specify an index name, a starting value, an increment
 value, and a limit value. The optional starting, increment,
 and limit values can also be used in an RPG free-form
 expression. The ENDFOR or an associated END
 statement marks the end of the FOR group.
IF If statement (Free form). The IF operation uses the
 Extended Factor 2 form of RPGIV calculations. The
 operation code starts a group that allows a series of
 operation codes to be processed if a condition is true. Its
 function is similar to that of the IFxx operation code
 The difference is that the logical condition is expressed
 by an “indicator valued expression.” The operations
 controlled by the IF operation are performed when the
 expression is true.
LEAVESR Exits Subroutine from Any Point. The LEAVESR
 operation exits a subroutine from any point within the
 subroutine. Control passes to the ENDSR operation for
 the subroutine. LEAVESR is allowed only from within a
 subroutine. There are no operands.
MONITOR Begin Monitor Group -- Monitors for Errors
 with ON-ERROR. To enable more control
 of exception handling in RPG IV, the
 MONITOR operation code (Or group) is added. It
 consist of the following: (1) A MONITOR block, (2)
 One or more ON-ERROR blocks, and (3) an
 ENDMON operation (Or END opcode). If an error
 occurs when the monitor block is processed, control is
 passed to the appropriate ON-ERROR group. There are
 no operands.
ON-ERROR Specifies Types of Errors to Monitor. This operation
 works with Extended Factor 2 to provide a list of error
 IDs. You specify which error conditions the on-error
 block handles in the list of exception IDs. You can
 specify any combination of the following, separated by
 colons: (1) nnnnn -- A status code, (2) *PROGRAM –
 Handles all program-error status codes, from 00100 to

Table of Contents 334

 00999, (3) *FILE -- Handles all file-error status codes,
 from 01000 to 09999, (4) *ALL – This default handler,
 takes care of both program-error and file-error codes,
 from 00100 to 09999. When all the statements in an on-
 error block have been processed, control passes to the
 statement following the ENDMON statement.
REALLOC Reallocate main storage with a new length. This
 operation alters the prior memory allocation by changing
 the length of the heap storage pointed to by the Result-
 field pointer to the new length as specified in Factor 2.
 The result field of REALLOC contains the basing
 pointer variable, which must contain the value previously
 set by a heap-storage allocation operation (either an
 ALLOC or REALLOC operation in RPG -- or some
 other valid heap-storage function.) As with the
 DEALLOC, it is not sufficient to simply point to heap
 storage; the pointer must be set to the beginning of an
 allocation. The new storage amount is allocated and the
 value of the old storage is copied to the new storage.
 Following this, the old storage is deallocated. If the new
 length is shorter, the value is truncated on the right. If
 the new length is longer, the new storage to the right of
 the copied data is uninitialized. The Result field pointer is
 set to point to the new storage.
SUBDUR Subtract a Duration to a Date (Days, Months,
 Years). The SUBDUR operation can be used to
 subtract a duration specified in factor 2 from a field or
 constant specified in factor 1 and place the resulting
 Date, Time or Timestamp in the field specified in the
 Result field. If factor 1 is not specified then the duration
 is subtracted from the field specified in the result field.
 Factor 2 is required and contains two subfactors. The
 first is a numeric field. The second subfactor must be a
 valid duration code indicating the type of duration (YR,
 Mo Day, etc. See Table 14-3 for valid duration codes.
 The Result field must be a date, time or timestamp data
 type field, array or array element. The SUBDUR
 operation can also be used to calculate a duration
 between: two dates, a date and a timestamp, two times, a
 time and a timestamp, and two timestamps. The result is

Table of Contents 335

 a number of whole units, with any remainder discarded.
 For example, 62 minutes is equal to 1 hour and 57
 minutes is equal to 0 hours. The result field consists of
 two subfactors. The first is the name of a numeric
 element in which the result of the operation will be
 placed. The second subfactor contains a duration code
 with the type of duration.
XML-INTO Bring in an XML document. The XML-INTO
 operation has two forms as follows:
 (1) XML-INTO{ (EH) } variable %XML(xmlDoc { :
 options });
 (2) XML-INTO{ (EH) } %HANDLER(handler :
 commArea) %XML(xmlDoc { : options });
 The newest IBM RPGIV op codes include XML-INTO
 which reads the data from an XML document in one of
 two ways: (1) directly into a variable or (2) gradually into
 an array parameter that it passes to the procedure
 specified by %HANDLER. Various options may be
 specified to control the operation. The first operand
 specifies the target of the parsed data. It can contain a
 variable name or the % HANDLER built-in function.
 The second operand contains the %XML built-in
 function specifying the source of the XML document
 and any options to control how the document is parsed.
 It can contain XML data or it can contain the location of
 the XML data. From the looks of this XML operation
 and the next, XML and its RPG debut are not really
 ready for prime time. Look at how simple the other RPG
 codes have been constructed to understand that IBM has
 lots of work to do in this area..
XML-SAX Parse XML using SAX. The newest IBM RPGIV op
 codes include XML-SAX which initiates a SAX parse for
 the XML document specified by the %XML built-in
 function. The syntax of this basically free-form
 expression is as follows: XML-SAX{ (e) }
 %HANDLER(eventHandler : commArea)
 %XML(xmldocument { : saxOptions });
 The XML-SAX operation begins by calling an XML
 parser which begins to parse the document. When the
 parser discovers an event such as finding the start of an

Table of Contents 336

 element, finding an attribute name, finding the end of
 an element etc., the parser calls the eventHandler with
 parameters describing the event. The commArea
 operand is a variable that is passed as a parameter to
 the eventHandler providing a way for the XML-SAX
 operation code to communicate with the handling
 procedure. When the eventHandler returns, the
 parser continues to parse until it finds the next event and
 calls the eventHandler again.

Table 14-3 Duration Codes for Date Operations

Unit Built-In Function Duration Code

Year %YEARS *YEARS or *Y

Month %MONTHS *MONTHS or *M

Day %DAYS *DAYS or *D

Hour %HOURS *HOURS or *H

Minute %MINUTES *MINUTES or *MN

Second %SECONDS *SECONDS or *S

Microsecond %MSECONDS *MSECONDS or *MS

Table of Contents 337

Taking a look at the old and new RPGIV op-codes makes it easy

to conclude that RPGIV is both the same and lots more than

RPG/400. The additions to RPGIV have stretched the

capabilities of the language to the point that it can provide the

best business function as well as very powerful operations that

may be rightfully categorized in the computer science area.

Table 14-4 takes these new operations described in detail in

Table 14-2 and places them in their most simplistic form –> op-

codes with a mission and a format. Each of the operations

described in Table 14-2 are outlined in terms of their parameters

and their format in Table 14-4. After checking out table 14-2 and

its adjunct, Table 14-3, Table 14-4 is the right medicine for the

RPG programmer wanting to see how the operations look when

in action.

Table 14-4 All New RPG IV Operations / Parameters

Alphabetical
Code Factor1 Factor2 Result I1 I2 I3
ADDDUR

Date/Tim
e

Duration:
Duration code

Date/Tim
e

NA ER NA

ALLOC(E) Length Pointer NA ER NA
CALLB
(D,E)

 Procedure
name or
procedure
pointer

PLIST
name

NA ER LR

CALLP name{ (parm1
{:parm2...}) }

Extended
Factor 2

NA NA NA

DEALLOC
(E/N)

 Pointer-
name

NA ER NA

DOU
(M/R)

 indicator-
expression

Extended
Factor 2

DOU
(M/R)

 indicator-
expression

Extended
Factor 2

ENDFOR
ENDMON
ELSEIF
(M/R)

 indicator-
expression

Extended
Factor 2

EVAL (H
M/R)

 Assignment
Statement

Extended
Factor 2

EVALR Assignment Extended

Table of Contents 338

(M/R) Statement Factor 2
EXTRCT(E
)

 Date/Time:
Duration Code

Target NA ER NA

FOR index-name =
start-value BY
increment TO
| DOWNTO
limit

Extended
Factor 2

IF (M/R) indicator-
expression

Extended
Factor 2

LEAVESR
MONITOR
ON-
ERROR

 List of
exception IDs

Extended
Factor 2

REALLOC Length Pointer NA ER NA
SUBDUR(E
)
(Duration)

Date/time
/
Timestam
p

Date/Time/
Timestamp

Duration:
Duration
code

NA ER NA

SUBDUR(E
)
(New Date)

Date/time
/
Timestam
p

Duration:
Duration code

Dat/Time
/
Timestam
p

NA ER NA

XML-INTO receiver
%XML(xmlDo
c {: options })

Extended
Factor 2

XML-INTO %HANDLER(
handlerProc :
commArea)
%XML(xmlDo
c {: options })

Extended
Factor 2

XML-SAX %HANDLER(
handlerProc :
commArea)
%XML(xmlDo
c {: options })

Extended
Factor 2

RPGIV Built-In Functions (BIFs)

Besides additional function provided via new op-codes, RPGIV also
provides a wealth of new and/or easier to use function by its “Buuilt-In
Functions or BIFs. The BIFS are similar to operation codes in that they
perform operations on data that you specify. Built-in functions can be
used in expressions in Free-Form RPG IV or with the EVAL statement

Table of Contents 339

described in more detail with an example below. Additionally, constant-
valued built-in functions can be used in named constants. These named
constants can be used in any specification. All built-in functions have the
percent symbol (%) as their first character. The general syntax of RPGIV
built-in functions is:

function-name{(argument{:argument...})}

Arguments for the function may be variables, constants, expressions, a
prototyped procedure, or other built-in functions. An expression
argument can also include a built-in function. The following example
illustrates a compound expression with multiple BIFs. We’ll pick BIFs up
later in the book as we demonstrate practical code in RPG/400, RPGIV,
and RPGIV with BIFs.

The list of all BIFs and the functions they provide is included in Table 14-
8. Even before getting there, you can examine the individual built-in
function descriptions used in the examples in Figures 14-6 and 14-7 for a
look at the types of arguments that are allowed in BIF operations. It helps
to remember that unlike operation codes, built-in functions return a value
rather than placing a value in a calc spec Result field.

The examples in Figure 14-6 and 14-7 illustrate this difference. Let’s set
up the examples now so they have more meaning as you look at the first
very powerful one line BIF in Figure 14-6. It springs from the EVAL
operation and it will give you your first look see at the RPGIV Extended
Factor 2 operation for the first time. Explanations of the three built-in
functions used in the Figure 14-6 example are shown in Table 14-5.

Table 14-5 Three BIFS for the Example

%TRIM Purpose: Trims blanks at edges; Format:
 %TRIM(string)
 Returns string less any leading and trailing blanks.
%SUBST Purpose: Get SubString; Format:

 %SUBST(string:start{:length})
 The %SUBST returns a portion of an argument string –
 a.k.a a substring. It may also be used as the result of an
 assignment with the EVAL operation code. The start
 parameter represents the starting position of the

Table of Contents 340

 substring. The length parameter represents the length of
 the substring.
%SIZE Purpose: Get Size in Bytes. Returns size of variable or
 literal
 Formats:
 %SIZE(variable)
 %SIZE(literal)
 %SIZE(array{:*ALL})
 %SIZE(table{:*ALL})
 %SIZE(multiple occurrence data structure{:*ALL})
 %SIZE returns the number of bytes occupied by the
 constant or field. If the argument is an array name, table
 name, or multiple occurrence data structure name, the
 value returned is the size of one element or occurrence.
 If *ALL is specified as the second parameter for %SIZE,
 the value returned is the storage taken up by all elements
 or occurrences. Returns size of variable or literal

The short example immediately below in figure 14-6 returns a value to the
field named RES that has been defined elsewhere in the RPGIV program.
RES will contain the trimmed string that consists of a field named “A”
containing “Toronto” and the substring of “Ontario, Canada” starting
with the C in Canada for a length provided by the %Size function of a
field named “B” (30 characters) containing ‘Ontario Canada ’ minus the
constant digit 20. At the end, RES will contain ‘Toronto, Canada’ with
just one blank between the comma and the “C” in Canada. The first line
of the example in Figure 14-5 shows the right-side of the C-spec with the
extended Factor 2 form of RPGIV.

Figure 14-6 RPGIV Extended Factor 2, EVAL, & BIF
C…+Opcode(E)+Extended-factor2+++++++++++++++++++++++++ * *

C …+ EVAL RES = %TRIM(A + %SUBST(B:11:%SIZE(B) - 20))

To evaluate this statement it helps to know the

following:

A is equal to the string, ‘ Toronto,”

B is equal to the string, ‘ Ontario, Canada ’

Table of Contents 341

RES becomes the string, ‘Toronto, Canada’

The above example shows a complex expression with multiple nested
built-in functions.

%TRIM takes as its argument a string.

In this example, the argument is the concatenation of string A and the
string returned by the %SUBST built-in function. The %SUBST BIF
returns a substring of string B starting at position 11 and continuing for
the length returned by %SIZE minus 20. %SIZE will return the length of
string B.

If A is the string ‘ Toronto,’ and B is the string ‘ Ontario, Canada ’ then
the argument for %TRIM will * be ‘ Toronto, Canada ’ and RES will have
the value ‘Toronto, Canada’.

Now, let’s make this all a bit easier by providing a full RPGIV program
complete with data definitions in Figure 14-7. The BIFs used don’t make
real sense unless you know how big the fields really are. To make the code
readable in this narrow context, as you can see, we took some liberties by
chopping off some space within the D & C specification (Op-code and
Factor 1) and we squeezed the LR into the picture though it deserves its
own column way out to the right.

Figure 14-7 Full RPGIV Program to demonstrate BIFS
DName++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++

DA S 12 INZ(' Toronto,')

DB S 30 INZ(' Ontario, Canada ')

DRES1 S 20

DRES2 S 4S 0

DRES3 S 21

DLEFT S 4

CL0N01Factor1++OpcodeExtExtended-factor2+++++++++

C EVAL RES1=%TRIM(A+%SUBST(B:11:%SIZE(B)-20)

C EVAL RES2=%SIZE(B)

C EVAL RES3=%SUBST(B:11:%SIZE(B)- 20)

C 'RES1=' DSPLY RES1

C 'RES2=' DSPLY RES2

C 'RES3=' DSPLY RES3

C MOVEL 'LEFT' LEFT

C 'LEFT=' DSPLY LEFT

Table of Contents 342

C SETON LR

So, what does this code in Figure 14-7 do? The major BIF itself has
already been explained. However, when you are learning RPG or any
language, it is good to learn the language incrementally for example by
walking through the smallest parts of big expressions. That’s what we did.
Notice we took the one big EVAL and made two more out of it. RES2
returns the length value that is actually used in the %SUBST BIF. RES2
brings back the substring value “Canada,” so you can see how the
trimmed version RES1 actually gets built. Notice that the length of field
“B” is 30. This code does not work as well if it is anything else.

Once the program calculates the three results (RES1, RES2, and RES3) to
communicate the results to us, we use the very handy DSPLY operation. I
use DSPLY all the time for debugging when I don’t believe my problem is
serious enough for the fine DEBUG tools that are available. The three
DSPLY operations project the constant in Factor 1 to the job log and
next to it DSPLY places the value of the field in the Result field. You can
even put an indicator in the Result field if that is what you are interested
in examining. Finally, you see a four position alpha field called LEFT
getting filled with a MOVEL operation with the word “LEFT.” I put this
in so that on the DSPLY view, you would know the leftmost position of
the data being shown so that you would believe there were no blanks to
the left of the trimmed RES1 field. Finally, so the RPG program knows
that it is OK to end, the code sets on LR using the SETON operation.
The job log results are shown in Figure 14-8.

Figure 14-8 Job Log “Printout” of DSPLY Operations

 *N

 DSPLY RES1= Toronto, Canada

 *N

 DSPLY RES2= 30

 *N

 DSPLY RES3= Canada

 *N

 DSPLY LEFT= LEFT

Table of Contents 343

 Now that we have taken a big byte out of the mystery of BIFS, let’s get
adventurous and show them all with a brief description in Table 14-9.
Then, let’s follow that with a more lengthy description of each BIF in
Table 14-10. After these two charts, you will have a pretty good idea of
what BIFS are available in RPGIV and how they can be valuable in your
coding.

Since all of these BIFS operate without any help from Factor1, Factor2,
the Result field or the resulting indicators, there is no need for a
formatted operation table as we did in Chapter 7 for all operations and as
we did in Table 14-4 for the new RPGIV operations.

Table 14-9 BIFs and Functions Provided

BIF Name Provided Function
%ABS Numeric absolute value of expression
%ADDR Variable name address of variable
%ALLOC # of bytes storage to allocate pointer storage
%BITAND Char, numeric bit wise ANDing bits of all args
%BITNOT Char, numeric bit-wise reverse of bits of the args
%BITOR Char, numeric bit-wise ORing bits of all args
%BITXOR Char, numeric bit-wise exclusive ORing two args
%CHAR Graphic, UCS-2, numeric, date, etc. in char fmt.
%CHECK Check for Certain Chars in a String (L to R)
%CHECKR Check Reverse for Chars in a String (R to L)
%DATE Date -- system date if none is specified
%DAYS # days as a duration
%DEC Changes expression to packed decimal
%DECH Changes expression to packed decimal – rounded up
%DECPOS Numeric expression -- # of decimal digits
%DIFF Difference between two dates, times
%DIV Divide two #s function
%EDITC Edit value using an edit code.
%EDITFLT Convert to Float External Representation.
%EDITW Edit value using an Edit word:
%ELEM # of elements or occurrences
%EOF Test for End of File
%EQUAL Return exact match condition.
%ERROR Most recent operation was an error

Table of Contents 344

%FIELDS List of fields to be updated not applicable
%FLOAT Convert value to floating format.
%FOUND Successful found record
%GRAPH Expression in graphic format
%HOURS # of hours as a duration
%INT Change to integer format
%INTH Change to integer format – rounded up
%KDS Data structure with keys
%LEN Get or set length.
%LOOKUPxx argument: array with index
%MINUTES # of minutes as a duration
%MONTHS # of months as a duration
%MSECONDS # of microseconds as a duration
%NULLIND Null-capable field name value in indicator
%OCCUR Current occurrence of multiple-occurrence DS
%OPEN Opens a closed file
%PADDR Get procedure address
%PARMS # of parameters passed to procedure
%REALLOC Numeric pointer: to allocated storage
%REM Division - the remainder from div of 2 args
%REPLACE Replacement string
%SCAN Returns searched for value or zero
%SECONDS # of seconds as a duration
%SHTDN Returns value indicating shutdown (1 or 0)
%SIZE Returns size of variable or literal
%SQRT Square root of a numeric value
%STATUS 0 if no I/O error for file
%STR String characters addressed by pointer argument
%SUBARR Return a subset of an array
%SUBDT Returns a portion of date or time value
%SUBST Returns a substring
%THIS The class instance for the native method
%TIME Brings back system time if none is specified
%TIMESTAMP Brings back current timestamp if none specified
%TLOOKUPxx Checks for match and returns ’*ON’ or ’*OFF’
%TRIM string Trims string with left, right blanks or specified
%TRIML string Trims string with left blanks or specified
%TRIMR string Trims string with right blanks or specified
%UCS2 Brings back value in UCS-2 format
%UNS Brings back value in unsigned format
%UNSH Brings back rounded-up value - unsigned format
%XFOOT Array expression sum of the elements
%XLATE Translate String (eg Upper Case to Lower Case).
%YEARS # of years as a duration

Table of Contents 345

Table 14-10 BIFs and Functions Details

BIF Name Provided Function
%ABS Numeric absolute value of expression. Format:
 %ABS(numeric expression)
 Example: F8 = %abs (F8);

 %ABS returns the absolute value of the numeric expression

 specified as the parameter. %ABS may be used either in
 expressions or as parameters to keywords.
%ADDR Variable name address of variable. Format:
 %ADDR(variable); %ADDR(variable(index));
 %ADDR(variable(expression))
 Example: IF %ADDR (CHAR10) = %ADDR (SUBF);
 %ADDR returns a value of type basing pointer. The value is
 the address of the specified variable. It may only be compared
 with and assigned to items of type basing pointer.
%ALLOC # of bytes storage to allocate pointer storage. Format:
 %ALLOC(num)
 Example: Pointer = %ALLOC(200);
 %ALLOC returns a pointer to newly allocated heap storage of
 the length specified. The newly allocated storage is
 uninitialized. The length specified must be between 1 and
 16776704.
%BITAND Char, numeric bit wise ANDing bits of all arguments.
 Format:: %BITAND (Bitwise AND Operation)
 %BITAND(expr:expr{:expr...})
 Example below from IBM manual courtesy of IBM:
 %BITAND returns the bit-wise ANDing of the bits of all the
 arguments. That is, the result bit is ON when all of the
 corresponding bits in the arguments are ON, and OFF
 otherwise. The arguments to this BIF can be either character
 or numeric. For numeric arguments, if they are not integer or
 unsigned, they are first converted to integer. %BITAND can
 have two or more arguments. All arguments must be the same
 type, either character or numeric. The result type is the same as
 the types of the arguments. For numeric arguments, the result
 is unsigned if all arguments are unsigned, and integer
 otherwise. The length is the length of the largest operand. If
 the arguments have different lengths, they are padded on the
 left with bit zeros for numeric arguments. Shorter character
 arguments are padded on the right with bit ones. %BITAND
 can be coded in any expression. It can also be coded as the
 argument to a File or Definition Specification keyword if all

Table of Contents 346

 arguments are known at compile-time. If all arguments of this
 built-in function are hex literals, the compiler produces a
 constant-folded result that is a hex literal.
Examples for &BITAND and &BITOR

D const c x'0007'

D ch1 s 4a inz(%BITNOT(const))

 * ch1 is initialized to x'FFF84040'

D num1 s 5i 0 inz(%BITXOR(const:x'000F'))

 * num is initialized to x'0008', or 8

D char2a s 2a

D char2b s 2a

D uA s 5u 0

D uB s 3u 0

D uC s 5u 0

D uD s 5u 0

C eval char2a = x'FE51'

C eval char2b = %BITAND(char10a : x'0F0F')

 * operand1 = b'1111 1110 0101 0001'

 * operand2 = b'0000 1111 0000 1111'

 * bitwise AND: 0000 1110 0000 0001

 * char2b = x'0E01'

C eval uA = x'0123'

C eval uB = x'AB'

C eval uc = x'8816'

C eval uD = %BITOR(uA : uB : uC)

 * operand1 = b'0000 0001 0010 0011'

 * operand2 = b'0000 0000 1010 1011'(fill w x'00')

 * operand3 = b'1000 1000 0001 0110'

 * bitwise OR: 1000 1001 1011 1111

 * uD = x'89BF'

%BITNOT Char, numeric bit-wise reverse of bits of the arguments.
 Format: %BITNOT(expr)
 Example:
 D const c x'0007'

 D ch1 s 4a inz(%BITNOT(const))

 * ch1 is initialized to x'FFF84040'
 %BITNOT returns the bit-wise inverse of the bits of the
 argument. That is, the result bit is ON when the corresponding
 bit in the argument is OFF, and OFF otherwise.
 The argument to this built-in function can be either character
 or numeric. For numeric arguments, if they are not integer or
 unsigned, they are first converted to integer. If the value does
 not fit in an 14-byte integer, a numeric overflow exception is
 issued. %BITNOT takes just one argument. The result type is
 the same as the types of the arguments. For numeric
 arguments, the result is unsigned if all arguments are unsigned,
 and integer otherwise. The length is the length of the largest
 operand. If the arguments have different lengths, they are

Table of Contents 347

 padded on the left with bit zeros for numeric arguments.
%BITOR Char, numeric bit-wise ORing bits of all arguments.
 Format: %BITOR(expr:expr{:expr...})
 Example: See under %BITAND
 %BITOR returns the bit-wise ORing of the bits of all the
 arguments. That is, the result bit is ON when any of the
 corresponding bits in the arguments are ON, and OFF
 otherwise. The arguments to this built-in function can be
 either character or numeric. For numeric arguments, if they are
 not integer or unsigned, they are first converted to integer. If
 the value does not fit in an 14-byte integer, a numeric overflow
 exception is issued. %BITOR can have two or more
 arguments. All arguments must be the same type, either
 character or numeric. However, when coded as keyword
 parameters, these two BIFs can have only two arguments. The
 result type is the same as the types of the arguments. For
 numeric arguments, the result is unsigned if all arguments are
 unsigned, and integer otherwise. The length is the length of the
 largest operand. If the arguments have different lengths, they
 are padded on the left with bit zeros for numeric arguments.
 Shorter character arguments are padded on the right with bit
 zeros. %BITOR can be coded in any expression. It can also
 be coded as the argument to a File or Definition Specification
 keyword if all arguments are known at compile-time. If all
 arguments of this built-in function are hex literals, the
 compiler produces a constant-folded result that is a hex literal.
%BITXOR Char, numeric bit-wise exclusive ORing two arguments.

 Format: Format: %BITXOR(expr:expr)

 Examples: &BITXOR X'12' X'22' results in X'30'
 &BITXOR X'1211' X'22' results in X'3011'
 %BITXOR returns the bit-wise exclusive ORing of the bits of
 the two arguments. That is, the result bit is ON when just one
 of the corresponding bits in the arguments are ON, and OFF
 otherwise. The argument to this BIF can be either character or
 numeric. For numeric arguments, if they are not integer or
 unsigned, they are first converted to integer. If the value does
 not fit in an 14-byte integer, a numeric overflow exception is
 issued. %BITXOR takes just two arguments. The result type
 is the same as the types of the arguments. For numeric
 arguments, the result is unsigned if all arguments are unsigned,
 and integer otherwise. The length is the length of the largest
 operand. If the arguments have different lengths, they are
 padded on the left with bit zeros for numeric arguments.
 Shorter character arguments are padded on the right with bit

Table of Contents 348

 zeros. %BITXOR can be coded in any expression. It can also
 be coded as the argument to a File or Definition Specification
 keyword if all arguments are known at compile-time. If all
 arguments of this built-in function are hex literals, the
 compiler produces a constant-folded result that is a hex literal.
%CHAR Graphic, UCS-2, numeric, date, etc. in char fmt. Format:
 %CHAR(expression{:format})
 Example:
 Res = 'Time now ' + %SUBST (%CHAR(time):1:5) + '.';
 %CHAR converts the value of the expression from graphic,
 UCS-2, numeric, date, time or timestamp data to type
 character. The converted value remains unchanged, but is
 returned in a format that is compatible with character data. If
 the parameter is a constant, the conversion will be done at
 compile time.
%CHECK Check for Certain Chars in a String (L to R). Format:
 %CHECK(comparator : base {: start})
 Example: pos = %check (delimiters : string);
 %CHECK returns the first position of the string base that
 contains a character that does not appear in string comparator.
 If all of the characters in base also appear in comparator, the
 function returns 0. The check begins at the starting position
 and continues to the right until a character that is not
 contained in the comparator string is found. The starting
 position defaults to 1. The third parameter is optional.
%CHECKR Check Reverse for Chars in a String (R to L). Format:
 %CHECKR(comparator : base {: start})
 Example: %len(string1) = %checkr(padChars:string1);
 %CHECKR returns the last position of the string base that
 contains a character that does not appear in string comparator.
 If all of the characters in base also appear in comparator, the
 function returns 0. The check begins at the starting position
 and continues to the left until a character that is not contained
 in the comparator string is found. The starting position
 defaults to the end of the string The first parameter must be of
 type character, graphic, or UCS-2, fixed or |varying length.
 The third parameter is optional.
%DATE Date --returns system date if no parms specified. Format:
 %DATE{(expression{:date-format})}
 Example: date = %date(string:*MDY0);
 %DATE converts the value of the expression from character,
 numeric, or timestamp data to type date. The converted value
 remains unchanged, but is returned as a date. The first
 parameter is the value to be converted. If you do not specify a

Table of Contents 349

 value, %DATE returns the current system date. The second
 parameter is the date format for character or numeric input.
 Regardless of the input format, the output is returned in *ISO
 format. If the first parameter is a timestamp, *DATE, or
 UDATE, do not specify the second parameter. The system

 knows the format of the input in these cases.
 %DAYS # days as a duration. Format:
 %DAYS(number)
 Example: newdate = date + %DAYS(5);
 %DAYS converts a number into a duration that can be added
 to a date or timestamp value. %DAYS can only be the right-
 hand value in an addition or subtraction operation. The left-
 hand value must be a date or timestamp. The result is a date or
 timestamp value with the appropriate number of days added
 or subtracted. For a date, the resulting value is in *ISO
 format.
%DEC Convert to packed decimal format. Format:
 %DEC(numeric expression{:precision:decimal places})
 Example: Result = %dec (s9 : 5: 0);
 %DEC converts the value of the numeric expression to
 decimal (packed) format with precision digits and decimal
 places decimal positions. The precision and decimal places
 must be numeric literals, named constants that represent
 numeric literals, or built-in functions with a numeric value
 known at compile-time. Parameters precision and decimal
 places may be omitted if the type of numeric expression is not
 float. If these parameters are omitted, the precision and
 decimal places are taken from the attributes of numeric
 expression.
%DECH Convert to packed decimal format Half adjust. Format::
 %DECH(numeric expression :precision:decimal places)
 Example: Result = %dech (f8: 5: 2);
 %DECH is the same as %DEC except that if numeric
 expression is a decimal or float value, half adjust is applied to
 the value of numeric expression when converting to the
 desired precision. Unlike, %DEC, all three parameters are
 required.
%DECPOS Numeric expression -- # of decimal digits. Format:
 %DECPOS(numeric expression)
 Example: Result = %decpos (p7);
 %DECPOS returns the number of decimal positions of the
 numeric variable or expression. The value returned is a
 constant, and so may participate in constant folding. The
 numeric expression must not be a float variable or expression.

Table of Contents 350

%DIFF Difference between 2 dates, times, timestamps. Format:
 1. %DIFF(op1:op2:*MSECONDS|*SECONDS|
 *MINUTES| *HOURS|*DAYS|*MONTHS|*YEARS)
 2. %DIFF(op1:op2:*MS|*S|*MN|*H|*D|*M|*Y)
 Example: Num_days = %DIFF (loandate: duedate: *DAYS);
 %DIFF produces the difference (duration) between two date
 or time values. The first and second parameters must have the
 same, or compatible types. Many combinations are possible.
%DIV Divide two #s function Return integer quotient: Format:
 %DIV(n:m)
 Example: Result = %DIV(A:B);
 %DIV returns the integer portion of the quotient that results
 from dividing operands n by m. The two operands must be
 numeric values with zero decimal positions.
%EDITC Edit value using an edit code. Format:
 %EDITC(numeric : editcode {: Value))
 Value choices = *ASTFILL | *CURSYM | currency-symbol
 Example: EVAL Result = 'Annual salary is ' +
 %trim(%editc(salary * 12:'A': *CURSYM))
 The &EDITC function returns a character result representing
 the numeric value edited according to the edit code. In general,
 the rules for the numeric value and edit code are identical to
 those for editing numeric values in output specifications. The
 third parameter is optional, and if specified, must be one of the
 values shown above. The result of %EDITC is always the
 same length, and may contain leading and trailing blanks.
%EDITFLT Convert to Float External Representation. Format:
 %EDITFLT(numeric expression)
 Example: Reslt = 'Float value is' + %editflt (f8 - 4E4) + '.';
 %EDITFLT converts the value of the numeric expression to
 the character external display representation of float. The
 result is either 14 or 23 characters. If the argument is a 4-byte
 float field, the result is 14 characters. Otherwise, it is 23
 characters
%EDITW Edit value using an Edit word: Format:
 %EDITW(numeric : editword)
 Example: D editwd C '$, , **Dollars& &Cents'
 Result = 'Annual salary ' + %editw(salary * 12 : editwd);
 This function returns a character result representing the
 numeric value edited according to the edit word as in the
 above example. The rules for the numeric value and edit word
 are identical to those for editing numeric values in output
 specifications. The edit word must be a character constant.
%ELEM # of elements or occurrences: Format:

Table of Contents 351

 %ELEM(table_name) %ELEM(array_name)
 %ELEM(multiple_occurrence_data_structure_name)
 Example: Resultary = %elem (arr1d);
 Resulttbl = %elem (table);
 ResultDS = %elem (mds);
 %ELEM returns the number of elements in the specified
 array, table, or multiple-occurrence data structure. The value
 returned is in unsigned integer format (type U). It may be
 specified anywhere a numeric constant is allowed in the
 definition specification or in an expression in the extended
 Factor 2 field. The parameter must be the name of an array,
 table, or multiple occurrence data structure.
%EOF Test for End of File. Format:
 %EOF (Return End or Beginning of File Condition)
 %EOF{(file_name)}
 Example: IF %EOF(FILE1) AND %EOF(FILE2);
 %EOF returns '1' if the most recent read operation or write to
 a subfile ended in an end of file or beginning of file condition;
 otherwise, it returns '0'. The operations that set %EOF are:
 READ, READC, READE (Read Equal Key), READP,
 READPE, WRITE (subfile only). The following operations, if
 successful, set %EOF(filename) off. If the operation is not
 successful, %EOF(filename) is not changed. %EOF with no
 parameter is not changed by these operations: CHAIN,
 OPEN, SETGT, SETLL. When a full-procedural file is
 specified, this function returns '1' if the previous operation in
 the list above, for the specified file, resulted in an end of file or
 beginning of file condition. For primary and secondary files,
 %EOF is available only if the file name is specified. It is set to
 '1' if the most recent input operation during *GETIN
 processing resulted in an end of file or beginning of file
 condition. Otherwise, it returns '0'. This function is allowed for
 input, update, and record-address files; and for display files
 allowing WRITE to subfile records.
%EQUAL Return exact match condition. Format:
 %EQUAL{(file_name)}
 Examples: Setll Cust CustRec;
 if %equal;
 C WHEN %EQUAL
 %EQUAL returns '1' if the most recent relevant operation
 found an exact match; otherwise, it returns '0'. The operations
 that set %EQUAL are: SETLL (Set Lower Limit), LOOKUP
 (Look Up a Table or Array Element) If %EQUAL is used
 without the optional file_name parameter, then it returns the

Table of Contents 352

 value set for the most recent relevant operation. For the
 SETLL operation, this function returns '1' if a record is present
 whose key or relative record number is equal to the search
 argument. For the LOOKUP operation with the EQ indicator
 specified, this function returns '1' if an element is found that
 exactly matches the search argument.
%ERROR Most recent operation was an error. Format:
 %ERROR (Return Error Condition)
 Example: if %error; exsr ErrorSub; endif;
 Format: %ERROR returns '1' if the most recent operation
 with extender 'E' specified resulted in an error condition. This
 is the same as the error indicator being set on for the
 operation. Before an operation with extender 'E' specified
 begins, %ERROR is set to return '0' and remains unchanged
 following the operation if no error occurs. All operations that
 allow an error indicator can also set the %ERROR built-in
 function. The CALLP operation can also set %ERROR.
%FIELDS List of fields to be updated not applicable
%FLOAT Convert value to floating format. Format:
 %FLOAT(numeric expression)
 Example; Result = %float (p1) / p2;
 %FLOAT converts the value of the numeric expression to
 float format. This built-in function may only be used in
 expressions.
%FOUND Successful found record. Format:
 %FOUND{(file_name)}
 Example: If %found (Master) and not %found (Gold);
 %FOUND returns '1' if the most recent relevant file operation
 found a record, a string operation found a match, or a search
 operation found an element. Otherwise, this function returns
 '0'. The operations that set %FOUND are: CHAIN,
 DELETE, SETGT, SETLL, CHECK, CHECKR, LOOKUP,
 SCAN (Scan String – however, the %SCAN BIF does not
 change the value of %FOUND.) If %FOUND is used
 without the optional file_name parameter, then it returns the
 value set for the most recent relevant operation. When a
 file_name is specified, then it applies to the most recent
 relevant operation on that file.
%GRAPH Expression in graphic Format:
 %GRAPH(char-expr | graph-expr | UCS-2-expr { : ccsid })
 Example:
D*Name+++++ETDsFrom+++To/L+++IDc.Keywords++++++++++++++++++++++++

D char S 5A inz('abcde')

 * %GRAPH built-in function is used to initialize a graphic field

D Result S 10G inz (%graph ('oAABBCCDDEEi'))

Table of Contents 353

D ufield S 2C inz (%ucs2 ('oFFGGi'))

 /FREE
 Result = %graph (char) + %graph (ufield);
 %GRAPH converts the value of the expression from
 character, graphic, or UCS-2 and returns a graphic value. The
 result is varying length if the parameter is varying length. The
 second parameter, ccsid, is optional and indicates the CCSID
 of the resulting expression. The CCSID defaults to the graphic
 CCSID related to the CCSID of the job. If CCSID
 (*GRAPH : *IGNORE) is specified on the control
 specification or assumed for the module, the %GRAPH built-
 in is not allowed. If the parameter is a constant, the conversion
 will be done at compile time. In this case, the CCSID is the
 graphic CCSID related to the CCSID of the source file. If the
 conversion results in substitution characters, a warning
 message is issued at compile time. At run time, status 00050 is
 set and no error message is issued.
%HOURS # of hours as a duration. Format:
 %HOURS(number)
 Example // Determine the time in 3 hours
 Newtime = time + %HOURS(3);
 %HOURS converts a number into a duration that can be
 added to a time or timestamp value. %HOURS can only be
 the right-hand value in an addition or subtraction operation.
 The left-hand value must be a time or timestamp. The result is
 a time or timestamp value with the appropriate number of
 hours added or subtracted. For a time, the resulting value is in
 *ISO |format.
%INT Change to integer format. Format:
 %INT(numeric expression)
 Example Result = %int (p7) + 0.011;
 %INT converts the value of the numeric expression to integer.
 Any decimal digits are truncated. This built-in function may
 only be used in expressions. %INT can be used to truncate the
 decimal positions from a float or decimal value allowing it to
 be used as an array index.
%INTH Change to integer format – rounded up. Format:
 %INTH(numeric expression)
 Example Result1 = %int (p7)
 %INTH is the same as %INT except that if the numeric
 expression is a decimal or float value, half adjust is applied to
 the value of the numeric expression when converting to
 integer type.
%KDS Data structure with keys. Format:

Table of Contents 354

 %KDS(data-structure-name{:num-keys})
 Example: Chain %kds(CustRecKeys) custRec;
 %KDS is allowed as the search argument for any keyed
 Input/Output operation (CHAIN, DELETE, READE,
 READPE, SETGT, SETLL) coded in a free-form group. The
 search argument is specified by the subfields of the data
 structure name coded as the first argument of the built-in
 function. The key data structure may be (but is not limited to),
 an externally described data structure with keyword
 EXTNAME(...:*KEY) or LIKEREC(...:*KEY).. The first
 argument must be the name of a data structure. This includes
 any subfield defined with keyword LIKEDS or LIKEREC.
 The second argument specifies how many of the subfields to
 use as the search argument. The individual key values in the
 compound key are taken from the top level subfields of the
 data structure. Subfields defined with LIKEDS are considered
 character data.
%LEN Get or set length. Format:
 %LEN(expression)
 Example: Length = %len(num1);
 %LEN can be used to get the length of a variable expression
 or to set the current length of a variable-length field. The
 parameter must not be a figurative constant.
%LOOKUPxx Look up an array element: Generic Format:
 %LOOKUP xx with xx = type of match
 %LOOKUP(arg : array {: startindex {: numelems}})
 – exact match
 %LOOKUPLT(arg : array {: startindex {: numelems}})
 – closest but less than
 %LOOKUPGE(arg : array {: startindex {: numelems}})
 -- equal or closest but less than
 %LOOKUPGT(arg : array {: startindex {: numelems}})
 -- closest but greater than
 %LOOKUPLE(arg : array {: startindex {: numelems}})
 – equal or closest but greater than
 Example: Result = %LOOKUP('Paris':arr);
 If no value matches the specified condition, zero is returned.
 The search starts at index startindex and continues for
 numelems elements. By default, the entire array is searched.
 The first two parameters can have any type but must have the
 same type. They do not need to have the same length or
 number of decimal |positions. The third and fourth
 parameters must be non-float numeric values with zero
 decimal positions.

Table of Contents 355

%MINUTES # of minutes as a duration Format:
 %MINUTES(number)
 Example: // Determine the time in 3 minutes
 Newtime = time + %MINUTES(3);
 %MINUTES converts a number into a duration that can be
 added to a time or timestamp value. %MINUTES can only be
 the right-hand value in an addition or subtraction |operation.
 The left-hand value must be a time or timestamp. The result is
 a time or timestamp value with the appropriate number of
 minutes |added or subtracted. For a time field, the resulting
 value is in *ISO |format.
%MONTHS # of months as a duration. Format:
 %MONTHS(number)
 Example: Resultdate = duedate - %MONTHS(6);
 %MONTHS converts a number into a duration that can be
 added to a date or timestamp value. %MONTHS can only be
 the right-hand value in an addition or subtraction |operation.
 The left-hand value must be a date or timestamp. The result is
 a date or timestamp value with the appropriate number of
 months added or subtracted. For a date, the resulting value is
 in *ISO format.

%MSECONDS Convert to # of microseconds as a duration. Format:

 %MSECONDS(number)

 Example: // Determine the time in 360 microseconds

 Newtime = time + %MSECONDS(360);

 %MSECONDS (convert to microsoeconds) converts a

 number into a duration that can be added to a time or

 timestamp value. %MSECONDS can only be the right-hand

 value in an addition or subtraction operation. The left-hand

 value must be a time or timestamp. The result is a time or

 timestamp value with the appropriate number of

 microseconds added or subtracted. For a time, the resulting

 value is in *ISO format.
 %NULLIND Null-capable field name value in indicator. Format:
 %NULLIND(fieldname)
 Example: if %nullind (DBField1);
 The %NULLIND BIF can be used to query or set the null
 indicator for null-capable fields. %NULLIND can only be
 used in expressions in extended factor 2 or free-form RPG.
 When used on the right-hand side of an expression, this
 function returns the setting of the null indicator for the null-
 capable field. The setting can be *ON or *OFF. When used
 on the left-hand side of an expression, this function can be
 used to set the null indicator for null-capable fields to *ON or

Table of Contents 356

 *OFF. The content of a null-capable field remains unchanged.
 %OCCUR Returns current record of multi-occurrance DS. Format:
 %OCCUR(dsn-name)
 Example:
 /FREE
 Form 1: Result = %OCCUR(mds);
 Form 2: %OCCUR(mds) = 7;
 %OCCUR gets or sets the current position of a multiple-
 occurrence data structure. When this function is evaluated for
 its value, it returns the current occurrence number of the
 specified data structure as an unsigned numeric value. When
 this function is specified on the left-hand side of an EVAL
 statement, or a free form equation, the specified number
 becomes the current occurrence number.
%OPEN Opens a closed file. Format:
 %OPEN(file_name)
 Example:
 If not %open (PRINTFILE);
 Open PRINTFILE;
 %OPEN returns '1' if the specified file is open. A file is
 considered "open" if it has been opened by the RPG program
 during initialization or by an OPEN operation, and has not
 subsequently been closed. If the file is conditioned by an
 external indicator and the external indicator was off at program
 initialization, the file is considered closed, and %OPEN
 returns '0'.
%PADDR Get procedure address. Format:
 %PADDR(string|prototype)
 Example: EVAL PROC1 = %PADDR ('NextProg')
 %PADDR returns a value of type procedure pointer. The
 value is the address of the entry point identified by the
 argument. %PADDR may be compared with and assigned to
 only items of type procedure pointer. The parameter to
 %PADDR must be a character constant or a prototype name.
 When a character constant is used, this identifies the entry
 point by name. The prototype must be a prototype for a
 bound call. The EXTPGM keyword cannot be used. The entry
 point identified by the prototype is the procedure identified in
 the EXTPROC keyword for the prototype. If the EXTPROC
 keyword is not specified, the entry point is the same as the
 prototype name (in upper case).
%PADDR Used with a Prototype. Same format
 Example C Eval procptr = %paddr(TheProc)
 The argument of %PADDR can be a prototype name, with

Table of Contents 357

 restrictions: (1) It must not be a prototype for a Java method.
 (2) It must not have the EXTPGM keyword. (3) If its
 EXTPROC keyword has a procedure pointer for an argument,
 %PADDR |cannot be used in definition specifications. |
%PARMS # of parameters passed to procedure. Format:
 %PARMS – returns the # of parms
 Example: IF %PARMS < 1
 %PARMS returns the number of parameters that were passed
 to the procedure in which %PARMS is used. For the main
 procedure, %PARMS is the same as *PARMS. The value
 returned by %PARMS is not available if the program or
 procedure that calls %PARMS does not pass a minimal
 operational descriptor. The ILE RPG compiler always passes
 one, but other languages do not. So if the caller is written in
 another ILE language, it will need to pass an operational
 descriptor on the call. If the operational descriptor is not
 passed, the value returned by %PARMS cannot be trusted.
%REALLOC Numeric pointer: to allocated storage. Format:
 %REALLOC(ptr:num)
 Example: RESpointer = %REALLOC(pointer:500);
 %REALLOC changes the heap storage pointed to by the first
 parameter to be the length specified in the second parameter.
 The newly allocated storage is uninitialized. The first parm
 must be a basing pointer value. The second parm must be a
 non-float numeric value with zero decimal places. The length
 specified must be between 1 and 16776704. The function
 returns a pointer to the allocated storage. This may be the
 same as ptr or different.
%REM Division - remainder from div of 2 arguments: Format:
 %REM(n:m)
 Example: Result = %REM(A:B);
 %REM returns the remainder that results from dividing
 operands n by m. The two operands must be numeric values
 with zero decimal positions
%REPLACE Replacement string. Format
 %REPLACE(replacement string: source string{:start position
 {:source length to replace}})
 Example: Result = %replace ('Scranton': result);
 %REPLACE returns the character string produced by
 inserting a replacement string into the source string, starting at
 the start position and replacing the specified number of
 characters. The first and second parm must be of type
 character, graphic, or UCS-2 and can be in either fixed- or
 variable-length format. The second parm must be the same

Table of Contents 358

 type as the first. If the third parm is not specified, the starting
 position is at the beginning of the source string. The value may
 range from one to the current length of the source string plus
 one. The fourth parm represents the number of characters in
 the source string to be replaced. If zero is specified, then the
 replacement string is inserted before the specified starting
 position. If the parm is not specified, the number of characters
 replaced is the same as the length of the replacement string.
%SCAN Returns searched for value or zero. Forat: %SCAN(search
 Argument : source string {: start})
 Example: Position = %scan ('D' : source : 2);
 %SCAN returns the first position of the search argument in
 the source string, or 0 if it was not found. If the start position
 is specified, the search begins at the starting position. The
 result is always the position in the source string even if the
 starting position is specified. The starting position defaults to
 1. The type of the return value is unsigned integer. This BIF
 can be used anywhere that an unsigned integer expression is
 valid. Unlike the SCAN operation code, %SCAN cannot
 return an array containing all occurrences of the search string
 and its results cannot be tested using the
 %FOUND built-in function.
%SECONDS # of seconds as a duration. Format:
 %SECONDS(number)
 Example: // Determine the time in 36 seconds
 Newtime = time + %SECONDS(36);
 %SECONDS converts a number into a duration that can be
 added to a time or timestamp value. %SECONDS can only
 be the right-hand value in an addition or subtraction
 operation. The left-hand value must be a time or timestamp.
 The result is a time or timestamp value with the appropriate
 number of seconds added or subtracted. For a time, the
 resulting value is in *ISO format.
%SHTDN Returns value indicating shutdown (1 or 0) Format:
 %SHTDN
 Example:
 IF %SHTDN;
 QuitProgram();
 ENDIF;
 %SHTDN returns '1' if the system operator has requested
 shutdown; otherwise, it returns '0'.
%SIZE Returns size of variable or literal. Formats:
 %SIZE(variable)
 %SIZE(literal)

Table of Contents 359

 %SIZE(array{:*ALL})
 %SIZE(table{:*ALL})
 %SIZE(multiple occurrence data structure{:*ALL})
 Example: Result = %SIZE(field1);
 %SIZE returns the number of bytes occupied by the
 constant or field. If the argument is an array name, table
 name, or multiple occurrence data structure name, the
 value returned is the size of one element or occurrence.
 If *ALL is specified as the second parameter for %SIZE,
 the value returned is the storage taken up by all elements
 or occurrences. Returns size of variable or literal
%SQRT Square root of a numeric value. Format:
 %SQRT(numeric expression)
 Example: Result = %SQRT(239874);
 %SQRT returns the square root of the specified numeric
 expression.
%STATUS 0 if no I/O error for file. Format
 %STATUS{(file_name)}
 Example: When %status = 01331;
 Exsr SUBOVER999
 %STATUS returns the most recent value set for the program
 or file status. %STATUS is set whenever the program status or
 any file status changes, usually when an error occurs. If
 %STATUS is used without the optional file_name parameter,
 then it returns the program or file status most recently
 changed. If a file is specified, the value contained in the
 INFDS *STATUS field for the specified file is returned. The
 INFDS does not have to be specified for the file. %STATUS
 starts with a return value of 00000 and is reset to 00000 before
 any operation with an 'E' extender specified begins.
 %STATUS is best checked immediately after an operation
 with the 'E' extender or an error indicator specified, or at the
 beginning of an INFSR or the *PSSR subroutine.
%STR String characters addressed by pointer argument. Format:
 %STR (Get or Store Null-Terminated String)
 1. Get: %STR(basing pointer{: max-length})(right-hand-side)
 2. Store: %STR(basing pointer : max-length)(left-hand-side)
 Example 1 Get: ResultGet = '<' + %str(String1 : 2) + '>';
 Example 2 Store %str(StoreStr(25))= 'abcdef';
 %STR is used to create or use null-terminated character
 strings, which are very commonly used in C and C++
 applications. The first parameter must be a basing-pointer
 variable. The second parameter, if specified, must be a numeric
 value with zero decimal positions. If not specified, it defaults

Table of Contents 360

 to 65535. The first parameter must point to storage that is at
 least as long as the length given by the second parameter When
 used on the right-hand side of an expression, this function
 returns the data pointed to by the first parameter up to but not
 including the first null character (x'00') found within the length
 specified. When used on the left-hand side of an expression,
 %STR(ptr:length) assigns the value of the right-hand side of
 the expression to the storage pointed at by the pointer, adding
 a null-terminating byte at the end. The maximum length that
 can be specified is 65535. This means that at most 65534 bytes
 of the right-hand side can be used, since 1 byte must be
 reserved for the null-terminator at the end. The length
 indicates the amount of storage that the pointer points to. This
 length should be greater than the maximum length the right-
 hand side will have. The pointer must be set to point to
 storage at least as long as the length parameter. If the length of
 the right-hand side of the expression is longer than the
 specified length, the right-hand side value is truncated. Make
 sure that the length parameter is not greater than the actual
 length of data addressed by the pointer and that the length of
 the right-hand side is not greater than or equal to the actual
 length of data addressed by the pointer. You must keep track
 of the length that you have allocated.
%SUBARR Return a subset of an array. Format:
 %SUBARR(array:start-index{:number-of-elements})
 Example: ResultArr = %subarr(a:4:n);
 %SUBARR returns a section of the specified array starting at
 start-index. The number of elements returned is specified by
 the optional number-of-elements parameter. If not specified,
 the number-of-elements defaults to the remainder of the array.
 The first parameter of %SUBARR must be an array. That is, a
 standalone field, data structure, or subfield defined as an array.
 The first parameter must not be a table name or procedure
 call. The start-index parameter must be a numeric value with
 zero decimal positions. A float numeric value is not allowed.
 The value must be greater than or equal to 1 and less than or
 equal to the number #of elements of the array. The optional
 number-of-elements parameter must be a numeric value with
 zero decimal positions. A float numeric value is not allowed.
 The value must be greater than or equal to 1 and less than or
 equal to the number of elements remaining in the array after
 applying the start-index value. Generally, %SUBARR is valid
 in any expression where an unindexed array is allowed.
%SUBDT Returns a portion of date or time value.

Table of Contents 361

 Format 1 %SUBDT(value:*MSECONDS|*SECONDS
 |*MINUTES|*HOURS|*DAYS|*MONTHS|*YEARS)
 Format 2 %SUBDT(value:*MS|*S|*MN|*H|*D|*M|*Y)
 Example: Numval = %subdt(date:*YEARS);
 %SUBDT extracts a portion of the information in a date, time,
 or timestamp value. It returns an unsigned numeric value. The
 first parameter is the date, time, or timestamp value. The
 second parameter is the portion that you want to extract. The
 following values are valid: For a date: *DAYS, *MONTHS,
 and *YEARS. For a time: *SECONDS, *MINUTES, and
 *HOURS. For a timestamp: *MSECONDS, *SECONDS,
 *MINUTES, *HOURS, *DAYS, *MONTHS, and *YEARS.
 For this function, *DAYS always refers to the day of the
 month not the day of the year (even if you are using a Julian
 date format).
%SUBST Returns a substring. Two Formats
 %SUBST Form1 : Used for its value
 Format: %SUBST(string: start postion, length)
 Example: C IF %SUBST(CITY:C+1) = 'Scranton'

 %SUBST Form 2 : Used as the Result of an Assignment
 Format: %SUBST(string: start postion, length)
 Example: C EVAL %SUBST(A:3:4) = '****'

 %SUBST used for its value (Form 1) returns a substring
 from the contents of the specified string. The substring begins
 at the specified starting position in the string and continues for
 the length specified. If length is not specified then the
 substring continues to the end of the string.
 %SUBST used as the result of an assignment (Form 2)
 refers to certain positions of the argument string. The result
 begins at the specified starting position in the variable and
 continues for the length specified. If the length is not specified
 then the string is referenced to its end. If the length refers to
 characters beyond the end of the string, then a run-time error
 is issued. When %SUBST is used as the result of an
 assignment, the first parameter must refer to a storage location
 such as a field or structure. Any valid expressions are permitted
 for the second and third parameters of %SUBST when it
 appears as the result of an assignment with an EVAL
 operation.
%THIS The class instance for the native method. Format
 %THIS -- returns object valuereference to class
 Example: C Eval Id_Num = getId(%THIS)

Table of Contents 362

 %THIS returns an Object value that contains a reference to
 the class instance on whose behalf the native method is being
 called. %THIS is valid only in non-static native methods. This
 BIF gives non-static native methods access to the class
 instance. A non-static native method works on a specific
 instance of its class. This object is actually passed as a
 parameter to the native method by Java, but it does not appear
 in the prototype or procedure interface for the native method
 In a Java method, the object instance is referred to by the Java
 reserved word this. In an RPG native method, the object
 instance is referred to by the %THIS BIF.
%TIME Brings back system time if none is specified. Format:
 %TIME{(expression{:time-format})}
 Example: Time = %time(string:*USA);
 %TIME converts the value of the expression from character,
 numeric, or timestamp data to type time. The converted value
 remains unchanged, but is returned as a time. The first
 parameter is the value to be converted. If you do not specify a
 value, %TIME returns the current system time. The second
 parameter is the time format for numeric or character input.
 Regardless of the input format, the output is returned in *ISO
 format.
%TIMESTAMP Brings back current timestamp if none specified. Format:
 %TIMESTAMP{(expression{:*ISO|*ISO0})}
 Example: Times = %timestamp(string);
 %TIMESTAMP converts the value of the expression from
 character, numeric, or |date data to type timestamp. The
 converted value is returned as a timestamp. The first
 parameter is the value to be converted. If you do not specify a
 value, %TIMESTAMP returns the current system timestamp.
 The second parameter is the timestamp format for character
 input. Regardless of the input format, the output is returned in
 *ISO format.
%TLOOKUPxx Checks for match and returns ’*ON’ or ’*OFF.’
 The “xx” is the specific type of match
 Formats:
 %TLOOKUP(arg : search-table {: alt-table})
 – Exact match
 %TLOOKUPLT(arg : search-table {: alt-table})
 – Closest but less than
 %TLOOKUPGE(arg : search-table {: alt-table})
 – Exact match or closest but less than
 %TLOOKUPGT(arg : search-table {: alt-table})
 – Closest but greater than

Table of Contents 363

 %TLOOKUPLE(arg : search-table {: alt-table})
 – Exact or closest but greater than
 Example: IF %TLOOKUP('Goose Bay':tab1:tab2);
 If a value meets the specified condition, the current table
 element for the search table is set to the element that satisfies
 the condition, the current table element for the alternate table
 is set to the same element, and the function returns the value
 *ON. If no value matches the specified condition, *OFF is
 returned. Unlike the %LOOKUP operation code,
 %TLOOKUP applies only to tables. To look up a value in an
 array, use the %LOOKUP BIF.
%TRIM string Trims string with left, right blanks or specified. Format:
 %TRIM(string)
 Example:
 Name = %trim (FirstName) + ' ' + %trim (LastName);
 Returns string less any leading and trailing blanks.
%TRIML string Trims string with left blanks or specified. Format
 %TRIML(string)
 Example: Location = %triml(' Wilkes-Barre, PA’));
 %TRIML returns the given string less any leading blanks
 When specified as a parameter for a definition specification
 keyword, the string parameter must be a constant.
%TRIMR string Trims string with right blanks or specified Format:
 %TRIMR(string)
 Example: Location = %trim (' Wilkes-Barre, PA ‘);
 %TRIMR returns the given string less any trailing blanks.
 When specified as a parameter for a definition specification
 keyword, the string parameter must be a constant.
%UCS2 Brings back value in UCS-2 format. Format:
 %UCS2 --converts to UCS2 type of value
 Example: C eval ufield = %UCS2(char) + %UCS2(graph)
 %UCS2 converts the value of the expression from character,
 graphic, or UCS-2 and returns a UCS-2 value. The second
 parameter, ccsid, is optional and indicates the CCSID of the
 resulting expression. The CCSID defaults to 13488. If the
 parameter is a constant, the conversion will be done at compile
 time.
%UNS Brings back value in unsigned format. Format:
 %UNS(numeric expression)
 Example Result = %uns (NumValue);
 %UNS converts the value of the numeric expression to
 unsigned format. Any decimal digits are truncated. %UNS can
 be used to truncate the decimal positions from a float or
 decimal value allowing it to be used as an array index.

Table of Contents 364

%UNSH Brings back rounded value - unsigned format. Format:
 %UNSH(numeric expression)
 Example Result = %unsh (FloatValue);
 %UNSH is like %UNS except that if the numeric expression is
 a decimal or a float value, half adjust is applied to the value of
 the numeric expression when converting to unsigned type.
%XFOOT Array expression sum of the elements. Format:
 %XFOOT(array-expression)
 Example: Result = %xfoot(MothSales)
 %XFOOT results in the sum of all elements of the specified
 numeric array expression. The precision of the result is the
 minimum that can hold the result of adding together all array
 elements, up to a maximum of 30 digits. The number of
 decimal places in the result is always the same as the decimal
 places of the array expression. This built-in function is similar
 to the XFOOT operation, except that float arrays are summed
 like all other types, beginning from index 1 on up.
%XLATE Translate String (eg Lower Case to Upper Case). Format:
 %XLATE(from:to:string{:startpos})
 Example: String = %XLATE(locase:upcase:'our dept');
 // string now contains 'OUR DEPT'
 %XLATE translates string according to the values of from,
 to, and startpos. The first parameter contains a list of
 characters that should be replaced, and the second parameter
 contains their replacements. For example, if the string contains
 the third character in from, every occurrence of that character
 is replaced with the third character in to. The third parameter
 is the string to be translated. The fourth parameter is the
 starting position for translation. By default, translation starts at
 position 1. The first three parameters can be of type character,
 graphic, or UCS-2. All three must have the same type. The
 value returned has the same type and length as string. The
 fourth parameter is a non-float numeric with zero decimal
 positions.
%YEARS # of years as a duration Format: Format:
 %YEARS(number)
 Example: FutureDat = Today + %YEARS(4); add 4yr to date.
 %YEARS converts a number into a duration that can be added
 to a date or timestamp value. %YEARS can only be the right-
 hand value in an addition or subtraction operation. The left-
 hand value must be a date or timestamp. The result is a date or
 timestamp value with the appropriate number of years added
 or subtracted. For a date, the resulting value is in *ISO format.
 If the left-hand value is February 29 and the resulting year is

Table of Contents 365

 not a leap year, February 28 is used instead. Adding or
 subtracting a number of years to a February 29 date may not
 be reversible. For example, |20014-02-29 + %YEARS(1) –
 %YEARS(1) is 20014-02-28.

Table 14-11 BIF Arguments and Values

Name Arguments Value Returned

%ABS numeric expression absolute value of expression

%ADDR variable name address of variable

%ALLOC number of bytes to allocate pointer to allocated storage

%BITAND character, numeric bit wise ANDing of the bits of all
the arguments

%BITNOT character, numeric bit-wise reverse of the bits of the
argument

%BITOR character, numeric bit-wise ORing of the bits of all the
arguments

%BITXOR character, numeric bit-wise exclusive ORing of the
bits of the two arguments

%CHAR graphic, UCS-2, numeric,
date, time, or timestamp
expression {: date, time, or
timestamp format}

value in character format

%CHECK comparator string:string to
be checked{:start position}

first position of a character that is
not in the comparator string, or
zero if not found

%CHECKR comparator string:string to
be checked{:start position}

last position of a character that is
not in the comparator string, or
zero if not found

%DATE {value {: date format}} the date that corresponds to the
specified value, or the current
system date if none is specified

%DAYS number of days number of days as a duration

%DEC numeric expression
{:digits:decpos}
character expression:
digits:decpos

value in packed numeric format

Table of Contents 366

date, time or timestamp
expression {:format}

%DECH numeric or character
expression:
digits:decpos

half-adjusted value in packed
numeric format

%DECPOS numeric expression number of decimal digits

%DIFF Date or time expression:
date or time expression: unit

difference between the two dates,
times, or timestamps in the
specified unit

%DIV dividend: divisor the quotient from the division of
the two arguments

%EDITC non-float numeric
expression:edit code
{:*CURSYM | *ASTFILL |
currency symbol}

string representing edited value

%EDITFLT numeric expression character external display
representation of float

%EDITW non-float numeric
expression:edit word

string representing edited value

%ELEM array, table, or multiple
occurrence data structure
name

number of elements or occurrences

%EOF {file name} '1' if the most recent cycle input,
read operation, or write to a subfile
(for a particular file, if specified)
ended in an end-of-file or
beginning-of-file condition; and,
when a file is specified, if a more
recent OPEN, CHAIN, SETGT or
SETLL to the file was not
successful

'0' otherwise

%EQUAL {file name} '1' if the most recent SETLL (for a
particular file, if specified) or
LOOKUP operation found an
exact match

'0' otherwise

%ERROR '1' if the most recent operation
code with extender 'E' specified
resulted in an error

'0' otherwise

Table of Contents 367

%FIELDS list of fields to be updated not applicable

%FLOAT numeric or character
expression

value in float format

%FOUND {file name} '1' if the most recent relevant
operation (for a particular file, if
specified) found a record (CHAIN,
DELETE, SETGT, SETLL), an
element (LOOKUP), or a match
(CHECK, CHECKR, SCAN)

'0' otherwise

%GRAPH character, graphic, or UCS-2
expression

value in graphic format

%HANDLER handling procedure :
communication area

not applicable

%HOURS number of hours number of hours as a duration

%INT numeric or character
expression

value in integer format

%INTH numeric or character
expression

half-adjusted value in integer
format

%KDS data structure containing
keys
{: number of keys}

not applicable

%LEN any expression length in digits or characters

%LOOKUPxx argument: array{:start index
{:number of elements}}

array index of the matching
element

%MINUTES number of minutes number of minutes as a duration

%MONTHS number of months number of months as a duration

%MSECOND
S

number of microseconds number of microseconds as a
duration

%NULLIND Null-capable field name value in indicator format
representing the null indicator
setting for the null-capable field

%OCCUR multiple-occurrence data
structure name

current occurrence of the multiple-
occurrence data structure

%OPEN

file name '1' if the specified file is open

'0' if the specified file is closed

%PADDR procedure or prototype
name

address of procedure or prototype

%PARMS none number of parameters passed to

Table of Contents 368

procedure

%REALLOC pointer: numeric expression pointer to allocated storage

%REM dividend: divisor the remainder from the division of
the two arguments

%REPLACE replacement string: source
string {:start position
{:source length to replace}}

string produced by inserting
replacement string into source
string, starting at start position and
replacing the specified number of
characters

%SCAN search argument:string to be
searched{:start position}

first position of search argument in
string or zero if not found

%SECONDS number of seconds number of seconds as a duration

%SHTDN '1' if the system operator has
requested shutdown

'0' otherwise

%SIZE variable, array, or literal {:*
ALL}

size of variable or literal

%SQRT numeric value square root of the numeric value

%STATUS {file name} 0 if no program or file error
occurred since the most recent
operation code with extender 'E'
specified

most recent value set for any
program or file status, if an error
occurred

if a file is specified, the value
returned is the most recent status
for that file

%STR pointer{:maximum length} characters addressed by pointer
argument up to but not including
the first x'00'

%SUBARR array name:start
index{:number of elements}

array subset

%SUBDT Date or time expression:
unit

an unsigned numeric value that
contains the specified portion of
the date or time value

%SUBST string:start{:length} substring

%THIS the class instance for the native
method

%TIME {value {: time format}} the time that corresponds to the

Table of Contents 369

specified value, or the current
system time if none is specified

%TIMESTAM
P

{(value {: timestamp
format})}

the timestamp that corresponds to
the specified value, or the current
system timestamp if none is
specified

%TLOOKUPx
x

argument: search table {:
alternate table}

'*ON' if there is a match

'*OFF' otherwise

%TRIM string {: characters to trim} string with left and right blanks or
specified characters trimmed

%TRIML string {: characters to trim} string with left blanks or specified
characters trimmed

%TRIMR string {: characters to trim} string with right blanks or specified
characters trimmed

%UCS2 character, graphic, or UCS-2
expression

value in UCS-2 format

%UNS numeric or character
expression

value in unsigned format

%UNSH numeric or character
expression

half-adjusted value in unsigned
format

%XFOOT array expression sum of the elements

%XLATE from-characters: to-
characters: string {: start
position}

the string with from-characters
replaced by to-characters

%XML Xml document { : options } not applicable

%YEARS number of years number of years as a duration

Table of Contents 370

Chapter 8

RPG/400 & RPGIV Structured Programming Operations

Table of Contents 371

Extension Specifications
Extension specifications describe all record address files, table files,
and array files
used in the program. The information includes:
¹ Name of the file, table, or array

¹ Number of entries in a table or array input record

¹ Number of entries in a table or array

¹ Length of the table or array entry.

Line Counter Specifications
Line counter specifications describe the page or form on which output
is printed.
The information includes:

¹ Number of lines per page

¹ Line of the page where overflow occurs.

Input Specifications
Input specifications describe the records, fields, data structures and
named constants
used by the program. The information in the input specifications
includes:

¹ Name of the file

¹ Sequence of record types

¹ Whether record-identifying indicators, control-level indicators, field-

recordrelation
indicators, or field indicators are used

¹ Whether data structures, lookahead fields, record identification codes,

or match
fields are used

¹ Type of each field (alphanumeric or numeric; packed-decimal, zoned-

decimal,
or binary format)
¹ Location of each field in the record

¹ Name of each field in the record

¹ Named constants.

Calculation Specifications
Calculation specifications describe the calculations to be done on the
data and the
order of the calculations. Calculation specifications can also be used to
control
certain input and output operations. The information includes:

¹ Control-level and conditioning indicators for the operation specified

¹ Fields or constants to be used in the operation

Table of Contents 372

¹ The operation to be processed

¹ Whether resulting indicators are set after the operation is processed.

Table of Contents 373

Table of Contents 374

 Create Data Area (CRTDTAARA)

 Type choices, press Enter.

 Data area > PAYPERIOD Name
 Library *CURLIB Name, *CURLIB
 Type > *CHAR *DEC, *CHAR, *LGL, *DDM
 Length:
 Length > 5 1-2000
 Decimal positions 0-9
 Initial value > '12021'
 Text 'description' > 'PAYPERIOD & NEXT EMPLOYEE #'

 Bottom
 F3=Exit F4=Prompt F5=Refresh F10=Additional parameters
F12=Cancel
 F13=How to use this display F24=More keys

 Display Spooled File
File : QPRINT2 Page/Line 1/6
Control Columns 1 - 78
Find
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...
 THE DOWALLOBY COMPANY Select PAY History List
6/15/06
STATE NAME CITY EMP# EMPLOYEE NAME DEP
NAME Y GROSS >HRS SAL?

Table of Contents 375

PENNSYLVANIA WILKES-BARRE 001 BIZZ NIZWONGER
MILLING 273.0 35.00 N
PENNSYLVANIA WILKES-BARRE 002 WARBLER JACOBY
SANDING 316.0 40.00 N
PENNSYLVANIA SCRANTON 003 BING CROSSLEY
SANDING 442.3 .00 Y
ALASKA FAIRBANKS 004 UPTAKE N. HIBIT SANDING
557.6 .00 Y
ALASKA FAIRBANKS 005 FENWORTH GRONT MILLING
306.9 33.00 N
ALASKA FAIRBANKS 007 BI NOMIAL MILLING 343.2
39.00 N
ALASKA JUNEAU 008 MILLY DEWITH GRINDING
260.0 40.00 N
ALASKA JUNEAU 009 SARAH BAYOU GRINDING
418.0 40.00 N
NEW JERSEY NEWARK 010 DIRT MCPUG SANDING
228.9 35.50 N
NEW JERSEY NEWARK 011 BANDAID JONES MILLING
.0 .00 N
NEW JERSEY NEWARK 021 ROBINSON CRUSOE MILLING
.0 .00 N
NEW JERSEY NEWARK 022 SERMELLA NIPTUC SANDING
.0 .00 N
NEW JERSEY NEWARK 023 SIMON TEMPLAR MILLING
.0 .00 N
NEW JERSEY NEWARK 024 BURGER BALL MILLING
.0 .00 N
 More...

Table of Contents 376

Table of Contents 377

Chapter 15

RPG Operations in Action

The Once and Future PAREG2

PAREG2 as shown in Figure 15-1 is the reincarnation of PAREG
without the use of the RPG cycle. In all fairness, the program is not really
248 statements because in order to demonstrate the new routines more
clearly we used more commenting within the program. In fact, there are
61 additional comment lines. over and above those in the program
described version of PAREG.

In Figure 5-2, we introduced the program described version of PAREG
with 69 statements, 13 of which were comments. Thus, there were 56
operative statements in this PAREG. So, if we take the 61 additional plus
the 13 original comments from PAREG2 (74 comment statements in
total) from the 248 statements in this program, there are and we le 174
operative statements in PAREG2 gram.

Yes, we did add a little bit of new function. For example, we added two
additional fields to the Employee Master, – a department # (EMPDPT)
and a Salary code. We also added a new file. Rather than extend the
Payroll master further, we borrowed a technique from the days of old
when disk space was expensive. Since these programs exist today, we
placed the new salary payroll option in its own file. Thus, to calculate pay
with a salary employee, we must access this file using a random read
(CHAIN). Overall, it took eleven statements necessary for processing the
salary file and the department # in PAREG2 after they were added to the
mix. That brings us to 163 operative statements to perform the same
function as PAREG in Figure 5-2.

Table of Contents 378

Figure 15-1 PAREG2 Program – Register with No Cycle, MR, Levels
 *PAREG2P internally described PAREG – no MR, No LX totals

001 H* RPG HEADER (CONTROL) SPECIFICATION FORMS

002 H

003 F*

004 F* RPG FILE DESCRIPTION SPECIFICATION FORMS

005 F*

006 FEMPMAST IF F 70 3AI 1 DISK

007 FTIMCRD IF F 7 3AI 1 DISK

008 FSALFILE IF F 9 3AI 1 DISK

009 FQPRINT O F 77 OF PRINTER

010 FERROR O E PRINTER

011 I*

012 I* RPG INPUT SPECIFICATION FORMS

013 I*

014 I*

015 I* EMPMAST is the employee master file

016 I* One record per employee – pay rate and dept

017 I* For salaried employees, Salary is in SALFILE

018 I*

019 IEMPMAST AA 01

020 I 1 70 EREC

021 I 1 30EMPNO

022 I 4 23 EMPNM

023 I 4 33 EMPNAM

024 I 34 382EMPRAT

025 I 39 58 EMPCTY

026 I 59 60 EMPSTA

027 I 61 650EMPZIP

028 I 66 66 EMPSCD-SALCOD

029 I 67 70 EMPDPT-DPTCOD

030 I*

031 I* TIMCRD is updated in an independent process.

032 I* Provides current time records for the PAYROLL process

033 I* For salaried employees, no hours provided but TIMcard

034 I* is needed for person to be paid.

035 I*

036 ITIMCRD AB 02

037 I 1 30EMPNO

038 I 4 72EMPHRS

039 I*

040 I* SALCRD is updated in an independent process.

041 I* Mimics an extension to the PAYMAST file

042 I* For salaried employees, Salary stored in this file

043 I*

044 ISALFILE AC 03

045 I 1 30SALENO

046 I 4 90SALYR

047 I* HLDMAST is the working file for level chacking

048 I*

049 IHLDMST DS

050 I 1 30HLDNO

051 I 1 70 HREC

052 I 4 33 HLDNAM

053 I 4 23 HLDNM

Table of Contents 379

054 I 34 382HLDRAT

055 I 39 58 HLDCTY

056 I 59 60 HLDSTA

057 I 61 650HLDZIP

058 I 66 66 HLDSCD

059 I 67 70 HLDDPT

060 I*

061 C*

062 C* RPG CALCULATION SPECIFICATION FORMS

063 C*

064 C* Run default register with no prompt input

065 C EXSR RUNREG

066 C SETON LR

067 C*

068 C* Body of Code- Controls running of Payroll Register

069 C RUNREG BEGSR

070 C* Check to see if there is a missing master

071 C EXSR CHKMST

072 C* Clear fields from CHKMST run to begin fresh register

073 C EXSR CLR

074 C CLOSEEMPMAST

075 C OPEN EMPMAST

076 C* First read ahead to be able to check for Levels

077 C READ EMPMAST 91

078 C EXCPTHEADER

079 C EXSR PROCES

080 C* Run register until end of file

089 C *IN91 DOUEQ*ON

090 C* SECOND READ -- UNTIL EOF NEED FOR LEVEL CHECK

091 C READ EMPMAST 91

092 C 91 LEAVE

093 C* Replaces L1 coding as in PAREG

094 C* LEVEL 1 TEST -- See if current city is different

095 C EMPCTY IFNE HLDCTY

096 C EMPSTA ORNE HLDSTA

097 C SETON L1

098 C EXSR LEVEL1

099 C ENDIF

100 C* Level 2 test -- See if state changed

101 C EMPSTA IFNE HLDSTA

102 C SETON L2

103 C EXSR LEVEL2

104 C ENDIF

105 C SETOF L1L2

106 C EXSR PROCES

107 C ENDDO

108 C EXSR LEVEL1 L1Break

109 C EXSR LEVEL2 L2Break

110 C EXCPTLROUT LRBreak

111 C ENDSR

112 C*

113 C* Level 1 Subroutine - Control break on City

114 C*

115 C LEVEL1 BEGSR

116 C CTYPAY ADD STAPAY STAPAY 92

Table of Contents 380

117 C EXCPTL1OUT

118 C ENDSR

119 C*

120 C* Level 2 Subroutine - Control break on State

121 C*

122 C LEVEL2 BEGSR

123 C STAPAY ADD TOTPAY TOTPAY 92

124 C EXCPTL2OUT

125 C ENDSR

126 C*

127 C* PAYCLC Calculates Gross PAY from HRS or Salary

128 C* Also calculates "net pay" and updates YTD files.

129 C* Calculate pay for HELD record

130 C* If Salaried, do not use RATE multiplier

131 C*

132 C PAYCLC BEGSR

133 C SETOF 9298

134 C Z-ADD0 HLDSAL 60

135 C* REPLACES MR CYCLE WORK

136 C HLDNO CHAINTIMCRD 92 No TC

137 C 92 EXCPTNOTIME ERROR

138 C N92 HLDRAT MULT EMPHRS HLDPAY 72 CALCPAY

139 C N92 Z-ADDEMPHRS HLDHRS 92

140 C N92 HLDPAY ADD CTYPAY CTYPAY 92 ADDCity

141 C N92 HLDNO CHAINSALFILE 98 Get Sal

142 C N98N92 Z-ADDSALYR HLDSAL 60

143 C N98N92 SALYR DIV 52 HLDPAY CalcSal

144 C N98N92 HLDPAY ADD CTYPAY CTYPAY 92 City

145 C N98N92 Z-ADD0 HLDHRS No HRS

146 C ENDSR

147 C*

148 C* Write error msg for no master to separate Ext print file

149 C*

150 C NOMAST BEGSR

151 C WRITEHDR

152 C WRITEDTL

153 C ENDSR

154 C*

155 C* Process line item

156 C*

157 C PROCES BEGSR

158 C EXSR MOVMS1

159 C EXSR PAYCLC

160 C EXSR PRNTLN

161 C ENDSR

162 C*

163 C* Print Detail Line on Register

164 C*

165 C PRNTLN BEGSR

166 C OF EXCPTHEADER

167 C OF SETOF OF

168 C EXCPTPRTLN1

169 C ENDSR

170 C*

171 C* Move Fields to Hold Area- Level Info/ Comparison

Table of Contents 381

172 C*

173 C MOVMS1 BEGSR

174 C Z-ADDEMPNO HLDNO

175 C MOVELEMPNAM HLDNAM

176 C Z-ADDEMPRAT HLDRAT

177 C MOVELEMPCTY HLDCTY

178 C MOVELEMPSTA HLDSTA

179 C Z-ADDEMPZIP HLDZIP

180 C MOVELEMPSCD HLDSCD

181 C MOVELEMPDPT HLDDPT

182 C ENDSR

183 C*

184 C* CLR Clear fields used in the missing master test

185 C*

186 C CLR BEGSR

187 C Z-ADD0 EMPNO

188 C MOVE *BLANKS EMPNAM

189 C Z-ADD0 EMPRAT

190 C MOVE *BLANKS EMPCTY

191 C MOVE *BLANKS EMPSTA

192 C Z-ADD0 EMPZIP

193 C MOVE *BLANKS EMPSCD

194 C MOVE *BLANKS EMPDPT

195 C Z-ADD0 EMPHRS

196 C ENDSR

197 C*

198 C* CHKMST Read time cards for missing masters & report

199 C*

200 C CHKMST BEGSR

201 C *IN93 DOUEQ*ON

202 C READ TIMCRD 93

203 C EMPNO CHAINEMPMAST 94

204 C 94 EXSR NOMAST

205 C ENDDO

206 C ENDSR

207 O*

208 O* RPG OUTPUT SPECIFICATION FORMS

209 O*

210 OQPRINT E 206 HEADER

211 O 32 'THE DOWALLOBY COMPA'

212 O 55 'GROSS PAY REGISTER '

213 O 60 'STATE'

214 O UDATE Y 77

215 O E 3 HEADER

216 O 4 'ST'

217 O 13 'CITY'

218 O 27 'EMP#'

219 O 45 'EMPLOYEE NAME'

220 O 57 'RATE'

221 O 67 'HOURS'

222 O 77 'CHECK'

223 O E 11 NOTIME

224 O HLDSTA 4

235 O HLDCTY 29

236 O HLDNO 27

Table of Contents 382

237 O 53 'No Time Card th pay'

238 O 71 ' period for below:'

239 O E 01 PRTLN1

230 O HLDSTA 4

231 O HLDCTY 29

232 O HLDNO 27

233 O HLDNM 52

234 O N92 HLDPAY1B 77

235 O N92 HLDHRS1B 67

236 O HLDRAT1 57

237 O 92 76 '** No Time Card **'

238 O E 22 L1OUT

239 O 51 'TOTAL CITY PAY FOR'

240 O HLDCTY 72

241 O CTYPAY1B 77

242 O E 02 L2OUT

243 O 51 'TOTAL STATE PAY FOR'

244 O HLDSTA 54

245 O STAPAY1B 77

246 O E 2 LROUT

247 O TOTPAY1 77

248 O 50 'FINAL TOTAL PAY'

So, what happened that it cost us almost three times the code in order to
perform the same functions without the RPG cycle. The additional lines
of code can be characterized as in Table 15-2.

Table 15-2 Reasons for Code Increases from PAREG to PAREG2

Reason For Code Increase # Stmts
No RPG Cycle Input 5
No RPG Cycle Output 13
No Matching records logic –
 Includes missing master test

26

No Cycle Control Break testing / Processing 44
Miscellaneous DOs and IFs 15

As we decode the major areas of this program, it will become clear as to
why it takes so much coding to replace the RPG cycle when the objective
is to prepare a simple report. The net of it is, however, that the RPG cycle
does lots of work for you that you never see. When there is no RPG cycle,
you must do that work.

Table of Contents 383

Looking at the PREG2 program in file description for example, you
notice that there is no primary and no secondary files. Therefore, at input
time, you must do your own reading. At output time, since there is no
handy cycle to do the printing as you designate, you must take over the
action using exception output (EXCPT op-code) during calculations to
get the heading and detail and total lines printed.

Since there is no opportunity to place an A in column 18 of file
description for ascending and / or a D for descending sequence, as you
could easily do for a primary or secondary file, you must do sequence
checking yourself to assure your input is in the proper order (by EMPNO
in this program). Since we did not really ant to complicate this program
further by introducing a sequence check routine, and since we rigged the
input so that if the data were in EMPNO sequence, it would also be in
City within State sequence, we took the easy way out on sequence
checking. We used the AS/400 database facilities to define the new
EMPMAST and the TIMCRD files, as well as the new SALFILE for
salaries, as indexed files.

When you compare the file description of EMPMAST in Figure 5-3 with
the primary file version in Figure 15-4, it is all but too obvious that there
are major differences. By defining the key field information for
EMPMAST in line 6 of Figure 15-3, we tell RPG that the key is 3
positions long, that there will be alphabetic keys, the file is indexed, and
the key starts in position 1. By defining the key information in the RPG
program that tells RPG to process the file by key.

So, what does that have to do with assuring ascending sequence by
EMPNO? Notice that the EMPMAST, TIMCRD, and SALFILE all have
an “F” designation in column 16. In RPG parlance, that makes the file use
in the program fully procedural. Fully procedural means that operations
supporting random reads, writes, and updates as well as operations
supporting sequential reads, writes and updates are fully supported against
this file

Figure 15-3 PAREG2 No Cycle File Description – Internally Described
004 F* RPG FILE DESCRIPTION SPECIFICATION FORMS

005 F*

006 FEMPMAST IF F 70 3AI 1 DISK

007 FTIMCRD IF F 7 3AI 1 DISK

Table of Contents 384

008 FSALFILE IF F 9 3AI 1 DISK

009 FQPRINT O F 77 OF PRINTER

010 FERROR O E PRINTER

Figure 15-4 RPG Cycle Program PAREG – Internally Described Data
0004.00 F* RPG FILE DESCRIPTION SPECIFICATION FORMS

0005.00 F*

0006.00 FEMPMAST IPEAF 55 DISK

0007.00 FTIMCRD ISEAF 7 DISK

0008.00 FQPRINT O F 77 OF PRINTER

In line 77 of the PAREG2 program, you can see the following coded
operation:

077 C… READ EMPMAST… 91

This operation reads the EMPMAST file using the RPG READ
consecutive operation. Since the file is defined to be processed by key in
File Descriptions, when a READ is issued against EMPMAST, the index,
which is always maintained in sequence, just as the index in the back of a
book, is read first under the covers. Then RPG uses the address of the
record found in the index to bring the record into the program. For the
next read, the next sequential index record is read and its data record is
brought into the program. From RPG’s perspective the data is being
processed in city within state sequence and thus for PAREG2, it is always
read in EMPNO sequence by key. The database in this program assures
that the data will be presented in EMPNO sequence. Without having
made the EMPAST file an indexed file, however, there would have been
lots more work involved.

Is the Data All Wrong Here?

If the program report is sequenced city within state, then how is it that by
sorting on EMPNO or using EMPNO as the key causes the data to be
sequenced in city within state sequence? The answer is simple. That’s

Table of Contents 385

how the system is designed. Of course it is poor design. Try to add a
record to the file and maintain this sequencing. Suppose you want to add
a new employee in Scranton, for example. Let’s say you want to add the
next sequential employee #, employee 12, to Scranton and the data must
be maintained in EMPNO sequence. What happens to the report
sequencing?

Employee 12’s Scranton PA record would be in the file logically and
physically after Newark. Walking down the report in Figure 4-1, that
would men that long after the totals for Scranton were taken in the report,
another Scranton record would be read. This just does not work. This
apparently intentional poor design did not matter in the PAREG cycle
program since that environment was quite controlled and adding
employees was not something that a neophyte programmer needed to be
concerned about. But as this little report grows in to a bigger application,
the structure of the data needs to be discussed and understood.

One way the designer could have dictated that the charade be kept going
would be to increase the employee # by one or two columns. When the
EMPDPT and EMPSCD fields were added for PAREG2, this would
have been an ideal time. But the designer did not change the design. If he
or she had, then it would permit employees to be inserted (added) into the
proper state / city slot by assigning an appropriate employee number. For
example, employees 00301 to 00399 would be Scranton slots. So, the next
employee for Scranton could be employee # 00301.

You may recall that BING CROSSLEY is employee # 003. If the
number were expanded by two digits, an additional 99 entries could be
added to Scranton PA after CROSSLEY’s number was changed to 00300.
Another way would be to change the employee numbers within the three
character constraint so that CORSSLEY was employee # 030 instead of
003. In this case, without a change to the file or the programs, up to 9
additional numbers could be assigned to Scranton, PA.

Data Design Matters

In data design, there are lots of ways to get the same objective
accomplished. You may have noticed that the sorting within the City and
States fields was not really in any sequence – other than to assure that all
“Scranton” records for example were together, and all Wilkes-Barre

Table of Contents 386

records were together. But, looking at the report first presented in
Chapter 4 as Figure 4-2, Wilkes-Barre (W) city comes before Scranton (S)
in the report and Pennsylvania (P) comes before Alaska (A). Being a
Pennsylvania boy myself, you can appreciate why the sequencing is as it is.

Because the sequencing is hand – picked and not really in ascending or
descending, there is no real straight forward way to maintain this sequence
in a report other than to tie it to some other numbering mechanism as we
did with EMPNO. We could have created a new sequencing file just for
the report and used it as our own index to print lines in our desired
sequence. This is a common technique and used often to assure that
balance sheets and P& L statements can print properly regardless of the
GL account # sequencing.

If, of course we did not want to maintain a hand-picked sequence in
which Pennsylvania was the first state on the list, we could have sorted
the data in city within state sequence thereby giving Fairbanks Alaska as
the first entry in our report. If we chose to use an indexed approach, we
could have created an alternate index on employee number within city
within state. These three keys would give us the employees sequenced
within city and the cities sequenced within states and the states themselves
would be sequenced, giving us Alaska first. The coding for the logical file
approach would be mostly the same with the READ operation delivering
data from the index in employee within city within state sequence – no
logic change in the program.

Overall, this would have been a better design but it is not the design that
we find for this PAREG2 program or the original PAREG program. But,
it does show that Level changes do not care if the next value is in
sequence. Level changes do care however, whether the next value is
different from the current value. And when different, either the RPG
cycle, or you as the programmer as in PAREG2 have to account for the
difference and fire off the appropriate level of totals on the printout.

Matching Records Processing

Whether you use the cycle as in PAREG or you use the manual method
(PAREG2), matching records processing always depends on data being in

Table of Contents 387

the sequence in which you wish to report. Thus, all of the considerations
for sequencing which we just discussed apply.

In the PAREG2 example, there is no opportunity to place M1 next to
fields that logically should be matched in a program. Therefore, there is
no opportunity for the MR indication to be used to tell the program when
there is a match. Likewise, there is no opportunity for the NMR indication
to be used to tell the program when there is no match. Again we must do
the work ourselves. And, again the fact that we changed the EMPMAST
file from a consecutive data file to an indexed data file helps us in this
task.

We also changed the file type of the TIMCRD file from consecutive
(sequential) to indexed and this change enables us to greatly simplify the
processing of the time card file. Additionally, the same logic works for
the SALFILE so as you can see in File Descriptions (Figure 15-3) it too
has been designed as an indexed file.

As an aside, if the SALFILE were in the PAREG RPG cycle program, it
would have had to be coded as a tertiary file in column 16. Since there is
no tertiary designator for column 16, it would have had to be coded as a
secondary. To make it a tertiary file, it would be the third input file
defined in File Descriptions using a P or S designation in column 16. In
PAREG2, the same type of operation that brings in the matching
TIMCRD record is used to bring in the SALFILE record. Other than the
different record lengths, you can see that each file, EMPMAST,
TIMCRD, and SALFILE use the same basic coding to assure they are
processed as indexed files, in a fully procedural fashion in the PAREG2
program.

Since these three files are “sorted” in report processing sequence through
the EMPNO key field of the respective files, we could have written the
PAREG2 program to fully simulate the IBM MR logic. In other words,
we could have processed all three files in an input sequential manner by
using the index to deliver the records in sequence. To do this, we would
have had to do all the coding and checking and “looking ahead” to see
which record would be processed next. We would have to set on an
equivalent of MR when we had matches and we would have had to set off
MR when there were no matches.. Though this could be done, it would

Table of Contents 388

have been lots more work than the key access processing method that we
selected.

One advantage of processing all three files in a manual matching scenario
would be that we would intrinsically know which records in each file were
matched and which ones were unmatched. Line 77 of the PAREG
program is where we start the action in this program by reading in the
Master file sequentially. Both the Salary file and the Time Card files are
processed randomly using the CHAIN operation.

Each employee, whether hourly or salary is to submit a time card each
pay. Therefore, when we use the EMPNO field that the program read
from the EMPMAST file to access the time card file randomly via the
CHAIN operation, we expect that there will be a time card record present
for the employee. If there is no time card, there is an error condition,
signaled as shown below by indicator 92.

136 C… HLDNO CHAINTIMCRD… 92

137 C… 92 EXCPTNOTIME

In the HI indicator area of the CHAIN operation, you specify an
indicator (92 in this case) that will turn on if the time card record is not
found in the Time card file. If there is no time card, as you can see in
statement 137, the program issues an EXCPT operation to an exeception
print line named NOTIME.

The EXCPT operation is how we control printing from calculations.
Having received its name in RPGII from its ability to perform output that
was not the norm (the RPG cycle) but was the exception, the EXCPT has
all of the capabilities of PRINT operations or WRITE operations or PUT
operations in other languages. The EXCPT with an exception name
(NOTIME in this case) prints the lines in output that have been coded
with an “E” (exception) in column 15, rather than the H (Header) or the
D (Detail). See Figure 15-5.

Moreover, it prints them immediately. Since there is only one RPG cycle
in the PAREG2 program, using the D entries cannot work. The output
coding for the No Time Card error message is shown below in Figure 15-

Table of Contents 389

5, Note the E in column 15 (D in FMT) of the Record ID and Control
statement # 223. Note also that when the PRTLN1 exception line prints
at statement # 229, that an additional “** No Time Card **’ message –
also conditioned by indicator 92 -- appears on the normal employee print
line for the report. While you are noting things, you may have noticed that
the field names in Figure 15-5 do not begin with EMP as in EMPMAST.
That’s because they are not from EMPMAST. This will be explained
below when we take a deep look a the control break logic.

Figure 15-5 PAREG2 Exception Output Records for Printing

FMTO ONamDFBAN03Excnam..............................

223 O… E 11 NOTIME

224 O… HLDSTA 4

225 O… HLDCTY 29

226 O… HLDNO 27

227 O… 53 'No Time Card this pay'

228 O… 71 ' period for below:'

229 O… E 01 PRTLN1

230 O… HLDSTA 4

FMTP ….......N03Field+YBEnd+PConstant/editword+++++

231 O… HLDCTY 29

232 O… HLDNO 27

233 O… HLDNM 52

234 O… N92HLDPAY1B 77

235 O… N92HLDHRS1B 67

236 O… HLDRAT1 57

237 O… 92… 76 '** No Time Card **'

When indicator 92 is not on, that means that we have successfully chained
to the TIMCRD file and there is a time card for the employee. This is the
equivalent function to the MR ID turning on. Thus, N92 means MR and
it means that the information from the master and the time card are in
memory and ready for processing.

There is one more file to bring into the picture, the new SALFILE. The
operations to access the SALFILE and the operations to prepare the
SALARY to replace the PAY calculation are shown in Figure 15-6. Let’s
decode a line at time to see what this little routine actually does.

Table of Contents 390

Figure 15-6 Salary Routine

141 C N92 HLDNO CHAINSALFILE 98

142 C N98N92 Z-ADDSALYR HLDSAL 60

143 C N98N92 SALYR DIV 52 HLDPAY

144 C N98N92 HLDPAY ADD CTYPAY CTYPAY 92

145 C N98N92 Z-ADD0 HLDHRS

In statement 141, the employee # from the master record being processed
is used to CHAIN (random read by key) to the SALFILE. THE HI
indicator is 98 and this comes on if there is no SALARY record. You may
recall that there is an EMPSCD field that was newly added to the
employee master file to contain a Y if the employee is salaried. However,
this code is not used in this program. Instead, after adding the code to the
master, the designers decided to use the absence or presence of a salary
record as the decision point for whether an employee is to be processed
with a salary or whether hours worked are to be multiplied by rate to
produce the pay.

So, if indicator 98 is on, that means we have an hourly employee. It is not
an error condition by design. Following #141, you see four lines of code
conditioned by the negative of indicator 98 and the negative of indicator
92. In English this says that each of the four calculations from 142 to 145
will be executed only if there is a time card record (company policy) and
there is a salary record (salary routine). So, if there is no time card, the
exception output at statement 137 delivers the missing time card message
and the salary computations do not take place. Inn fact, as you can see in
statement 141, the CHAIN to the salary file does not even take place if
there is no time card.

So what happens in the salary routine if the salary record is found – also
meaning there was a time card record? At statement 142, the yearly salary
is moved into the current payroll record being processed (HLDSAL). At
statement 143, the yearly salary is divided by 52 to create the weekly salary
and it is stored in the PAY record for the current employee (HLDPAY).
At 144, the pay is added to the CIT total for control break printing.
Finally, at 145, the current employees hours are erased so that salaried
employees can be differentiated in reports by not having hours printed.

Table of Contents 391

That’s about all of the extra code required to process matching records
function with the salary option in this program – except for one thing.
Because we are reading the EMPMAST file as the driver for this
program’s function, we have no way of knowing through this means as to
whether we may have a missing master or a time card record that possibly
does not match a master record.

Since we access a time card record directly by key only after first reading
an EMPMAST record, we do not necessarily process each of the time
card records in the file. Therefore, it is possible that we have a time card
record and there is no matching master for it.

In PAREG with real MR logic and the cycle, this was not a problem. On
line 43 pf PAREG, for example we printed a message that there was no
matching master merely by using the NMR status and the record ID of
the time card file (02). There was not routine needed to find a missing
master. The RPG cycle provided this status with the NMR 02 indication.
Boy, was that easy. It is not that easy doing it manually with a random file.
As noted previously, if we had read all fields sequentially, the NMR
conditions would be easier to spot but the code to process all files
sequentially with no MR assistance by RPG would be a lot of coding. So,
we opted for the easy way.

Now, we have to solve the problem that this solution created. How do we
find missing masters for our time card records. The answer actually is
simple. We must read each time card record and check each master to see
if it exists for that particular employee time card record. In the beginning
of the program at statement 71, as shown below, we launch the
subroutine that gets this job done.

070 C* Check to see if there is a missing master

071 C EXSR CHKMST

What is a subroutine?

In chapter **** we discussed subroutines to an extent in their role in
structured operations. This explanation is better and it is appropriate for
the work done in the PAREG2 program.

Table of Contents 392

All computer languages have subroutines. These are little chunks of code
that can be isolated from all other code without the risk of one routine
bumping into another. Using subroutines as tools to attack lower-level
tasks in a program is a much better approach than using straight line code
with decisions and branches. In the latter there is ample opportunity for a
hunk of code to be inadvertently executed merely because “it is there.”

In computer science, there are all kinds of techniques for writing
programs and all of them like code segregation to avoid the problems of
straight-line coding. Some like bottom up programming and some like top
down programming and there are many wrinkles in between such as
stepwise refinement. Since this is not a computer science theory book per
se, the use of subroutines in the sample programs is similar in a sense to
the top-down and bottom up approaches. The question has to do with
when do you write the subroutines.

In bottom up, you would write the subroutines first while in top down
you would write the calls to the subroutines and then provide some
pseudo code for what you expect the subroutine to perform. In RPG, one
would typically place the subroutine call at the top of the program and
then create the subroutine at the bottom of the program. There would
typically be no pseudo code because RPG is actually a high enough
language that it is not really necessary to write pseudo code.

The other thing that the use of subroutines mimics, but not strictly is the
HIPO (Hierarchical Input Process Output) methodologies which
promote the use of separate modules to provide the major functions of
the program. In RPG/400, the tool that you have to create these modules
within a program is the EXSR statement. To create modules outside of
the RPG program, RPG offers the CALL statement which is not used in
the PAREG2 program.

Check for Missing Master

If you examined the code at the top of the PAREG2 program that
initiates the check for the missing master, you would first find the EXSR
CHKMST at statement 71. It is within the RUNREG subroutine that is at
statement 69. The RUNREG subroutine begins as shown on statement

Table of Contents 393

69 in Figure 15-7. It is called from the top of Calculations at statement 65
as shown in Figure 15-7.

Notice immediately after this statement that there is a SETON LR
statement at 66. Since the entire Payroll Register is printed within the
RUNREG subroutine, there are no real straight line calculations in this
program. Only two statements in the program come before the first
subroutine, 65 and 66. Here is how a subroutine works in RPG.

At statement 65, RPG encounters the EXSR RUNREG and immediately
branches to the subroutine beginning with statement 69, the BEGSR
statement for RUNREG. The first thing that happens in this very
modularized program is that RUNREG executes the CHKMST code
which is shown in Figure 15-8. Eventually the RUNREG finishes all of tis
work and finds itself at statement 111 as shown in Figure 15-1.

When a subroutine hits its ENDSR, it is finished with its work. The
ENDSR operation defines the end of an RPG/400 subroutine. It must be
the last statement in the subroutine. The ENDSR operation ends the
subroutine (RUNREG in this case) and its default is to causes a branch
back to the statement immediately following the EXSR operation. Notice
that the statement following the EXSR RUNREG in the PAREG2
program is SETON LR..

Though there are only two mainline calculations, statement 65 and 66, and
because there is no second RPG cycle in this program, when the PAREG
subroutine is finished, the program is finished. Actually since the mainline
would have just one statement without he SETON LR being included,
there would be no place for the EXSR to return. In reality it would return
to the end of detail calculations (prior to the first subroutine) but it would
gets stuck since there is no second cycle in a program without a primary
or secondary file.

Thus, once the detail calculations are over, the program has no place to
go. Moreover, since there is no primary or secondary file to force an LR
condition naturally through the cycle when there are no more records to
be read, IBM has made it a requirement that where there is no primary or
secondary file, the programmer must set on LR to tell RPG that it is done.
Statement 66 fulfills this requirement. When the RUNREG subroutine
completes and branches back to the statement following the EXSR

Table of Contents 394

RUNREG, it is at statement 66. It then sets on the LR indicator, and it
gracefully ends.

Figure 15-7 Start the Main PAREG2 Register Subroutine

064 C* Run default register with no prompt input

065 C… EXSR RUNREG

066 C… SETON LR

067 C*

068 C* Body of Code- Controls Payroll Register

069 C… RUNREG BEGSR

070 C* Check to see if there is a missing master

071 C… EXSR CHKMST

072 C* Clear CHKMST fields to begin fresh register

073 C… EXSR CLR

074 C… CLOSEEMPMAST

075 C… OPEN EMPMAST

076 C* First read ahead to check for Level breaks

077 C… READ EMPMAST 91

The RPG/400 BEGSR operation at line 69 defines the beginning of a
subroutine (RUNREG) and the ENDSR operation at statement 111
defines the end of the RUNREG subroutine. All the code in between the
BEGSR and the ENDSR are considered part of the subroutine. At
statement 71 the RUNREG subroutine executes the subroutine
CHKMST to see if there are any missing payroll masters. This subroutine
is shown in Figure 15-8. Following the CHKMST subroutine, at
statement 206 as shown in Figure 15-8, control is passed back to the
executable statement following the EXSR CHKMST (statement 73) in
Figure 15-7.

Because the CHKMST routine as you can see in Figure 15-8 runs through
the TIMCRD file sequentially and it randomly positions the EMPAST
records and it puts values in the fields, it is wise to perform some
housekeeping (refresh fields). The CLR subroutine handles this.
Moreover, as a simple means of repositioning the file cursor for the first
PAREG2 READ of the PAYMAST, at statements 74 and 75, the
program closes the EMPMAST file and then reopens it. This has the
effect of setting the file cursor at record 1.

Table of Contents 395

Note: The file cursor is a place holder for a file so that the file can

remember where it is when it when it is reading sequentially.

Closing and reopening the file sets it back to record 1 thereby

permitting the PAREG2 program to produce the register as if the

CHKMST subroutine had never altered the file cursor.

Figure 15-8 Check for Missing Payroll Master
197 C*

198 C* CHKMST Read time cards for missing masters & report

199 C*

200 C CHKMST BEGSR

201 C *IN93 DOUEQ*ON

202 C READ TIMCRD 93

203 C EMPNO CHAINEMPMAST 94

204 C 94 EXSR NOMAST

205 C ENDDO

206 C ENDSR

147 C*

148 C* Write error msg for no master to separate Ext print file

149 C*

150 C NOMAST BEGSR

151 C WRITEHDR

152 C WRITEDTL

153 C ENDSR

In Figure 15-8, you can see the CHKMST routine. It is basically very
simple. It starts with the BEGSR in statement 200. The next step is a Do
until equal at statement 201. This is covered more in Chapter ****
Structured Programming. We use it in this program because it works best.
In essence it says Do the routine between the next statement and the
statement before the ENDO at 205 until indicator 93 turns on.

So, how does indicator 93 turn on? Notice that in statement 202, the
READ operations is coded to read the TIMCRD file one record at a time.
The DOUEQ (Do until equal) will keep this loop (201 to 204) repeating
until indicator 93 turns on. Indicator 93 is coded in the EQ portion of
the READ statement and if you were to go back to Tables 13-2 and
Table, you would see that it turns on when all the records in the file have
been processed and the READ was unable to be satisfied since the file is
at end with no more records to give.

Table of Contents 396

So, how do you know if you have a missing master? In statement 203, the
code says to CHAIN to the EMPMAST file and if there is no hit, turn on
indicator 94. We are looking for time cards with no masters. The default is
time cards with masters. So, indicator 94 tells the program that there is no
master for this particular time card. When that is the case, statement 204,
conditioned by indicator 94 executes an error subroutine called
NOMAST.

For your convenience, the NOMAST subroutine is included at the
bottom of Figure 15-8. Because the program executes the CHKMST at
the beginning of the program even before it prints headings on the
PAREG2 Register, it did not make sense to print error messages on the
register report for missing time cards. Therefore, the program includes a
new print file called ERROR, defined at statement 10 in Figure 15-1 and
repeated below:

010 FERROR O E… PRINTER

The E in column 19 differentiates this printer file from the QPRINT file
defined in Line 9. The E stands for externally described. The information
provided by the print file called ERROR could have been coded using O
specifications in QPRINT but this technique increases your learning of
RPG/400 and RPGIV capabilities.

Statements 51 and 52 send out two formats from the external print file,
HDR for the header record and DTL for the detail record. For each error,
a header and detail is written using the WRITE operation The EXCPT
works only with program described files so the WRITE operation was the
only choice to effect this error message.

Following the NOMAST subroutine, its ENDSR causes a return to the
CHKMST subroutine as shown in Figure 15-8, statement 205. To DO or
not To DO, that is the question. If indicator 93 has not yet turned on, it
means that there are more time cards to check for missing masters. On
the other hand, if indicator 93 is on, the CHKMST subroutine ands and
control is passed to statement 73 of the RUNREG subroutine as shown
in Figure 15-7.

Table of Contents 397

Getting back to the NOMAST subroutine in Figure 15-8 for one more
look, the externally described printer file used with this program is shown
in Figure 15-9.

Figure 15-9 ERROR Externally Defined Printer File
FMTP TName+RLen+TDpBLPosFunctions++++++++++++++++++++++++++

03 A***

04 A…RHDR

05 A***

06 A***

07 A… SKIPB(001)

08 A… SPACEA(002)

09 A… 14

10 A… 'This Error Report is a result of r-

11 A… eading the Time'

12 A… 14

13 A… 'Card file completely and finding a-

14 A… missing employee '

15 A… SPACEB(001)

16 A… 14

17 A… 'master record. The time card recor-

18 A… d was either '

19 A… SPACEB(001)

20 A… 14

21 A… 'keyed wrong or the master has been-

22 A… inadvertently '

23 A… SPACEB(001)

24 A… 14

25 A… 'deleted. Check payroll input data-

26 A… . '

27 A… SPACEB(001)

28 A***

29 A***

30 A…RDTL

31 A***

32 A***

33 A… SPACEB(001)

34 A… 18

35 A… 'Employee Number & HRS entered :'

36 A… EMPN 3S 0O +1

37 A… EMPHRS 4S 2O +3EDTCDE(1)

38 A***

It is not the intention in this book to teach you how to create printer files,
however, having the DDS as shown in Figure 15-9 is better than half the
battle. As you can see in Figure 15-9, there are two record formats called

Table of Contents 398

HDR (Statement 4) and DTL (Statement 30) and these are used in the
NOMAST routine described above.

In the sample data for this program, there is one missing master. There is
a time card record for EMPNO 6 but there is no master. When the
PAREG2 program encounters this, it takes the compiled formats in the
ERROR DDS shown in Figure 15-9 and it prints out a message that in
the System i spool queue looks like the one shown in Figure 15-10.

Figure 15-10 ERROR Report – No Master for Time Card
*...+....1....+....2....+....3....+....4....+....5....+....6....+

 This Error Report is a result of reading the Time

 Card file completely and finding a missing employee

 master record. The time card record was either

 keyed wrong or the master has been inadvertently

 deleted. Check payroll input data.

 Employee Number & HRS entered : 006 40.00

This completes our look at the code necessary to replace the matching
records in the PAREG program with the manual methods using READ
and CHAIN as well as the method needed to find the missing PAYMAST
records. Now, it is time to examine the last and most substantial part of
the new code to support the creation of a report without the RPG cycle.
The following section shows the code necessary to perform control level
breaks and control level output in RPG/400 without using the RPG cycle.

Control Level Breaks – No RPG Cycle

What causes a control level break? We have answered that a few times in
this book but to remind you again, a control break occurs when the next
record to be processed is different from the record currently being
processed. How do you know what the next record is? Ho do you read a
record and have it not be the record that your processing? Early RPG
programs often used a facility called look-ahead fields, which are less
frequently used today and so they are not used in this program. Instead, in
order to simulate the notion of having two records in RPG memory at a
time and always processing the lead record, we chose to use a data
structure to store the record being processed.

Table of Contents 399

Since we need to read the EMPMAST file, the first thing we do to assure
two records in memory is to read in the first record at Statement 77 as
shown in Figure 15-11. Statement 77 is executed once and only once in
the program.

Figure 15-11 Level Calculations

076 C* First read ahead to check for Levels

077 C… READ EMPMAST… 91

078 C… EXCPTHEADER

079 C… EXSR PROCES

080 C* Run register until end of file

089 C… *IN91 DOUEQ*ON

090 C* SECOND READ UNTIL EOF - FOR LEVEL CHECK

091 C… READ EMPMAST… 91

092 C…91… LEAVE…

093 C* Replaces L1 coding as in PAREG

094 C* LEVEL1 TEST-- See if current city different

095 C… EMPCTY IFNE HLDCTY

096 C… EMPSTA ORNE HLDSTA

097 C… SETON… L1

098 C… EXSR LEVEL1

099 C… ENDIF…

100 C* Level 2 test -- See if state changed

101 C… EMPSTA IFNE HLDSTA

102 C… SETON… L2

103 C… EXSR LEVEL2

104 C… ENDIF

105 C… SETOF… L1L2

106 C… EXSR PROCES

107 C… ENDDO

108 C… EXSR LEVEL1

109 C… EXSR LEVEL2

110 C… EXCPTLROUT

111 C… ENDSR

Since statement 77 is executed just once and there will always be more
than one records in PAYMAST file, the program does not have to do any
work with the end of file indicator 91 from the READ statement.
Instead, since this is the first record read for the Payroll Register, the next
statement at 78 performs exception output to the lines marked header in
Figure 15-1. The two output lines (210 and 215) are almost identical to the

Table of Contents 400

header lines in the PAREG program except that there is an E instead of
an H in column 15 as shown below:

210 OQPRINT E 206 HEADER

215 O E 3 HEADER

At statement 79 as shown in Figure 15-11, the next operation is to execute
the PROCES subroutine. As you can see in Figure 15-1, the PROCES
subroutine at line 79 in RUNREG executes from its BEGSR operation at
line 157. It calls the following subroutines and then comes back to the
RUNREG subroutine at statement 89.

✓ MOVMS1 Statement 173

✓ PAYCLC Statement 132

✓ PRNTLN Statement 165

The MOVMS1 Subroutine – First Record

The MOVMS1 subroutine as shown in Figure 15-1 starts at line 173. It
sets up the program for keeping two records in memory. After this first
READ statement in RUNREG, and the execution of the MOVMS1
subroutine, the fields of EMPMAST exist in two locations – the
EMPMAST record itself and a data structure named HLDMST as shown
in Figure 15-12. Through several Z-ADD statements and a number ov
MOVE statements the individual fields in the PAYMAST record are
moved to the individual fields of the HLDMST data structure. At this
time in the program the contents of the current record (in process) as
stored in the HLDMST data structure is exactly the same as the contents
of the last EMPAST record read.

Before we continue let’s examine the question, what is a data structure?
Chapter **** goes over structures in detail. For now, consider a data
structure as a means of defining one record in memory that has no

Table of Contents 401

necessary association with a database file. Once the MOVMS1 subroutine
finishes its job and returns to the PROCES subroutine, that one record
structure is populated with the data from the first PAYMAST record , and
that is the data that will be processed in the subsequent subroutines in
PROCES, namely, PAYCLC and PRNTLN.

Figure 15-12 HLDMST Data Structure to Hold Current Record

049 IHLDMST DS

050 I... 1 30HLDNO

051 I... 1 70 HREC

052 I... 4 33 HLDNAM

053 I... 4 23 HLDNM

054 I... 34 382HLDRAT

055 I... 39 58 HLDCTY

056 I... 59 60 HLDSTA

057 I... 61 650HLDZIP

058 I... 66 66 HLDSCD

059 I... 66 66 HLDDPT

The PAYCLC Subroutine - First Record

The PAYCLC subroutine as shown at statement 132 in Figure 15-1
calculates the Gross Pay by multiplying the hours from the time card by
the rate from the employee master unless there is a salary record. If there
is a salary record the routine uses the SALARY as the pay and stores it in
the HLDPAY field which is defined within the PAYCLC routine itself. In
addition to this the subroutine adds the HLDPAY amount to the city
Level 1 total bucket, CITPAY. The PAYCLC routine then returns to the
PROCES subroutine at line 160..

Line 160 in the PROCES subroutine is an EXSR PRNTLN statement. So,
at this point control is passed to the PRNTLN routine at statement 165.
The PRNTLN routine as shown in Figure 15-1 does 3 tasks. It asks that
Headers be printed via the EXCPT HEADER statement at line 166 if the
program senses that OVERFLOW has occurred on the printer.
Additionally it sets off OF at line 167 if it is in. If OF is not on, the
routine prints a detail line via the EXCPT PRNTLN1 statement at line
168 of the PRNTLN subroutine. The PRNTLN’s ENDSR is at line 168
and at this point the ENDSR causes the program to branch back to

Table of Contents 402

statement 161 which is the line following the EXSR PRNTLN line in the
PROCES subroutine. This happens to be an ENDSR for the PROCES
subroutine. From here the ENDSR causes the program to branch back to
statement 89 in the RUNREG subroutine.

Caution: There are a few statement numbers that are skipped
between lines 79 and 89 in the RUNREG subroutine. Do not
assign any significance to this.

At this point we have (1) read the EMPAST first record, (2) stored it in
HLDMST, and (3) calculated gross pay and stored that in HLDPAY, and
(4) printed the headings and the first detail line. Now we are finished with
the unique things that must be done with the first record read when
checking for control breaks. Right now it resides in EMPMAST and
HLDMST and it has been processed.

Looking back at Figure 15-11, you see that statement 89 is s DO until
statement. It is waiting for indicator 91 to turn on before it will end the
DO loop. From Figure 15-11, you can see that this DOUEQ loop
extends to statement 107 where there is an ENDO statement. So all of
the statements from 90 to 106 if properly conditioned will execute as
often as the loop permits. Indicator 91 comes on when the last
EMPMAST record has been processed and the program is trying to read a
record after the last record that is not there. This ends the loop. Now, let’s
see what else happens in this very important loop.

At line 91, there is a READ statement. This means that for every iteration
of the DO loop, a record will be read from the PAYMAST file. When the
end of file indicator (91) is turned on with no record returned at statement
91, (No intention of confusion with statement 91 and indicator 91 – it
happens) the next line tests to see if the last loop iteration should
continue. As you can see in Figure 15-11, statement 92, if end of file has
been reached and thus no record has been read into PAYMAST, the loop
is over and for that matter the program is almost over. The LEAVE
operation takes the program to statement 108 which causes the Level 1
subroutine, Level 2 subroutine and Last record subroutine to execute.
Following this, at statement 111 shown in Figure 15-11, the ENDSR for
RUNREG is encountered. This takes the program to the statement
following the EXSR RUNREG or statement 66. Here the LR is turned on
and the program falls to the end of detail calculations. Since LR is on the
program ends.

Table of Contents 403

If there are records to process however, indicator 91 does not turn on.
Therefore, the LEAVE operation is not taken and the loop in Figure 15-
11 continues to line 93. The code from 93 to 97 is repeated below

093 C* Replaces L1 coding as in PAREG

094 C* LEVEL1 TEST- city different?

095 C… EMPCTY IFNE HLDCTY

096 C… EMPSTA ORNE HLDSTA

097 C… SETON… L1

098 C… EXSR LEVEL1

099 C… ENDIF…

Control Break Level 1 Processing

Since a state change by definition means that a City has also changed, the
code in lines 95 and 96 tests to see if the current record being processed
(stored in the HLDMST data structure) has a city or state change. The
chances of a Wilkes-Barre, Alaska and a Wilkes-Barre Pennsylvania
following each other in a payroll application are remote indeed but this
code solves the problem if need be for other applications as well as this
one.

What is an IF statement? Statement 95 contains an IF not equal
operation (IFNE). It tests to see if the contents of the EMPCTY field
which comes from the record just read but is not yet in process is not
equal (different) to the contents of the HLDCTY field in the record being
processed.

What is an OR statement? An OR operation extends and IF statement by
adding another set of circumstances for the test to be true. So, if by
chance the two cities were equal making the first condition in 95 false but
the state comparison in the ORNE (or not equal) statement in line 96 was
true (states are different, the result of the IF would be true and the lines
between the IF and OR statements (97 to 98) would therefore be
executed. On the other hand, if both conditions are false, meaning no

Table of Contents 404

city change and no state change, then the operations preceding the
ENDIF statement at line 99 would not be executed.

If you got comfortable with level logic while decoding the PAREG
program, then this logic makes sense to you because it mimics the control
break logic that RPG uses in the cycle. If you have not gotten comfortable
with the L1 part of the cycle, this type of coding probably makes more
sense to you.

So, if there is no control break, nothing happens in between records, but
is there is a level 1 control break, statement 97 turns on the L1 indicator
as a marker and then executes the L1 processing subroutine named
LEVEL1 at statement 98. The ENDIF statement at statement 99 ends
the IF statement that’s started with statement 95. Each IF statement that
you use in a program must be end with an ENDIF. If the either, any or
all conditions in an ORed IF statement are true, the statements in
between execute. If none are true they do not execute. If all conditions in
an ANDed IF operation are true, the statements in between execute. If
any condition in an ANDed IF is not true, the statements do not execute.

Before we come back for the L2 tests, let’s look at the LEVEL1
subroutine that gets called when there is a control break. You can imagine
what must happen. Just as with the PAREG program, the calculations
done at L1 detail time would be need to be done in this LEVEL 1
subroutine. In other words, the CITPAY would be added to STAPAY
Additionally the functions done at L1 output time (lines 238 to 241 in
Figure 15-1) would need to be done to print the City totals. As you can
see in the code snippet below the LEVEL 1 subroutine does exactly this.

113 C* Level 1 Subroutine City Control break

114 C*

115 C… LEVEL1 BEGSR

116 C… CTYPAY ADD STAPAY STAPAY 92

117 C… EXCPTL1OUT

118 C… ENDSR

Table of Contents 405

Control Break Level 2 Processing

So now that we have processed L1 totals without the RPG cycle, let’s
move on to Level 2 totals. By the way, similar logic works as you extend
the number of total levels to three and four and so on. In Figure 15-11,
the RUNREG code dealing with Level 2 processing is as follows:

100 C* Level 2 test Has state changed?

101 C… EMPSTA IFNE HLDSTA

102 C… SETON… L2

103 C… EXSR LEVEL2

104 C… ENDIF

The Level 2 test is even easier than the Level 1 test. In this case, we
already know that there is an L1 break. We just don’t know if it was
caused by a state change or not. SO we have to test to see if the state has
changed. Again, the current record is in the HLDMST data structure and
the next record to be processed is the record that was just read from
PAYMAST. The two state fields SMPSTA and HLDSTA are compared
to see if there is a state change. If there is no state change then none of
the statements get executed but if the IFNE statement is evaluated as true
and the states have changed, then line 102 and 103 are executed.

Line 103 is a marker to set on the L2 indicator in case we need it
someplace in the program. The L1 and L2 indicators can be used as
regular indicators if you choose as in this program. Once L2 is turned on,
the LEVEL 2 subroutine is executed from line 103.

Before we check out the LR2 tests, let’s look at the LEVEL2 subroutine
that gets called when there is a control break. You can imagine what must
happen. Just as with the PAREG program, the calculations done at L2
detail time would be need to be done in this LEVEL 1 subroutine. In
other words, the STAPAY field value would be added to TOTPAY field.
Additionally the functions done at L2 output time would need to be done
to print the State totals from State total exception output lines (lines 242
to 245 in Figure 15-1). As you can see in the code snippet below the
LEVEL 2 subroutine does exactly this.

Table of Contents 406

120 C* Level 2 Subroutine State break

121 C*

122 C… LEVEL2 BEGSR

123 C… STAPAY ADD TOTPAY TOTPAY 92

124 C… EXCPTL2OUT

125 C… ENDSR

Process the Record Just Read

The last few statements in the RUNREG subroutine of PAREG2 are
repeated below for convenience in referencing. These statements will be
referenced in this section regarding processing the current record as well
as the next section dealing with Final totals at LR time.

Staring with 105 below, you can see that the SETOF operation is turning
off the L1 and L1 indicators. To repeat, we could have used any indicator
number to represent the fact that it was L1 time or L2 time but since
special indicators L1 and L2 are not controlled by RPG in this program,
we took control of then. At the need of the L1 and L2 routines, the
indicators are set off so that they can be tested properly during the next
DO loop iteration.

Earlier in this chapter when we studied the first READ EMPMAST code,
we examined in detail the workings of the PROCES subroutine in line
106. From this examination, we know that it moves the record just read
into the current record slot (HLDMST) and it calculates gross pay and it
prints the detail line. At statement 110 the major DUEQ loop for
RUNREG finds its matching ENDO statement. As long as indicator 91,
which indicates the end of file in the EMPMAST, is not on, the loop
continues. But when 91 is on the Do loop ends and control is transferred
to the first statement following the ENDDO. As you can see, this is
statement 107 and the operations to be done are shown in statements 108
to 110 below.

Table of Contents 407

105 C… SETOF… L1L2

106 C… EXSR PROCES

107 C… ENDDO

108 C… EXSR LEVEL1

109 C… EXSR LEVEL2

110 C… EXCPTLROUT

111 C… ENDSR

Final Total Processing

Just as a state change would force a city change (a Level 2 change would
force a Level 1 change), so also does a last record change force a next
highest level change (L2 in PAREG2). So, when the RUNREG DO loop
is completed at statement 107, the program is all over but the totals.

Since there is no record at this point that was just read, it would not help
at all to compare the current record in HLDMST with the record just
read. If we were clearing this record out each time prior to reading it in,
then that type of code could work. However, it is unnecessary. For when
the program is just about done and it has had or it is about to have (Line
66) LR turned on, the record being processed is clearly the last and
whether it is a single record or a group of records from the same city,
when the next record is no record, there is a level change. In fact, all of
the level fields have changed. The contents logically no longer represent
the last PAYMAST read because no PAYMAST was read. Logically all of
the new fields are zero or blank. SO if we were to compare the EMPSTA
with the HLDSTA we would get a logical not. HLDSTA would contain
the state from the last record actually read and EMPSTA would contain a
logical blank.

Since we know the behavior of all LR conditions, there is no need to test
the other levels. LR forces all other control breaks. So the record in
HLDMST, though it has been fully processed, has not had its City and
State totals for this last group written until this point in the program Line
108 gets the last City total out and 109 gets the last state total out 110
prints the final totals and then it runs into the ENDSR for RUNREG at
111. As we have noted several time sin discussing the logic of PAREG2,
this forces the program back to the last detail calculation at line 66, which

Table of Contents 408

turns on LR and then drifts quietly in to post detail calc oblivion as the
program ends.

There are three more permutations of PAREG2. The version we just
studied, which should be called PAREG2P, is the second longest because
it is program described. The longest version is the RPGIV version
(PAREG2P4) converted with the IBM CVTRPGPGM command already
discussed. Since RPGIV does not like more than one indicator on a
conditioning calculations specification and it needs space for keywords on
may specifications, it is always a bigger (# of lines) program than a
corresponding RPG/400 version. The shortest version PAREG2E is
RPG/400 Externally described and the second shortest version
(PAREG2E4) is the RPGIV version.

The externally described RPG/400 version is presented in its entirety in
Figure 15-13.

Figure 15-13 Externally Described PAREG2 as PAREG2E
 *PAREG2P int. described PAREG – no MR, No LX totals

001 H* RPG HEADER (CONTROL) SPECIFICATION FORMS

002 H

003 F*

004 F* RPG FILE DESCRIPTION SPECIFICATION FORMS

005 F*

006 FEMPMAST IF E K DISK

007 FTIMCRD IF E K DISK

008 FSALFILE IF E K DISK

009 FQPRINT O F 77 OF PRINTER

010 FERROR O E PRINTER

011 IHLDMST E DSHLDMAST 70

012 I 1 70 HREC

013 I 4 23 HLDNM

014 C*

015 C* RPG CALCULATION SPECIFICATION FORMS

016 C*

017 C* Run default register with no prompt input

018 C EXSR RUNREG

019 C SETON LR

020 C*

021 C* Body of Code that Controls the Payroll Register

022 C RUNREG BEGSR

023 C* Check to see if there is a missing master

024 C EXSR CHKMST

Table of Contents 409

025 C* Clear fields from CHKMST to begin fresh register

026 C EXSR CLR

027 C CLOSEEMPMAST

028 C OPEN EMPMAST

029 C* First read read ahead to be able to check Levels

030 C READ EMPR 91

031 C EXCPTHEADER

032 C EXSR PROCES

033 C* Run register until EOF is hit... NU1 end program

034 C *IN91 DOUEQ*ON

035 C* SECOND READ -- UNTIL EOF NEED FOR LEVEL CHECK

036 C READ EMPR 91

037 C 91 LEAVE

038 C* Replaces L1 coding as in PAREG

039 C* LEVEL 1 TEST -- See if current city is different

040 C EMPCTY IFNE HLDCTY

041 C EMPSTA ORNE HLDSTA

042 C SETON L1

043 C EXSR LEVEL1

044 C ENDIF

045 C* Level 2 test -- See if current state is different

046 C EMPSTA IFNE HLDSTA

047 C SETON L2

048 C EXSR LEVEL2

049 C ENDIF

050 C SETOF L1L2

051 C EXSR PROCES

052 C ENDDO

053 C EXSR LEVEL1

054 C EXSR LEVEL2

055 C EXCPTLROUT

056 C ENDSR

057 C*

058 C* Level 1 Subroutine - Control break on City

059 C*

060 C LEVEL1 BEGSR

061 C CTYPAY ADD STAPAY STAPAY 92

062 C EXCPTL1OUT

063 C ENDSR

064 C*

065 C* Level 2 Subroutine - Control break on State

066 C*

067 C LEVEL2 BEGSR

068 C STAPAY ADD TOTPAY TOTPAY 92

069 C EXCPTL2OUT

070 C ENDSR

071 C*

072 C* PAYCLC Calculates Gross PAY from HRS or Salary

073 C* Also calculates "net pay" and updates YTD files.

Table of Contents 410

074 C* Calculate pay for HELD record

075 C* If Salaried, do not use RATE multiplier

076 C*

077 C PAYCLC BEGSR

078 C SETOF 9298

079 C Z-ADD0 HLDSAL 60

080 C* REPLACES MR CYCLE WORK

081 C HLDNO CHAINTIMCRD 92

082 C 92 EXCPTNOTIME

083 C N92 HLDRAT MULT EMPHRS HLDPAY 72

084 C N92 Z-ADDEMPHRS HLDHRS 92

085 C N92 HLDPAY ADD CTYPAY CTYPAY 92

086 C N92 HLDNO CHAINSALFILE 98

087 C N98N92 Z-ADDSALYR HLDSAL 60

088 C N98N92 SALYR DIV 52 HLDPAY

089 C N98N92 HLDPAY ADD CTYPAY CTYPAY 92

090 C N98N92 Z-ADD0 HLDHRS

091 C ENDSR

092 C*

093 C* Write error msg- no master to External print file

094 C*

095 C NOMAST BEGSR

096 C WRITEHDR

097 C WRITEDTL

098 C ENDSR

099 C*

100 C* Process line item

101 C*

102 C PROCES BEGSR

103 C EXSR MOVMS1

104 C EXSR PAYCLC

105 C EXSR PRNTLN

106 C ENDSR

107 C*

108 C* Print Detail Line on Register

109 C*

110 C PRNTLN BEGSR

111 C OF EXCPTHEADER

112 C OF SETOF OF

113 C EXCPTPRTLN1

114 C ENDSR

115 C*

116 C* Move Fields to Hold Area for Level Info / Comp

117 C*

118 C MOVMS1 BEGSR

119 C Z-ADDEMPNO HLDNO

120 C MOVELEMPNAM HLDNAM

121 C Z-ADDEMPRAT HLDRAT

122 C MOVELEMPCTY HLDCTY

Table of Contents 411

123 C MOVELEMPSTA HLDSTA

124 C Z-ADDEMPZIP HLDZIP

125 C MOVELEMPSCD HLDSCD

126 C MOVELEMPDPT HLDDPT

127 C ENDSR

128 C*

129 C* CLR Clear fields were used in missing master test

130 C*

131 C CLR BEGSR

132 C Z-ADD0 EMPNO

133 C MOVE *BLANKS EMPNAM

134 C Z-ADD0 EMPRAT

135 C MOVE *BLANKS EMPCTY

136 C MOVE *BLANKS EMPSTA

137 C Z-ADD0 EMPZIP

138 C MOVE *BLANKS EMPSCD

139 C MOVE *BLANKS EMPDPT

140 C Z-ADD0 EMPHRS

141 C ENDSR

142 C*

143 C* CHKMST Read TIMCRD look for missing masters,report

144 C*

145 C CHKMST BEGSR

146 C *IN93 DOUEQ*ON

147 C READ TIMCRD

149 C EMPNO CHAINEMPMAST 94

150 C 94 EXSR NOMAST

151 C ENDDO

152 C ENDSR

153 C*

154 C*

155 C*

156 C*

157 C*

158 O*

159 O* RPG OUTPUT SPECIFICATION FORMS

160 O* 161 to 198 are the same in all PAREG2 programs

When you become an RPG guru, terms like externally described and
internally described will have become second nature to you. Figure 15-13
directly above shows the same PAREG2 program that we coded with
program (internally) described data in Figure 15-1. This time, however,
the program is coded using externally described files. Of course, because
we do not like externally described printer files (though we use one in this
program to show you how they work), we use program described
exception output that is identical to that for the program described

Table of Contents 412

version of the program PAREG2 in Figure 15-1. Therefore, we skipped
lines 161 to 198 of the externally described program PAREG2E. Its
output specs look exactly like the output lines in Figure 15-1. No change.

PAREG2E, the externally described version in Figure 15-13 checks in at
198 lines of code. This is 50 statements less than PAREG2P, the
internally described version. Considering that a lot of code is swallowed
up in output definitions, which are equal in both programs, this clearly
shows, even when the number of fields in files is relatively small, that
there can be great lines of coding savings by using externally described
data.

What are the Differences in PAREG2 –
Internal v External?

 To know what has changed, you must contrast the major differences.
Figure 15-14 shows the File description specifications of both the internal
and external versions – one atop of the other.

Figure 15-14 Contrast External wit Internal File Descriptions

External Version

004 F* RPG FILE DESCRIPTION SPECIFICATION FORMS

005 F*

006 FEMPMAST IF E K DISK

007 FTIMCRD IF E K DISK

008 FSALFILE IF E K DISK

009 FQPRINT O F 77 OF PRINTER

010 FERROR O E PRINTER

Internal Version

006 FEMPMAST IF F 70 3AI 1 DISK

007 FTIMCRD IF F 7 3AI 1 DISK

008 FSALFILE IF F 9 3AI 1 DISK

009 FQPRINT O F 77 OF PRINTER

010 FERROR O E PRINTER

Table of Contents 413

In Figure 15-14, it is clear to see that it takes a lot less figuring and column
coding in File Descriptions to work with the External File descriptions
than it does to work with the internal descriptions. Moving from left to
right across the columns of the File Description specification, the first
difference is in column 19. The choices are F or E. You choose F for
fixed form meaning program described if you want to describe the files
within the program. You choose E when you want to use the already
existing descriptions within the database. As long as the field names you
use in the program are the same names as those in the external
description, most of the rest of the program does not matter. If the names
are different, then you have lots of work in renaming fields. The both
versions of AREG use the same field names in calculations so this is not
an issue.

Moving from column 15 across the File Description specification, you can
see that to define an internal file, you need to tell RPG the record length,
the key length, whether it uses alphabetic keys, whether it is indexed, and
where the key field begins in the record. For the external versions of
database files, to process by key, the programmer merely needs to put a K
in column 31 and that’s that. RPG knows how to look at the file while the
program is compiling to pick up the other information that is needed,
including input and database output specifications.

You can see by comparing the input specifications in Figure 15-1 for the
internally described version to the input specs in the external version in
Figure 15-13 that there is substantially less coding in INPUT. In fact, in
many programs, thee are no input specs and for database adds and
updates, there are no output specs required.

One of the tricks we used in the external version PAREG2E is that we
created a file on disk with the description of the HLDMST data structure,
which is where the in-process record is stored. This is called an externally
described data structure. Because so often there is a database file that
mirrors almost or exactly a structure you would like to define in the
program, the RPG/400 and RPGIV compilers permit you to point to a
database file for the description of the data structure. This does not mean
that the database file is going to put anything into the data structure. In
fact, it is merely a code saving device.

Table of Contents 414

There is no relationship with the description of the data structure and the
database file from which the description is “stolen.” However, in cases in
which the programmer can save 100 lines of code by referencig an
existing file to obtain the structure subfields, nobody really cares if the
structure and the file have any relationship. Again, it is just a code saving
mechanism, and quite clever at that.

The PAREG2E version uses one such structure. The line of code as
written by the programmer is as follows:

FMT.IDsname....NODsExt-file++...OccrLen+

011 IHLDMST E DSHLDMAST... 70

This line of code at line 11 of the PAREG2E program says the following
to the RPG/400 compiler:

Hi Mr. Compiler. I would like you to define a data structure for me that is
70 positions in length. The subfield definitions for this data structure will
come from an externally described file which just happens to have the
data definition for the record that I would now like to define. No, Mr.
compiler, after you grab the description of this to be data structure from
the internals of the EMPMAST database file, please do not link inany way
this structure to that database file. Thank you.

 That about does it for the differences between the externally described
version and internally described RPG/400 versions of PAREG2.

RPG IV Program Versions

Since none of the code conversions we are doing have anything to do
with EVAL constructs, BIFS, or free form RPG. The RPGIV lines of
code versions that are shown in the rest of this chapter include only those
elements that are changed substantially. In other words, each statement is
different because RPGIV statements are somewhat different. However,
certain elements of the language have changed substantially such that DS
is now on the D spec and options that are used in this program are now
coded using keywords on various specification types.

Table of Contents 415

RPGIV Program Described PAREG2P4

The lines of code that are the same as you would expect are not included
in Figure 15-15 (Internally Described RPGIV) nor Figure 15-17
Externally Described RPGIV.

Figure 15-15 Internally Described RPGIV Version PAREG2P4

 * PAREG2P4 internally described PAREG RPGIV

 * – no MR, No LX totals

001 H* RPG HEADER (CONTROL) SPECIFICATION FORMS

002 H

003 F*

004 F* RPG FILE DESCRIPTION SPECIFICATION FORMS

005 F*

006 FEMPMAST IF F 70 3AIDISK KEYLOC(1)

007 FTIMCRD IF F 7 3AIDISK KEYLOC(1)

008 FSALFILE IF F 9 3AIDISK KEYLOC(1)

009 FQPRINT O F 77 PRINTER OFLIND(*INOF)

010 FERROR O E PRINTER

011 D*

012 D*

013 D HLDMST DS

014 D HLDNO 1 3 0

015 D HREC 1 70

016 D HLDNAM 4 33

017 D HLDNM 4 23

018 D HLDRAT 34 38 2

019 D HLDCTY 39 58

020 D HLDSTA 59 60

021 D HLDZIP 61 65 0

022 D HLDSCD 66 66

023 D HLDDPT 67 70

024 I*

025 I* RPG INPUT SPECIFICATION FORMS

026 I*

027 I*

028 I* EMPMAST is the employee master file

029 I* Basically same as the RPG/400 version

032 IEMPMAST AA 01

033 I 1 70 EREC

034 I etc

043 I*

044 I* TIMCRD File basically the same

049 ITIMCRD AB 02

050 I 1 3 0EMPNO

Table of Contents 416

051 I 4 7 2EMPHRS

052 I*

053 I* SALCRD basically the same

057 ISALFILE AC 03

058 I 1 3 0SALENO

059 I 4 9 0SALYR

060 I*

061 C*

062 C* RPG CALCULATION SPECIFICATION FORMS

063 C*

064 C* Run default register with no prompt input

065 C EXSR RUNREG

066 C SETON… LR

067 C*

068 C* Body of Code running of the Payroll Register

069 C RUNREG BEGSR

070 C* Check to see if there is a missing master

071 C EXSR…CHKMST

072 C* Calculations are basically the same as PAREG2P

 One conditioning ind, SETOFF and EXCEPT below:

…

134 C N92HLDNO… CHAIN SALFILE… 98

135 C N98

136 CANN92 Z-ADD SALYR… HLDSAL… 6 0

137 C N98

138 CANN92SALYR DIV 52… HLDPAY

139 C N98

140 CANN92HLDPAY ADD CTYPAY…CTYPAY 9 2

141 C N98

142 CANN92 Z-ADD 0 HLDHRS

…

159 C*

160 C* Print Detail Line on Register

161 C*

162 C PRNTLN BEGSR

163 C OF EXCEPT HEADER

164 C OF SETOFF… OF

165 C EXCEPT PRTLN1

166 C ENDSR

167 C*

…

210 O* RPG OUTPUT SPECIFICATION FORMS

211 O* Output specifications basically same as PAREG2P

212 OQPRINT E… HEADER… 2 06

213 O… 32 'THE DOWALLOBY

File Description

Table of Contents 417

As you check out the RPGIV converted code in Figure 15-15, the first big
noticeable difference comes in File Description. Of course if we had any
Control SPEC (H) entries, we would have seen those come over as
keywords since the RPGIV H spec has no columnar values at all. Let’s
look at one H spec for an indexed file EMPMAST. It is the same as the
specifications for the TIMCRD and the SALFILE so by examining it in
Figure 15-16, we are in essence looking at the whole notion of fully
procedural indexed files (or logical files) in RPGIV.

Figure 15-16 – Contrast RPG/400 with RPGIV File Description

RPGIV Database
FMT FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords++

006 FEMPMAST IF F 70 3AIDISK KEYLOC(1)

RPG/400 Database
FMT.FFilenameIPEAF....RlenLK1AIOvKlocEDevice+.

006 FEMPMAST IF F 70 3AI 1 DISK

RPGIV Printer FIle
FMT FFilename++IPEASFRlen+L…Device+.Keywords++

009 FQPRINT O F 77… PRINTER OFLIND(*INOF)

RPG/400 Printer File
FMT.FFilenameIPEAF....RlenLK1AIOvKlocEDevice+.

009 FQPRINT O F 77 OF PRINTER

For program described indexed files in RPGIV, IBM chose to keep the
length of the key (3), the notion of alphabetic keys or packed keys (A) and
the indexed file designation (I) as columnar. In the RPG/400 version, you
can see the 3AI very plainly about eight spaces to the left of the DISK
device. In RPGIV, the 3AI is right next to the DISK device. In RPG/400,
the key field starting location is columnar, two spaces to the left of the
DISK device in column 38 of the F form. IBM left no room for the key
field starting location with RPGIV so they invented a keyword
(KEYLOC) to handle this entry. As you can see in the RPGIV the key

Table of Contents 418

starting location of 1 is accommodated with the Keyword entry
KEYLOC(1).

In RPG/400, the programmer had the opportunity to place a value in the
overflow indicator column to define the indicator for printer overflow.
With RPGIV, this entry is no longer columnar. It is keyword oriented and
you can see in Figure 15-16 that the completed keyword specification for
overflow in the PAREG2P4 program is OFLIND(*INOF). It means the
same. It just looks different. That sums up the PAREG2P4 File
Description differences.

The “D” Spec

The next big difference starts at line 13 and goes to line 23 of the
PAREG2P4 program in Figure 15-15. In the RPG/400 version, in lines
49 to 59 of the input “I” specification, the HLDMST data structure is
defined. When this was converted to RPGIV, the information was
transferred to the Definition “D” specification. Several of the “D” specs
from PAREG2P4 are included below for closer examination:

013 D HLDMST DS

014 D HLDNO 1 3 0

015 D HREC 1 70

016 D HLDNAM 4 33

017 D HLDNM 4 23

The “D” spec overall is very easy to relate to compared to defining a data
structure using the convoluted RPG/400 “I” spec DS formats for
definition and subfields. The first thing that you may have noticed is that
you can indent your field names to make the more readable. There is extra
space so that field names no longer need to be left justified.

Intuitively, you can see the data structure name in line 13 with the familiar
DS designation. Also, intuitively, you can see the from and to positions of
the subfields and the subfield names. Again intuitively, knowing that
EMPNO is numeric with zero decimals it is easy to spot the zero in line
14 in the “current record” version of EMPNO named HLDNO.

Table of Contents 419

Conditioning Indicators and Operation Names

In lines 134 to 142 of Figure 15-15, you can see that one indicator was not
enough to condition several of the calculations in this block of code.
Instead of the three spaces for conditioning indicators in RPG/400 which
came in handy for RPG indicator lovers, IBM opted to leave space for
just one. The implicit ANDing of three conditioning indicators was
removed from the RPGIV “C” specification definition. Each of the
statements selected need two indicators to condition their respective
operations. Therefore, two lines of code are needed and the mission is
accomplished by ANDing them together.

Table 14-1 in Chapter 14 shows the RPGIV operations that received
name changes when IBM defined RPGIV. Tow of these name changes
are shown in the block of code from 159 to 167 of Figure 15-15. The
operation statements look very much like their counterparts in RPG/400
except for the change to the operation name themselves. The two
operations in this block of code of course are SETOFF which grew on
character from SETOF and EXCEPT, which also grew one character
from EXCPT. Both of these changes as well as the other operation
changes contribute to making RPGIV a more readable language.

That’s about it for major changes in the PAREG2P4 program. Now, right
before the chapter wrap-up, let’s take a look at one more flavor of
PAREG2 code known as PAREG2E4. This is the RPGIV externally
described version of the PAREG2 program.

RPGIV Externally Described PAREG2E4

The PAREG2E4 is the RPGIV version of the PAREG2E program that
we examined earlier in this chapter. It is very similar. In Figure 15-17, the
code that you see is the code that either has some reference value in itself
to make the program recognizable or it is code that is substantially
different and therefore worthy of review for learning purposes. The full
versions of all this code are available on the Lets Go Publish Web site
(www.letsgopublish.com) as well as the Kelly Consulting Web site
(www.kellyconsulting.com).

http://www.letsgopublish.com/
http://www.kellyconsulting.com/

Table of Contents 420

Figure 15-17 Externally Described RPGIV Version PAREG2E4
001 H* RPG HEADER (CONTROL) SPECIFICATION FORMS

002 H

003 F*

004 F* RPG FILE DESCRIPTION SPECIFICATION FORMS

005 F*

006 FEMPMAST IF E K DISK

007 FTIMCRD IF E K DISK

008 FSALFILE IF E K DISK

009 FQPRINT O F 77 PRINTER OFLIND(*INOF)

010 FERROR O E PRINTER

011 D HLDMST E DS 70 EXTNAME(HLDMAST)

013 D HREC 1 70

015 D HLDNM 4 23

If you are an amateur humorist as I, you must now be singing. “Is that all
there is?” Yes, that’s about it. There are no input specs needed. The calcs
are the same and the output is the same. Theoretically, we could have had
no code here. File descriptions changes only in the placement of the K for
the external definition of a keyed file. QPRINT changes with the
OFLIND keyword but it is the same as the program described version.
Additionally, the HLDMST data structure is externally described but this
too is very similar to the RPG/400 version except for one thing. The
external name is now a keyword, EXTNAME(HLDMAST).

All of this reaffirms a point that we have made several times in this book.
With RPG/400 as the base line, RPGIV is not that much different. If you
can code in RPG/400, there is no reason to not code in RPGIV – at least
for base functions. Later, you can have all the fun you want with the
elements of RPGIV that change coding substantially: EVAL, BIFs, and
free-form RPGIV.

Chapter Summary

In this chapter we made a dramatic change in programming from the
PAREG program that we had been studying throughout this book. There
is no RPG program cycle in this program yet the program accomplishes
the mission of matching records and control level processing, The
PAREG2 program is shown in internal and external versions for

Table of Contents 421

RPG/400 and RPGIV. The major differences between the internal and
external versions is that there is substantially less coding in the external
version than the internal version.

All of this reaffirms a point that we have made several times in this book.
With RPG/400 as the base line, RPGIV is not that much different. If you
can code in RPG/400, there is no reason to not code in RPGIV – at least
for base functions. Later, you can have all the fun you want with the
elements of RPGIV that change coding substantially: EVAL, BIFs, and
free-form RPGIV.

